
Some foundational questions (and some answers)
about algorithms

Yiannis N. Moschovakis
UCLA and University of Athens

LSFA Workshop, Fortaleza, 26 September, 2018
Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 1/13

There is no standard definition of algorithms
. . . which makes it difficult to formulate and prove results

about all of them; but we can try!

• Using as a basic example the classical Euclidean algorithm which
computes the greatest common divisor of two numbers, I will ask
some natural questions about algorithms

• More than half the lecture will be dedicated to introducing
intuitively and then formulating precise versions of these questions

• At the end I will discuss answers to three of these questions which
are somewhat surprizing

• I will simplify a little, but (quoting John Steel) all lies are white

I This material is from the monograph

Abstract recursion and intrinsic complexity (ARIC)

forthcoming in the Lecture Notes in Logic series published by the
Association for Symbolic Logic and Cambridge University Press

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 1/13

The Euclidean algorithm ε (with division) for gcd(x , y)

• The Division Theorem for N = {0, 1, . . .}: For x , y ∈ N with y > 0,
there are unique numbers q = iq(x , y), r = rem(x , y) such that

x = yq + r , 0 ≤ r < y

• gcd(x , y) = max{t | rem(x , t) = rem(y , t) = 0} (x , y ≥ 1)

• Specification of ε by a while program : given x , y ∈ N:

(ε) while y 6= 0
{

x := y ; y := rem(x , y)
}

return x

I Fact. If y = 0, then ε returns x, and if y 6= 0, then ε returns gcd(x , y)

• Equivalent specification of ε by a recursive program :

I Fact. The recursive equation (in the function variable p)

(ε) p(x , y) = if (y = 0) then x else p(y , rem(x , y))

has a unique (total) solution p(x , y), and

p(x , y) = if (y = 0) then x else p(x , y) = gcd(x , y)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 2/13

The complexity of the Euclidean

• cε(x , y) = the number of calls to rem that ε makes on the input x , y

(We do not count calls to eq0(y) ⇐⇒ y = 0—we could)

I Fact: If x ≥ y ≥ 2, then cε(x , y) ≤ 2 log y ≤ 2 log x (log = log2)

• Basic question: Is the Euclidean optimal (in some natural sense),
on some infinite set of inputs?

• Main Conjecture: For every algorithm α from rem and eq0

which computes gcd(x , y) when x , y ≥ 1, there is a number δ > 0,
such that for infinitely many pairs (x , y) with x > y ≥ 1,

cα(x , y) = the number of calls α makes to rem ≥ δ log x

• The Main Conjecture is not about Turing machines with oracles,
which can compute gcd(x , y) with no oracle calls at all

I Fact. For the Fibonacci numbers F0 = 0, F1 = 1, Fk+2 = Fk + Fk+1,

cε(Fk+1, Fk) ≥ (1/2)ϕ log Fk+1 (where ϕ = (1/2)(1+
√

5), k ≥ 2)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 3/13

Partial functions and (partial) structures

• A partial function f : X ⇀ W is a (total) function f : Df → W on
some set Df ⊆ X , its domain of convergence

• f (x)↓ ⇐⇒ x ∈ Df , f (x) ↑ ⇐⇒ x /∈ Df ,

f (x) = g(x) ⇐⇒ [f (x) ↑ & g(x) ↑] ∨ (∃w ∈ W)[f (x) = g(x) = w],

f v g ⇐⇒ (∀x)[x ∈ Df =⇒ f (x) = g(x)],

f (g(x), h(x)) = w

⇐⇒ (∃u, v)[g(x) = u & h(x) = v & f (u, v) = w]

• Unified notation for n-ary partial functions and relations on a set A:

f : An ⇀ As (s ∈ {ind, boole},Aind = A, Aboole = {tt, ff})
• A vocabulary is a finite set Φ = {ϕ1, . . . , ϕm} of function symbols,

each with an assigned sort s and arity ni

• A (partial) Φ-structure is a tuple A = (A,Φ) = (A, ϕA
1 , . . . , ϕA

m) ,

where for each i , ϕA
i : Ani : As

• (Structures with many sorts (data types) are disjoint unions of these)
Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 4/13

Two kinds of algorithms on a Φ-structure A = (A,Φ)

• With variables vi of sort ind over A (and obvious restrictions):

(Terms) E :≡ vi | ϕi (E1, . . . , En) | if E0 then E1 else E2

I (1) The iterative algorithms of A (of sort ind or boole) are specified by
while programs, using partial functions on A defined by terms

— these include all algorithms on A specified by the familiar
computation models (Turing machines, straight line and finite
register programs, decision trees, random access machines, etc.)

—————————————

• Adding pf variables pn,ind
i , pn,boole

i on A of every arity n ∈ N:

(Terms) E :≡ vi | pn,s
i (E1, . . . ,En) | ϕi (E1, . . . , En) | if E0 then E1 else E2

I (2) The recursive algorithms of A are specified by recursive programs

E :≡ E0 where
{

p1(~u1) = E1, . . . , pK (~uK) = EK

}

• Compute: plug the least fixed points p1, . . . , pK of the body into E0

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 5/13

Iteration vs. recursion on a (“nice”, infinite) structure A

• If f : An ⇀ As with s = ind or s = boole:

f is iterative on A ⇐⇒ f is computed in A by a while program,

f is recursive in A ⇐⇒ f is computed in A by a recursive program

I Fact. Reduction of iteration to recursion: Every iterative partial
function of A is recursive in A (effectively)

I Fact. Partial reduction of recursion to iteration: Every recursive partial
function of A is iterative in an expansion of an extension of A

(defined by an implementation of the recursive program which computes f)

I Fact (Patterson-Hewitt 1970, Stolboushkin-Taitslin 1983, Tiuryn 1989):
There are (nice, total) structures A in which some total relation
f : An → {tt, ff} is recursive but not iterative (Tiuryn’s is a forest)

• The distinction between interaction and recursion is not trivial and foun-
dationally significant (Recent work by Neil Jones, Siddharth Bhaskar, ...)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 6/13

Counting calls to primitives for recursive programs
Fix a Φ-structure A and a recursive program

E :≡ E0 where
{

p1(~u1) = E1, . . . , pK (~uK) = EK

}

of A which computes fE : An ⇀ As (s ∈ {ind, boole}
• For each Φ0 ⊆ Φ = {ϕ1, . . . , ϕm}, there is a function

cE (Φ0) : {~x ∈ An | fE (~x)↓} → N such that (intuitively)

(∗) cE (Φ0)(~x) = the number of calls to ϕA
i (with ϕi ∈ Φ0) that

E makes to compute f (~x) (f (~x)↓)

• cE (Φ0)(~x) is determined by the least-fixed-point definition of fE (~x)

I Fact. If E is (the recursive program expressing) a while program
in A, then (??) is a theorem

I Fact. If E ∗ is a (standard) while program implementing E (in an
expansion of an extension of A), then cE (Φ0)(~x) = cE∗(Φ0)(~x) (~x ∈ An)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 7/13

Counting all calls for recursive programs

Fix a recursive program E of A which computes fE : An ⇀ As

cE (~x) = cE (Φ)(~x) = the number of calls to all the primitives that

E makes to compute f (~x) (f (~x)↓)

• Logical calls: pi (E1, . . . , En) if E0 then E1 else E2 : (roughly, add 1)

• There is a function lE : {~x ∈ An | fE (~x)↓} → N such that

(∗∗) lE (~x) = the number of all calls (to the primitives or logical)

that E makes to compute f (~x) (f (~x)↓)

• lE (~x) is defined directly from the least-fixed-point definition of fE (~x)

• It counts the (logical) time required by E to compute fE (~x)

I Fact. If E is a while program, then (with the usual definition of
time for while programs)

lE (~x) = Θ(TimeE (~x)) (fE (~x)↓)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 8/13

Tserunyan’s First Theorem
Fix a recursive program E of A which computes fE : An ⇀ As

cE (~x) = the number of calls to the primitives that

E makes to compute fE (~x) (fE (~x)↓)

lE (~x) = the number of all calls

that E makes to compute fE (~x) (fE (~x)↓)

so clearly cE (~x) ≤ lE (~x) (fE (~x)↓)

I Theorem (Anush Tserunyan, in her 2013 Ph.D. Thesis). There is
a constant K = KE ,A ∈ N such that

lE (~x) ≤ K (cE (~x) + 1) (fE (~x)↓)

• It provides an explanation of why all the proofs of lower bounds for
queries on structures (that I know) count needed calls to the
primitives and derive a lower bound for time

• The complexity functions cE (~x), lE (~x) are defined on recursive programs ,

not on implementations

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 9/13

Non-deterministic recursion

• A nondeterministic (nd) recursive program of a structure A is just
like a (deterministic) program

E :≡ E0 where
{

p1(~u1) = E1, . . . , pK (~uK) = EK

}

except that we allow pi ≡ pj for some i , j

• Pratt’s nuclid program of the Euclidean structure (N, rem, eq0):

EP ≡ nuclid(a, b, a, b) where
{

nuclid(a, b,m, n) = if (n 6= 0) then nuclid(a, b, n, rem(choose(a, b, m), n))

else if (rem(a, m) 6= 0) then nuclid(a, b,m, rem(a,m))

else if (rem(b, m) 6= 0) then nuclid(a, b,m, rem(b,m))

else m,

choose(a, b, m) = m, choose(a, b, m) = a, choose(a, b, m) = b
}

• Fixed point semantics and the complexity functions cE (~x), lE (~x)
can be extended to nd programs (with some work)

I nuclid computes gcd(x , y)

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 10/13

A lower bound for coprimeness

• Def. Difficult pairs. A pair of numbers (x , y) is difficult if
2 ≤ y < x < 2y , x⊥⊥ y and (some technical condition)

I Every pair (Fk+1,Fk) of successive Fibonaccis with k ≥ 3 is difficult;
every solution (x , y) of Pell’s equation x2 = 1 + 2y2 is difficult; . . .

I Theorem (Lou van den Dries, ynm, 2004) If E is a nd recursive
program on (N, 0, 1, =, <, +,−· , iq, rem) which computes gcd(x , y) :

for every difficult pair (x , y), cE (rem)(x , y) ≥ 1

10
log log x

I A precise version of the Main Conjecture: For every (deterministic)
recursive program E of (N, eq0, rem) which computes gcd(x , y)
when x , y ≥ 1, there is a number δ > 0, such that

for infinitely many pairs (x , y) with x > y ≥ 1, cE (rem)(x , y) ≥ δ log x

• The theorem gives a nondeterministic complexity inequality which
is one log below the claim of the Main Conjecture—too weak!

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 11/13

The calls complexity of Pratt’s nuclid

I Corollary(vdd,ynm). For every nd recursive program E on
(N, 0, 1,=, <,+,−· , iq, rem) which computes gcd(x , y),

cE (rem)(Fk+1, Fk) ≥ 1

10
log log Fk+1 (k ≥ 2)

I Pratt’s Theorem (2008) If EP is Pratt’s nd recursive nuclid
program of the Euclidean structure (N, rem, eq0) which computes
gcd(x , y), then

cEP
(rem)(Fk+1,Fk) ≤ r log log Fk+1 (some r , all k ≥ 3)

• So: vdd and ynm (2004, 2009) have the best version of their
Theorem — but the main conjecture could be true with another
infinite set of pairs; it is still open

• It may be that the Main conjecture is true but only for
deterministic programs

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 12/13

Comments

• The most interesting foundational aspects of this work are that

(1) the partial function computed by a recursive program and

(2) its complexity measures

are defined directly from the program (by fixed point recursion)
rather than through its implementation.

(1) simplifies greatly proofs of correctness, which come down to
showing that the function which we want our algorithm to
compute (together with some auxiliary functions) satisfy a system
and is often trivial; and

(2) insures that lower bounds for algorithms proved for these
complexities hold for all (correct) implementations

Yiannis N. Moschovakis: Some foundational questions (and some answers) about algorithms 13/13

