
Recursive algorithms from specified primitives

Yiannis N. Moschovakis
UCLA and University of Athens

Federal University of Ceará, Fortaleza, 24 September, 2018

What is an algorithm?

• Algorithms are not just Turing machines! (later)
and there is no generally accepted definition of what they are

• Many classical notions were defined after centuries of study:
The natural numbers N = {0, 1, . . .}, ? – 1870s (Dedekind)
The real numbers R, ? – 1870s (Dedekind, Cantor)
Random variables, 1700s – 1931 (Kolmogorov)

• A precise definition of a notion should make it possible to give
rigorous proofs of results which have been proved intuitively; and
so I will start with an elementary discussion of some classical
algorithms

I This material is (mostly) from the monograph

Abstract recursion and intrinsic complexity (ARIC)

forthcoming in the Lecture Notes in Logic series published by the
Association for Symbolic Logic and Cambridge University Press

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 1/17

The Euclidean algorithm ε (with division) for gcd(x , y)

• The Division Theorem for N = {0, 1, . . .}: For x , y ∈ N with y > 0,
there are unique numbers q = iq(x , y), r = rem(x , y) such that

x = yq + r , 0 ≤ r < y

gcd(x , y) = max{t | rem(x , t) = rem(y , t) = 0} (x , y ≥ 1)

• Specification of ε by a while program : given x , y ∈ N:

(ε) while y 6= 0
{

x := y ; y := rem(x , y)
}

return x

I Fact. If y = 0, then ε returns x, and if y 6= 0, then ε returns gcd(x , y)

• Equivalent specification of ε by a recursive equation :

I Fact. The recursive equation (in the function variable p)

(ε) p(x , y) = if (y = 0) then x else p(y , rem(x , y))

has a unique (total) solution p(x , y), and

p(x , y) = if (y = 0) then x else p(x , y) = gcd(x , y)

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 2/17

The complexity of the Euclidean

• cε(x , y) = the number of calls to rem that ε makes on the input x , y

(We do not count calls to eq0(y) ⇐⇒ y = 0—we could)

I Fact: If x ≥ y ≥ 2, then cε(x , y) ≤ 2 log y ≤ 2 log x (log = log2)

• Basic question: Is the Euclidean optimal (in some natural sense),
on some infinite set of inputs?

• Main Conjecture: For every algorithm α from rem and eq0 which

computes gcd(x , y) when x , y ≥ 1, there is a number δ > 0, such
that for infinitely many pairs (x , y) with x > y ≥ 1,

cα(x , y) = the number of calls α makes to rem ≥ δ log x

• The Main Conjecture is not about Turing machines with oracles,
which can compute gcd(x , y) with no oracle calls at all

I Fact. For the Fibonacci numbers F0 = 0, F1 = 1, Fk+2 = Fk + Fk+1,

cε(Fk+1, Fk) = k − 1 ≥ (1/2)ϕ log Fk+1 (ϕ = (1/2)(1+
√

5), k ≥ 2)

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 3/17

Variations of the Euclidean

• Coprimeness: x⊥⊥ y ⇐⇒ x , y ≥ 1 & gcd(x , y) = 1

(ε⊥⊥) while y 6= 0
{

x := y ; y := rem(x , y)
}

return
(
if (x = 1) then tt else ff

)

I Fact. If x , y ≥ 1, then ε⊥⊥ decides x⊥⊥ y

• ε⊥⊥ can also be specified by a system of two recursive equations

• K (X) = the ring of polynomials in the indeterminate X over the field K

I Fact. The natural version of the Euclidean on K(X) computes the
(monic) polynomial gcd(P(x),Q(X))

I Fact. The Sturm algorithm is a minor variation of the Euclidean on
N,R, and R(X) which, given P(X) ∈ R(X) and an open interval
(α, β) in R, computes the number of real roots of P(X) in (α, β)

• These algorithms act on complex inputs and use primitives which
are not “computable” in any intuitive way—e.g., α = 0 on R;
— their “implementations” for all inputs bring in numerical analysis

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 4/17

The mergesort algorithm

• Suppose L is a set with a fixed (total) ordering ≤ on it.

• A string v = (v0, . . . , vn−1) = v0v1 · · · vn−1 ∈ L∗ is sorted if
v0 ≤ v1 ≤ · · · ≤ vn−1, and for each u ∈ L∗,

sort(u) = the unique sorted “rearrangement” of u

I Fact. The two recursive equations (on L, L∗, with variables p, merge)

p(u) = if |u| ≤ 1 then u else merge(p(half1(u)), p(half2(u)))

merge(w , v) = if |w | = 0 then v else if |v | = 0 then w

else if (head(w) ≤ head(v)) then cons(head(w), merge(tail(w), v))

else cons(head(v), merge(w , tail(v)))

has unique (total) solutions p, merge, and sort(u) = p(u)

• There is a natural, more detailed system of four equations which
expresses the mergesort from ≤ and the primitives of Lisp

nil = (), eqnil(u), head(u) = u0, tail(u), cons(s, u) = su0 · · · un−1

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 5/17

The complexity of sorting

• There is no single while program which expresses faithfully

the algorithm from the primitives of Lisp and ≤
defined by the mergesort

— because to compute merge(p(half1(u)), p(half2(u))) you have
to decide whether to compute the two values p(half1(u)) and
p(half2(u))) together, in parallel or in sequence, in one of two orders

I Fact (proved in every class on algorithms). For the mergesort µ, if

cµ(u) = the number of calls to ≤ that µ makes on the input u ,

then cµ(u) ≤ |u| log |u| (Proved “intuitively” by induction on |u|)
I Fact (proved in every class on complexity). If α is any sorting

algorithm that uses comparisons, then (∃u)[cα(u) ≥ |u| log |u|]
• A rigorous formulation and proof can be given if α is specified by a

while program from ≤ and the Lisp primitives

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 6/17

Partial functions and (partial) structures

• A partial function f : X ⇀ W is a (total) function f : Df → W on
some set Df ⊆ X , its domain of convergence

• f (x)↓ ⇐⇒ x ∈ Df , f (x) ↑ ⇐⇒ x /∈ Df ,

f (x) = g(x) ⇐⇒ [f (x) ↑ & g(x) ↑] ∨ (∃w ∈ W)[f (x) = g(x) = w],

f v g ⇐⇒ (∀x)[x ∈ Df =⇒ f (x) = g(x)],

f (g(x), h(x)) = w

⇐⇒ (∃u, v)[g(x) = u & h(x) = v & f (u, v) = w]

• Unified notation for n-ary partial functions and relations on a set A:

f : An ⇀ As (s ∈ {ind, boole},Aind = A, Aboole = {tt, ff})
• A vocabulary is a finite set Φ = {ϕ1, . . . , ϕm} of function symbols,

each with an assigned sort s and arity ni

• A (partial) Φ-structure is a tuple A = (A,Φ) = (A, ϕA
1 , . . . , ϕA

m) ,

where for each i , ϕA
i : Ani ⇀ As

• (Structures with many sorts (data types) are disjoint unions of these)
Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 7/17

Problem: define algorithms of A = (A,Φ) so that:

(1) An algorithm of A computes a partial function f : An ⇀ As

(2) The Euclidean(s) and the mergesort are algorithms

(3) The Facts proved intuitively can be proved rigorously
and the Main Conjecture can be made precise

• How do we define (or model faithfully) mathematical objects in set theory?

• Def. A real number is a sequence x : N→ Q which has the Cauchy property,

R = {x : N→ Q | x is Cauchy};
and two real numbers x , y are equal (or equivalent) if “they get
arbitrarily close together”, i.e.,

x ∼= y ⇐⇒ limn→∞ |x(n)− y(n)| = 0

• We could take the reals to be the set of equivalence classes of this
set R under ∼=

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 8/17

Iterative and recursive algorithms of a structure A
• An algorithm of A is iterative if it is specified by a while program

which is explicitly defined on A from the primitives Φ of A (known)

• An algorithm of A is recursive if it is specified by a recursive
program of A (needs rigorous definition)

• It can be argued that if we accept (1) - (3), then the problem of
defining the algorithms of A comes down to identifying them with
either the iterative or the recursive algorithms of A

• The first choice—that

algorithms are (ultimately) specified by while programs

is the standard view: it is (explicitly or implicitly) accepted by
almost all computer scientists, including Knuth; it covers all
familiar models of computation—Turing machines, . . . , RAMS, . . .);
and it has been developed extensively by Gurevich and his co-workers

• — but it does not cover recursive algorithms like the mergesort

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 9/17

Recursive algorithms: two more examples

• Primitive recursion, f (0, y) = g(y), f (x + 1, y) = h(f (x), x , y)

I Fact. f is the least fixed point p in Ng ,h = (N, Pd, eq0, g , h) of

(∗) p(x , y) = if (x = 0) then g(y) else h(p(Pd(x), y), Pd(x), y)

• f can be computed by a while program of (Ng ,h, S), but the
recursive algorithm specified by (∗) is not obviously the algorithm
specified by any while program of Ng ,h

I Fact (Bezout’s Lemma). For all x , y ≥ 1, there are α, β ∈ Z such that

(∗∗) gcd(x , y) = αx + βy ;

and (∗∗) holds with α = p(x , y), β = q(x , y), the least fixed points of

p(x , y) = if (rem(x , y) = 0) then 0 else q(y , rem(x , y)),

q(x , y) = if (rem(x , y) = 0) then 1

else p(y , rem(x , y))− iq(x , y)q(y , rem(x , y))

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 10/17

Recursive Φ-programs and their fixed-point semantics

I A recursive (McCarthy) Φ-program is a syntactic expression

E (~u) ≡ E0(~u)︸ ︷︷ ︸
head

where
{

p1(~x1) = E1(~x1), . . . , pK (~xK) = EK (~xK)︸ ︷︷ ︸
body, all variables in it are bound

}

which satisfies the following conditions:

(1) p1, . . . , pK are distinct (fresh) partial function variables

(2) With ~x0 ≡ ~u, each Ei (~xi) is an explicit term in the vocabulary
Φ ∪ {p1, . . . , pK} whose variables are all in the list ~xi

(3) The arities and sorts of the variables pi and the terms Ei (~xi)
“fit”, so that the equations in the body of E are well-formed

• For a Φ-structure A and i ≤ K , we set αi (~xi , ~p) = den((A, ~p), Ei (~xi))

• den(A, E (~u)) = α0(~u, p1, . . . , pK) where p1, . . . , pK are the least

fixed points of the system pi (~xi) = αi (~xi , p1, . . . , pK), i = 1, . . . ,K

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 11/17

Fixed-point definitions of complexity functions

• Fix a Φ-structure A and a Φ-program

E (~u) ≡ E0(~u) where
{

p1(~x1) = E1(~x1), . . . , pK (~xK) = EK (~xK)
}

• To compute den(A, E (~u)) for some ~u ∈ An:

(1) Compute (in any way) the least fixed points p1, . . . , pK of the
system of recursive equations in the body of E (~u);

(2) Set den(A,E (~u)) = den(Ap,E0(~u)) where Ap = (A, p1, . . . , pK),
is the expansion of A by these fixed points

I For each A, E (~u), ~u ∈ An and Φ0 ⊆ Φ, we can define

(∗) cE(~u)(Φ0)(A, ~u) = the number of calls to ϕi ∈ Φ0

in the definition of den(A,E (~u))

by a direct least-fixed-point recursion, so (∗) is plausible; it is a
theorem if E (~u) is (the recursive representation of) a while
program; and it validates the proofs above about the mergesort

• The same can be done about many other complexity functions

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 12/17

Algorithmic equivalence of recursive programs

• Assume we have a reasonable definition of the algorithm expressed
by a Φ-program on a Φ-structure and set

E (~u) ∼= F (~u) ⇐⇒df E (~u) and F (~u) express the same algorithm in A

For ϕ,ψ, c ∈ Φ of suitable arities and sorts, TRUE or FALSE:

(1) ϕ(c) ∼= ϕ(p) where
{

p = c
}

TRUE

(2) ψ(c, c) ∼= ψ(p, p) where
{

p = c
}

FALSE

(3) ψ(c, c) ∼= ψ(p, q) where
{

q = c , p = c
}

TRUE

(4) ψ(p1(u), p2(v)) where
{

p1(u) = E (u, p2), p2(s) = F (s, p1, p2)
}

∼= ψ(r1(u), r2(v)) where
{

r2(t) = F (t, r1, r2), r1(t) = E (t, r2)
}

TRUE

• Def. Congruence of programs: E (~u) ≡c F (~u) if F can be constructed from
E by renaming the bound variables and reordering the parts in the body

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 13/17

Program reduction

• We define a one-step reduction relation E (~u) ⇒1 F (~u) on

Φ-programs and set

E (~u) ⇒ F (~u) ⇐⇒ E (~u) ≡c F (~u)

or there exists a sequence (F1(~u), . . .Fk(~u)) such that

E (~u) ⇒1 F1(~u) ⇒1 · · · ⇒ Fk(~u) ≡ F (~u)]

• E (~u) is irreducible ⇐⇒ (∀F (~u))
[
E (~u) ⇒ F (~u) =⇒ E (~u) ≡c F (~u)

]

ψ(c, d) ⇒1 ψ(p, d) where
{

p = c
}
⇒1 ψ(p, r) where

{
r = d , p = c

}
.

ψ(c, c) ⇒1? ψ(p, p) where
{

p = c
}

FALSE

ψ(c, c) ⇒1 ψ(p, c) where
{

p = c
}
⇒1 ψ(p, r) where

{
r = c, p = c

}
.

ψ(p) where
{

p = ϕ(c)
}
⇒1 ψ(p) where

{
p = ϕ(q), q = c

}
.

• Reduction models (one step at a time, innermost first) compilation

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 14/17

The strict recursive algorithms of a Φ-structure A

I If E (~u) ⇒ F (~u), then for every Φ-structure A:

(1) den(A,E (~u)) = den(A, F (~u))

(2) For every Φ0 ⊆ Π, cE(~u)(Φ0)(A, ~u) = cF (~u)(Φ0)(A, ~u)
(and the same is true for many other complexity measures)

Canonical Form Theorem
Every recursive Φ-program E (~u) is effectively reducible to a unique
up to congruence irreducible program, its canonical form cf(E (~u))

• Def. The strict algorithm (intension) expressed by a Φ-recursive

program E (~u) in a Φ-structure A is E (~u), ints(A, E (~u)) = E (~u)

• Def. E (~u) ∼=s F (~u) ⇐⇒ cf(E (~u)) ≡c cf(F (~u))

I The identity relation between recursive programs is decidable (NP) and
at least as difficult as the problem of isomorphism for finite graphs

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 15/17

The denotational algorithms of a Φ-structure A
• Suppose A = (A, ϕ, ψ) and ϕ = ψ

If E (u) ≡ ϕ(u) where { }, then cE(u)(ϕ)(u) = 1 6= cE(u)(ψ)(u) = 0

For E (~u) ≡ E0(~u) where
{

p1(~x1) = E1(~x1), . . . , pK (~xK) = EK (~xK)
}

:

• Def. r(A, E (~u)) = (α0, . . . , αK) with αi (~xi , ~p) = den((A, ~p),Ei (~xi))

• Def. intd(A, E (~u)) = r(A, (cf(E (~u))))

• Def. E (~u) ∼=d ,A F (~u) ⇐⇒ intd(A, E (~u)) = intd(A, F ′(~u))
for some F ′ ≡c F

Decidability of identity of denotational algorithms For every infi-
nite A, the relation ∼=dA

on recursive programs is decidable

• One of the strict or denotational algorithms of a program may be
more appropriate for a particular problem—as for random variables

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 16/17

Comments

• Specification of algorithms by recursive rather than imperative
programs simplifies greatly proofs of correctness which come down
to showing that the function which we want our algorithm to
compute (together with some auxiliary functions) satisfy a system

This separates the proof of correctness for the algorithm from the
proof of correctness of (some) implementation of it—which is
surely needed at some time

• The most interesting contribution of this work is the direct
definition of complexity measures to recursive problems partly
because the lower bound results established for a recursive program
hold for all its implementations.

Yiannis N. Moschovakis: Recursive algorithms from specified primitives July 22, 2019, 16:49 17/17

