
Sense and denotation as algorithm and value

Advanced course

Fritz Hamm and Yiannis Moschovakis

ESSLLI 2010 CPH

A LOGIC OF MEANING AND SYNONYMY

FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Contents

1. Introduction . 3
1.1. Why use a formal language? Rendering . 6
1.2. Propositional attitudes . 7
1.3. Is all language situated? Local meaning and synonymy 8

2. Formal syntax of Lλ
ar . 9

2.1. Types . 10
2.2. Constants . 10
2.3. Variables . 11
2.4. Terms . 11

2.4.1. Constants and variables . 11
2.4.2. Application: . 11
2.4.3. λ-abstraction: . 12
2.4.4. Acyclic recursion: . 13

2.5. Explicit, recursive and λ-calculus terms . 15
2.6. Term congruence . 15

3. Denotational semantics . 16
3.1. The denotation of recursive terms . 17
3.2. Our universe . 18
3.3. Errors and presuppositions . 18
3.4. Formal replacement and denotational compositionality 19
3.5. Lλ

ar vs. the typed λ-calculus Ty2 . 19
4. Examples . 20

4.1. β-conversion. 20
4.2. States . 20
4.3. Pure and natural language types and terms . 21
4.4. Descriptions . 22
4.5. Carnap objects of type (s → σ); rigidity . 22
4.6. Modal operators . 23
4.7. Local and modal dependence . 24
4.8. Coindexing; rendering directly into Lλ

ar . 25
4.9. Proper nouns, demonstratives and quantifiers 26

4.10. Relative clauses . 28

These notes for a short course in ESSLLI 2010 are an update and refinement of Moschovakis
[2006], which in turn was developed from a set of notes produced for a short course in NASSLLI
’03. We thank Eleni Kalyvianaki for her help in preparing them.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 1

2 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

4.11. Coordination . 29
5. Overview of referential intension theory . 30

5.1. The reduction calculus (Section 6) . 30
5.1.1. Compositionality for reduction . 30
5.1.2. Canonical Form Theorem . 31
5.1.3. Logical form and syntactic synonymy . 31

5.2. Referential intensions (Section 7) . 31
5.2.1. Canonical forms and truth conditions . 32

5.3. Referential and logical synonymy (Section 8). 32
5.3.1. Referential Synonymy Theorem . 32
5.3.2. Logical synonymy . 33
5.3.3. The calculi of referential and logical synonymy 34
5.3.4. Compositionality Theorem . 34
5.3.5. The proof systems Syn and Synl; completeness results 34

6. The reduction calculus. 35
6.1. Congruence, transitivity, compositionality . 36
6.2. The reduction rules for recursion . 36

6.2.1. The head-rule (head) . 36
6.2.2. The Bekič-Scott rule (B-S) . 36
6.2.3. The recursion-application rule (recap) . 37

6.3. Immediate terms . 37
6.4. The application rule (ap) . 38

6.4.1. The canonical form of “John loves Mary” 39
6.5. The λ-rule. 40

6.5.1. The canonical form of “Every man danced with his wife” . . 40
6.6. Reduction and equality . 41
6.7. Characterization of irreducible terms . 42
6.8. Canonical forms . 42

6.8.1. Basic properties of canonical forms . 43
6.9. Proofs of 5.3.3 – 5.3.5 . 43

7. Referential intensions . 43
7.1. Basic definition; shapes . 44
7.2. Acyclic recursors . 45
7.3. Circuit diagrams . 46
7.4. Algorithms and meanings as recursors . 47
7.5. Natural recursor isomorphism . 47

8. Referential and logical synonymy . 48
8.1. Why not assign meanings to immediate terms? 49

9. Non-synonymy . 49
9.1. The unique occurrence property of λ-calculus terms. 49
9.2. John can’t love and honor his wife properly in the λ-calculus . . 50
9.3. The new meanings in Lλ

ar and logical form . 50
9.4. The symmetry of identity statements . 51

10. Local (situated) meanings . 52
10.1. Utterances and local synonymy . 53
10.2. Los Angeles and LA . 54
10.3. Language speakers. 55

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 2

A LOGIC OF MEANING AND SYNONYMY 3

10.4. Is he Scott? . 56
10.5. Individual concepts in utterances . 57
10.6. Impossible utterances. 57

11. Propositional attitudes . 59
11.1. Formal attitudinal application . 59
11.2. George claims that John is a crook . 60
11.3. Declaration of love . 60
11.4. The λr operator . 62
11.5. Outline of the general construction . 63

11.5.1. The attitudinal application rule . 63
11.6. Denotational soundness. 64
11.7. “John claims Mary loves him but she denies it” 66
11.8. The complete reduction calculus . 66
11.9. “I believe everything that Sarah Palin says” 67

12. What is missing . 67
12.1. Factual content . 67
12.2. Approximate synonymy . 67

1. Introduction. Frege [1879] is usually credited for introducing the basic
notions of modern mathematical (symbolic) logic, which reached full maturity
with the work of Hilbert, Tarski and Gödel some fifty years later. The key parts
of this enterprize were the following:

(1) The choice of First Order Language FOL as the most suitable formal (pre-
cisely formulated) language in which to develop logic—sufficiently rich so that
all mathematical theories can be expressed in it, yet simple enough so that it
can be profitably studied.

(2) The precise definition of interpretations of FOL in first order structures
(models) which yields a notion of truth for FOL-sentences, in symbols

M |= θ ⇐⇒ θ is true in the structure M.

(3) The precise definition of proof and provability for FOL sentences, in symbols

⊢ θ ⇐⇒ there is a proof of θ

And finally,

(4) Gödel’s proof of the Completeness Theorem, which identifies logical truth
(validity) with provability,

⊢ θ ⇐⇒ for all structures A, A |= θ.

It is hard to overemphasize the significance for the foundations of mathematics
(and science, in general) of this body of work, which answered definitively the
ancient question of what follows from what in science by logic alone. It has also
had a large number of applications in mathematics.

It was also Frege [1892] who introduced the important distinction between the
denotation of linguistic terms (truth value for sentences) and their meaning. On

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 3

4 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

some level, this is so trivial so that it does not merit discussion: nobody would
confuse

“1+1 = 2” with “there are infinitely many prime numbers”,(1)

which express such obviously different, true facts about the whole numbers that
it may not be worth making the difference in their meanings precise. The dis-
tinction is perhaps less immediate and more difficult to articulate for simple
examples from natural language. Consider:

Abelard loved and honored Eloise,(2a)

Abelard loved Eloise and honored her,(2b)

He loved and honored Eloise,(2c)

Abelard claimed that he loved and honored Eloise,(2d)

the last two uttered in a context where “He” clearly refers to Abelard and it
is commonly known that Abelard never claimed untruths. Perhaps (2a) – (2d),
or at least (2a) – (2c) express the same thought, but it is difficult to make
this precise—if it is true at all. Most would argue that these sentences are not
quite “understood in the same way”—but making the distinctions precise is also
not entirely trivial: it involves an analysis of important linguistic notions like
anaphora, coordination, logical form, situated interpretation and propositional
attitudes, and what these have to do with meaning.

The examples suggest that it may be worth developing a logical theory of
meaning and synonymy paralleling the logical theory of truth and provability
outlined in (1) – (4) above, which would account usefully for subtle differences
of meaning and explain why there are none, when there are none. Plausible
applications of such a theory might be found in philosophy of language and in
linguistics, if not in science. Despite the extensive literature on the distinction
between Frege’s sense and denotation we think that the logical theory of meaning
and synonymy we are advocating adds significant novel aspects to a general
theory of meaning in a systematic way. Getting started on such a project was
the main motivation for Moschovakis [1994], [2006]. Our aim in these lectures
is to outline an extended and somewhat refined version of the main content of
these two papers, with special emphasis on its relevance to linguistic analysis.1

The key parts of this theory corresponding to (1) – (4) for mathematical logic
above are as follows, briefly and with some oversimplification:

(I) Language. Our formal results are about the typed λ-calculus with acyclic
recursion Lλ

ar. This is an extension of the formal language used by Richard Mon-
tague in the sequence of fundamental papers Montague [1970b], [1970a], [1970c],
[1973], [1974], the first, systematic and rigorous logical study of fragments of nat-
ural language. The theory we are presenting here is best viewed as an extension
and refinement of Montague’s work.

We emphasized above in (1) that the choice of FOL as the “most suitable
formal language” was an important step in the development of mathematical

1For those who are familiar with Moschovakis [1994], [2006], we note that the main new
contribution is the treatment of propositional attitudes. This requires some refinements of the
theory.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 4

A LOGIC OF MEANING AND SYNONYMY 5

logic. There is a similar need to choose a suitable formal language for the logical
analysis of meaning and synonymy, and our claim here is that Lλ

ar is the best
tool for this purpose.

(II) Interpretations. The terms of Lλ
ar are interpreted in an arbitrary higher

type structure M. Each term A which is closed (with no free variables) is assigned
a denotation (value) den(A), the object “named” by A in M, very much following
Montague, and we write

M |= A = B ⇐⇒ den(A) = den(B) in M. (Identity)

The (Fregean) novelty is that in addition to its denotation, each closed term A is
also assigned a referential intension int(A), an object which models the meaning
of A in M and determines its denotation. Two terms are synonymous in a given
structure if they have isomorphic referential intensions, in symbols

M |= A ≈ B ⇐⇒ int(A) ∼= int(B) in M. (Synonymy)

This is, of course, the characteristic feature of the present theory. Intuitively,
int(A) is the natural (abstract, possibly infinitary) algorithm, which is deter-
mined by A and computes den(A) in M. In slogan form:

The meaning of a term is the algorithm which computes its denotation

Somewhat more precisely, int(A) is a higher-type (set-theoretic) object which is
constructed naturally from A and faithfully models a procedure that computes
den(A) in M.

(III) The calculus of meaning and synonymy. The classical calculus of β-
conversion can be easily extended to Lλ

ar and provides a formal method to es-
tablish denotational identities of the form A = B. It is augmented here with
a reduction calculus which establishes synonymies A ≈ B, or, more precisely,
reduces the truth of a synonymy A ≈ B to denotational identities between “the
parts” of A and B. It can be viewed as providing a general and rigorous specifica-
tion of the truth conditions which ground synonymies, and it is the main technical
contribution of this work—the logical calculus of meaning and synonymy.

(IV) Completeness. Combining the classical work on the λ-calculus with the
methods of these notes, we can formulate and establish natural, complete ax-
iomatizations for both (denotational) identities A = B and synonymies A ≈ B
which hold on all structures in which Lλ

ar can be interpreted. As with the logic
of denotations, this will delineate those synonymies A ≈ B which hold by logic
alone, and so it is of interest. On the other hand, our main interest is on under-
standing the relation of synonymy in our own, interpreted language (where love
means “love” and not “hate”), and so the the completeness results for logical
synonymy are not quite as central here as they are for mathematical logic.

Before we start with the technical development of the logic of Lλ
ar in the next

section, we discuss briefly some basic methodological questions which come up
in projects such as these.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 5

6 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

1.1. Why use a formal language? Rendering. Much of the philosophi-
cal and logical discussion of sense and denotation in the literature is formulated
directly for natural language. This avoids the thorny problem of specifying the
relation between natural language expressions and their “formal counterparts”,
or “formal expressions”, or however one chooses to name the results of some
generally vague formalization process; but it runs into the thornier problem of
trying to give rigorous proofs based on the complex syntax of a specific natural
language, which is not always definitively and rigorously formulated. The com-
monly accepted alternative, which we will adopt, is to choose a specific formal
language (Lλ

ar) and start the logical analysis by “interpreting” in it a fragment
of natural language. So every discussion of an example from natural language
will start with a claim of the form

(3) every man loves some woman

render−−−→ every(man)
[

λ(u)
(

some(woman)(λ(v)loves(u, v))
)]

which will be explained and motivated when not obvious, but cannot be rig-
orously justified, as we will not specify with any precision the all-important

rendering (or translation) operation . . .
render−−−→ A. The corresponding rendering

claims for the examples above are as follows, and together with (3) they exhibit
all the syntactic constructs of Lλ

ar, which we will define precisely below:

Abelard loved and honored Eloise(4a)
render−−−→ λ(u, v)

(

loved(u, v) and honored(u, v)
)

(Abelard, Eloise)

Abelard loved Eloise and honored her(4b)
render−−−→ loved(ȧ, ė) and honored(ȧ, ė) where {ȧ := Abelard, ė := Eloise}

He loved and honored Eloise,(4c)
render−−−→ λ(u, v)

(

loved(u, v) and honored(u, v)
)

(He, Eloise)

Abelard claimed that he loved and honored Eloise(4d)
render−−−→ claimed

(

ȧ, λ(v)[loved(ȧ, v) and honored(ȧ, v)](Eloise)
)

where {ȧ = Abelard}
In fact the full rendering operation is of the form

natural language expression + context
render−−−→ formal expression + state,

where the (informally understood) context determines not only the state (as we
will make it precise further down), but also which precise reading of the ex-
pression is appropriate and what formal transformations should be made (e.g.,
coindexing), depending on information about “what the speaker meant”, into-
nation, if the expression was spoken, punctuation and capitalization, if it was
written, etc. We have nothing novel to say about how these factors determine
the state, and so we will will assume that it is given and we will concentrate on
the simpler, syntactical component of rendering

natural language expression
render−−−→ formal expression(5)

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 6

A LOGIC OF MEANING AND SYNONYMY 7

for which the subsequent extraction of meaning will provide some suggestions.
Some would argue that what we leave out is a very important part of the extrac-
tion of meanings from linguistic expressions, and we would agree with them. On
the other hand, we think that the theory of what-happens-next proposed here
may be of some value, primarily because of two reasons.

First, the modeling of meanings by referential intensions goes far beyond the
imagery and analogy with computation often used to explain the relation be-
tween Frege’s sense and denotation, especially by Dummett.2 The explication of
meaning by abstract algorithm is analogous to the “definition” of ordered pairs
in axiomatic set theory: necessarily complex and somewhat forbidding at first
sight, it codifies the structural properties of a specific understanding of mean-
ing which (with some effort) can be understood intuitively and used for direct
philosophical and linguistic analysis independent of the technicalities.

Second, the formal processing of Lλ
ar-terms (the reduction calculus) sets condi-

tions and limitations on the rendering operation, it provides new ways to imple-
ment some syntactic transformations which affect meaning (like coindexing and
co-ordination), and for some English phrases, it suggests some plausible, novel
renderings on Lλ

ar which appear to correspond more accurately to our intuitive
understanding of these phrases. This is an important point, and we will discuss
it in some detail further down.

1.2. Propositional attitudes. One of the most important (and problem-
atic) features of Frege’s theory of sense is his treatment of propositional attitudes,
in examples such as

George knows that 1 + 1 = 2.(6a)

It is clear that the truth of this depends not only on the truth value of “1+1 = 2”
but also on its sense; otherwise (6a) would be equivalent with

George knows that there are infinitely many prime numbers,(6b)

which need not be true if George knows a bit of rudimentary arithmetic but is
ignorant of Euclid’s theorem about the infinitude of primes. To account for this
without abandoning his general compositionality principle for denotations, Frege
postulates that in such indirect occurrences, the denotation of a sentence which
is the object of a belief assertion is its (customary) sense. The doctrine leads
to the introduction of many layers of “indirect senses” and (at the minimum)
complicates greatly the development of a coherent, rigorous logical theory of
meaning.3

Montague avoids these complications by adopting a modal interpretation of
propositional attitudes. Briefly, every sentence θ is assumed to have a truth value
in every “possible world”, and then George knows θ if θ is true in all worlds which
are “accessible” to him. There is a well-known problem with this account: one

2Cf. the discussion and the references to Dummett [1978] and Evans [1982] in the introduc-
tion to Moschovakis [1994]. See also Tichý [1969], which was not known to Moschovakis when
he started on this project.

3It also conflicts with the most plausible motivation for introducing a compositionality
principle for denotations, which is to develop a logic of denotations independent of senses: this
plainly fails if among the denotations that we need to introduce are precisely the senses we
were trying to avoid—and many more “indirect versions” of them.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 7

8 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

would assume that “1 + 1 = 2” and “there are infinitely many primes” are both
true in all (plausible) possible worlds, and so George could not coherently know
one and not the other. Matters are worse for simpler propositional attitudes: it
is not easy to account modally for the different truth values of the two sentences

George claimed that he didn’t kill the judge(7a)

George claimed that he was in Baltimore at the time(7b)

if, indeed, the claimed facts are both true—but George did not claim the second
one, perhaps because he didn’t want his wife to know that he had been to
Baltimore.

Referential intension theory makes possible a treatment of propositional atti-
tudes which is ultimately very close to Frege’s but avoids explicitly introducing
indirect senses. This is because referential intensions are higher type objects to
which Lλ

ar can refer: and so we can compute the truth values and the referential
intensions of (7a) and (7b) from

int(he didn’t kill the judge) and int(he was in Baltimore at the time)

and render (7a) and (7b) in Lλ
ar in full agreement with our intuitions about

claiming. This, however, involves some technicalities which will be easier to
explain after we understand the denotational part of the theory, so we will put
it off.

The plan then is to develop first the syntax and semantics of the denotational
part of Lλ

ar which does not have attitudinal constants like know that, claim that,
and then interpret (translate) the full language into its denotational part.

1.3. Is all language situated? Local meaning and synonymy. To un-
derstand and assign a truth value to

She loves me(8)

we must know (at least) who the speaker is, who “she” is, and when the sentence
was uttered. We have already mentioned that in formal studies of semantics, this
information is assumed to be extracted (somehow) from the informal context
and bundled into a state a, which then together with the formal rendering of (8)
determines at least the truth value and perhaps also its meaning as an utterance.

Montague includes the “possible world” in the state and goes one step further:
he assumes that we can only understand language in context and, in particular,
that it makes no sense to refer to “the denotation of A” without specifying
the state in which A is evaluated. Formally, every closed term A of Montague’s
language of intensional logic LIL which expresses an assertoric sentence of natural
language is interpreted by its Carnap intension

CI(A) : States → Truth values,(9)

which assigns a truth value CI(A)(a) to A in every state. The slogan is

all language is situated

and it has been generally assumed in most studies of semantics since the 1970s.4

But is the slogan true? Consider again a typical mathematical claim,

P ≡ there are infinitely many prime numbers,(10a)

4Barwise was a frequent and eloquent exponent of this view.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 8

A LOGIC OF MEANING AND SYNONYMY 9

which can certainly be uttered in English and so its meaning and truth value
should be considered along with those of claims about George and “him”. Most
would agree that the truth value of P is independent of the state, this being,
after all, an important attribute of mathematical claims. So one expects (and
one gets) in LIL

for every state a, CI(P)(a) = true(10b)

in Montague semantics, and P is called rigid, meaning that its Carnap intension
is constant. Rigidity is an important notion which has been extensively investi-
gated in less trivial circumstances that do not concern us here. (We will consider
it further down.)

The question is whether (10b) is equivalent with the absolute claim

P is true(10c)

which assumes, in effect, that P is interpreted without reference to context.
One can appeal to standard philosophical arguments that may justify different
readings of (10b) and (10c)—that the first views P as contigently (if rigidly)
true while the second takes it to be analytic, etc.—and, as always, there are
objections and objections to the objections.

For our purposes, what matters is not so much the equivalence of these two
claims, but the possible difference in the logical meaning of P when we understand
it as having a single truth value or as determining a constant function on the set
of states—especially the contribution that P makes to the meaning of sentences
in which it occurs ; and as it turns out, this contribution changes, in subtle but
important ways. We will consider this in some detail further down. For now, let
us just say that with each term A like (8) which naturally defines a function from
states to truth values and with each state a, we will associate a local referential
intension int(A)(a) and a local denotation den(A)(a) of A at the state a, in
symbols

M |= A =a B ⇐⇒ den(A)(a) = den(B)(a) in M, (Local identity)

M |= A ≈a B ⇐⇒ int(A)(a) ∼= int(B)(a) in M. (Local synonymy)

2. Formal syntax of Lλ
ar

. The language Lλ
ar is a typed calculus of terms,

an extension of the two-sorted type theory Ty2 of Gallin [1975][§8] into which
the language of intensional logic LIL of Montague [1973] can be interpreted by
Gallin’s Theorem 8.2.5,6 Its syntax is determined by the types, the constants,
the variables and the terms.

5Gallin showed that each term of LIL is denotationally equal (in a suitable sense) with a
term of Ty2, and Zimmermann [1989] showed that, conversely, every relevant term of Ty2

is denotationally equal to a term of LIL. Partly because of these results, most students of
Montague’s semantics have adopted the easier to deal with Ty2 as their formal language of
choice. Kalyvianaki and Moschovakis [2008] combine Gallin’s interpretation with the methods
of these lectures to assign natural, robust meanings to the terms of LIL.

6Montague’s LIL does not have a symbol s for the type of “state” or variables which range
over states, and each term A of type σ denotes its Carnap intension, a function CI(A) : Ts → Tσ

from the states to the objects of type σ. In effect, “all language is local (situated)” in his
approach, it is simply not allowed to consider sentences independently of some, specific context.
Perhaps Montague took this route because we cannot explicitly refer to the state in natural
language; but, like every formal language, LIL has many terms which do not render anything
humans would utter, including free variables. The lack of state variables causes considerable

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 9

10 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

2.1. Types. These are defined recursively, starting with the basic types e of
entities, t of truth values, and s of states, and allowing the formation of arbitrary
function types (σ → τ). In the shorthand used for simple recursive definitions
by computer scientists,7

σ :≡ e | t | s | (σ1 → σ2) (Types)

i.e., the set of types is the smallest set which includes the distinct symbols e, t, s
and is closed under the pairing operation (σ1 → σ2). A type is pure (or state-
free) if the state type s does not occur in it:

σ :≡ e | t | (σ1 → σ2). (Pure types)

Especially significant for the intended interpretations are the types (s → σ) of
“state-dependent” objects: in particular, we let

t̃ :≡ (s → t) ≡ the type of Carnap intensions,(11)

ẽ :≡ (s → e) ≡ the type of Carnap individual concepts.(12)

It is also useful to introduce the notation

q̃ :≡ ((ẽ → t̃) → t̃) ≡ the type of (state-dependent) unary quantifiers,(13)

which will type terms like “every woman”, “some man”, etc.
As is usual in the λ-calculus, we also set

σ1 × σ2 → τ ≡ (σ1 → (σ2 → τ)),

so that σ1 × σ2 → τ is the type of functions of two variables, which are “identi-
fied” with function-valued unary functions. This “currying” convention extends
naturally to types and functions of three or more variables.

The types of Lλ
ar specify kinds of mathematical objects, and should not be

confused with the syntactic categories of natural language. Many syntactic cate-
gories may be mapped onto the same type: for example, intransitive verbs (run)
and proper nouns (man) are both rendered by terms of the same Lλ

ar-type (ẽ → t̃),
although their syntactic categories are distinct.

2.2. Constants. We assume given a set K of typed denotational constants,
the denotational lexicon, and we write

c : σ ⇐⇒ c is of type σ,

so that

17 : e, John : ẽ, man : ẽ → t̃.

Some examples of denotational empirical constants are given in Table 1. Table 2
lists the usual logical constants in two versions, one with pure types to be used
in rendering state-independent (especially mathematical) sentences and another
for combining terms which denote Carnap intensions and individual concepts.
The distinction will made clear when we define their denotations further down.

awkwardness in the development of logic, and the absence of pure (state-free) types interferes
with the development of a satisfactory theory of meaning for mathematical statements.

7We use “≡” for the identity relation between the syntactic objects of Lλ
ar (types and terms),

to avoid confusion with “=”, which is itself a syntactic object, a constant denoting the identity
relation between the objects that Lλ

ar is about.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 10

A LOGIC OF MEANING AND SYNONYMY 11

Names of “pure” objects 0, 1, 2, ∅, . . . : e
Names, demonstratives John, I, he, him, today : ẽ
Common nouns man, unicorn, temperature : ẽ → t̃
Adjectives tall, young : (ẽ → t̃) → (ẽ → t̃)
Propositions it rains : t̃
Intransitive verbs stand, run, rise : ẽ → t̃
Transitive verbs =, find, loved, be : ẽ × ẽ → t̃
Adverbs rapidly : (ẽ → t̃) → (ẽ → t̃)

Table 1. Denotational empirical constants.

The syntactically correct terms depend on the choice of K, and so we write
Lλ

ar(K) for the language determined from a specific K.

2.3. Variables. For each type σ, Lλ
ar has two infinite sequences of variables,

• the pure variables vσ
0 , vσ

1 , . . . , and
• the recursion variables or locations v̇σ

0 , v̇σ
1 , . . .

Intuitively, pure variables are used to define functions and they are bound
by the λ-operator, the characteristic construct of the λ-calculus. Locations are
assigned values and they are bound by the where operation, the characteristic
construct of Lλ

ar. The use of these two, parallel sets of variables which play
different roles is essential for the correct definition of referential intensions.

2.4. Terms. These are defined recursively, starting with the variables and
the constants and using application, λ-abstraction and (mutual) acyclic recursion
(the where construct). The definition also assigns a type to every term and
specifies the free and bound occurrences of variables in it. We write

A : σ ⇐⇒ A is a term of type σ.

Table 3 summarizes the definition, which we now explain in detail.

2.4.1. Constants and variables. Each denotational constant c and each
variable x of either kind is a term of the type of x; the term c has no free
variables, and x is the only free occurrence of a variable in the term x.

For example:

17
render−−−→ 17 : e, John

render−−−→ John : ẽ, man
render−−−→ man : ẽ → t̃.

2.4.2. Application: If A : σ → τ and B : σ, then A(B) : τ ; a variable
occurs free in A(B) if it occurs free in either A or B.

For example:

John is a man
render−−−→ man(John) : t̃

tall man
render−−−→ tall(man) : ẽ → t̃

John is a tall man
render−−−→ tall(man)(John) : t̃

Abelard loved
render−−−→ loved(Abelard) : ẽ → t̃

Abelard loved Eloise
render−−−→ loved(Abelard)(Eloise) : t̃

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 11

12 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

=σ : σ × σ → σ
¬ : t → t

&,∨,⇒ : t × t → t
∀σ, ∃σ : (σ → t) → t

not,�, in the future : t̃ → t̃
and, or, if .. then .. : t̃ × t̃ → t̃

every, some : (ẽ → t̃) → q̃
the : (ẽ → t̃) → ẽ

Table 2. Logical constants.

In accordance with the currying convention discussed above, if

A : σ1 × σ2 → τ, B : σ1, and C : σ2,

we write synonymously

A(B, C) ≡ A(B)(C), A(B, C, D) ≡ A(B)(C)(D), . . .(14)

so that the last example above would be written

Abelard loved Eloise
render−−−→ loved(Abelard, Eloise) : t̃(15)

which is a little easier to read.
It is best to understand (14), (15) and (17) below as “misspellings” of formal

terms, or informal instructions for constructing a formal, syntactically correct
term rather than try to incorporate them into the precise specification of the
syntax. The practice is very common in logic, and it extends to the use of abbre-
viations, omitting parentheses or replacing then by brackets and other delimiters
(of various sizes), using infix rather than the official “function first arguments
next” notation, and many other, similar devices. For example:

[A(B) = C] and [D(C)] ≡ and(= (A(B))(C))(D(C))

John’s sister is Mary and Mary is tall

render−−−→ sister(John) = Mary and tall(Mary)

≡ and(= (sister(John))(Mary))(tall(Mary)).

It will also be useful to allow on occasion the dummy recursion construct A where { }
as a misspelling of A, i.e.,

A where { } ≡def A.(16)

2.4.3. λ-abstraction: If B : τ and v is a pure variable of type σ, then

λ(v)(B) : σ → τ ;

a variable x occurs free in λ(v)(B) if it occurs free in B and it is not v.

Intuitively, λ(v)(B) denotes a function f such that for each object v (of the
appropriate type), f(v) is the value of B when v refers to v. To deal effectively
with functions of more than one variables following the “currying” technique, we
write

λ(u, v)(A) :≡ λ(u)(λ(v)(A)) : σ̃1 × σ̃2 → τ(17)

and similarly with more variables.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 12

A LOGIC OF MEANING AND SYNONYMY 13

A :≡ c | x | B(C) | λ(v)(B) | A0 where {ṗ1 := A1, . . . , ṗn := An}

c is a constant of type σ, and (as a term) c : σ

x is a variable of either kind, of type σ, and (as a term) x : σ

C : σ, B : (σ → τ), and B(C) : τ

B : τ , v is a pure variable of type σ, and λ(v)(B) : (σ → τ)

n ≥ 1, Ai : σi, ṗ1, . . . , ṗn are distinct recursion variables , ṗi : σi,
the system {ṗ1 := A1, . . . , ṗn := An} is acyclic,
and A0 where {ṗ1 := A1, . . . , ṗn := An} : σ0

In addition (recursively) all occurrences of v are bound in λ(v)(B), and all
occurrences of ṗ1, . . . , ṗn are bound in A0 where {ṗ1 := A1, . . . , ṗn := An};
occurrences of variables not bound by this clause are free.

Table 3. The denotational terms of Lλ
ar(K).

Pure variables and the λ-abstraction construct are used to express coordina-
tion. For example:

tall and handsome
render−−−→ λ(x)(tall(x) and handsome(x)) : ẽ → t̃

John is tall and handsome
render−−−→ λ(x)(tall(x) and handsome(x))(John) : t̃

loved and honored
render−−−→ λ(u, v)

(

loved(u, v) and honored(u, v)
)

: ẽ × ẽ → t̃

The last of these is used to construct the rendering (4a),

Abelard loved and honored Eloise

render−−−→ λ(u, v)
(

loved(u, v) and honored(u, v)
)

(Abelard, Eloise)

2.4.4. Acyclic recursion: If A0 : σ0, A1 : σ1, . . . , An : σn and

{ṗ1 := A1, . . . , ṗn := An}
is an acyclic system of assignments (as explained below), then

A0 where {ṗ1 := A1, . . . , ṗn := An} : σ0.

A variable x is free in this term if it is free in some Ai and it is not one of the
locations ṗ1, . . . , ṗn.

The best, intuitive way to understand the recursive construct is to read “where”
more-or-less normally:

loves(j, ṡ) where {̇ := John, ṁ := Mary, ṡ := sister(ṁ)}
communicates the same information as

j loves ṡ, where j is John, ṡ is the sister of ṁ and ṁ is Mary

or if j is John, ṁ is Mary, and ṡ is the sister of ṁ, then j loves ṡ;

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 13

14 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

in other words “John loves Mary’s sister”—and, as we will see later, this term is
referentially synonymous with

loves(John, sister(Mary))

which renders “John loves Mary’s sister”.

Formally, a system of assignments {ṗ1 := A1, . . . , ṗn := An} is acyclic if it
is possible to associate a natural number rank(ṗi) with each of the locations, so
that

if ṗj occurs free in Ai, then rank(ṗi) > rank(ṗj);

the obvious idea is that ṗi has higher rank than ṗj if its value “depends” (or
could depend) on that of ṗj . For example, the system

{ḟ := father(ṁ), ṁ := mother(j), j := John} is acyclic,

with rank(j) = 0, rank(ṁ) = 1, rank(ḟ) = 2, while the one-assignment system

{ṗ := c(ṗ)} is not acyclic,

because any ranking of ṗ would need to satisfy rank(ṗ) > rank(ṗ), which it can-
not. Acyclic systems express “trivial” systems of “recursive definitions” which
“close off” (and produce a value) in a finite number of steps.8

Acyclic recursion can be used to render faithfully anaphora. For example,
consider a preliminary, literal formalization

Abelard loved Eloise and (he) honored her

formalize−−−−−→ loved(Abelard, Eloise) and honored(he, her).

This could, in fact, be what we want if “he” were not omitted and referred to
Abelard’s friend George and “her” referred to George’s wife. It is not the in-
tended reading, of course, and we would like to coindex “he” with “Abelard” and
“her” with “Eloise”. Doing these one step at a time by the recursion construct,
we get

(18) loved(Abelard, Eloise) and honored(he, her)

coindex−−−−→ loved(ȧ, Eloise) and honored(ȧ, her) where {ȧ = Abelard}
coindex−−−−→ loved(ȧ, ė) and honored(ȧ, ė) where {ȧ = Abelard} where {ė = Eloise}

The reduction calculus will justify one additional step in this sequence of trans-
formations which combines the two occurrences of where and leads to the

8If we remove the acyclicity restriction on the recursion construct, we obtain the λ-calculus

with full recursion Lλ
r , a mild extension of the language PCF which has been extensively studied

by computer scientists, cf. Plotkin [1977]. Essentially all the results of these lectures can be
extended to Lλ

r , but at a heavy price in mathematical technicalities, starting with the need to

develop different (and substantially more complex) denotational semantics. Full recursion is
admitted in the language FLR introduced in Moschovakis [1989] and some applications of it to
the philosophical analysis of self-reference were included in Moschovakis [1994]. It is a moot
point whether its extension to Lλ

ar can contribute enough to computational semantics to be
worth the considerable extra work.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 14

A LOGIC OF MEANING AND SYNONYMY 15

rendering in (4b)

(19) Abelard loved Eloise and honored her

render−−−→ loved(ȧ, ė) and honored(ȧ, ė) where {ȧ := Abelard, ė := Eloise}
Whatever the formal justification of this computation (which we will give later),
it seems that it produces a faithful representation of the English sentence. Notice,
for example, that the head

loved(ȧ, ė) and honored(ȧ, ė)

of the formal term is a conjunction, much as the English sentence

Abelard loved Eloise and honored her(20)

is a conjunction; so this rendering preserves the logical form of the English sen-
tence. It is not clear that this sentence can be rendered faithfully without the use
of the recursion construct, by using the λ to capture the anaphora: the closest
we can get (as far as we can tell) is

λ(u, v)
(

loved(u, v) and honored(u, v)
)

(Abelard, Eloise).(21)

This is a predication rather than a conjunction, and it gives the same renderings
for (20) and

Abelard loved and honored Eloise,(22)

which does not seem right. (Cf. (4a) and (4b).)

One of our main aims is to give a useful, rigorous account of the logical form
of sentences, which, we assume, is an important part of logical meaning.

This completes the definition of terms.

2.5. Explicit, recursive and λ-calculus terms. A term A is explicit if
the recursion construct where does not occur in it; it is recursive if it is of the
form A0 where {ṗ1 := A1, . . . , ṗn := An}; and it is a λ-calculus term if it is
explicit and no recursion variable occurs in it, i.e., if it is a term of Gallin’s Ty2.

A term is closed if it has no free occurrences of variables.

2.6. Term congruence. Two terms are congruent if one can be obtained
from the other by alphabetic changes of the bound variables and re-orderings
of the assignments within the acyclic recursion construct. Formally, congruence
is the smallest equivalence relation ≡c between terms which respects alphabetic
replacement of bound variables (of both kinds), application, λ-abstraction and
acyclic recursion, and such that for any permutation π : {1, . . . , n} → {1, . . . , n},

A0 where {ṗ1 := A1, . . . , ṗn := An}
≡c A0 where {ṗπ(1) := Aπ(1), . . . , ṗπ(n) := Aπ(n)},

so that, for example,

A where {ṗ := B, q̇ := C} ≡c A where {q̇ := C, ṗ := B}.
The last condition means that the assignments within { } are interpreted as a
set, not a sequence.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 15

16 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Fact. If A ≡c B, then the same constants occur in A as they occur in B, and
the same variables occur free in A as they occur in free in B.

Both the denotational and intensional semantics of Lλ
ar(K) will respect con-

gruence, and so we will sometimes tacitly identify congruent terms.

3. Denotational semantics. The language Lλ
ar(K) is interpreted in struc-

tures of the form

M = ({Tσ}σ∈Types, {c}c∈K , den)

satisfying the following conditions (S1) – (S4):

(S1) Each Tσ is a set. We further assume that there is at least one state and
at least three truth values, 0 (falsity), 1 (truth) and er (error), and that (for
convenience) that truth values are entities,

0, 1, er ∈ Tt ⊆ Te.

We will discuss the role of the er truth value in Section 3.3 below.
(S2) Each p ∈ T(σ→τ) is a function p : Tσ → Tτ .

(S3) If c : σ, then c ∈ Tσ.

(S4) den is a function which associates with each term A : σ and each valuation
g of the variables an object den(A)(g) ∈ Tσ so that the following conditions hold :9

(D1) den(x)(g) = g(x); den(c)(g) = c.
(D2) den(A(B))(g) = den(A)(g)(den(B)(g)).
(D3) den(λ(v)(B))(g) = h, where, for all t, h(t) = den(B)(g{v := t}).
(D4) den(A0 where {ṗ1 := A1, . . . , ṗn := An})(g)

= den(A0)(g{ṗ1 := p1, . . . , ṗn := pn}),
where the values pi are defined for i = 1, . . . , n by recursion on rank(ṗi):

pi = den(Ai)(g{ṗk1
:= pk1

, . . . , ṗkm
:= pkm

}),
where ṗk1

, . . . , ṗkm
are the variables with ranks lower than rank(ṗi).

We will explain this last unfamiliar clause with an example a bit further down.

It is easy to check (by induction on the terms) that at most one denotation
function satisfying (S4) exists (for any given choice of Tσ so that (S1) – (S3)
holds), and that den(A)(g) depends only on the values g(x) for those variables
which have free occurrences in A. Using familiar notation from logic, we write

M, g |= A = B ⇐⇒ den(A)(g) = den(B)(g) in M,(23a)

M |= A = B ⇐⇒ for all valuations g, M, g |= A = B(23b)

9A valuation is a function g which assigns to each pure or recursion variable x of type σ an
object g(x) ∈ Tσ. (These are often called assignments in logic, but we will use “valuation” to
avoid confusion with the formal, syntactic assignments in the acyclic recursion construct.) If
x : σ is a variable and t ∈ Tσ, then the update of g by revision x := t is defined in the obvious
way,

g{x := t}(y) =

{

t, if y ≡ x,

g(y), otherwise.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 16

A LOGIC OF MEANING AND SYNONYMY 17

The structure M is standard if for all σ, τ ,

T(σ→τ) = the set of all functions p : Tσ → Tτ .

A standard structure M is determined by the basic sets Te, Ts and the inter-
pretations c 7→ c of the constants, as (S4) can then be viewed as a recursive
definition of the (unique) denotation function.

3.1. The denotation of recursive terms. To illustrate the computation
of denotations in the recursive case, consider the closed term

(24) A ≡ ṗ and q̇ where {ṗ := loves(j, ṁ), q̇ := dislikes(j, ḣ),

ḣ := husband(ṁ), j := John, ṁ := Mary}.

Assuming that the indicated constants name the obvious objects and relations,
we compute the denotation of A in stages, as follows:

Stage 1:  := John, m := Mary
Stage 2: h := husband(m) = Mary’s husband

p := loves(, m) = the truth value of “John loves Mary”
Stage 3: q := dislikes(, h)

= the truth value of “John dislikes Mary’s husband”
Stage 4: den(A) = p and q.

At this point we are tempted to infer that

(25a) den(A) = the truth value of

“John loves Mary and he dislikes her husband”,

and this is almost true—but not quite. This is because A : t̃, and so den(A) is
not a truth value but a function on states to truth values, den(A) : Ts → Tt. The
computation (with the side remarks omitted or made state-dependent) is correct,
because of the following typings of the constants and their interpretations:

John : ẽ, John(a) = the object identified as John in state a,

Mary : ẽ, Mary(a) = the object identified as Mary in state a,

husband : ẽ → ẽ, husband(x)(a) = the husband of x(a) in state a,

loves : ẽ × ẽ → t̃, loves(x, y)(a) ⇐⇒ x(a) loves y(a) in state a,

dislikes : ẽ × ẽ → t̃, dislikes(x, y)(a) ⇐⇒ x(a) dislikes y(a) in state a

and : t̃ × t̃ → t̃, and(x, y)(a) ⇐⇒ x(a) and y(a) are both true in state a.

So in the end we get that

(25b) den(A)(a) = the truth value of

“John loves Mary and he dislikes her husband” in state a,

which is the correct version of (25a).

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 17

18 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

3.2. Our universe. To interpret natural language in M, we assume that
Te contains the natural numbers N = {0, 1, . . . }, the real numbers and other
mathematical objects, but also people (dead or alive, or who might live in some
possible world), trees, points in spacetime, etc.10

A state a (intuitively) specifies a “full context” in which the terms of Lλ
ar(K)

can be interpreted. We will say more about states in Section 4, but, for the
technical definitions in this section, all we need is that Ts is some non-empty set.
The pure objects are built up from the members of Te and do not depend on the
choice of Ts.

It is sometimes not clear (or a matter of choice) whether a phrase should be
rended by a constant or a term. For example, the language might have a constant
husband, or render “Mary’s husband” with the term the(λ(x)married(x, Mary)).
We will make such choices explicit, when we need to be specific, without taking
a position on which is “the right choice”.

Whether the intended M is standard or not is a philosophical question: some
might admit in the model only those individual concepts and Carnap intensions
which are “definable”. One of the methodological principles which underlies this
work is that logic should provide a framework for philosophical inquiry and lin-
guistic analysis, but should not decide between coherent philosophical alternatives
or plausible readings of natural language phrases.

We now fix one (possibly non-standard) structure

M0 = the intended interpretation, (our universe)

without placing on it any restrictions beyond (S1) – (S4). Our discussions of
various possibilities on the nature of states, the existence and nature of entities,
etc., will refer to this one, fixed structure M0.

The members of Tσ in our universe are the objects of type σ, and we will write
synonymously

x : σ ⇐⇒ x ∈ Tσ.

3.3. Errors and presuppositions. The inclusion Tt ⊆ Te sounds a bit
peculiar, but it is both economical and useful: we identify “truth” with the
number 1, “falsity” with the number 0, and we assign er (error) to terms of
type e or t which have no natural truth value. The correct interpretations of the
constants should assign er to both “Mary’s husband” and “John dislikes Mary’s
husband” in a state a, if Mary is not married or has more than one husband in
a.

It takes a little care to interpret the constants so that this method works and
gives the desired denotations, but the idea is simple and we define here only
empirical conjunction and existential quantification,

and : t̃ × t̃ → t̃, some : (ẽ → t̃) × (ẽ → t̃) → t̃

10If we put all sets in Te, as we should, then it is a proper class and not a set. I will
disregard this technical wrinkle, which can be easily corrected by introducing some irrelevant
technicalities.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 18

A LOGIC OF MEANING AND SYNONYMY 19

as examples:

and(x, y)(a) =











1, if x(a) = y(a) = 1,

0, if either x(a) = 0 or y(a) = 0,

er, otherwise,

some(x)(y)(a) =











1, if there is some y ∈ Tẽ such that x(y)(a) = 1,

0, if for every y ∈ Tẽ, x(y)(a) = 0,

er, otherwise.

This makes “Mary’s husband is tall and 1 + 1 = 0” false (rather than error)
in a state where Mary does not have a husband, and it makes “some horse is
a senator” true in Nero’s time, even though for most other states it would be
assigned er, the property of being a senator not normally applying to horses.

It appears that this simple device handles correctly most simple cases of
what Soames [1989] calls (Fregean) logical presupposition, at least in the sense
of providing the expected truth values. We will illustrate the technique with
additional examples further down, but we will not go into a detailed analysis of
the complex issue of presupposition.

3.4. Formal replacement and denotational compositionality. As usual,
if A is a term, x is a variable or a constant of type σ and C is a term of type σ,
then

A{x :≡ C} ≡ the result of replacing x by C in all its free occurrences in A,

where, of course, all occurrences of a constant are free. The replacement is free
if no free occurrence of a variable in C becomes bound in A{x :≡ C}, and in this
case, easily, for every valuation g, if x is a variable

den(A{x :≡ C})(g) = den(A)(g{x := den(C)(g)}),
and if x ≡ c is a constant, then

if den(c) = den(C)(g), then den(A{c :≡ C})(g) = den(A)(g).

From this we get very easily (by induction on A) the following basic

Theorem (Denotational Compositionality). Suppose A is a term, x is a vari-
able or constant of type σ, and C1, C2 are terms of type σ which are free for x
in A. Then for all structures M and all valuations g,

if M, g |= C1 = C2, then M, g |= A{x :≡ C1} = A{x :≡ C1}.
We will tacitly assume that all replacements are free, when we appeal to this

result.

3.5. Lλ
ar

vs. the typed λ-calculus Ty2. It can be easily shown that every
term with no free locations is denotationally equal to an explicit term, so that,
as far as denotations go, there is no need for the acyclic recursion construct.
On the other hand, we will show that Lλ

ar is intensionally more expressive than
Gallin’s Ty2, for example the term A in (4b) is not referentially synonymous
with any explicit term (so long as the constants which occur in it are not given
truly perverse interpretations).

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 19

20 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

4. Examples. Beyond fleshing out some of the formal definitions of Section 2,
the simple examples in this section will help illustrate the modeling of meaning
coming up next. We will use the notations A ≈ B for synonymy and A ≈a B
for synonymy in state a, in our universe, which we introduced in Section 1 and
which we will define formally in Section 8.

First a cautionary note.

4.1. β-conversion. This is the most basic rule of the λ-calculus: if the vari-
able u and the term B have the same type, and if the substitution is free, then
for every structure M,

M |=
(

λ(u)A
)

(B) = A{u :≡ B}. (β-conversion)

For example,

M |=
(

λ()loves(, )
)

(John) = loves(John, John).

The rule of β-conversion does not hold for referential synonymy, in fact
(

λ()loves(, )
)

(John) 6≈ loves(John, John);

this is not unexpected, because these terms render English sentences which are
not usually perceived as synonymous,

John loves himself
render−−−→

(

λ()loves(, )
)

(John),(26a)

John loves John
render−−−→ loves(John, John).(26b)

One can argue for this difference in meaning by appealing to the Compositionality
Principle, that to understand (26a) you need to know the word himself which
does not occur in (26b). From the computational point of view, to compute the
truth value of (26b) you need to compute the reference of John twice, while to
decide (26a) you need to compute that reference only once.11

In fact, β-conversion almost never preserves meaning, just as logical deduction
does not—otherwise all theorems would be synonymous, which is absurd; so it is
important not to appeal to it unthinkingly at the rendering stage, building false
formal synonymies before we get started with the analysis in Lλ

ar.

4.2. States. To be specific, we will assume in these notes (basically following
Montague) that a state is a quadruple

a = (i, j, k, A, δ)

which specifies a possible world i, a moment of time j, a point in space k, a
speaker (or “agent”) A, and a function δ which assigns values to all possible

11 If “computing John” seems trivial, consider instead the example from arithmetic

λ(x)(x + x)(π) = π + π.

The term on the right asks for computing twice the infinite decimal π and then adding the
two values, while the term on the left requires computing π only once, and then applying the
“doubling function” to it. These two terms express different algorithms for computing the
number 2π.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 20

A LOGIC OF MEANING AND SYNONYMY 21

occurrences of proper names and indexicals, indexed by the order in which they
appear in terms: so it might be that

δ(John1) = John Steinbeck, δ(John2) = John Wayne, . . . ,

δ(I1) = Yiannis Moschovakis, . . . , δ(today1) = August 4, 2004 . . .

For example, to understand and determine the truth value of

“John loves her and she loves him”,

we must know when the sentence was asserted (because love fades), but also who
“John”, “her”, “she”, “him” are—and there could be as few as two and as many
as four persons involved.

We will refer to the values specified by a state a by

world(a), time(a), location(a), agent(a), John1(a), I1(a), he2(a), etc,

and we will leave open the question of which states exist in the basic set Ts of
our universe M0, in accordance with the discussion in 3.2. The choice of Ts does
not affect the way in which the denotations and referential intensions of terms
in M0 are computed; but it does, of course, determine their values, and so, to
explore the examples, we will sometimes make some innocuous assumptions—
e.g., that it may rain in some states while it is sunny in others, so that, in
particular, there are at least two states. Such assumptions will be natural and
non-controversial: we will not need to consider whether there are states in which
agent(a) 6= I(a), or today1(a) 6= today2(a) which sometimes touch on difficult
questions of philosophy and the expressibility of natural language.

4.3. Pure and natural language types and terms. In accordance with
the discussion in Section 1.3, terms which denote mathematical objects are as-
signed pure types, and more specifically, mathematical statements are rendered
by terms of type t. For example, assuming that the relevant constants are in the
lexicon,

there is a set with no members

render−−−→ (∃x)[Set(x) & (∀y)¬(y ∈ x)]

≡ ∃e

[

λ(x)
[

Set(x) & ∀e

(

λ(y)¬(∈ (y, x))
)]]

: t.

Mathematicians—especially logicians—are very familiar with this simple ren-
dering operation, and they do it (or they assume that it can be done) without
thinking; sometimes they are even accused that of “thinking in formal predicate
logic”. So we have little to say about it.

On the other hand, He : ẽ, because the “He” of one sentence may be different
from the “He” of another, and so He denotes a function on states, an individual
concept. Even John may refer to different persons in different states, which is
why we set John : ẽ. In fact, all natural renderings of English phrases have
natural language—or just natural types, defined as follows:

σ :≡ ẽ | t̃ | (σ1 → σ2) (natural language types)

All the empirical constants in Table 1 and the natural, logical constants in Table 2
have natural types, and so (easily) all the terms which are constructed from

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 21

22 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

them using variables of natural types have natural types. These are the natural
language terms, those which all English phrases; and in agreement with the all
language is situated principle, they denote functions from the states to objects.

Well, almost all: how about the following, which many of us who have taught
remedial algebra have been tempted to utter:

If
√

a + b =
√

a +
√

b, then I will hang from the chandellier.

We want to render this by if A then B with suitable A : t and B : t̃, which does
not make sense according to the typing of the natural implication; so we raise
the type of the hypothesis in the obvious way and set

If
√

a + b =
√

a +
√

b, then I will hang from the chandelier

render−−−→ if λ(u)A then B

where u : s. (In practice, of course, we won’t even bother to show explicitly this
simple type-raising.)

4.4. Descriptions. The natural definition of the description operator returns
an error if the existence and uniqueness conditions are not fulfilled:

the(p)(a) =

{

the unique y ∈ Te such that p(b 7→ y, a), if it exists,

er, otherwise,

where b 7→ y is the constant function on the states with value y. Notice that we
do not ask for a unique x ∈ Tẽ, but only for a unique y ∈ Te which satisfies the
relevant condition in the relevant state a. Thus, assuming that “x is married to
y” is unambiguously determined in each state, we can set

Mary’s husband
render−−−→ the(λ(x)married(x, Mary)),

and this will give us the correct value in every state, no matter how often Mary
gets married. Moreover,12

Mary’s husband is tall
render−−−→ tall(man)(Mary’s husband),

and this term automatically gets the right value in every state, including er in
a state in which Mary does not have a unique husband, on the assumption that
tall(er) = er—as it should be. And “the King of France is bald” will also be
assigned er today, contrary to Russell’s wishes.13

4.5. Carnap objects of type (s → σ); rigidity. These include the deno-
tations of demonstratives He, her, today, . . . , of type ẽ, as well as the Carnap
intensions of type t̃, for example “it rains”, for which14

it rains(a) = 1 ⇐⇒ it is raining in the state a.

12The type (ẽ → t̃) → (ẽ → t̃) we have assigned to adjectives requires a noun as the
argument of tall, and for this we must depend on the informal context before rendering; it
is assumed here that Mary’s husband is classified as tall among men and not (for example)
among basketball players.

13Cf. the discussion in Moschovakis [1994].
14In Montague’s LIL, every term denotes a Carnap object. In Lλ

ar, the only Carnap objects
of natural type are the individual concepts and the Carnap intensions, of respective types ẽ

and t̃. (This is immediate from the definition of natural types.)

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 22

A LOGIC OF MEANING AND SYNONYMY 23

A Carnap object x : (s → σ) is rigid if, for all states a, b, x(a) = x(b); and
a closed term A : (s → σ) is rigid if it denotes a rigid object, i.e., a constant
function p : (s → σ) such that p(a) = y for some fixed y : σ.

If we set15

dereσ(x, a)(b) = x(a) (x : s → σ, a, b ∈ Ts)(27)

then the object dereσ(x, a) : (s → σ) is rigid and denotes x(a) in every state. It
is quite standard in philosophy of language today to assume that at least some
historical proper names (“Aristotle”) are rigid, but we will neither assume nor
forbid this here.

4.6. Modal operators. We assume the language has a constant � for the
basic necessity operator, Montague’s “full necessity”, or “necessarily always” as
Thomason calls it:

�(p)(a) ⇐⇒ (∀b)p(b) (p : t̃).

Kaplan [1978b] argues convincingly that this interpretation is inappropriate for
terms which contain demonstratives, but in our determination to avoid philo-
sophical commitments, it is best to understand his interpretation as a de re
reading of the modality, without forbidding the de dicto reading.

For the de re interpretation

�1(p, x)(a) ⇐⇒ x(a) necessarily has property p (p : t̃, x : ẽ),

the correct definition of �1 is

�1(p, x)(a) = �(p(dere(x, a)))(a) (p : t̃, x : ẽ).

This gives the two possible renderings

The President is necessarily American(28a)
render−−−→ �(American(the(President))

The President is necessarily American(28b)
render−−−→ �1(American, the(President))

which express the following two natural readings of the English phrase uttered
in February 2009:

The President (of the US) is necessarily an American(29a)

Obama is necessarily American.(29b)

For binary modal operators, the de re interpretation in both variables is

�2(p, x, y) ⇐⇒ x(a) and y(a) necessarily have property p

(p : ẽ × ẽ → t̃, x, y : ẽ),

15This is really Kaplan’s dthat(x, a) in Kaplan [1978a], but we are using a different notation
to avoid confusion because Kaplan’s understanding (and application) of this important function

is somewhat different from the present one. The notation dere(x, a) comes from the use we will
make of these functions further down to derive the de re readings of modal operators from their
simpler de dicto versions. We are not assuming, however, that language has a constant dereσ,
for any σ: we would not know the English word for it, and dereσ : (s → σ) × s → (s → σ),
which is not a natural language type.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 23

24 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

and it can be defined using � and the dere function by

�2(p, x, y)(a) = �(p(dere(x, a), dere(y, a)))(a).

For example, with primitives reside : ẽ × ẽ → t̃ for “x is in place y” and here : ẽ
a constant such that here(a) = location(a), this allows four renderings of

I am necessarily here

as follows:

�(reside(I, here)), �1(λ(x)reside(x, here), I),

�1(λ(y)reside(I, y), here), �2(reside, I, here).

Uttered by Obama in Washington in February 2009, the first of these conveys the
information that “the speaker is necessarily at the place the utterance is made”,
and the last one that “Obama necessarily resides in Washington”. Kaplan would
disallow all but the last, which is, of course, false.

The technique works for any modal operator: for the unary case, if F : (̃t → t̃),
then

F1(p, x)(a) = F (p(dere(x, a)))(a)

produces the corresponding de re version, with type (ẽ → t̃) × ẽ → t̃.
For serious work on the modal part of the language, we would obviously need

to introduce additional modal constants for the de dicto and the de re readings
of in the past, in all possible worlds (but at the present time and location), etc.

4.7. Local and modal dependence. The value of �1(p, x)(a) depends on
all the values of its first argument p : (ẽ → t̃) but only on the local value x(a) of
its second argument. In general, for n-ary functions, an object

p : (s → σ1) × · · · × (s → σn) → (s → τ)

is local on its i’th argument if for each state a and all x1, . . . , xn, the value
p(x1, . . . , xn)(a) depends only on xi(a). For the unary case, this means that p
is local if

p(x)(a) = p(dere(x, a), a),

and for the binary case,

p is local in its first argument ⇐⇒ p(x, y)(a) = p(dere(x, a), y)(a),

p is local in its second argument ⇐⇒ p(x, y)(a) = p(x, dere(y, a))(a).

An object is modal in its i’th argument if it is not local in that argument.16

A closed term A : (s → σ1)× · · · × (s → σn) → (s → τ) is local or modal in an
argument accordingly as den(A) has the corresponding property.

16See Montague [1973][Section 4]. Montague and Gallin use extensional and intensional for
our local and modal, but this adds one more use to the already overloaded extension-intension
distinction and suggests a connection between modality and meaning which is not in the spirit
of our approach.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 24

A LOGIC OF MEANING AND SYNONYMY 25

For example, the natural logical operations in Table 2 are local in all their
arguments, and so are most nouns, verbs, etc. The classical example of Partee
involves a modal, intransitive verb: if

the temperature is rising
render−−−→ rises(the(temperature)),

and temperature : ẽ → t̃ is a (local) constant defined by

temperature(x)(a) ⇐⇒ the temperature in state a is x(a) degrees,

then rises cannot be reasonably interpreted by a local object—because we cannot
tell whether the temperature is rising in state a from the mere knowledge of its
value in a. We can interpret rises closest to our intuitions (and get the right
truth value in the example) by setting

a{j := t} = the state which differs from a only in that time(a{j := t}) = t,

rises(x, a) ⇐⇒ the function t 7→ x(a{j := t}) is increasing at time(a),

or, more precisely (with a bit of calculus),17

rises(x, a) ⇐⇒ ∂x(a{j := t})
∂t

(a) > 0.

This object “rises” is then modal.18

4.8. Coindexing; rendering directly into Lλ
ar

. Roughly speaking, coin-
dexing occurs when the references of one or more indexical expressions in a term
are identified with that of a subterm by the introduction of a bound variable
which refers to all of them.19 It is essentially part of the rendering operation,
since whether and how it should be done is determined by the informal context
discussed in 1.1. It is possible however to construe part of it as a formal oper-
ation on terms, to be performed after a preliminary formalization which leaves
the indexicals alone. Consider the following examples in the λ-calculus, that we
have already seen:

John loves himself
formalize−−−−−→ loves(John, himself)(30a)
coindex−−−−→λ

(

λ()loves(, )
)

(John)

John kissed his wife
formalize−−−−−→ kissed(John, wife(his))(30b)
coindex−−−−→λ

(

λ()kissed(, wife())
)

(John)

17This assumes that x(a{j := t}) is a real number for t near time(a). If not, then rises(x, a)
should probably be set to er.

18The local reading of an intransitive verb F : (ẽ → t̃) → t̃ can be obtained from the modal
version in the same way that we derived the de-re reading from the de-dicto reading of modal
operators in 4.6:

F1(x)(a) = F (dere(x, a))(a).

The correct reading is not a matter of logic but one of language, and so it must be done at the
rendering stage.

19Coindexing is partly determined by the syntactic structure of a given language. The most
famous principles forcing, forbidding or allowing coindexing without forcing it are conditions
A, B and C of Chomsky’s binding theory, into which we cannot go here, so we will confine
ourselves to treating some examples.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 25

26 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

John loves his wife and he honors her(30c)
formalize−−−−−→ loves(John, wife(his)) & honors(he, her)
coindex−−−−→λ λ()

[

loves(, wife()) & honors(, her)
]

(John)

coindex−−−−→λ λ()
[

λ(w)
(

loves(, w) & honors(, w)
)

(wife())
]

(John).

Symbolically,

render−−−→ =
formalize−−−−−→ +

coindex−−−−→1 + · · ·+ coindex−−−−→k .

We will not attempt to define precisely this operation here, since it is not clear
at this point how to do it in full generality.

One thing worth noticing, however, is that the recursion construct provides an
alternative way to co-index which, in fact, leads to essentially new renderings of
simple English sentences. For these examples:

John loves himself
formalize−−−−−→ loves(John, himself)(31a)
coindex−−−−→ar loves(j, j) where {j := John}

John kissed his wife
formalize−−−−−→ kissed(John, wife(his))(31b)
coindex−−−−→ar kissed(j, wife(j)) where {j := John}

John loves his wife and he honors her(31c)
formalize−−−−−→ loves(John, wife(his)) & honors(he, her)
coindex−−−−→ar loves(j, wife(j)) & honors(j, her) where {j := John}
coindex−−−−→ar

(

loves(j, ẇ) & honors(j, ẇ) where {ẇ := wife(j)}
)

where {j := John}
≈ loves(j, ẇ) & honors(j, ẇ) where {ẇ := wife(j), j := John}(31d)

It will turn out that, naturally enough, (30a) and (31a) are referentially syn-
onymous, but (30b) is not referentially synonymous with (31b), and neither
is (30c) referentially synonymous with (31c) or its synonym (31d), which we
have included for clarity. Moreover, we will show in 9.2 that the terms in (31b),
and (31c) are not referentially synonymous with any explicit terms, i.e., their
referential intensions can only be expressed using the recursion construct. It is a
matter for investigation, of course, whether these Lλ

ar terms express “more nat-
urally” (or, more to the point, more usefully for further processing) the English
sentences that they render; we will return to this point in 9.3.

4.9. Proper nouns, demonstratives and quantifiers. One of the most
original innovations in Montague [1973] is the interpretation of “John”, “I” and
“the blond” by quantifiers, of type q̃ ≡ (ẽ → t̃) → t̃ (in the present system), so
that he gets the uniform renderings,

John runs
render−−−→ JohnMont(runs), every man runs

render−−−→ every(man)(runs).

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 26

A LOGIC OF MEANING AND SYNONYMY 27

Here Montague interprets “John” by the evaluation function,20

JohnMont(p) = p(John).

In addition to the obvious advantage of assigning similar formal renderings to
similar constructions of natural language, the device also facilitates greatly the
operation of coordination, which we will discuss in 4.11. We do not adopt it,
however, because the Montague renderings produce the wrong logical form for
the syntactical expressions that they purport to formalize, and thus lose the
intended logical meaning. Specifically, we will show in 9.4 that the Montague
renderings

The evening star is the morning star
render−−−→ ESMont(λ(u)MSMont(λ(v)(u = v))),

The morning star is the evening star
render−−−→ MSMont(λ(u)ESMont(λ(v)(u = v)))

of the classic Frege example are not referentially synonymous, as, of course, they
should be.21 With the typing we have adopted, for any two terms A, B : σ,

A = B
render−−−→ =σ (A, B) ≈ =σ (B, A) ≡ rendering(B=A),

simply because the identity relation is symmetric.
It is not hard to formulate rules for rendering which avoid unnecessary type-

raising and give plausible results for (at least) simple expressions which involve
singular terms or quantifiers (or both). The basic technique is known as type-
driven rendering (or translation), cf. Klein and Sag [1985] or the more recent
textbook Heim and Kratzer [1998][Chapter 3], where it is applied using phrase
structure trees to represent meanings. For example, for English phrases of the
form

A φ with A
render−−−→ A, φ

render−−−→ φ : ẽ → t̃,

like “John runs” or “every man runs”,

if A : ẽ, set A φ
render−−−→ φ(A), and if A : q̃, set A φ

render−−−→ A(φ),

which in the examples gives the correct readings

John runs
render−−−→ runs(John) and every man runs

render−−−→ every(man)(runs).

A similar, somewhat more complex rendering rule (with four cases) can be given
for English expressions

A φ B

20The evaluation imbedding x 7→ λ(p)p(x) of a set X into its “second dual” is used in

many parts of mathematics, most famously in the proof that the space of all bounded, linear
functionals on a Hilbert space H is isomorphic with H. Its ultrafilter version, x 7→ U(x) =
{U ⊆ X | x ∈ U} is the key to the Stone Representation Theorem for Boolean algebras.

21We assume here (and in the sequel) that “The evening star is the morning star” is an
identity statement, as Frege understood it, and so intuitively synonymous with its converse.
Those who read Frege differently or do not agree with him on this, may want to use the example

one plus five equals two times three

whose status as an identity statement is hard to deny and with which the same point can be
made.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 27

28 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

where φ is a transitive verb, like “John loves every woman” or “every man loves
John’s wife”, although the matter is certainly not that simple for more complex
syntactical expressions.

The discussion reiterates our insistence that meaning (intuitively understood)
must be seriously considered in the rendering process—simply “getting the right
denotation” is not enough.

4.10. Relative clauses. The same problem of typical ambiguity crops up in
the treatment of relative clauses, e.g.,

[Mary (who loves him)] suffers [every (woman (who loves him))] suffers,

where we have indicated the correct parsing. Here “Mary, who loves him” must
be rendered in type ẽ, so that it will be an appropriate argument to “suffers”,
while “woman, who loves him” must be rendered in type ẽ → t̃ so that it can
serve as an argument to “every”. We assume a constant “who” interpreted by22

who(u)(x)(a) =

{

u(a), if x(u, a),

er, otherwise,
(u : ẽ, x : (ẽ → t̃)),

and then we follow the method of 4.9.

(A) If X
render−−−→ X : ẽ and P

render−−−→ P : ẽ → t̃, set

X who P
render−−−→ who(X)(P);

(B) If R
render−−−→ R : ẽ → t̃ and P

render−−−→ P : ẽ → t̃, set

R who P
render−−−→ λ(u)P (who(u, R)).

Now

Mary, who loves him
render−−−→ who(Mary, λ(u)loves(u, him))

yields (in a given state) Mary if she loves him and er if she does not, while

woman who loves him
render−−−→ λ(u)woman(who(u)(λ(v)loves(v, him)))

expresses the relation of being a woman such that she loves him.23 Putting this
together with the quantifier renderings of 4.9 and coindexing “John” with “him”,

22Notice the interpretation when the entity is not rigid and the property is not local: “the
temperature, which is rising” will evaluate to the(temperature)(a) in a state a in which the
temperature is rising, and to er in a state in which the temperature is not rising.

23To see how errors are treated with this interpretation of the relative clause:
(1) “Mary is a woman who loves him” is true if Mary loves him and evaluates to error of

she does not.

(2) “George is a woman who loves him” is false if George loves him and evaluates to error
if he does not.

Perhaps this interpretation of the relative clause when the presupposition fails is too naive
but, at least, it has the virtue that “X is R who is P” is not synonymous with “X is R and X

is P”; it is a predication, for one thing, not a conjunction.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 28

A LOGIC OF MEANING AND SYNONYMY 29

we get the none-too-simple

John loves some woman who loves him

render−−−→ some
[

λ(u)woman(who(u)(λ(v)loves(v, j)))
]

(λ(v)loves(j, v))

where {j := John}
4.11. Coordination. The phrase

John and Mary entered the room

does not have quite the same meaning as

John entered the room and Mary entered the room,

because (for one thing) they do not have the same logical form: the first is a
predication, while the second is a conjunction.24 Similarly,

The temperature is 90◦ and rising

(a predication) is not synonymous with

The temperature is 90◦ and (it) is rising,

which is a conjunction. To capture these distinctions we must coordinate “John”
and “Mary”, put them together into a single object—which, however, cannot now
be a singular object of type ẽ, but must be a quantifier; and (what seems easier),
we must combine “is 90◦” and “rising” into a single relation. The abstraction
construct is a powerful tool for defining these coordination operations in com-
bination with type-driven rendering, and it is well understood how they can be
expressed in the λ-calculus. In the spirit of the last three sections, however, it
may be worth listing here some alternative renderings directly into Lλ

ar, which
use the recursion construct and (in some cases) produce substantially simpler
meanings.25

(A) If Xi
render−−−→ Xi : ẽ, set

X1 and X2
render−−−→ λ(r)(r(x1) & r(x2)) where {x1 := X1, x2 := X2}.

Thus

John and Mary
render−−−→ λ(r)(r(x1) & r(x2)) where {x1 := John, x2 := Mary} : q̃.

(B) If X
render−−−→ X : ẽ and Q

render−−−→ Q : q̃, set

X and Q
render−−−→ λ(r)(r(x) & q(r)) where {x := X, q := Q} : q̃,

so that

the teacher and every student

render−−−→ λ(r)(r(x) & q(r)) where {x := the(teacher), q := every(student)}.

24Cf. Ouhalla [1994][Section 2.8].
25Like coindexing, coordination should be defined as a formal operation on terms to be

performed after an initial formalization; whether it should come before or after coindexing (or
whether that matters) is a matter for investigation. The examples here do not cover the most
general case, which is quite complex.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 29

30 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

(C) If Qi
render−−−→ Qi : q̃, set

Q1 and Q2
render−−−→ λ(r)(q1(r) & q2(r)) where {q1 := Q1, q2 := Q2} : q̃,

so that

some boy and every girl

render−−−→ λ(r)(b(r) & g(r)) where {b := some(boy), g := every(girl)}.

(D) If Pi
render−−−→ P i : ẽ → t̃, set

P1 and P2
render−−−→ λ(i)(p1(i) & p2(i)) where {p1 := P 1, p2 := P 2} : ẽ → t̃,

so that (adding an application to get the Partee example)

The temperature is 90◦ and rising

render−−−→
(

λ(t)(n(t) & r(t)) where {n := λ(x)[x = 90◦], r = rises}
)

(the(temperature)).

5. Overview of referential intension theory. Before we embark on the
technicalities in the next two sections, we briefly map the territory.

5.1. The reduction calculus (Section 6). We will define a binary relation
⇒ of reduction between denotational terms, so that, intuitively,

A ⇒ B ⇐⇒ A ≡c B (A is congruent with B)

or A and B have the same meaning

and B expresses that meaning “more directly”.

The disjunction is needed partly because congruent terms presumably express
their meaning equally directly, but also and more importantly, because some
terms (e.g., variables) cannot be assigned meanings, but it is still useful to have
the reduction calculus still apply to them. We set

A is irreducible ⇐⇒ for all B, if A ⇒ B, then A ≡c B.(32)

Meaningful irreducible terms express their meaning directly.

The reduction relation is reflexive and transitive,

A ⇒ A, if A ⇒ B and B ⇒ C, then A ⇒ C,

and it is compositional:

5.1.1. Compositionality for reduction. Suppose A is a term, x is a vari-
able or constant of type σ, and C1, C2 are terms of type σ which are free for x
in A; then

if C1 ⇒ C2, then A{x :≡ C1} ⇒ A{x :≡ C2}.

Next will come the following basic result of the theory:

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 30

A LOGIC OF MEANING AND SYNONYMY 31

5.1.2. Canonical Form Theorem. For each term A, there is a recursive,
irreducible term

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}(33)

such that each Ai is explicit and A ⇒ cf(A); moreover, cf(A) is the unique (up
to congruence) irreducible term to which A can be reduced, i.e.,

if A ⇒ B and B is irreducible, then B ≡c cf(A).

We call cf(A) the canonical form of A, and we write

A ⇒cf B ⇐⇒ cf(A) ≡c B.

If A is explicit and irreducible, then

cf(A) ≡ A ≡ A where { },
the last by the convention (16) which allows us to think of all canonical forms
as recursive terms.

The terms A0, A1, . . . , An are the parts of A, and A0 is its head. The number n
(one less than the number of parts) is the dimension of A, an important invariant
of terms determined by their canonical forms. An explicit, irreducible term A
has dimension 0; it has only one part A, which is also its head.

The definition of reduction is by ten, simple reduction rules, and the compu-
tation of canonical forms is effective.

5.1.3. Logical form and syntactic synonymy. The canonical form of a
term A expresses the meaning of A directly in terms of the primitives of the
language and the vocabulary, and it gives a plausible explication of the logical
form of the natural language phrase rendered by A—if A renders a phrase.

Two terms A and B are syntactically synonymous if their canonical forms are
congruent, in symbols

A ≈s B ⇐⇒ cf(A) ≡c cf(B).(34)

This stands for synonymy on the basis of logical form alone. It will be an
immediate consequence of the definition of canonical forms and the properties
of the reduction relation that

if A ⇒ B, then A ≈s B.(35)

5.2. Referential intensions (Section 7). Variables and some very simple,
immediate terms have no meaning, they refer immediately. Constants, on the
other hand, refer directly, but they have meanings, albeit trivial ones which are
exhausted by their denotations. Constants contribute differently to the meanings
of the terms in which they occur than variables.

The distinction between immediate and direct reference is a central feature of
this theory and we will discuss it in 6.3, where immediate terms are defined, and
in Section 10, especially 10.6.

If A is proper (i.e., not immediate) and

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}
then the referential intension int(A) of A is (intuitively) the abstract algorithm
which computes for each valuation g the denotation den(A)(g), as that was

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 31

32 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

described in Case (D4) of 3 and the example following it. The precise definition
is given in Section 7.

The parts A0, A1, . . . , An of a term A are explicit, irreducible terms which refer
directly; and the assignments of denotations to these terms may be regarded as
the relevant, basic facts needed for the determination of the denotation of A.

The referential intension int(A) “codifies” in a mathematical object these facts
and the natural process (extracted from the syntactic form of A) by which
den(A)(g) is computed from them.

5.2.1. Canonical forms and truth conditions. If A is a Carnap intension,
meaning that A : ẽ, then its canonical form may also be viewed as a generalized
(or just precise) version of Davidson’s set of truth conditions for A, whose relation
to meaning is described as follows in Davidson [1967]:

. . . the obvious connection between a definition of truth of the kind
Tarski has shown how to construct, and the concept of meaning . . . is
this: the definition works by giving necessary and sufficient conditions
for the truth of every sentence, and to give truth conditions is a way of
giving the meaning of a sentence.

Davidson does not take the next step, which is to extract a semantic object from
these truth conditions and call it “the meaning of A”, and, in fact, he denies
that this step is useful or even possible. Despite this important difference, it is
quite clear that our approach to language is very close to Davidson’s, and can
even be viewed as incorporating Davidson’s basic insights into a “Fregean theory
of meaning” (with meanings!) whose very possibility Davidson doubts.

5.3. Referential and logical synonymy (Section 8). Two proper terms
are referentially synonymous if their referential intensions (in our universe) are
naturally isomorphic, so that they model—they are, from the mathematical point
of view—identical algorithms. It is also convenient to call two immediate terms
X and Y referentially synonymous if they have the same denotation for all val-
uations of the variables. We will be using the notation

A ≈ B ⇐⇒ ⇐⇒ A and B are referentially synonymous.

The precise, general definition of natural isomorphism in 7.5 is a bit technical,
but it implies a very simple characterization of the referential synonymy relation
on terms:26

5.3.1. Referential Synonymy Theorem. Two terms A, B are referentially
synonymous if and only if

A ⇒cf A0 where {ṗ1 := A1, . . . , ṗn := An},(36a)

B ⇒cf B0 where {ṗ1 := B1, . . . , ṗn := Bn},(36b)

for some n ≥ 0 and suitable A0, A1, . . . , An, B0, B1, . . . , Bn, so that the following
two conditions hold:

26Condition (RS1) in this result is a mild, technical refinement of the notions of referential
intension and synonymy that were used in Moschovakis [2006]. It does not affect the examples
from natural language.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 32

A LOGIC OF MEANING AND SYNONYMY 33

(RS1) The corresponding parts Ai, Bi of A and B have the same free variables,
i.e., for every variable x of either kind,

x occurs free in Ai ⇐⇒ x occurs free in Bi, (i = 0, . . . , n).

(RS2) For our universe M0,

M0 |= Ai = Bi (i = 0, 1, . . . , n).

The result reduces referential synonymy to a trivial check of free variable occur-
rences and a system of (effectively determined) denotational identities between
explicit, irreducible terms. It is at the heart of the proposed theory of meaning.
Notice that n = 0 is allowed in this theorem (by the convention (16)) and oc-
curs when A and B are explicit, irreducible terms: such terms are synonymous
exactly when they have the same free variables and the same denotation.

5.3.2. Logical synonymy. Referential synonymy differs from syntactic syn-
onymy (introduced in Section 5.1.3) in that it takes into account the interpre-
tation of the constants in our universe as well as the constructs of Lλ

ar(K). For
example,

Charles Lutwidge Dodgson ≈ Lewis Carroll,

because these are explicit, irreducible terms whose denotations determines their
referential intensions—and they both denote (rigidly) the same author.

Logical synonymy is intermediate between syntactic and referential synonymy:
it takes into account the meaning of the constructs of Lλ

ar(K) but not the par-
ticular structure in which we interpret it. Two terms are logically synonymous
if they satisfy (36a), (36b) with suitable Ai, Bi so that

(LS1) The corresponding parts Ai, Bi of A and B have the same free variables,
i.e., for every variable x of either kind,

x occurs free in Ai ⇐⇒ x occurs free in Bi, (i = 0, . . . , n).

(LS2) For every structure M and every i = 0, . . . , n, M |= Ai = Bi.

We write

A ≈ℓ B ⇐⇒ A is logically synonymous with B.

For example,

λ(u, v)love(u, v) ≈ℓ love,

because these are irreducible terms with just one part,

λ(u, v)love(u, v) ⇒cf λ(u, v)love(u, v) where { }, love ⇒cf love where { },
and by β-reduction, no matter what the love relation in a structure M,

M |= λ(u, v)love(u, v) = love.

It is immediate from the definitions and the Referential Synonymy Theorem
that

A ≡c B =⇒A ≈s B =⇒A ≈ℓ B =⇒A ≈ B,(37)

and none of these implications can be reversed, by the examples above.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 33

34 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

∼ is either ≈ℓ or ≈

A ⇒ B
A ∼ B

A ∼ A
A ∼ B
B ∼ A

A ∼ B B ∼ C
A ∼ C

A1 ∼ B1 A2 ∼ B2

A1(A2) ∼ B1(B2)
A ∼ B

λ(u)A ∼ λ(u)B

A0 ∼ B0, A1 ∼ B1, . . . , An ∼ Bn

A0 where {ṗ1 := A1, . . . ṗn := An} ∼ B0 where {ṗ1 := B1, . . . , ṗn := Bn}

|= C = D
(∗)

C ∼ D
hence:

(∗∗)
(

λ(u)C
)

(v) ∼ C{u :≡ v}

(∗) : C, D are both explicit and irreducible, with the same free variables
For referential synonymy ≈:

|= C = D ⇐⇒ for all valuations g, M0, g |= C = D
For logical synonymy ≈ℓ:

|= C = D ⇐⇒ for all M and all valuations g, M, g |= C = D
(∗∗) u and v are pure variables, and the substitution C{u :≡ v} is free

Table 4. The calculi of referential and logical synonymy.

We are most interested in establishing real synonymies and non-synonymies
in our universe, of course; but most of the proofs depend on recognizing (eas-
ily) syntactic or logical synonymies, and then finishing the argument with some
appeal to empirical facts about our universe.

5.3.3. The calculi of referential and logical synonymy. Referential and
logical synonymy satisfy the axioms and rules of inference in Table 4.

Notice the last rule, which is a very weak form of β-reduction—and just about
the only form of β-reduction which is valid for synonymy.

It is also worth noting the following consequence of these calculi:

5.3.4. Compositionality Theorem. For all terms A, B, C and every vari-
able x such that type(x) = type(B) = type(C), if ∼ is either ≈ℓ or ≈,

if B ∼ C, then A{x :≡ B} ∼ A{x :≡ C},

assuming that the substitutions are free.

5.3.5. The proof systems Syn and Synl; completeness results. Let Syn
be the proof system constructed by adding to the logical calculus for ∼ in Table 4

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 34

A LOGIC OF MEANING AND SYNONYMY 35

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C, then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′)

(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {ṗ1 := A1, . . . , ṗn := An} ⇒ B0 where {ṗ1 := B1, . . . , ṗn := Bn}

Table 5. The reduction calculus: congruence, transitivity, compositionality.

as an axiom every instance of A ∼ B such that

either A ⇒ B or A, B are explicit, irreducible and M0 |= A = B. (Syn)

Similarly, let Synl be the proof system constructed by adding every instance of
A ∼ B such that

either A ⇒ B or A, B are explicit, irreducible

and M |= A = B for every M. (Synl)

Then: Syn is complete for referential synonymy and Synl is complete for logical
synonymy.

These results are about as far as we can go in axiomatizing the synonymy
relations, and both of them have limitations.

The set of axioms of Syn is undecidable if we admit an arbitrary, infinite set
K of constants, and it may be undecidable for arbitrary, finite set K, even if
we insist that they are denotational. This is an important, open problem in the
theory.

On the other hand, the set of axioms of Synl is decidable, by classical results
in the λ-calculus, cf. Tait [1967], Friedman [1974]; but the “arbitrary structures”
M in its formulation include those in which the set of truth values Tt is infinite,
which are quite far from our universe—at least as it is usually conceived.

Still, these proof systems are very useful in practice, because the axioms that
we need to establish specific referential or logical synonymies are often obvious,
or can be established easily by applying β-conversion.

In many cases, we can apply the definitions and theorems in this Section 5 as
“black boxes”, to derive synonymies and non-synonymies without the detailed
development in the sequel. We will establish them first for the denotational part
of the system, and then extend them in Section 11 to the full language with
attitudinal constants.

6. The reduction calculus. The reduction relation A ⇒ B between terms
is determined by ten rules listed in the four Tables 5 – 8; it is the smallest binary
relation on terms which satisfies these ten rules. We discuss and explain them
in turn.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 35

36 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

(

A0 where {~̇p := ~A}
)

where {~̇q := ~B} ⇒ A0 where {~̇p := ~A,~̇q := ~B}(head)

(B-S) A0 where {ṗ :=
(

B0 where {~̇q := ~B}
)

, ~̇p := ~A}

⇒ A0 where {ṗ := B0,~̇q := ~B,~̇p := ~A}
(

A0 where {~̇p := ~A}
)

(B) ⇒ A0(B) where {~̇p := ~A}(recap)

Table 6. The reduction calculus: rules for recursion.

6.1. Congruence, transitivity, compositionality. The first five rules are
listed in Table 5, and they simply insure that the reduction relation is transitive
and compositional, and that it extends the congruence relation. They do not
produce by themselves any non-trivial reductions.

6.2. The reduction rules for recursion. These are listed in Table 6, and
they allow us to combine recursive definitions. In stating them we have used the
abbreviations

~̇p := ~A for ṗ1 := A1, . . . , ṗn = An,

~̇q := ~B for q̇1 := B1, . . . , q̇m = Bm,

where it is assumed that ṗ1, . . . , ṗn, q̇1, . . . q̇m are distinct locations and we have
omitted some (mostly obvious) restrictions on occurrences of variables. Here
they are in full, with some examples.

6.2.1. The head-rule (head). Restriction: No ṗi occurs free in any Bj .
27

The rule allow us to bring the head term into the system of assignments:

(

loves(j, ẇ) where {ẇ := wife(ṗ), ṗ := Paul}
)

where {j := John}
⇒ loves(j, ẇ) where {ẇ := wife(ṗ), ṗ := Paul, j := John}.

6.2.2. The Bekič-Scott rule (B-S). Restriction: No q̇j occurs free in any
Ai. Example:

loves(j, ẇ) where {ẇ :=
(

wife(ṗ) where {ṗ := Paul}
)

, j := John}
⇒ loves(j, ẇ) where {ẇ := wife(ṗ), ṗ := Paul, j := John}.

The examples have been silly because the rules we have introduced so far don’t
do much reducing: basically they say that nested occurrences of “where” can be
“flattened out”, which is an obvious move. The next rule is not so innocuous.

27The restriction implies, in particular, that the recursive term on the right is acyclic, if the
given terms are. This must be formally checked for each of the rules, but it is quite simple in
all cases and we will not bring it up again.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 36

A LOGIC OF MEANING AND SYNONYMY 37

6.2.3. The recursion-application rule (recap). Restriction: No ṗi occurs
free in B. For an example, let28

A ≡ (ḣ = ṡ) where {ḣ := He, ṡ := Scott},
a term which is logically synonymous with

He is Scott,

as we will see after the next group of reductions. The term A is a closed Carnap
intension which is true in a state a exactly when

He(a) = Scott(a).

By the recap rule, for any state variable x,

A(x) ⇒ B ≡ (ḣ = ṡ)(x) where {ḣ := He, ṡ := Scott},
and it is clear that den(A(x))(g) = den(B)(g) for every valuation g, but: notice
that x occurs only in the head (h = s)(x) of B. To compute the denotation of
A(x) by the procedure suggested by the form of B, we follow the following

Procedure 1.
Stage 1: Set ḣ := He, ṡ := Scott.
Stage 2: Set a := g(x); if ḣ(a) = ṡ(a) = Sir Walter, give the value 1, otherwise

give the value 0.
Some people might compute den(A(x))(g) by the following, somewhat different

procedure

Procedure 1′.
Stage 1′. Set ȧ := g(x).

Stage 2′: ḣ′ := He(a), ṡ′ := Scott(a) = Sir Walter.

Stage 3′: If ḣ′ = ṡ′ = Sir Walter, give the value 1, otherwise give the value 0.

Not much difference between the two, perhaps, but those who use Procedure
1′ never encounter the “full” functions “He” and “ Scott”, only their values in
the particular state a. Put another way, in terms of meanings: the (full) meaning
of “He” and that of “Scott” are parts of the meaning of B (and hence of A(x))
for the notion of meaning that will be determined by this reduction relation.

Only two more rules remain, but they are the ones which do most of the
work. The first of these depends for its formulation on the notion of immediacy
and—for the first time—differentiates between pure and recursion variables!

6.3. Immediate terms. The immediate applicative terms are those of the
form

E :≡ u | ṗ | x(v1, . . . , vn) | ṗ(v1, . . . , vn) (Immediate applicative terms)

where x, u, v1, . . . , vn are pure variables and ṗ is a recursion variable (and the
types match, of course, so they are terms). The immediate λ-terms are those of
the form

X :≡ λ(v1, . . . , vn)(E) (Immediate λ-terms)

where v1, . . . , vn are pure variables and E is applicative immediate.

28As everybody knows, “Scott” is a rigid constant which denotes Sir Walter Scott in every
state.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 37

38 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

A(B) ⇒ A(ḃ) where {ḃ := B} (B proper, ḃ fresh)(ap)

Table 7. The reduction calculus: the application rule.

The immediate terms comprise the immediate applicative and λ-terms to-
gether.

The key point is that if x is a variable of either kind and u is pure, then x(u)
is immediate; but a recursion variable cannot be the argument of an application
in an immediate term.

Terms which are not immediate are proper.

We can think of immediate terms as generalized variables of sorts, and as we
will see, they share many properties with variables.

Constants are proper, in any type. To understand this, don’t think of Scott,
whose “computation” appears to be trivial, but (as in Footnote 11 above) think
of the number π, whose exact computation requires an infinite number of steps.
It is standard advice to beginning programmers to set up an assignment ṗ := π
and then replace “π” by “ṗ” throughout their program, if “π” occurs many times.
The new program expresses a more efficient algorithm, which computes (some
reasonable approximation to) π only once, stores the value, and then just reads
it each time it is needed.

6.4. The application rule (ap). This is stated in Table 7. To understand
why the non-immediacy restriction is needed, consider the example

John runs
render−−−→ runs(John) ⇒ runs(j) where {j := John}.

If the unrestricted rule preserved meanings, we would have

runs(j) ⇒ runs(j′) where {j′ := j} (Caution: this is false!)

and then we could continue with the reductions

runs(John) ⇒ runs(j) where {j := John}
⇒

(

runs(j′) where {j′ := j}
)

where {j := John} (rep3)

⇒ runs(j′) where {j′ := j, j := John}, (head)

so that, in particular,

runs(j) where {j := John} ≈ runs(j′) where {j′ := j, j := John}.
But this is surely not right, at least if we allow for some computational aspect in
the notion of meaning: because it takes three steps to compute the right-hand-
side (as we have been doing these computations), while two suffice for the left.
Moreover, if we did this several times, we would get arbitrarily long terms of the
form

runs(j1) where {j1 := j2, j2 := j3, . . . , jn := jn+1, jn+1 := John},
all of them allegedly synonymous with “John runs”, which does not look right.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 38

A LOGIC OF MEANING AND SYNONYMY 39

Finally, the application rule is consistent with our intuitions about synonymy
only because we do not allow (at this stage) the interpretation of constants by
propositional attitudes, like knowledge or belief. If reduction implies synonymy
and we had a constant I know in Lλ

ar, then it cannot be that for any closed term
A : t,

I know that A
render−−−→ I know(A) ⇒ I know(ṗ) where {ṗ := A};

because ṗ : t in this term, which means that the constant I know denotes a
function K : Tt → Tt such that K(1) = 1, since “I know that 1 + 1 = 2”; and
hence “I know that A” for every true proposition A, which is absurd.

6.4.1. The canonical form of “John loves Mary”. The last (still miss-
ing) reduction rule does not affect λ-free terms, and so

runs(j) where {j := John}

is irreducible, since (by a simple inspection) none of the nine rules we have
listed so far other than (cong) can be applied to it. This means that the single
application

runs(John) ⇒cf runs(j) where {j := John}

of the (ap) rule gives us the canonical form of runs(John), if we assume for a
moment the Canonical Form Theorem 5.1.2, i.e., that runs(John) reduces to a
unique irreducible term up to congruence. Let us write out one more complete
reduction to canonical form which is just as trivial but illustrates the use of the
recursion rules:

John loves Mary
render−−−→ loves(John,Mary) ≡ loves(John)(Mary)

loves(John) ⇒cf loves(j) where {j := John} (ap)

loves(John)(Mary) ⇒
(

loves(j) where {j := John}
)

(Mary) (rep1)

⇒ loves(j)(Mary) where {j := John} (recap)

⇒
(

loves(j)(ṁ) where {ṁ := Mary}
)

where {j := John} (ap,rep3)

⇒cf loves(j, ṁ) where {j := John, ṁ := Mary} (head,cong)

In the same way, we can compute

He is Scott ⇒cf (ḣ = ṡ) where {ḣ := He, ṡ := Scott},(38)

and assuming (for simplicity) that the language has constants for addition, mul-
tiplication and for the first few numbers,

(39) 1 + 5 = 2 × 3

⇒cf (ȧ = ḃ) where {ȧ := ȯ + ḟ , ȯ := 1, ḟ := 5, ḃ := ṫ × ṙ, ṫ := 2, ṙ := 3}.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 39

40 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

(λ-rule) λ(u)
(

A0 where {ṗ1 := A1, . . . , ṗn := An}
)

⇒ λ(u)A′

0 where {ṗ′1 := λ(u)A′

1, . . . , ṗ′n := λ(u)A′

n}
where for i = 1, . . . , n, ṗ′i is a fresh recursion variable and A′

i is defined by the
replacement

A′

i :≡ Ai{ṗ1 :≡ ṗ′1(u), . . . , ṗn :≡ ṗ′n(u)}.

Table 8. The λ-rule.

6.5. The λ-rule. To motivate the λ-rule in Table 8, consider the Carnap
intension

every man danced with his (own) wife

render−−−→ A ≡ every(man)
(

λ(u)danced(u, wife(u))
)

The crucial part is the λ-term to which the quantifier (every)(man) is applied,
and for that we first reduce the matrix:

B ≡ danced(u, wife(u)) ⇒cf danced(u, ẇ) where {ẇ := wife(u)}.

The standard computation of the value of B requires us to set

ẇ := wife(u)

for any u, so what is really being computed is the function ẇ′(u) = wife(u)—
which is, in fact, what we need for the subsequent application of the quantifier;
and the simplest way to effect this is to set

λ(u)(B) ⇒ λ(u)danced(u, ẇ′(u)) where {ẇ′ := λ(u)wife(u)},

which is what the λ-rule allows us to do.

6.5.1. The canonical form of “Every man danced with his wife”. If
wife is a constant, then

λ(u)wife(u) ≈ℓ wife,

and so we can conclude (changing the variable names and appealing to Theo-
rem 5.3.3) that

λ(u)(B) ⇒cf λ(u)danced(u, ẇ(u)) where {ẇ := λ(u)wife(u)}
≈ℓ λ(u)danced(u, ẇ(u)) where {ẇ := wife}.

If, however, wife is an abbreviation introduced by

wife(u) :≡ the(λ(v)married(u, v)),(40)

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 40

A LOGIC OF MEANING AND SYNONYMY 41

then the computation continues:

λ(u)wife(u) ⇒ λ(u)(the(λ(v)married(u, v))) (ap)

⇒ λ(u)[the(ṁ) where {ṁ := λ(v)married(u, v)}] (λ-rule)

⇒ λ(u)the(ṁ′(u)) where {ṁ′ := λ(u)λ(v)married(u, v)},
and without noting any more the (ap) or recursion rules used,

λ(u)(B) ⇒ λ(u)danced(u, ẇ(u)) where {ẇ := λ(u)wife(u)}
⇒ λ(u)danced(u, ẇ(u)) where {ẇ := λ(u)the(λ(v)married(u, v))

⇒ λ(u)danced(u, ẇ(u)) where
{

ẇ := λ(u)the(ṁ′(u)) where {ṁ′ := λ(u)λ(v)married(u, v)}
}

⇒cf λ(u)danced(u, ẇ(u))

where {ẇ := λ(u)the(ṁ′(u)), m′ := λ(u)λ(v)married(u, v)}.
Finally, if we assume now that married is a constant, we have

λ(u)λ(v)married(u, v) ≈ℓ married,

and substituting this in the canonical form (and changing variable names again),
we get the relatively simple logical synonymy

λ(u)(danced(u), wife(u))

≈ℓ λ(u)danced(u, ẇ(u)) where {ẇ := λ(u)the(ṁ(u)), ṁ := married},
granting the abbreviation (40).

From this, we get with some additional computation:

Every man danced with his wife
render−−−→ every(man)(λ(u)(danced(u), wife(u)))

⇒ every(man)(ḋ) where {ḋ := λ(u)(danced(u), wife(u))}
⇒ every(Ṁ)(ḋ) where {Ṁ := man, ḋ := λ(u)(danced(u), wife(u))}
⇒ every(Ṁ)(ḋ) where {Ṁ := man,

ḋ := λ(u)danced(u, ẇ(u)),

ẇ := λ(u)the(ṁ′(u)),

ṁ′ := λ(u)λ(v)married(u, v)}.
The last term is the canonical form of “Every man danced with his wife”.

This completes the definition of the reduction relation. We claim that it
preserves meaning, so it had better at least preserve denotations:

6.6. Reduction and equality. If A ⇒ B, then for every structure M,

M |= A = B.

Proof is simple, by induction on the definition of the reduction relation. ⊣
It is clear from the examples that the explicit irreducible terms play a very

special role in the reduction calculus. They can get rather complex, but they
admit a simple, general characterization.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 41

42 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

6.7. Characterization of irreducible terms. (a) Constants and immedi-
ate terms are irreducible.

(b) An application term A(B) is irreducible if and only if B is immediate and
A is explicit and irreducible.

(c) A λ-term λ(u)(A) is irreducible if and only if A is explicit and irreducible.
(d) A recursive term A0 where {ṗ1 := A1, . . . , ṗn := An} is irreducible if and

only all the parts A0, . . . , An are explicit and irreducible.

Proof is simple, by inspection of the reduction rules. ⊣
Some examples:

(41) c(λ(u)ṗ(u, v)), λ(v)(c(λ(u)ṗ(u, v))(q̇(v, z)),

λ(z)(c(λ(u)ṗ(u, v))(q̇(v, z)))(y(x, x))

Notice that if we simplify these terms using β reduction, they are no longer
irreducible: for example,

λ(v)(c(λ(u)ṗ(u, v))(q̇(v, z)) = c(λ(u)ṗ(u, q̇(v, z)) (by β-reduction)

and the term on the right is no longer irreducible, because λ(u)ṗ(u, q̇(v, z) is not
immediate. It goes without saying that complex, irreducible terms like these do
not come up naturally in simple examples from natural language.

6.8. Canonical forms. We define the canonical form cf(A) of each term A
by the following recursion on terms, assuming in each of the clauses that all
bound locations are distinct and distinct from all the free locations. (This can
be insured by making suitable alphabetic changes on the bound variables of the
given terms before we apply each clause, if needed.)

(CF1) cf(c) :≡ c (≡ c where { }); cf(x) :≡ x (≡ x where { }).
(CF2) Suppose cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An} (n ≥ 0). If X is

immediate, then

cf(A(X)) :≡ A0(X) where {ṗ1 := A1, . . . ,̇pn := An};
and if B is proper and cf(B) ≡ B0 where {q̇1 := B1, . . . , q̇n := Bm}, then

cf(A(B)) :≡ A0(q̇0) where {ṗ1 := A1, . . . , ṗn := An,

q̇0 := B0, q̇1 := B1, . . . , q̇m := Bm}.
(CF3) For any pure variable u, if

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An} (n ≥ 0),

then,

cf(λ(u)A) :≡ λ(u)A′

0 where {ṗ′1 := λ(u)A′

1, . . . , ṗ′n := λ(u)A′

n},
where (as in the λ-rule for reduction) each ṗ′i is a fresh location and

A′

i ≡ Ai{ṗ1 :≡ ṗ′1(u), . . . , ṗn :≡ ṗ′n(u)}.
(CF4) If A ≡ A0 where {ṗ1 := A1, . . . , ṗn := An} with n ≥ 0 and if, for

i = 0, . . . , n,

cf(Ai) ≡ Ai,0 where {ṗi,1 := Ai,1, . . . , ṗi,ki
:= Ai,ki

} (ki ≥ 0),

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 42

A LOGIC OF MEANING AND SYNONYMY 43

then

cf(A) :≡ A0,0 where { ṗ0,1 := A0,1, . . . , ṗ0,k0
:= A0,k0

,

ṗ1 := A1,0, ṗ1,1 := A1,1, . . . , ṗ1,k1
:= A1,k1

,

...

ṗn := An,0, ṗn,1 := An,1, . . . , ṗn,kn
:= An,kn

}.
The next result provides in particular a proof of the Canonical Form Theo-

rem 5.1.2.

6.8.1. Basic properties of canonical forms. For every term A:

(1) The canonical form of A is a term

cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0)

with explicit, irreducible parts A0, A1, . . . , An, so that it is irreducible. A con-
stant c or a variable x of either kind occurs (free) in cf(A) if and only if it occurs
(free) in A.

(2) A ⇒ cf(A).
(3) If A is irreducible, then cf(A) ≡ A.
(4) If A ⇒ B, then cf(A) ≡c cf(B).
(5) If A ⇒ B and B is irreducible, then B ≡c cf(A).

Outline of proof. (1) is verified easily, by inspection of the reduction rules,
and (2) is also very simple, by induction on the term A. (3) is verified by an
induction on the characterization of explicit, irreducible terms given in Theo-
rem 6.7 and then using the definition of cf(A) if A is recursive. It applies to
immediate terms, which are explicit and irreducible. The crucial (4) is proved
by induction on the definition of the reduction relation, and it involves (unfor-
tunately) a great deal of computation. Finally, for (5), if B is irreducible, then
B ≡ cf(B), by (3); and so if A ⇒ B, then cf(A) ≡c cf(B) ≡ B by (4). ⊣

6.9. Proofs of 5.3.3 – 5.3.5. These facts are also established by some-
what messy, long inductions, using the results of these section, the Referential
Synonymy Theorem 5.3.1, the definition of logical synonymy and the implica-
tions (37). The following facts are also useful in these arguments:

(1) If A ≈ X for some immediate term X, then A is also immediate and
A ≡c X.

(2) If z : σ is a constant c, or a variable of either kind, C : σ is a proper term
of the same type and the substitution {z :≡ C} is free in A, then

A{z :≡ C} ≈ℓ

(

cf(A)
)

{z :≡ C}.

The first of these is trivial and the second is proved by induction on A; it is a
basic fact which should be established first.

7. Referential intensions. We define here the referential intension int(A)
of a proper term and derive its basic properties.

The material in this section is not important for most of the applications, if
one is willing to assume the Referential Synonymy Theorem 5.3.1 or simply take

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 43

44 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

(1) (2) (3)
e

s

ėȧ

ḣ

s+

ȧ l̇ė
s

++

ṁ

= ~

? ?

l̇

Figure 1. Shapes.

its statement as a definition of referential synonymy. We will use it, however, in
Section 11 on propositional attitudes.

7.1. Basic definition; shapes. Suppose that A is a proper (non-immediate)
term with canonical form

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An} (n ≥ 0).

The shape of A is the tuple

shape(A) = (ṗ1, . . . , ṗn,~f0,~r0, . . . ,~fn,~rn)(42a)

where ~fi is a listing of the variables (of either kind) which occur free in both A
and Ai and ~ri is a listing of those variables in the list ṗ1, . . . , ṗn which occur in
Ai. We can picture shape(A) as a labelled, acyclic directed graph on the vertices
ṗ0, ṗ1, . . . , ṗn, with a head vertex ṗ0 added to the locations of cf(A), the edge
relation

ṗi → ṗj ⇐⇒ ṗj occurs (free) in Ai,

and each vertex ṗi labelled with the list ~fi.

For example,

shape(loves(ȧ, ė) where {ȧ := Abelard, ė := Eloise}) = (ȧ, ė, ∅, 〈ȧ, ė〉, ∅, ∅, ∅, ∅);
this is the graph (1) in Figure 1. If

Every man loves e
render−−−→ A ≡ every(man)(λ(x)loves(x, e))

⇒cf every(ṁ)(l̇) where {ṁ := man, l̇ := λ(x)loves(x, e)},

then shape(A) = (ṁ, l̇, ∅, 〈ṁ, l̇〉, ∅, ∅, 〈e〉, ∅), pictured in (2) of Figure 1. The last
graph (3) in the figure is the shape of the term

l̇ and ḣ where {l̇ := loved(ȧ, ė), ḣ := honored(ȧ, ė), ȧ := Abelard, ė := Eloise}
which is the canonical form of “Abelard loved and honored Eloise”.

The shape of a term A determines the number of parts in its canonical form
and the (putative) dependence of each of the recursion variables in cf(A) on the

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 44

A LOGIC OF MEANING AND SYNONYMY 45

others and on the free variables of A.29 It codifies the most important aspects
of the syntactic structure of A and it is the first part of int(A). For the second
part, set for i = 0, . . . , n

αi(g, d1, . . . , dn) = den(Ai)(g{ṗ1 := d1, . . . , ṗn := dn})
where g is an arbitrary valuation of the variables, and let

system(A) = (α0, . . . , αn).(42b)

This is the system of functions which computes den(A)(g).

The referential intension of A is the pair of its shape and its system,

int(A) = (shape(A), system(A)).(42c)

For example,

int(loves(Abelard, Eloise)) = int(loves(ȧ, ė) where {ȧ := Abelard, ė = Eloise})
= ((ȧ, ė, ∅, 〈ȧ, ė〉, ∅, ∅, ∅, ∅), (α0, α1, α2)),

where

α0(g, a, e) = loves(a, e),

α1(g) = Abelard,

α2(g) = Eloise.

Notice that if A, A0 : σ and Ai : σi for i = 1, . . . , n, then

α0 : G × Tσ1
× · · · × Tσn

→ Tσ,(43a)

for i = 1, . . . , n, αi : G × Tσ1
× · · · × Tσn

→ Tσi
,(43b)

the relation j ≺ i ⇐⇒ ṗj ∈ ~ri is acyclic,(43c)

if dj = d′j whenever ṗj ∈ ~ri(43d)

and g(x) = g′(x) for every x ∈ ~r(A), then

αi(g, d1, . . . , dn) = αi(g
′, d′1, . . . , d′n).

“Acyclic” in (43c) means that we can assign a natural number rank(ṗi) to each
of the variables ṗ1, . . . , ṗn so that

ṗj ∈ ~r(Ai) =⇒ rank(ṗj) < rank(ṗi),

and it holds because the system {ṗ1 := A1, . . . , ṗn = An} is acyclic.

7.2. Acyclic recursors. It is not hard to abstract from (42a) – (42c) and (43a) –
(43d) a general definition of acyclic recursors.

An acyclic recursor on the set G of variable valuations to Tσ is a pair of
tuples

α = (shape(α), system(α))(44)

= ((ṗ1, . . . , ṗn,~f0,~r), . . . ,~fn,~rn), (α0, α1, . . . , αn)),

such that the following conditions hold:

29The shape of a term is not uniquely defined, because the specific choice of bound variables

ṗ1, . . . , ṗn cf(A) and the enumeration of the lists of variables ~fi,~ri are not specified, so we
should properly speak of “a shape”; but we could easily make these choices of variables and
order of listing canonical, and we will not bother with it.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 45

46 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

(AR1) ṗ1, . . . , ṗn are distinct recursion variables of respective types σ1, . . . , σn.

(AR2) ~fi and ~ri are lists of variables, such that ~ri ⊆ {ṗ1, . . . , ṗn} and ṗj /∈ ~fi.
(AR3) α0 : G × Tσ1

× · · · × Tσn
→ Tσ.

(AR4) For i = 1, . . . , n, αi : G × Tσ1
× · · · × Tσn

→ Tσi
.

(AR5) The relation j ≺ i ⇐⇒ ṗj ∈ ~ri is acyclic.

(AR6) If dj = d′j whenever ṗj ∈ ~ri and g(x) = g′(x) for every x ∈ ~fi, then
αi(g, d1, . . . , dn) = αi(g

′, d′1, . . . , d′n).

We call σ1 × · · · × σn the internal type of α, ~f0 ∪ · · · ∪ ~fn the set of its free
variables, and the number n its dimension, and we write

α = (shape(α), system(α)) : G Tσ.

The notation is justified, because α determines (or computes) a function

α : G → Tσ

as follows:

α(g) = α0(g, d1, . . . , dn),

where, for each g, d1, . . . , dn are the unique solutions of the system of equations

di = αi(g, d1, . . . , dn) (i = 1, . . . , n),

guaranteed by the acyclicity condition.

A recursor α = ((~f0), (α0)) of dimension 0 is called trivial, as it is completely

determined by the function α = α0 : G → Tσ and a set ~f0 of its “free variables”
on which α0(g) depends, i.e.,

if g(x) = g′(x) for every x ∈ ~f0, then α0(g) = α0(g
′).

Thus the referential intension of a non-immediate term A : σ is an acyclic
recursor int(A) : G Tσ, and by the denotational semantics in Section 3 and
Theorem 6.6, for every valuation g,

int(A)(g) = den(A)(g),

i.e., the referential intension of A computes its denotation.

7.3. Circuit diagrams. The canonical form of a proper term A and the
recursor that it determines can be visualized as a labeled directed graph, a circuit
really, with nodes the locations ṗ1, . . . , ṗn of cf(A) together with a head node;
the part Ai labeling the node ṗi; and an arrow put from ṗi to ṗj if ṗj occurs in
Ai. This is the same graph which pictures shape(A), with a more informative
labelling which identifies the parts of A, and the idea can be used to represent
every acyclic recursor by an appropriate labelled graph. Figure 2 pictures this
circuit for

A ≡ John loves Mary and she loves him and every boy,

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 46

A LOGIC OF MEANING AND SYNONYMY 47

R

λ(r)r(j)
9

+

ȧ

boy

every(ḃ)

ṁJohn ḃMaryj
?

q̇

?

l̇ λ(v)loves(ṁ, v)

/

^

Ṗ loves(j, ṁ) Q̇ λ(r)[ȧ(r) & q̇(r)](l̇)

+

ṗ0 Ṗ & Q̇

= s

A ⇒cf Ṗ & Q̇ where {Ṗ := loves(j, ṁ), Q̇ := λ(r)[ȧ(r) & q̇(r)](l̇), ȧ := λ(r)r(j)

l̇ := λ(v)loves(ṁ, v), q̇ := every(ḃ), ḃ := boy, j := John, ṁ := Mary}

Figure 2. John loves Mary and she loves him and every boy.

a reasonably complex sentence whose rendering involves both coindexing and
coordination.30

7.4. Algorithms and meanings as recursors. The introduction promised
to model the meaning of a term A by an “abstract, idealized algorithm”, but what
has been delivered is an “acyclic recursor” int(A) as in (42c), basically an anno-
tated tuple of functions. It is not evident why—and in what sense—algorithms
can be “faithfully represented” by recursors. This is discussed in Moschovakis
[1998] in general, and also (briefly) in the last section of Moschovakis [2006], and
we will not repeat these arguments here. We claim only that we have constructed
a precise model of the basic picture of a Fregean theory of meaning,

A 7→ int(A) 7→ den(A),

where int(A) is an object which computes in a precise sense den(A) and which
purports to model the meaning of A. Whatever value the construction may
have should be determined by its results—the synonymies and non-synonymies
it predicts, how closely they agree with our intuitions, and whether the logic of
meanings and synonymy that they determine is “the right one”.

7.5. Natural recursor isomorphism. An acyclic recursor (44) determines
for each valuation g the system of mutual recursive equations

30The construction of this canonical form assumes a coordination operation on formal terms
which is executed after all coindexing operations and which distinguishes immediate from
proper arguments, so that

j & every(boy)
coord
−−−−→ λ(r)(r(j)& q̇(r)) where {q̇ := every(boy)}.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 47

48 FRITZ HAMM AND YIANNIS MOSCHOVAKIS











d1 = α1(g, d1, . . . , dn)
...

dn = αn(g, d1, . . . , dn)

(45)

whose unique solutions (along with the head α0) determine the value α(g) as
above. The order in which the equations are listed in (45) is of no consequence
in this process of evaluation, and so it is natural to “identify” two recursors if
they only differ in this respect. The appropriate equivalence relation is that
of labelled graph isomorphism, a one-to-one correspondence of the nodes of one
labelled graph with those of another which preserves the edge relations and the
labels. We also put down, for the record, the explicit, rather technical definition.

Two acyclic recursors

α = ((ṗ1, . . . , ṗn,~f0,~r0, . . . ,~fn,~fn), (α0, α1, . . . , αn))

β = ((q̇1, . . . , q̇m,),~f ′0,~r
′

0, . . . ,~f ′n,~f ′n)(β0, β1, . . . , βm))

of respective internal types σ1 × · · · × σn and τ1 × · · · × τm and into the same
output set Tσ are naturally isomorphic, if they have the same dimension (m = n)
and there is a permutation

π : 〈0, 1, . . . , n〉֌→ 〈0, 1, . . . , n〉 with π(0) = 0,

such that:

(1) σπ(i) ≡ τi for i = 1, . . . , n;

(2) For each i = 0, . . . , n, ~f ′i = ~fπ(i) and ~r′i = 〈q̇π(j) | ṗj ∈ ~ri〉;
(3) απ(i)(g, d1, . . . , dn) = βi(g, dπ(1), . . . , dπ(n)) (g ∈ G, di ∈ Tσi

, i = 0, . . . , n).

We set

α ∼= β ⇐⇒ α and β are naturally isomorphic.

8. Referential and logical synonymy. Two proper terms are referentially
synonymous if they have naturally isomorphic referential intensions, and two im-
mediate terms are referentially synonymous if they have the same denotations.31

In symbols:

A ≈ B ⇐⇒ A, B are immediate and M0 |= A = B,

or A and B are proper and int(A) ∼= int(B).

The Referential Synonymy Theorem 5.3.1 follows immediately from this de-
finition, and it is much easier to understand and apply than chasing natural
isomorphisms, as we did in Section 6.9. For most of our purposes here, it might
as well be taken as the definition of referential synonymy.

31It is quite easy to check that if X, Y are immediate, then

M0 |= X = Y ⇐⇒ X ≡c Y,

so the definition is a bit simpler than it looks.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 48

A LOGIC OF MEANING AND SYNONYMY 49

8.1. Why not assign meanings to immediate terms? Especially since
they have canonical forms, which define (trivial) acyclic recursors, and so there
is an obvious candidate for the object int(x).

Suppose our structure has a constant id : e → e for the identify function on
the set of entities,

id(x) = x (x ∈ Te),

so that id(x) and x are both irreducible and denotationally equivalent, and they
would be synonymous under any plausible assignment of meaning to variables
which is consistent with the referential intensions approach; but then composi-
tionality would fail, since

f(id(x)) ⇒cf f(p) where {p := id(x)}, f(x) ⇒cf f(x) where { },
and so f(id(x)) 6≈ f(x).

In the calculus of referential intensions, variables (and the more general, im-
mediate terms) behave a little like 0 in the arithmetic of fractions: it is simply

not possible to assign any conventional (trivial) value to
1

0
and still have the

usual rules of arithmetic hold.

9. Non-synonymy. The Reduction and Synonymy Calculi are very effective
tools for establishing simple synonymies; for example, if type(A) = type(B), then

(A = B) ≈ℓ (B = A),

since

A = B ⇒ ȧ = ḃ where {ȧ := A, ḃ := B}
≡c ȧ = ḃ where {ḃ := B, ȧ := A}
≈ℓ ḃ = ȧ where {ḃ := B, ȧ := A}
≈ B = A,

where the crucial, second step is valid because for any structure M,

M |= ȧ = ḃ ⇐⇒ ḃ = ȧ.

Proofs of non-synonymy, however, are not so simple for complex terms, because
the only basic tool we have is to compute the canonical forms, and this can be
quite tedious—effective, but tedious. We collect in this section a few interesting
non-synonymy results.

9.1. The unique occurrence property of λ-calculus terms. (1) No re-
cursion variable occurs in more than one part of a λ-calculus term.

(2) Suppose a recursion ṗ occurs in two parts Ak and Al of a term A, and
neither Ak nor Al denotes a function which is independent of ṗ, i.e., for some
valuation of the variables g and objects r, r′,

den(Ak)(g{ṗ := r}) 6= den(Ak)(g{ṗ := r′}),
and similarly with Al. It follows that A is not referentially synonymous with any
explicit term.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 49

50 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Proof. (1) is very easy, by induction on the definition of λ-calculus terms and
using the rules (CF1)–(CF4) in the construction of canonical forms in Section 6.8.
For example, looking at (CF4), the only way in which some ṗ′i can occur in A′

k

and also in A′

l, with k 6= l, is if ṗi occurred in both Ak and Al, which is ruled
out by the induction hypothesis.

For (2), assume the hypothesis and (towards a contradiction) that A ≈ B with
an explicit B, so that

A ⇒cf A0 where {ṗ1 := A1, . . . , ṗn := An},
B ⇒cf B0 where {ṗ1 := B1, . . . , ṗn := Bn},

with the denotations matching, and in particular, for all g,

den(Ak)(g) = den(Bk)(g), den(Al)(g) = den(Bl)(g).

By the hypothesis then, there is a g and r, r′ such that

den(Bk)(g{ṗ := r}) 6= den(Bk)(g{ṗ := r′}),

and this is not possible unless ṗ occurs in Bk; and by the same argument, ṗ must
also occur in Bl, which contradicts (1). ⊣

9.2. John can’t love and honor his wife properly in the λ-calculus.
The terms in (31b) and (31c) are not referentially synonymous with explicit
terms.

Proof. If wife is a constant, then the canonical form of (31b) is

kissed(j, ẇ) where {ẇ := wife(j), j := John},

and the canonical form of (31c) is

l̇ and ḣ where {l̇ := loves(j, ẇ), ḣ := honors(j, ẇ), ẇ := wife(j), j := John}.

The location j occurs in at least two of the parts of each of these canonical forms,
and so Theorem 9.1 applies and they cannot be referentially synonymous with
Ty2 terms. If wife is a closed term, e.g.,

wife ≡ λ(u)
(

the(λ(v)married(u, v))
)

,

then j will occur in the subsequent reduction of wife(j) to canonical form, and
we can again apply the theorem. ⊣

9.3. The new meanings in Lλ
ar

and logical form. It can be argued that
the “new meanings” of Lλ

ar(K) which cannot be expressed by Ty2 terms are not
mere curiosities. Consider the following two, related sentences, assuming for
simplicity that “stumbled” and “fell” are denoted by constants:

John stumbled and he fell (coindexing)(46a)

John stumbled and fell (coordination)(46b)

Their rendering requires coindexing and coordination as indicated, and if we
perform these operations using abstraction in the most natural way, we get

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 50

A LOGIC OF MEANING AND SYNONYMY 51

exactly the same formal term:

John stumbled and he fell
render−−−→λ λ(x)

(

stumbled(x) & fell(x)
)

(John)

John stumbled and fell
render−−−→λ λ(x)

(

stumbled(x) & fell(x)
)

(John)

This is surely counterintuitive, especially as the renderings have the same log-
ical form, which is not true of the English sentences: (46a) is a conjunction,
while (46b) is a predication. If we do the coindexing and the coordination using
the recursion construct (as in Sections 4.8 and 4.11 again), we get instead

(47a) John stumbled and he fell

render−−−→ar stumbled(j) & fell(j) where {j := John},
(47b) John stumbled and fell

render−−−→ar

(

λ(x)(ṡ(x) & ḟ(x)) where {ṡ := stumbled, ḟ := fell}
)

(John)

⇒cf λ(x)(ṡ(x) & ḟ(x))(j) where {ṡ := stumbled, ḟ := fell, j := John}
It is clear from the indicated canonical forms of these two terms that they are
not synonymous and they render correctly (46a) as a conjunction and (46b) as
a predication. In fact, easily,

λ(x)
(

stumbled(x) & fell(x)
)

(John)

≈ℓ λ(x)(ṡ(x) & ḟ(x))(j) where {ṡ := stumbled, ḟ := fell, j := John}
so that the explicit rendering captures coordination correctly, in this example,
while it misses on the coindexing: the formal term in (47a) is not synonymous
with any explicit term.

This is an argument within referential intension theory, of course, but the
(apparent) identification of the explicit renderings of (46a) and (46b) suggests
that rendering in LIL produces the wrong logical forms, and so they cannot serve
as representations of meaning in any theory which derives meaning from logical
form.

9.4. The symmetry of identity statements. Let us also keep the promise
made in Section 4.9, to show that with the Montague (quantifier) renderings,
the identity statement “the evening star is the morning star” is not referentially
synonymous with its converse, i.e.,

ESMont(λ(u)MSMont(λ(v)(u = v))) 6≈ MSMont(λ(u)ESMont(λ(v)(u = v)))(48)

We assume that

ESMont ≡ theMont

(

first(evening(star))
)

MSMont ≡ theMont

(

last(morning(star))
)

,

where first, evening, last, morning : (ẽ → t̃) → (ẽ → t̃) are adjectives, such that,
for example, if p is the property of being a “star” visible in the evening sky and
x is a “star”, then

first(p)(x) ⇐⇒ x is visible before any other evening star.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 51

52 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Moreover, the Montague description operator “theMont” acts on relations and
produces quantifiers, i.e.,

theMont : (ẽ → t̃) → q̃.

We will also assume that theMont is a constant of Lλ
ar denoting this operator, but

the other relevant terms (first, evening, . . .) may be complex, and it is this which
makes the non-synonymy argument a bit tedious.

Proof of (48). Assume the opposite, and also, for simplicity, at first, that
first and last are constants. Easily,

ESMont(λ(u)MSMont(λ(v)(u = v)))

⇒ theMont(ḣ)(ṙ) where {ḣ := first(ė), ė := evening(star),

ṙ := λ(u)MSMont(λ(v)(u = v))},
MSMont(λ(u)ESMont(λ(v)(u = v)))

⇒ theMont(ṗ)(ṙ) where {ṗ := last(ṁ), ṁ := morning(star)

ṙ := λ(u)ESMont(λ(v)(u = v))}.
The subsequent reduction of these terms to canonical form will not affect their
heads and the assignments to ḣ and ṗ which are already explicit and irreducible,
and so by Theorem 5.3.1 we will have

ESMont(λ(u)MSMont(λ(v)(u = v)))

⇒cf theMont(ṗi) where {ṗi := first(ṗj), ṗ1 := A1, . . . , ṗs := As},

MSMont(λ(u)ESMont(λ(v)(u = v)))

⇒ theMont(ṗk) where {ṗk := last(ṗl), ṗ1 := B1, . . . , ṗs := Bs}.
If these two terms are to be referentially synonymous, then by the first condition
on synonymy (RS1), we must have

ṗi ≡ ṗk, and hence ṗj ≡ ṗl;

which then gives the absurd

M0 |= first(ṗj) = last(ṗj).

The argument is just a bit more tedious if first and last are complex terms. ⊣

10. Local (situated) meanings. I believe now that 9931 is a prime number,
but I did not believe it last year, although “9931 is a prime number” certainly
meant the same then as it does now; it is my belief system which changed, after
I did some computations. On the other hand, I also believe now that John loves
Mary and I did not believe it last year, although my beliefs about love and my
correct identification of “John”” and “Mary” have not changed; it is just that
“John loves Mary” meant something quite different then—it was, in fact, false,
as John first met Mary in January. Thus the state affects belief statements in
two independent ways, as our system of beliefs but also the meaning of sentences
depend on it. It is useful to separate these two effects, and take as the objects of
belief the local (situated) meanings of Carnap intensions and individual concepts.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 52

A LOGIC OF MEANING AND SYNONYMY 53

In this section we consider how local meanings are represented and computed in
Lλ

ar, preparatory to the modeling of propositional attitudes that we will introduce
further down. The key idea is that the global meaning of a Carnap intension A : t̃
is a matter of language only, while the local meaning of A at a specific state a
is also a matter of fact.

10.1. Utterances and local synonymy. An utterance32 is a pair (A, a) of
a closed Carnap intension A : t̃ and a state a. To deal effectively with these
quasi-syntactic objects, it is useful to add to the language Lλ

ar a parameter a for
each state a, so that we can identify an utterance (A, a) with the term A(a) : t.
These state parameters are not constants, and from the syntactic point of view
they behave exactly like pure variables of type s for which the value g(a) of every
valuation has been fixed. For example,

loves(John, Mary)(a) ⇒cf loves(j, m)(a) where {j := John, m := Mary},

and the term on the right is the canonical form of the utterance on the left
because it is irreducible—which it would not be if a were a constant.

Notice that once we add state parameters to the language, they can occur
anywhere in a term, like variables; but by “utterance” we will always mean a
term of the form A(a), where A is a closed and parameter-free Carnap intension.

The referential intension int(A(a)) models the local meaning of the Carnap
intension A in state a. This function

a 7→ int(A(a))

is very simple because if A is closed and

A ⇒cf A0 where {p1 := A1, . . . , pn := An} : t̃,

then by the recap rule,

A(a) ⇒cf A0(a) where {p1 := A1, . . . , pn := An} : t

so that the parameter a occurs only in the head part of A(a). Thus int(A(a))
is obtained from int(A) by leaving the shape and the body of the recursor un-
touched and simply applying its head function to the state a.

If A(a) ≈ B(a), we say that A and B are locally synonymous in state a and
similarly for local logical synonymy :

A ≈a B ⇐⇒ A(a) ≈ B(a), A ≈ℓ,a B ⇐⇒ A(a) ≈ℓ B(a).

Notice that the axioms and rules of Table 4 hold also for these local versions
of synonymy, because utterances A(a) are just terms, albeit of a special form.
The axiom system is also complete for these local synonymies, but there is no
surprise in this; because (with the usual conventions about canonical forms and

32Perhaps a misnomer, the term is chosen because one of the basic and most puzzling
functions of the state is to specify the speaker (“I”), the time (“now”), etc.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 53

54 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

disregarding the trivial conditions on occurrences of free variables),

(for all a)(A ≈a B)

⇐⇒ (for all a)
(

A0(a) where {ṗ1 := A1, . . . , ṗn := An}

≈ B0(a) where {ṗ1 := B1, . . . , ṗn := Bn}
)

⇐⇒ (for all a)
(

M0 |= A0(a) = B0(a)
)

&
∧

i=1,... ,n

M0 |= Ai = Bi

⇐⇒ M0 |= A0 = B0 &
∧

i=1,... ,n

M0 |= Ai = Bi ⇐⇒ A ≈ B

and similarly for logical synonymy.
With these notions in place, we can now analyze two standard, well-known

puzzles in the philosophy of language. First a much simplified, monolingual
version of the Pierre puzzle in Kripke [1979].

10.2. Los Angeles and LA. Petros emigrated from his native Greece to the
United States at a rather advanced age, and immediately fell in love with the city
of Los Angeles, where he settled. Every chance he gets he declares proudly:

I live in Los Angeles.(49a)

When, however, a new acquaintance who had heard of this tried to start conver-
sation with an innocent “I hear you live in LA”, Petros looked puzzled, declared
again that he lives in Los Angeles, and added emphatically:

I do not live in LA.(49b)

Let us now stipulate that the language has constants

Los Angeles, LA : ẽ

which refer rigidly to the same largest city in California, so that

M0 |= Los Angeles = LA.

This is reasonable, as both abbreviations of the full name of Los Angeles are well
established,33 and it implies that

Los Angeles ≈ LA,(51)

since Los Angeles and LA are explicit and irreducible. The Compositionality
Theorem 5.3.4 now yields

reside(I, Los Angeles)(a) ≈ reside(I, LA)(a)(52)

for the state a of Petros’ two utterances, whatever term (or constant) renders
the residence relation. Thus Petros appears to (rationally) believe one utterance
and disbelieve a synonymous one, which contradicts our taking utterances as the
carriers of belief.

33The full name of Los Angeles is El Pueblo de Nuestra Señora, la Reyna de Los Angeles

de Porciúncula.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 54

A LOGIC OF MEANING AND SYNONYMY 55

The common-sense resolution of the puzzle was expressed by Petros’ sister
Maria, who commented to those present when her brother made his remarks,

He doesn’t know that Los Angeles is LA.(53)

Now Kripke argues, correctly, that this does not amount to an explanation,
because (with the assumptions we have made), Maria’s comment is synonymous
with

He doesn’t know that Los Angeles is Los Angeles,

which robs it of its explanatory power, and is probably false. So, still following
Kripke, we have a genuine puzzle, which means that the example fails to satisfy
one of our basic assumptions about semantics; and the most likely culprit, in
this case, seems to be Frege’s famous doctrine about knowledge of the language:

The sense of a proper name is grasped by everybody who is sufficiently
familiar with the language or totality of designations to which it be-
longs . . . Comprehensive knowledge of the thing denoted . . . we never
attain (Frege [1892], 27]).

To resolve the puzzle, we must argue that someone “sufficiently familiar with the
language” in Frege’s sense cannot (rationally) utter in the same state both (49a)
and (49b), in other words, that Petros is not a language speaker—he is incoher-
ent.

10.3. Language speakers. There are probably no English speakers who
satisfy Frege’s stringent criterion of “grasping the totality of designations” of the
language. “The language speaker” is an idealization, which we assume in order to
develop a logical theory of meaning, much as we assume the existence of perfect
vacuum and complete absence of friction in order to develop a mathematical
theory of Newtonian mechanics. It is not an internal matter of logic, and its
utility must be judged by the plausibility of the conclusions derived from it
together with the other (also idealized) hypotheses of the theory. Nevertheless,
it is worth examining exactly how much of Frege’s doctrine about language
speakers we need to accept, and trying to formulate it in logical rather than
metaphysical terms.

What does it mean to grasp the sense of a linguistic expression? It is generally
assumed that Frege understood senses to be abstract objects, functions and
the like, and this already leads to classical metaphysical questions: how do we
“grasp” 0, or the notion of natural number? Moreover, unlike Frege, we have
allowed constants which refer directly and rigidly to objects that are definitely
not abstract, like Los Angeles, and this complicates the problem: part of the
referential intension of reside(I, Los Angeles)(a) is the constant function with value
Los Angeles, i.e., essentially, Los Angeles (the object), and I have no idea what
it means to grasp it. It is good to replace metaphysical hypotheses of this type
by assumptions which can be formulated in logical terms. The key to this is
Maria’s explanation (53), if we understand it not within the language, but as a
metalinguistic claim about Petros’ insufficient knowledge of the language, i.e., in
the form

He doesn’t know that “LA” is another name for Los Angeles.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 55

56 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

In short, Petros is incoherent not because he cannot “grasp Los Angeles” (which
may not be possible), but because he does not know the crucial, denotational
identity (50), which implies the synonymy (51). Thus, what we need to assume
of a language speaker is that (at a minimum) he knows all true identities

M0 |= a = b(54)

between constants of the language, of any type. This is a tall order, to be sure,
and Petros fails it, but it is a much easier test to make precise (and pass) than
Frege’s demand about “grasping”. After some forty five years of living in Los
Angeles, Moschovakis still makes no claim that he can can “grasp it” (whatever
that means), but he certainly knows that

M0 |= Los Angeles = LA,

and uses both of these names interchangeably, often with no recollection of which
one he employed in any particular utterance.

We now turn to the second puzzle, which was introduced by Salmon and
Soames in the introduction to Church [1982] and which is worth quoting verba-
tim.34

10.4. Is he Scott? Let us suppose that in a book-signing ceremony given by
“the author of Waverley”, a cleverly disguised Scott autographs King George’s
copy of Waverley. King George, being fooled by Scott’s disguise, concludes that
Waverley was written by someone other than Scott. He sincerely declares

He is not Scott(55a)

pointing at the disguised author. Yet King George surely disbelieves, and would
vigorously deny that

Scott is not Scott.(55b)

Now the puzzle comes from the circumstance that

He(a) = Scott(a)(55c)

for the state a at the book-signing, which implies immediately that

He(a) ≈ Scott(a),

since these two terms are explicit and irreducible. One might suspect from this
that (skipping the irrelevant negations)

(

He is Scott
)

(a) ≈

(

Scott is Scott
)

(a), (Caution: this is false!)(56)

and that would make King George guilty of incoherence. But (56) is not true:

(57)
(

He is Scott
)

(a)
render−−−→

(

He = Scott
)

(a)

⇒cf (h = s)(a) where {h := He, s := Scott}
≈ h(a) = s(a) where {h := He, s := Scott},

34Salmon and Soames started from a related puzzle of Church [1982], which is also about
belief but employs variables rather than descriptions or demonstratives.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 56

A LOGIC OF MEANING AND SYNONYMY 57

(58)
(

Scott is Scott
)

(a)
render−−−→

(

Scott = Scott
)

(a)

⇒cf (s′ = s)(a) where {s′ := Scott, s := Scott}
≈ s′(a) = s(a) where {s′ := Scott, s := Scott},

and by the Referential Synonymy Theorem 5.3.1
(

He = Scott
)

(a) 6≈
(

Scott = Scott
)

(a),(59)

simply because

M0 |= He 6= Scott.

So George IV makes two non-synonymous utterances, one false one true; he may
be muddled, but he is not incoherent.

10.5. Individual concepts in utterances. The good King can hold onto
his erroneous belief that the man who autographed his book is not himself, while
poor Petros is not allowed to believe falsely that he does not live where he lives,
on pain of incoherence. This is because, intuitively:

if you mention an individual concept, then that (full) concept is part of
the meaning of your utterance.35

In the two puzzles above, Los Angeles, LA, He and Scott are all parts of the rele-
vant terms, but Los Angeles = LA, which dooms poor Petros, while He 6= Scott,
which saves the King. We have already discussed in Section 10.1 the techni-
cal fact behind this claim: the state parameter a occurs only in the head of the
canonical form of an utterance A(a) and not in its body.

In some more detail, the head of an utterance must have type t, and so it
cannot be c(a) for any constant c : ẽ denoting an individual concept; hence
every such constant which occurs in a closed Carnap intension A : t̃ is a part of
the canonical form of every utterance A(a) of A, and every utterance synonymous
with A(a) must contain some constant synonymous with c.

10.6. Impossible utterances. Technical explanations are not very satis-
fying: we are left with the feeling that, whatever the technicalities, the King
intended to say that he does not believe

He(a) = Scott(a),(60a)

which seems to mean exactly the same as

Scott(a) = Scott(a).(60b)

Well, if the King had actually denied (60a), then, indeed, we would have had a
puzzle, because by compositionality and (55c),

He(a) = Scott(a) ≈ Scott(a) = Scott(a).(60c)

35Russell would put the city of Los Angeles in the proposition expressed by Petros’ utterance,
while the referential intension of that utterance contains (as a part) the constant function which
assigns the city to every state; there is little difference between the two.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 57

58 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

But the King did not deny (60a), and, indeed, he could not have denied (60a)
because (60a) is not an utterance.36 It is a term of type t, to be sure, if we take
“=” to be the equality relation on Te, but it does not have the logical form A(a)
of an utterance. The basic principle here is that the only syntactic expressions
we can affirm or deny are closed Carnap intensions, which are interpreted in the
current state to produce an utterance; we cannot use the parameter naming the
current (or any other) state, any more than we can use a free variable when we
speak.

Suppose we try to correct this deficiency of the language by introducing a
constant book-signing : s̃ which denotes rigidly the relevant state,

den(book-signing)(a)

= the state in which the book-signing ceremony took place.

If we replace the state parameter a by the constant book-signing in the terms
of (60c), we get

He(book-signing)(a) = Scott(book-signing)(a),(61a)

Scott(book-signing)(a) = Scott(book-signing)(a),(61b)

and the King can try to deny the first while asserting the second. But the
constant He is a part of (61a) and not (denotationally) equal to any part of (61b),
and so these two utterances are not synonymous37 and the good King has once
more escaped incoherence.

To summarize the discussion in this section, what we inferred from the Kripke
example was that puzzles which are grounded on a lack of knowledge of the
language are not relevant to the development of Fregean semantics, which assume
from the get go that the “language speakers” know the language perfectly; and
we suggested that the Salmon-Soames puzzle is based on a confusion of the
utterance (He is Scott)(a) with the closed term He(a) = Scott(a), which means
something entirely different—and is not an utterance.

36It may be argued that (by the Gallin interpretation), (60a) is exactly what the King
denies when his utterance “He is not Scott” is rendered in LIL and a is the current state. This
is discussed in Kalyvianaki and Moschovakis [2008]. The claim there is that as renderings
of utterances in LIL are naturally understood, they cannot serve as belief carriers—although
they express a robust notion of information or factual content, related to but different from
local meaning. Kalyvianaki [2007] gives an extensive treatment of factual content which,
unfortunately, we cannot discuss here.

37The non-synonymy becomes more obvious if we look at the canonical forms of these two
terms:

He(book-signing)(a) = Scott(book-signing)(a)

⇒cf (a = b)(a) where {a := He(h1), h1 := book-signing, b := Scott(h2), h2 := book-signing},

Scott(book-signing) = Scott(book-signing)(a)

⇒cf (a = b)(a) where {a := Scott(h1), h1 := book-signing, b := Scott(h2), h2 := book-signing}.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 58

A LOGIC OF MEANING AND SYNONYMY 59

11. Propositional attitudes. We now extend the theory of referential in-
tensions to allow in the lexicon K names for propositional attitudes such as

say that . . . , claim that . . . , know that . . . , believe that

The problem we must face is that the truth and the meaning of

Nixon claimed that he is not a crook

render−−−→ Claimed(ṅ, not(crook(ṅ))) where {ṅ := Nixon}
depend not only on the truth value of crook(Nixon) but also its meaning; other-
wise, if Nixon spoke the truth, then he claimed every truth on that fateful day,
which is unlikely. This means that Claimed must be interpreted by a function
which takes a local referential intension for its second argument; and the method
for attaching meanings to such terms exploits the fact that referential intensions
are (basically) tuples of functions in our universe M0, and so Lλ

ar can talk about
them.

Our basic assumption about the claiming relation which must be reflected in
our modeling of it is that for any two, proper Carnap intensions, A, B : t̃ and
any state a,

if A ≈a B and x claims A in a, then x claims B in a.(62)

The task is somewhat complicated by the need to allow free variables in A, B
as in not(crook(ṅ)) above, to account for coindexing that is resolved outside the
claiming relation and other instances of quantifying in.

11.1. Formal attitudinal application. The new attitudinal constants are
of type38

C : ẽ × t̃ → t̃

and they can be used to construct Lλ
ar-terms by the following rule:

If C is an attitudinal constant, A : ẽ is an arbitrary term and B : t̃ is proper,
then

C(A, B) : t̃.

We insist that the second argument B be a proper Carnap intension, because
it must have meaning for the attitudinal application to make sense. Notice
that these attitudinal operations are used “syncategorematically”, i.e., Claims
by itself is not a term. But they can be nested and be combined with all the
other constructs of Lλ

ar to yield terms like

Dean expected that Nixon would claim that he is not a crook

render−−−→ Expected(Dean, Claim(ṅ, not(crook(ṅ))) where {ṅ := Nixon})
A term A is denotational if no attitudinal constant occurs in A.

38There are interesting unary propositional attitudes, like “it is commonly known that . . .

” as well as ternary ones, like “x told y that . . . ”. Everything we do in this section extends
to them trivially, and it simplifies matters to deal only with the binary ones.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 59

60 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Before we outline the general construction of canonical forms and the definition
of referential intensions of attitudinal terms, we illustrate the idea with some
simple examples, leaving the rigorous justification of the computations for later.

11.2. George claims that John is a crook. By the reduction calculus as
we know it, and assuming that it applies to denotational terms even when they
are arguments of an attitudinal constant:

Claims(George, crook(John)) ⇒ Claims(George, crook(j) where {j := John}).
The denotation of this depends on the referential intension of

CJ :≡ crook(j) where {j := John},
so we compute it as in Section 7:

s = shape(CJ) = (j, ∅, 〈j〉, ∅, ∅)
system(CJ) = (α0, α1),

int(CJ) = (s, system(CJ))

where

α0(g, ) = crook(), α1(g) = John.

These functions α0, α1 do not depend on the valuation g, because we have exhib-
ited the variables on which each of them depends, getting them from the shape.
So the “reduced functions”

α′

0() = crook(), α′

1() = John

determine system(CJ), and they are objects in our universe. They suggest the
next, crucial move in the analysis:

Claims(George,CJ) ⇒ Claimss(George, fint(crook(John))

≡ Claimss(George, fint(crook(j) where {j := John}))
≡ Claimss(George, λ()crook(), John)

where fint(CJ) stands for the (formal) representation of int(CJ) and Claimss is a
new, denotational constant which, in effect, computes the truth value of A from
the referential intension of CJ. (And we will define both of these in the sequel,
shortly, but it should be clear how to do it from the discussion.)

11.3. Declaration of love. Suppose we have a constant Declares and com-
pute as usual:

Peter declares that he loves John’s sister
formalize−−−−−→ Declares(Peter, loves(he, sister(John)))
coindex−−−−→ A ≡ Declares(ṗ, loves(ṗ, sister(John))) where {ṗ := Peter}
⇒ Declares

(

ṗ, loves(ṗ, ṡ) where {ṡ := sister(j), j := John}
)

where {ṗ := Peter}
≡ Declares(ṗ, L) where {ṗ := Peter}

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 60

A LOGIC OF MEANING AND SYNONYMY 61

with the abbreviation

L ≡ loves(ṗ, ṡ) where {ṡ := sister(j), j := John} : t̃.

If the denotation of Declares(ṗ, L) depended only on the denotation of L, we
would apply the ap rule next to get

Declares(ṗ, L) ⇒ Declares(ṗ, L̇) where {L̇ := L} (False!)

and then proceed as usual to get the canonical form of A. But this is clearly
wrong. So we compute int(L) as in Section 7:

s = shape(L) = (ṡ, j, 〈ṗ〉, 〈ṡ〉, ∅, 〈j〉, ∅, ∅)
system(L) = (α0, α1, α2),

int(L) = (s, system(L),

where

α0(g, p, s) = loves(p, s), α1(g, ) = sister(), α2(g) = John.

As in the example above, these functions do not depend on the valuation g, and
so the “reduced functions”

α′

0(p, s) = loves(p, s), α′

1() = sister(), α2 = John

determine system(L), and they are objects in our universe. They suggest the
next, crucial move in the analysis:

(64) Declares(ṗ, L) ⇒ Declaress(ṗ, ṗ, fint(L))

≡ Declaress(ṗ, ṗ, λ(p, s)loves(p, s), λ()sister(), John)

where Declaress is a new, denotational constant which, in effect, computes the
truth value of A from the referential intension of L; the second occurrence of
ṗ signifies that ṗ occurs freely in L. Leaving aside for a moment the precise
interpretation of Declaress, we have a formal reduction

(65) A ≡ Declares(ṗ, loves(ṗ, sister(John))) where {ṗ := Peter}
⇒ Declaress(ṗ, ṗ, λ(p, s)loves(p, s), λ()sister(), John) where {ṗ := Peter}

from which we can continue as usual to get the canonical form of A,

(66) A ⇒cf Declaress(ṗ, ṗ, l̇, ṡ, j)

where {ṗ := Peter, l̇ := λ(p, s)loves(p, s), ṡ := λ()sister(), j := John}
≈ℓ Declaress(ṗ, ṗ, l̇, ṡ, j) where {ṗ := Peter, l̇ := love, ṡ = sister, j := John}.

For this to give us the correct answer, we must define the interpretation
Declaress of the new constant so that for any state a,

(67) Declaress(Peter, Peter, love, sister, John)(a) = 1

⇐⇒ in state a, Peter declares that he loves John’s sister,

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 61

62 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

which, presumably, can be empirically verified. To see how to do this, we check
first directly from the definitions, that for any term B and state a,

(68) B(a) ≈ L(a) ⇐⇒ B ⇒cf B0 where {ṡ := B1, j := B2}
for some B0, B1, B2, such that

shape(B0 where {ṡ := B1, j := B2}) = shape(L) = s

and M0 |= λ(p, s)(love(p, s)(a)) = λ(p, s)(B0{ṗ := p, ṡ := s}(a))

and M0 |= sister = λ()B1{j := } and M0 |= John = B2.

So we set, for each state a,39

Declaress(p, q, l, s, )(a) = 1

⇐⇒ there is an irreducible term B ≡ B0 where {ṡ := B1, j := B2}
such that shape(B0 where {ṡ := B1, j := B2}) = s

and λ(p, s)l(p, s, a) = λ(p, s)(den(B0)({ṗ := p, ṡ := s})(a))

and s = λ()den(B1)({j := }) and  = den(B2)

and p declares in state a that B.

We set Declaress(p, q, l, s, )(a) = 0 if the condition on the right is not satisfied,
and it is then immediate that the right-to-left direction of (67)

in state a, Peter declares that he loves John’s sister

=⇒Declaress(Peter, Peter, love, sister, John)(a) = 1

holds, by taking B = L. The left-to-right direction also holds, because the
hypothesis

Declaress(Peter, Peter, love, sister, John)(a) = 1

supplies us with a term B ≡ B0 where {ṡ := B1, j := B2} such that Peter
declares B in state a and B(a) ≈ L(a) by (68); and so by (62), if he is coherent,
this amounts to a declaration of his love for John’s sister too.

For the general construction below, we will need one more simple but impor-
tant syntactic construct.

11.4. The λr operator. There was an important move in (64) that we did
not discuss, when the recursion variables ṗ, ṡ on loves(ṗ, ṡ) on the left side (within
L) were changed to pure variables in the λ-abstraction λ(p, s)loves(p, s) on the
right. It was a necessary move, as we have not allowed λ-abstraction on recursion
variables, and for good reason: the separate uses of the two kinds of variables
are crucial in formulating correctly the reduction calculus. From the denota-
tional point of view, however, there is nothing wrong with recursion variable
λ-abstraction, since these variables range over exactly the same sets as the pure

39Note that q is not used in this definition, which implicitly assumes that it is equal to p,
which in this case means that the person making the claim is the same as that about whom
the claim is made.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 62

A LOGIC OF MEANING AND SYNONYMY 63

variables. It is convenient now to introduce this construct, as an abbreviation.
We set

λr(x)(A) :≡
{

λ(x)(A), if x is a pure variable,

λ(x′)(A{x :≡ x′}), if x is a recursion variable,
(69)

where, in the second case, x′ is a fresh, pure variable of the same type as x.
Notice that if A is immediate or irreducible, then λr(x)(A) is also immediate

or irreducible accordingly, directly from the definition of immediate terms in
Section 6.3 and the characterization of irreducible terms in Section 6.7. This is
an important property of the λr construct.

11.5. Outline of the general construction. Suppose now that

C : ẽ × t̃ → t̃

is an arbitrary attitudinal constant with which we can form terms C(A, B) as
explained in Section 11.1. As in the special cases above, we will associate with
it a family Cs of denotational constants, one for each “abstract” shape s, so that
(roughly)

Cs will be used to interpret C(A, B) if shape(B) = s.

Specifically, if

s = (ṗ1, . . . , ṗn,~f0,~r0, . . . ,~fn,~rn)

as in (AR1) and (AR2) of (44) with ṗi : σi for i = 1, . . . , n, then

Cs : ẽ × type(~f) × σ∗

0 × σ∗

1 × · · · × σ∗

n → t̃

where ~f = ~f0 ∪ · · · ∪~fn is the sequence variables which occur free in B (in some

standard enumeration without repetitions), type(~f) is the sequence of their types

(and it is simply omitted if ~f = ∅), σ0 ≡ t̃, and

σ∗

i :≡ type(~fi) × type(~ri) → σi,

with the same understanding of type(~ri). The interpretations Cs of these con-
stants are assumed to be given “empirically”, from our understanding of the
propositional attitude C, as we specify below.

The reduction calculus is exactly as before, except for one restriction and one
addition:

Restriction: The ap rule

A(B) ⇒ A(ḃ) where {ḃ := B}
can only be applied if B is proper and denotational, i.e., no attitudinal constant
occurs in B.

11.5.1. The attitudinal application rule. Suppose

B ≡ B0 where {ṗ := B1, . . . ṗn := Bn} : t̃

is denotational, proper and irreducible,

s = shape(B) = (ṗ1, . . . , ṗn,~f0,~r0, . . . ,~fn,~rn)

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 63

64 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

C(A, B) ⇒ Cs(A,~f , fint(B)) (attap)

B ≡ B0 where {ṗ1 := B1, . . . , ṗn := Bn} is proper, irreducible

fint(B) ≡ (λr(~f0,~r0)(B0), . . . , λr(~fn,~rn)(Bn))

Table 9. The reduction calculus: the attitudinal application rule.

in the notation of Section 1, and C is an attitudinal constant. Let

fint(B) ≡ (λr(~f0,~r0)(B0), . . . , λr(~fn,~rn)(Bn))(70)

be the tuple of λ-terms which formally defines the (reduced) intension of B as
above, and set

C(A, B) ⇒ Cs(A,~f , fint(B)) (attap)

Notice that the terms λr(~fi,~ri)(Bi) are irreducible, and the two sides of (attap)

have the same free variables—this is the point of including the list ~f on the right.

For the example in Section 11.3 (with “Declares”), this gives exactly what we
“guessed” there,

Declares(ṗ, loves(ṗ, ṡ) where {ṡ := sister(j), j := John})
⇒ Declaress(ṗ, ṗ, λ(p, s)loves(p, s), λ()sister(), John)

where s = shape(loves(ṗ, ṡ) where {ṡ := sister(j), j := John}).
It is important here that from the list ~f of free variables of B and the shape s

we can compute the lists ~fi,~ri of the variables which occur free in each Bi and
which are needed to construct the terms in the tuple fint(B).

11.6. Denotational soundness. We check that the attap rule preserves de-
notations, with the correct definition of the denotational constants Cs and the
assumption that the propositional attitude satisfies the basic principle (62). In
the notation we used to state the rule and using Claims to keep the definition
concrete, set:

Claimss(x,~f , b0, b1, . . . bn)(a) = 1

⇐⇒ there is an irreducible term

B ≡ B0 where {ṗ1 := B1, . . . , ṗn := Bn} : t̃ with shape(B) = s, such that

λ(~f0,~r0)(b0(~f0,~r0, a)) = den((λr(~f0,~r0)(B0(~f0,~r0)(a))),

b1 = den(λr(~f1,~r1)B1) . . . , bn = den(λr(~fn,~rn)Bn)

and in state a, x claims B.

If the condition on the right does not hold, we set

Claimss(x,~f , b0, b1, . . . bn)(a) = 0.

Notice that the term B in this definition may have free variables, as

L ≡ loves(ṗ, ṡ) where {ṡ := sister(j), j := John}

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 64

A LOGIC OF MEANING AND SYNONYMY 65

does in Section 11.3 above, and so we must interpret correctly claims of Carnap
intensions with free variables. We understand that ṗ in L refers directly and
immediately to some individual concept (presumably a person), who claims in
state a that the local meaning B is true—as he understands B in state a. It is
important to allow this, so we can interpret claims about “him” or de re claims
about “the tallest man in the room”.

(1) If x claims an irreducible Carnap intension

D ≡ D0 where {ṗ := D1, . . . , ṗn := Dn}
in state a and shape(D) = s, then

Claimss(x,~f , λr(~f0,~r0)D0, . . . , λr(~fn,~rn)Dn)(a) = 1.

This is immediate, taking B ≡ D in the definition of Claimss.

(2) If

Claimss(x,~f , λr(~f0,~r0)D0, . . . , λr(~fn,~rn)Dn)(a) = 1,

then x claims D in state a.
The hypothesis gives us an irreducible term B with shape(B) = s = shape(D)

such that x claims B in state a, and

M0 |= λr(~f0,~r0)(B0(~f0,~r0)(a)) = λr(~f0,~r0)(D0(~f0,~r0)(a)),(71a)

M0 |= λr(~fi,~ri)Bi = λr(~fi,~ri)Di for i = 1, . . . , n.(71b)

In addition, for every i = 0, . . . , n,

the terms
(

λr(~fi,~ri)Bi

)

(~fi,~ri) and
(

λr(~fi,~ri)Di

)

(~fi,~ri) are irreducible.

Put now

B′ :≡
(

λr(~f0,~r0)B0

)

(~f0,~r0)

where {ṗ1 :=
(

λr(~f1,~r1)B1

)

(~f1,~r1), . . . , ṗn :=
(

λr(~fn,~rn)Bn

)

(~fn,~rn)},

and similarly

D′ :≡
(

λr(~f0,~r0)D0

)

(~f0,~r0)

where {ṗ1 :=
(

λr(~f1,~r1)D1

)

(~f1,~r1), . . . , ṗn :=
(

λr(~fn,~rn)Dn

)

(~fn,~rn)},

Now B′ and D′ are both irreducible and the parts of B′(a) and D′(a) have the
same denotations by (71a), (71b), so

B′(a) ≈ D′(a);

and by the same reasoning,

B(a) ≈ B′(a) and D(a) ≈ D′(a);

and since x claims B in state a, he must also claim the locally synonymous D in
state a by (62), which is what we needed to prove.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 65

66 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

11.7. “John claims Mary loves him but she denies it”. Formalizing
and then doing the familiar coindexing operations as usual, we get

John claims Mary loves him but she denies it

formalize−−−−−→ A ≡ Claims(John, loves(Mary, him)) but Denies(she, it)

coindex−−−−→ Claims(j, loves(ṁ, j)) but Denies(ṁ, it) where {j := John, ṁ := Mary}.

There is another coindexing that is needed, however, since it clearly refers of
loves(ṁ, j)—which means to the meaning of this sentence; so we would like to
justify continuing with

coindex−−−−→ Claims(j, l̇) but Denies(ṁ, l̇)

where {j := John, ṁ := Mary, l̇ = fint(loves(ṁ, j))}

It is clear that the shape of loves(ṁ, j) will play a role, so set

s := shape(loves(ṁ, j)) = (ṁ, j, 〈ṁ, j〉, ∅),

and then proceed formally:

⇒ Claimss(j, ṁ, j, l̇) but Deniess(ṁ, ṁ, j, l̇)

where {j := John, ṁ := Mary, l̇ := λ(m, )loves(m, )}
≈ℓ Claimss(j, ṁ, j, l̇) but Deniess(ṁ, ṁ, j, l̇)

where {j := John, ṁ := Mary, l̇ := love}.

The result looks right, and it is, if we recall how the (denotational) relations
Claimss, Deniess are interpreted: it says that

j claims that l̇(ṁ, j) but ṁ denies that l̇(ṁ, j)

where j is John, ṁ is Mary, and l̇ is love.

The example is quite easy because the sentence claimed by John and denied
by Mary is rendered by an explicit, irreducible term and so has a very simple
formal intension, with just one part, i.e.,

fint(loves(ṁ, j)) = λ(m, )loves(m, )).

11.8. The complete reduction calculus. It should be clear that the ad-
dition of the attap rule extends the results in the preceding sections to the full
language, with arbitrary attitudinal constants: these are eliminated, one-by-one,
starting “from the inside” where the attitudinal constants are applied to terms
with only denotational primitives, until we reach a canonical form in which
only denotational constants occur, from which we read off the relevant refer-
ential intensions. The Referential Synonymy Theorem 5.3.1 holds by the same
argument, and so do the rules for Logical and Referential Synonymy in Theo-
rem 5.3.3, including the compositionality property. There is no compositionality
for denotations in the full system, of course, and there should not be.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 66

A LOGIC OF MEANING AND SYNONYMY 67

11.9. “I believe everything that Sarah Palin says”. We have assumed
an “empirical” understanding of attitudinal constants because that is the only
possible interpretation that we can envision for Claims that . . . , Declares that
. . . , etc., and the general, logical theory we are constructing should certainly
cover these. The treatment is general enough to incorporate theoretical ac-
counts of specific propositional attitudes like common or potential knowledge,
belief, etc., typically given in modal terms. It is limited, however, in that we
cannot express sentences like that in the heading: this is because of the basic,
Fregean assumption we made, that the truth and meaning of a propositional
attitude are functions of the local meaning of its argument, and the collection of
local referential intensions do not form a set in our universe—or any structure
into which the λ-calculus can be interpreted. Whether this is an unavoidable
limitation of a Fregean approach to the theory of meaning or suggests a superi-
ority of the modal treatments of propositional attitudes is a matter for further
investigation.

12. What is missing. A lot, of course. We mention here only two important
topics which should be treated in a logical theory of meaning and which we left
out completely, because of lack of space in these notes and time in the lectures.

12.1. Factual content. This is the common, local semantic value of He is
Scott and Scott is Scott in a state a in which, in fact, “He” refers to Scott. It is
different from the distinct local meanings of these two sentences, cf. Section 10.4
and Footnote 36. It is an important notion which has been analyzed in the
context of referential intension theory in Kalyvianaki [2007].

12.2. Approximate synonymy. One can plausibly claim that no completely
faithful translation into English can be given for some Greek phrases, simply be-
cause some words in the Greek lexicon do not have exact English counterparts.
Still, we get by quite well with “approximate translations”, and a theoretical ac-
count that justifies the practice should be a part of a logical theory of meaning.
It, too, is left for another day.

REFERENCES

Alonzo Church [1982], A remark conerning Quine’s paradox about modality, Spanish ver-
sion in Analisis Filosófico, pp. 25–32, reprinted in English in Salmon and Soames [1988].

Donald Davidson [1967], Truth and meaning, Synthese, vol. 17, pp. 304–333, reprinted
in Martinich [1990] and in Davidson [1984].

Donald Davidson [1984], Truth and interpretation, Clarendon Press, Oxford.
M. A. Dummett [1978], Frege’s distinction between sense and reference, Truth and other

enigmas, Harvard University Press, Cambridge, pp. 116–144.
G. Evans [1982], The varieties of reference, Clarendon Press, Oxford, Edited by J. N.

McDowell.
G. Frege [1952], Translations from the Philosophical Writings of Gottlob Frege,

Blackwell, Oxford, edited by P. Geach and M. Black.
Gottlob Frege [1879], Begriffsschrift. Eine der arithmetischen nachgebildete For-

melsprache des reinen Denkens (Halle), Translated by Stefan Bauer-Mengelberg in Van

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 67

68 FRITZ HAMM AND YIANNIS MOSCHOVAKIS

Heijenoort [1967].
Gottlob Frege [1892], On sense and denotation, Zeitschrift für Philosophie und

Philosophische Kritik, vol. 100, translated by Max Black in Frege [1952] and also by Her-
bert Feigl in Martinich [1990]. We use “denotation” to render Frege’s “Bedeutung,” instead of
Black’s “meaning” or Feigl’s “nominatum”.

Harvey Friedman [1974], Equality between functionals, Logic Colloquium, Symposium

on Logic held in Boston 1972-73 (A. Dold and B. Eckman, editors), Lecture notes in math-
ematics, no. 453, Springer-Verlag, Berlin - Heidelberg - New York, pp. 22–37.

Daniel Gallin [1975], Intensional and higher-order modal logic, North-Holland Math-
ematical Studies, no. 19, North-Holland, Elsevier, Amsterdam, Oxford, New York.

Irene Heim and Angelika Kratzer [1998], Semantics in generative grammar, Black-
well.

Eleni Kalyvianaki [2007], Algorithmic natural language semantics: A study of Locality in

the Theory of Referential Intensions, Ph.D. thesis, Graduate Program in Logic, Algorithms
and Computation, University of Athens.

Eleni Kalyvianaki and Yiannis N. Moschovakis [2008], Two aspects of situated mean-

ing, Logics for linguistic structures, Mouton de Gruyter, Berlin, New York, pp. 57–86.
David Kaplan [1978a], Dthat, Syntax and semantics (Peter Cole, editor), vol. 9, Acad-

emic Press, New York, reprinted in Martinich [1990].
David Kaplan [1978b], On the logic of demonstratives, Journal of Philosophical Logic,

pp. 81–98, reprinted in Salmon and Soames [1988].
Ewan Klein and Ivan A. Sag [1985], Type-driven translation, Linguistics and Philoso-

phy, vol. 8, pp. 163–201.
Saul A. Kripke [1979], A puzzle about belief, Meaning and use (A. Margalit, editor),

Reidel, pp. 239–283, reprinted in Salmon and Soames [1988].
A. P. Martinich (editor) [1990], The philosophy of language, second ed., Oxford Univer-

sity Press, New York, Oxford.
R. Montague [1970a], English as a formal language, Linguaggi nella Società e nella

Tecnica (Milan) (Bruno Visentini et al., editors), Edizioni di Comunità, pp. 189–284, reprinted
in Montague [1974].

R. Montague [1970b], Pragmatics and intensional logic, Synthèse, vol. 22, pp. 68–94,
reprinted in Montague [1974].

R. Montague [1970c], Universal grammar, Theoria, vol. 36, pp. 373–398, reprinted in
Montague [1974].

R. Montague [1973], The Proper Treatment of Quantification in Ordinary English, Ap-

proaches to Natural Language: Proceedings of the 1970 Stanford Workshop on Gram-

mar and Semantics (J. Hintikka et al., editors), D. Reidel Publishing Co, Dordrecht, pp. 221–
224, reprinted in Montague [1974].

R. Montague [1974], Formal philosophy, Yale University Press, New Haven and London,
Selected papers of Richard Montague, edited by Richmond H. Thomason.

Yiannis N. Moschovakis [1989], The formal language of recursion, The Journal of Sym-

bolic Logic, vol. 54, pp. 1216–1252.
Yiannis N. Moschovakis [1994], Sense and denotation as algorithm and value, Logic col-

loquium ’90 (J. Väänänen and J. Oikkonen, editors), Lecture Notes in Logic, vol. 2, Association
for Symbolic Logic, pp. 210–249, a corrected and expanded proof of the main theorem is posted
in www.math.ucla.edu/∼ynm.

Yiannis N. Moschovakis [1998], On founding the theory of algorithms, Truth in mathe-

matics (H. G. Dales and G. Oliveri, editors), Clarendon Press, Oxford, pp. 71–104.
Yiannis N. Moschovakis [2006], A logical calculus of meaning and synonymy, Linguistics

and Philosophy, vol. 29, pp. 27–89.
Jamal Ouhalla [1994], Introducing transformational grammar, Arnold and Oxford

University Press.
G. Plotkin [1977], LCF considered as a programming language, Theoretical Computer

Science, vol. 5, pp. 223–255.
Nathan Salmon and Scott Soames [1988], Propositions and attitudes, Oxford Univer-

sity Press.

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 68

A LOGIC OF MEANING AND SYNONYMY 69

Scott Soames [1989], Presupposition, Handbook of philosophical logic (D. Gabbay and
F. Guenthner, editors), vol. IV, Reidel, pp. 553 – 616.

William Tait [1967], Interpretations of functionals of finite type, The Journal of Sym-

bolic Logic, vol. 32, pp. 198 – 212.
Pavel Tichý [1969], Intensions in terms of Turing Machines, Studia Logica: an inter-

national journal for symbolic logic, vol. 24, pp. 7–25.
Jean Van Heijenoort (editor) [1967], From Frege to Gödel, a source book in mathemat-

ical logic, 1879 – 1931, Harvard University Press, Cambridge, Massachusetts, London, Eng-
land.

T. Zimmermann [1989], Intensional logic and two–sorted type theory, The Journal of

Symbolic Logic, vol. 54, pp. 65–77.

SEMINAR FÜR SPRACHWISSENSCHAFT UNIVERSITÄT TÜBINGEN

E-mail : friedrich.hamm@uni-tuebingen.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA

LOS ANGELES, CA 90095-1555, USA

and

GRADUATE PROGRAM IN LOGIC, ALGORITHMS AND COMPUTATION (MΠΛA)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS

ATHENS, GREECE

E-mail : ynm@math.ucla.edu

Fritz Hamm and Yiannis Moschovakis, Advanced course, ESSLLI 2010 page 69

