
What is an algorithm?

Yiannis N. Moschovakis
UCLA and University of Athens

Chiemsee, July 25 2014

Some publications, all posted in www.math.ucla.edu/∼ynm

On the general theory

• The formal language of recursion (1989)

• A mathematical modeling of pure, recursive algorithms (1989)

• On founding the theory of algorithms (1998)

• What is an algorithm? (2001)

• Elementary algorithms and their implementations,
with Vasilis Paschalis (2008)

Applications

• Is the Euclidean algorithm optimal among its peers?,
with Lou van den Dries (2004)

• Arithmetic complexity
with Lou van den Dries (2009)

• A logical calculus of meaning and synonymy (2006)

Yiannis N. Moschovakis: What is an algorithm? 1/40

Outline

(1) Computation models; the (almost) standard view

(2) Three classical algorithms

(3) Least fixed point recursion

(4) Monotone recursors: the set-theoretic objects which model
deterministic algorithms

(5) Operations on recursors

(6) Implementations

(7) Algorithms are recursors from given primitives

(8) Recursive programs

(9) Elementary algorithms

(10) Some applications

(11) Computation models vs. recursive algorithms

Yiannis N. Moschovakis: What is an algorithm? 2/40

36,500,000 Google hits and no formal definition

• Wikipedia: An algorithm is a step-by-step procedure for calculations

• Common: Algorithms are Turing machines
or processes which can be simulated by Turing machines

Turing machines do not express faithfully low complexity algorithms
van Emde Boas: simulation . . . is very hard to define as a
mathematical object

? Knuth: A computational method [computation model] is . . .
An algorithm is a computational method which terminates in
finitely many steps for all [inputs]

• Girard (and others): An algorithm is expressed by a constructive proof
of a statement of the form (∀x ∈ A)(∃y ∈ B)P(x , y)

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 3/40

We need to make precise

• The mathematical structure of algorithms

• The way in which algorithms are effective (constructive, definable)

These two aspects of algorithms are related but separate

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 4/40

Structure: computation models (machines, while programs)

X W

· · ·

x
f (x)

σ

s0in
out

S T

A computation model m : X Ã W is a tuple (S , in, σ,T , out) such that

(1) S is a non-empty set (of states)

(2) X is a set and in : X → S is the input function

(3) σ : S → S is the transition function

(4) T is the set of terminal states, T ⊆ S

(5) W is a set and out : T → W is the output function

• m(x) = out(σn(in(x))) where n = least such that σn(in(x)) ∈ T

• s := in(x); while(s /∈ T){s := σ(s)}; return out(s)

• m computes the partial function m : X ⇀ W

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 5/40

Definability in M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
• Each Mi is a set of sort i including M boole = {tt, ff}
• Each ϕ ∈ Φ has a type (〈i1, . . . , in−1〉, j) (with ik 6= boole)

and ϕM : Mi1 × · · · ×Min−1 ⇀ Mj is a strict partial function

M is total if every ϕM is total

• A (usual) first-order structure M = (M, f1, . . . , fk−1,R1, . . . ,Rl−1),
with M and {tt, ff} as the basic universes and the relations
represented by their characteristic functions

• Unary arithmetic, N1 = (N, 0, S , Pd, =0)

• Binary arithmetic, N2 = (N, 0, 1, iq2, rem2, em2, om2, =0), with
iq2(x) = iq(x , 2), rem2(x) = rem(x , 2), em2(x) = 2x , om2(x) = 2x + 1

• An M-machine for a first-order M = (M, {ϕM | ϕ ∈ Φ})
is a computation model (S , in, σ,T , out) : Mn Ã Mj in which
S = Mk for some k and in, σ,T , out are definable by explicit
Φ-terms with branching, if A then B else C

• Turing machines on k symbols are Nk -machines (k-ary arithmetic)
Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 6/40

The (almost) standard view

? Algorithms are computation models

? Algorithms from given functions and relations are M-machines,
where the primitives of M include the given functions and relations
and some additional absolutely computable operations

E.g., a Turing machine from R ⊂ N2 has an oracle for R but
operates on the set of strings Σ∗ from some alphabet, uses the
basic operations on them and assumes a specific representation of
numbers by strings (typically unary or binary)

• These principles are implicitly assumed in much of complexity theory
and defended (with specific extra operations) by Gurevich and others

• There is no general agreement on which primitives of
computation are absolute—one of the problems with this view

• I will discuss a broader view, by which algorithms are specified by
systems of recursive equations and computation models are
implementations of elementary algorithms

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 7/40

The Euclidean algorithm
For x , y ∈ N+ = {n ∈ N | n > 0}, with set of states S = N2

(∗) s := x ; t := y ; while(rem(s, t) 6= 0)[(s, t) := (t, rem(s, t))]; return t

where rem(s, t) is the remainder of the division of s by t,

• (∗) defines an (N, rem, =0)-machine ε which computes gcd(x , y)

callsremε (x , y) = the number of calls to rem

required to compute gcd(x , y) by ε

≤ 2 log(y) (x ≥ y ≥ 2)

Conjecture (open): For every algorithm α which computes the gcd
function from rem and =0:

for x , y with arbitrarily large min(x , y),

callsremε (x , y) ≤ callsremα (x , y)

• It assumes that “algorithm from rem, =0” and callsremα are defined
and is trivial for computation models with more primitives (e.g., TMs)

Yiannis N. Moschovakis: What is an algorithm? (2) Three classical algorithms 8/40

The extended Euclidean (as a recursive algorithm)

Bezout’s Lemma. There are functions α, β : N+ × N+ → Z such that

(∗) if x , y ∈ N+, then gcd(x , y) = α(x , y)x + β(x , y)y

It is easy to check that (∗) holds if α(x , y), β(x , y) satisfy the system

α(x , y) = if (rem(x , y) = 0) then 0 else β(y , rem(x , y)),

β(x , y) = if (rem(x , y) = 0) then 1

else α(y , rem(x , y))− iq(x , y)β(y , rem(x , y))

where iq(x , y) is the integer quotient of x by y ;

and this expresses a recursive algorithm which computes suitable
functions α, β : N+ × N+ → Z from the primitives 0, 1, rem, iq,−, =0

• The corresponding recursive equation expressing the Euclidean is

gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))

Yiannis N. Moschovakis: What is an algorithm? (2) Three classical algorithms 9/40

The color of leaves
A (binary, colored) forest is a structure

F = (F , s, d , Leaf, Red,=) where Leaf, Red ⊆ F and s, d : F → F

A path from x0 is any sequence p = (x0, . . .) of length |p| ≤ ∞ s.t.

i + 1 < |p| =⇒ [¬Leaf(xi) & xi+1 ∈ {s(xi), d(xi)}]

• F is grounded if it has no infinite paths, and on such F we set

R(x) ⇐⇒ every maximal path from x ends in a red leaf

(∗) R(x) ⇐⇒ if Leaf(x) then Red(x) else [R(s(x)) & R(d(x))]

• (∗) expresses a recursive algorithm ρ which decides R(x) on F and
there are many such divide-and-conquer algorithms (e.g., the mergesort)

• (Tiuryn 1989) On some grounded forest, no algorithm expressed
by an F-machine decides R(x)

? ρ can be implemented by many machines on F ′⊃F with more primitives

Yiannis N. Moschovakis: What is an algorithm? (2) Three classical algorithms 10/40

The sieve of Eratosthenes
Primes = p(u0) where{

u0 = (2, 3, 4, 5, . . .),

p(u) = Print(head(u))̂p(sieve(head(u), tail(u))),

sieve(x , v) = if (x | head(v)) then sieve(x , tail(v))

else head(v)̂sieve(x , tail(v))
}

(S = (N→ N), u0, u, v ∈ S , p : S → S , x ∈ N, sieve : N× S → S)

• A system of recursive equations which expresses an algorithm
σ on S from head, tail, | , ̂ and (the act) Print

• sieve(x , v) removes from v all numbers divisible by x

• p(u) prints head(u) and then calls itself on sieve(head(u), tail(u))

• σ computes successively
u0 = (2, 3, 4, . . .), u1 = (3, 5, 7, . . .), u2 = (5, 7, 11, . . .), . . .
and (as a side effect) “prints” the heads of these sequences

• σ operates on completed infinite objects and never terminates

Yiannis N. Moschovakis: What is an algorithm? (2) Three classical algorithms 11/40

• The basic notion is that of algorithm from primitives
with a very broad understanding of “primitives”

• Problem: too many notions are associated with an algorithm:
calls to the primitives, recursive definitions, complexity functions,
termination, side effects (and interaction, which is more complex),
simulation, implementability, . . .

For specific algorithms many of these are simple and naturally
defined, but a general theory might be excessively complex

• The lesson from probability theory: it is even more complex, but
there is a useful and fairly simple basic notion:

A random variable is a measurable function X : M → R on a
sample space (a measure space of total measure 1)

• We look for a similar solution, which takes the basic notions of
the theory of algorithms from an existing mathematical theory

• Claim: For deterministic algorithms, the background theory is
least fixed point recursion on complete posets

Yiannis N. Moschovakis: What is an algorithm? 12/40

Basic poset theory, I

• A poset is a pair (X ,≤X) where ≤X is a partial ordering of X

• A poset D is (directed- or chain-) complete if every linearly
ordered subset (chain) C ⊆ D has a least upper bound sup(C).

Every complete poset has a least element, sup(∅) = ⊥
• A poset D is complete if and only if every directed subset C ⊆ D
has a least upper bound. (The proof requires the Axiom of Choice)

• A set X can be viewed as a discrete poset or represented by the
complete flat poset X⊥ = X ∪ {⊥}, where

s ≤X⊥ t ⇐⇒ s = ⊥ ∨ s = t

• The (naturally defined, cartesian) product D1 × · · · × Dn of
complete posets is complete

Yiannis N. Moschovakis: What is an algorithm? (3) Least fixed point recursion 13/40

Basic poset theory, II

• A function f : X → W is monotone if

x ≤X y =⇒ f (x) ≤W f (y),

and strict if f (x) 6= ⊥ =⇒ x is total (maximal) in X

• A function f : X → W is (Scott) continuous if

supX (C) = x =⇒ supW {f (x) | x ∈ C} = f (x)

for every chain C ⊆ X or (equivalently) for every directed subset C ⊆ X

• Strict(X , W), Cont(X , W) and Mon(X ,W) are complete if W is
complete, and

Strict(X , W) ⊆ Cont(X ,W) ⊆ Mon(X , W)

• For sets X ,Y , Strict(X⊥, Y⊥) ∼= (X ⇀ Y)
= the poset of all partial functions on X to Y ordered under inclusion

Yiannis N. Moschovakis: What is an algorithm? (3) Least fixed point recursion 14/40

Least fixed point recursion

Theorem (Least Fixed Point Theorem, LFP, classical)

Every monotone function f : D → D on a complete poset has a
least fixed point d = min(d ∈ D)[f (d) = d], characterized by

f (d) = d , (∀d)[f (d) ≤ d =⇒ d ≤ d]

Moreover: if f : X × D → D is monotone, then the function

g(x) = min(d ∈ D)[f (x , d) = d] (x ∈ X)

is also monotone, and if f is continuous, then so is g

• The proof is “constructive”, i.e., d is built up by iterating f ,

d
0

= f (⊥), d
1

= f (d
0
), . . . , d = supξ∈Ords dξ

• In many applications, D = D1 × · · · × Dk is a product poset

Yiannis N. Moschovakis: What is an algorithm? (3) Least fixed point recursion 15/40

Definition by mutual recursion
The examples we gave were all definitions of the form

(∗) f (x) = f0(x , p) where{
p1(u1) = f1(u1, x , p), . . . , pk(uk) = fk(uk , x , p)

}

= f0(x , p) where
{

p1 = λ(u1)f1(u1, x , p), . . . , pk = λ(uk)fk(uk , x , p)
}

with p = (p1, . . . , pk);

the value f (x) is determined by computing the least solution tuple
px = (p1,x , . . . , pk,x) of the system within the braces and then setting

f (x) = f0(px) = f0(x , p1,x , . . . , pk,x)

• We argued in each case that (∗) expresses an algorithm for
computing f from f0, f1, . . . , fk

• Key idea: An algorithm is
the semantic content of a definition by simultaneous recursion

Yiannis N. Moschovakis: What is an algorithm? (3) Least fixed point recursion 16/40

? (Monotone) recursors α = (α0, . . . , αk) : X Ã W

• A recursor α : X Ã W on a poset X to a complete poset W is a tuple

α = (α0, α1, . . . , αk),

such that for suitable, complete posets D1, . . . ,Dk :

(1) Each part αi : X × D1 × · · ·Dk → Di , (i = 1, . . . , k) is monotone

(2) The head part α0 : X × D1 × · · · × Dk → W is also monotone

• (α1, . . . , αk) is the body of α;
Dα = D1 × · · · × Dk is its solution space;
and its transition mapping τα : X × Dα → Dα is

τα(x , d) = (α1(x , d), . . . , αn(x , d)) (x ∈ X , d ∈ Dα)

• The function α : X → W computed by α is

α(x) = α0(x , dx), where dx = min(d ∈ Dα)[τα(x , d) = d]

Yiannis N. Moschovakis: What is an algorithm? (4) Monotone recursors 17/40

? (Monotone) recursors α = (α0, . . . , αk) : X Ã W

X Dα

W

α0

τα

(1) X , W are posets and W is complete

(2) The solution space Dα = D1 × · · · × Dα of α is the
(complete) product of complete posets D1, . . . ,Dk

(3) Each part αi : X × Dα → Di (i = 1, . . . , k) is monotone

(4) The head α0 : X × Dα → W is monotone

(5) The transition map τα : X × Dα → Dα is given by
τα(x , d) = (α1(x , d), . . . , αk(x , d))

• We express all this succinctly by writing

α(x) = α0(x , d) where {d = τα(x , d)}, (recursor)

(function) α(x) = α0(x , d) where {d = τα(x , d)}

Yiannis N. Moschovakis: What is an algorithm? (4) Monotone recursors 18/40

The importance of the solution space

α(x) = α0(x , d) where {d = τα(x , d)}, (x ∈ X , d ∈ Dα = D1×· · ·×Dk)

• The Morris example (Manna 1975)

p(s, t) = if (s = 0) then 0 else p(s − 1, p(s, t)) (s, t ∈ N)

• The “official” associated recursor (with a head) is

α(s, t) = p(s, t)

where {p = λ(s, t)[if (s = 0) then 0 else p(s − 1, p(s, t))]}
• If p varies over Strict(N2

⊥,N⊥) ∼= (N2 ⇀ N) (call by value), then

α(s, t) = p(s, t) = if (s = 0) then 0 else ⊥ (s, t ∈ N)

• If p varies over Cont(N⊥ × N⊥,N⊥) (call by name), then

α(s, t) = p(s, t) = 0 (s, t ∈ N)

• A variant of the sieve of Eratosthenes can be expressed by a
continuous recursor on the poset Streams(N,N) of all streams on N

Yiannis N. Moschovakis: What is an algorithm? (4) Monotone recursors 19/40

?Natural recursor isomorphism (identity)
Suppose α, β : X Ã W are recursors

α(x) = α0(x , d) where {d = τα(x , d)}, D = D1 × · · · , Dk

β(x) = β0(x , e) where {e = τβ(x , e)}, E = E1 × · · · × El

? A recursor does not change if we replace its posets by
isomorphic copies and permute the order of the parts in its body

We say that α is naturally isomorphic (equal) with β, α ∼= β, if

• k = l , i.e., α and β have the same number of parts

• There is a permutation π : {1, . . . , k}½→{1, . . . , k} and for each
i = 1, . . . , k, a poset isomorphism ρi : Di ½→Eπ(i), such that the
induced isomorphism ρπ : D ½→E preserves the parts, i.e.,

α0(x , d) = β0(x , ρπ(d)),

ρi (αi (x , d)) = βπ(i)(x , ρπ(d)) (i = 1, . . . , k)

• Natural recursor isomorphism is a very fine notion—perhaps too fine

Yiannis N. Moschovakis: What is an algorithm? (4) Monotone recursors 20/40

Operations on recursors, I

• Trivial recursors. Each monotone function f : X → W can be
viewed as a degenerate recursor δf = (f) with empty body,

δf (x) = f (x) where { }

• Composition of a recursor with a function. For β : Y Ã W and
g : X → Y a monotone function, define α : X Ã W by

α(x) = β(g(x)) = β0(g(x), d) where {d = τβ(g(x), d)};

then α(x) = β(g(x))

Yiannis N. Moschovakis: What is an algorithm? (5) Operations on recursors 21/40

Operations on recursors, II

• Recursor composition. For γ : X Ã V and β : V ×Y Ã W , put

α(x , y) = β(γ(x), y)

= β0(v , y , d) where {v = γ0(x , e), e = τγ(x , e), d = τβ(v , y , d)};

then α(x , y) = β(γ(x), y)

• Composition with a function is not the same as composition with
the trivial recursor representing it: e.g., if β = δf and γ = δg ,

β(g(x)) = δf (g(x)) = f (g(x)) where { }
6∼= β(δg (x)) = δf (δg (x)) = f (v) where {v = g(x)}

(Both of these recursors compute the same function x 7→ f (g(x)))

Yiannis N. Moschovakis: What is an algorithm? (5) Operations on recursors 22/40

Operations on recursors, III

• Recursor combination. For given recursors β0, . . . , βk , put

α(x) = β0(x , d) where {d1 = β1(x , d), . . . , dk = βk(x , d)}
= β0

0(x , d , e0) where {d1 = β1
0(x , d , e1), . . . , dk = βk

0 (x , d , ek),

e0 = τβ0(x , d , e0),

e1 = τβ1(x , d , e1),

...

ek = τβk (x , d , ek)};

then α(x) = β
0
(x , d) where {d1 = β

1
(x , d), . . . , dk = β

k
(x , d)}

• This operation combines in parallel k + 1 recursive definitions

• Application: Proof of Kleene’s First Recursion Theorem

Yiannis N. Moschovakis: What is an algorithm? (5) Operations on recursors 23/40

Operations on recursors, IV, λ-substitution
Given γ : X × U Ã V , β : P × Y Ã W with P ⊆ Mon(U, V) complete,
we want to define

(∗) α(x , y) = β(λuγ(x , u), y)

so that

(∗∗) α(x , y) = β(λuγ(x , u), y)

The obvious necessary hypothesis is that

for all x ∈ X , λuγ(x , u) ∈ P

and when this holds, we set (with p ranging over P)

α(x , y) = β(λuγ(x , u), y) = β0(p, y , e)

where
{

e = τβ(p, y , e), p = λuγ0(x , u, d(u)), d = λuτγ(x , u, d(u))
}

which insures (∗∗)
• Typically P = Strict(X , W) in first order or higher type recursion

Yiannis N. Moschovakis: What is an algorithm? (5) Operations on recursors 24/40

The recursor representation of computation models
If m : X Ã W is a computation model expressed by the program

s := in(x); while(s /∈ T){s := σ(s)}; return out(s),

we associate with m the tail recursor

αm(x) = p(in(x)) where {p(s) = if (s ∈ T) then out(s) else p(σ(s))}

where p ranges over the poset of strict partial functions (S ⇀ W)

Theorem (ynm, Paschalis)

For any two computation models m,m′ : X Ã W and with the
natural notion of machine isomorphism,

m ∼= m′ ⇐⇒ αm ∼= αm′

• This result (with the specific definition of αm) insure that the
recursor representation αm of a computation model codes faithfully
all the combinatorial and complexity properties of m

Yiannis N. Moschovakis: What is an algorithm? (5) Operations on recursors 25/40

Implementations (sketch)

• For α, β : X Ã W , a reduction (or direct simulation) of α to β is
any monotone π : X × Dα → Dβ such that for all x ,∈ X , d ∈ Dα,

(R1) τβ(x , π(x , d)) ≤Dβ
π(x , τα(x , d))

(R2) β0(x , π(x , d)) ≤W α0(x , d)

(R3) α(x) = β(x)

• α ≤r β ⇐⇒ there is a reduction π : X × Dα → Dβ

• An implementation of α : X Ã W is any computation model
m : X Ã W such that α ≤r αm, and α is implementable if it has
an implementation

• Most standard “implementations” of recursive algorithms satisfy
this definition, but very little beyond this is known about this
notion which is central to our

? Main view: Algorithms are recursors and computation models
implement them—when they are implementable

Yiannis N. Moschovakis: What is an algorithm? (6) Implementations 26/40

?Algorithms are recursors from given primitives

α(x) = α0(x , d) where {d1 = α1(x , d), . . . , dk = αk(x , d)}
is an algorithm from (α0, α1, . . . , αk); obvious but not very useful

• Example. Duplication on N from 0, S , Pd and =0:

α(x) = p(x , x) where
{

p(x , y) = if (y = 0) then x else S(p(x , Pd(y))
}

p(x , y) = x + y , α(x) = p(x , x) = 2x

• α is an algorithm from the function defined in the box

β(x) = p(x , x) where
{

p(x , y) = if q1(x , y) then x else q2(x , y),

q1(x , y) = χ=0(y), q2(x , y) = S(q3(x , y)),

q3(x , y) = p(x , q4(x , y)), q4(x , y) = Pd(y)
}

• Again β(x) = 2x , and β is an algorithm from 0,S ,Pd,=0, because
its parts are direct calls to these primitives and the conditional

Yiannis N. Moschovakis: What is an algorithm? (7) Algorithms are recursors from given primitives 27/40

α = (α0, α1, . . . , αk) : X Ã W

α(x) = α0(x , d) where {d1 = α1(x , d), . . . , dk = αk(x , d)}
• What does it mean to say that

(∗) α is from Φ

• Φ must include the complete posets in the solution space
D = D1 × · · · × Dk of α
(to distinguish e.g., call-by-value from call-by-name)

• Φ may include “given” functions and operations on various
sets and posets (like 0, S , Pd, =0 in the example)

• The conditional and recursive calls should be allowed “for
free”, together (perhaps) with other logical operations

• A definition of (∗) in the most general case is difficult to
formulate (and in any case I don’t have one I like)

• I will develop here the simplest and most useful case of
first-order primitives and then discuss some of its extensions

Yiannis N. Moschovakis: What is an algorithm? (7) Algorithms are recursors from given primitives 28/40

The term language L(Φ), M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
• Individual variables v i

0, v
i
1, . . . for each sort i ∈ I

• Function variables ps
0, p

s
1, . . . for each type s = (〈i1, . . . , in−1〉, j)

• Constants ϕ for each function symbol ϕ ∈ Φ

• Terms and their sorts and free and bound variable occurrences
are defined recursively, subject to the natural restrictions:

A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}

• In the recursive term A ≡ A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}:
- Each ui is a list of individual variables which are bound in all their

occurrences in the equation pi (ui) = Ai (equivalent to pi = λuiAi)

- Each function variable pi is bound in all its occurrences in A

- sort(A) = sort(A0)

Yiannis N. Moschovakis: What is an algorithm? (8) Recursive programs 29/40

Denotational semantics of L(Φ), M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}
• If type(p) = (〈i1, . . . , in−1〉, j), then p : Mi1 × · · · ×Min−1 ⇀ Mj

• For each term A, each sequence x of distinct individual and
function variables which includes all the free variables of A, and
each sequence x of objects of M with matching sorts and types

den(A){x := x} = the denotation of A when x = x

• Standard definition, using least-fixed-points for recursion

• A partial function or functional f : X ⇀ Mj is recursive in M if

f (x) = den(A){x := x} for some term A and variables x

• rec(N1) = rec(N2) =the classical recursive partial functionals on N
• John McCarthy’s elegant, deterministic definition of recursion on N

Yiannis N. Moschovakis: What is an algorithm? (8) Recursive programs 30/40

Elementary algorithms, M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}
• Immediate: Z :≡ u | p(u1, . . . , um)

• Exp-irreducible: T :≡ Z | tt | ff | ϕ(Z1, . . . ,Zn) | if Z1 then Z2 else Z3

• An M-algorithm or algorithm from {ϕM | ϕ ∈ Φ} is any recursor

(∗) α(x) = α0(x , ~p) where{
p1(u1) = α1(u1, x , ~p), . . . , pk(uk) = αk(uk , x , ~p)

}

in which every αi is defined in M by an explicit irreducible term

• Key idea: the (absolute) primitives of first-order computation are

• the constants tt,ff,

• random access to function variables p(u1, . . . , um),

• calls to the given primitives and the conditional,

• mutual recursion
Yiannis N. Moschovakis: What is an algorithm? (9) Elementary algorithms 31/40

Referential intensions, M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}

• With each term A and list x of distinct variables which includes
all the free variables of A, we can associate its referential intension

int(A)(x) = α0(x , ~p) where{
p1(u1) = α1(u1, x , ~p), . . . , pk(uk) = αk(uk , x , ~p)

}
,

an algorithm of M which computes den(A){x := x}
• This is done by a (careful) recursion on A, which takes into
account which subterms of A are immediate
• Immediate terms Z ≡ u | p(u1, . . . um)

are assigned functions, not recursors; they denote immediately
• Exp-irreducible terms Z | tt | ff | ϕ(Z1, . . . ,Zn) | if Z1 then Z2 else Z3

are assigned trivial recursors; they denote directly

Yiannis N. Moschovakis: What is an algorithm? (9) Elementary algorithms 32/40

M = (M, {ϕM | ϕ ∈ Φ}), alg(M) = the algorithms of M

• The algorithms of M compute the M-recursive partial functions
and relations on M

• They can be easily specified using Φ-recursive programs, i.e.,
terms of L(Φ)

• alg(M) is closed under many operations on recursors, including
composition and recursion combination

• There is a small, interesting collection of facts about these objects

? The basic definitions and results can be extended easily to
structures whose universes are the sets in the higher types over
given basic sets {Mi}i∈I and whose primitives are higher type
objects of various kinds
Basic example: the Gentzen cut elimination algorithm on
extensions of arithmetic with the ω-rule (cf. Schwichtenberg’s
article in the Handbook of Logic)

Yiannis N. Moschovakis: What is an algorithm? (9) Elementary algorithms 33/40

Applications to complexity in arithmetic

• Calls complexity. For each algorithm α : Mn Ã Mj of a structure
M = (M, {ϕM | ϕ ∈ Φ}) and each Φ0 ⊆ Φ, we can define

callsΦ0
α (x) = the number of calls to primitives ϕM with ϕ ∈ Φ0

made by α in the computation of α(x) (α(x)↓)

This agrees with the usual calls-complexity for “concrete
algorithms” defined by computation models

• Many more “natural” complexity functions including timeα(x) and

sizeα(x) = the size of the smallest set Mx ⊆ M

that α must see to compute α(x) ≤ callsα(x) = callsΦα(x)

• Obvious: (N, 0,S ,Pd,=0) = rec(N, 0, 1, iq2, rem2, em2, om2, =0)
but alg(N, 0, S , Pd, =0) 6= alg(N, 0, 1, iq2, rem2, em2, om2, =0)

• Complexity theory for elementary algorithms depends heavily and
essentially on the primitives included in the structure

Yiannis N. Moschovakis: What is an algorithm? (10) Some applications 34/40

The weak optimality of Stein’s algorithm for coprimeness
x is coprime with y ⇐⇒ gcd(x , y) = 1 (x , y ∈ N+)

• The structure of Stein: Ns = (N, 0, 1,+,−· , iq2, rem2, <, =)
The primitives are Presburger (piecewise linear) functions and relations

• Stein’s algorithm σ : N+ × N+ Ã N computes gcd(x , y) and so
decides coprimeness in Ns with callsσ(x , y) ≤ C log max(x , y)

Theorem (van den Dries, ynm, 2004, 2009)

If an algorithm α from finitely many Presburger primitives decides
coprimeness on N, then for some r > 0 and all a > 2,

callsα(a, a2 − 1) > r log2(a
2 − 1)

It follows that Stein’s algorithm is optimal (up to a multiplicative
constant) from Presburger primitives on infinitely many inputs

• Similar lower bounds for Presburger algorithms hold for primality,
being a perfect square, having no square factors and several more
relations in arithmetic and algebra

Yiannis N. Moschovakis: What is an algorithm? (10) Some applications 35/40

A lower bound for algorithms from division with remainder

Theorem (van den Dries, ynm, 2004, 2009)

Suppose α is an algorithm from finitely many Presburger
primitives, iq and rem, and ξ > 1 is a quadratic irrational; there is
some r > 0 such that for all sufficiently large coprime a, b ∈ N

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ callsα(a, b) > r log2 log2 a

In particular, this holds

• for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =
√

2)

• For Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

• This is one log short of the conjecture about the Euclidean
and the method of proof cannot prove it (Vaughan Pratt)

• The discovery of the results in this and the preceding slide
depend essentially on the notion of elementary recursive algorithm

Yiannis N. Moschovakis: What is an algorithm? (10) Some applications 36/40

Frege’s sense and denotation as algorithm and value

• 1 + 1 = 2 vs. there are infinitely many primes
Same denotation (truth value) but different meaning

• Frege: Each closed well-formed“term” (including every sentence)
has a sense (meaning) which determines its denotation,

A 7→ sense(A) 7→ den(A)

• [The sense of a sign]
– may be the common property of many people,
– is grasped by everyone who is sufficiently familiar with the language,
– [is preserved by faithful translation]

• The sense contains the mode of presentation of the denotation

• Common view: sense(A) is a “process” which computes den(A)

• With a precise notion of (abstract)“algorithm” replacing
“process”, it is possible to turn this view into an interesting
mathematical theory of meaning and synonymy

Yiannis N. Moschovakis: What is an algorithm? (10) Some applications 37/40

Adding meaning to Montague semantics

• Language: The typed λ-calculus with acyclic recursion Lλ
ar, an

extension of Richard Montague’s language of intensional logic
which can “express” substantial fragments of natural language

• Interpretation: In every higher type structure M over basic sets of
entities, truth values and states, each closed term A of Lλ

ar is assigned

a value den(A) and a referential intension int(A)

int(A) is an M-algorithm, the meaning of A, and it computes den(A)

• int(A) and the synonymy relation int(A) ∼= int(B) are definable in Lλ
ar

• The theory yields defensible accounts of some standard puzzles
about global and local synonymy in the philosophy of language, e.g.,

he is the thief 6∼=a George is the thief in a state a where he(a) = George

• It can express quantification and anaphora into propositional attitudes

George claims that someone stole his laptop

Yiannis N. Moschovakis: What is an algorithm? (10) Some applications 38/40

Machines vs. recursors on total M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})

• An M-machine is a computation model (S , in, σ,T , out) : Mn Ã Mj

in which S = Mk for some k and in, σ,T , out are definable by
explicit Φ-terms

• Tiuryn’s Theorem: There is a structure M and an M-recursive
relation which cannot be decided by any machine of M

• Fact: Every algorithm α of a structure M can be implemented by
a machine of some M∗, an expansion of an extension of M

• Typically M∗ is the set of all finite sequences from the M ′
i s and

the additional primitives manipulate these strings—but there are
many choices for M∗ and no principled way to choose one among them

• Divide-and-conquer recursive algorithms (such as that of Tiuryn)
include the mergesort, the (finitary) Gentzen cut-elimination
algorithm, etc. Most (arguably all) their important properties can
be derived directly from their recursive specifications

Yiannis N. Moschovakis: What is an algorithm? (11) Computation models vs. recursive definitions 39/40

What are the absolute primitives of elementary algorithms?

• In modeling elementary algorithms by recursors, we assumed “for free”

(1) random access to function variables,
(2) calls to the primitives,
(3) branching, and
(4) mutual recursion

• In defining computation models which do not have function
variables, (1) is typically replaced by assignments

x := A (with an explicit term A)

• Random Access Machines (RAMs) over M = (M, {ϕM | ϕ ∈ Φ}):
allow a partial function F : M ⇀ M and assignments F (a) := b

• If 0, 1 and =0 are among the primitives of M for some 0, 1 ∈ M,
then equality on M is decided by the RAM program

F (x) := 1;F (y) := 0; if (F (x) = 0) return tt else return ff

• This can be managed for N1 or N2, but not in the abstract case

Yiannis N. Moschovakis: What is an algorithm? (11) Computation models vs. recursive definitions 40/40

