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Some publications, all posted in www.math.ucla.edu/∼ynm

On the general theory

• The formal language of recursion (1989)

• A mathematical modeling of pure, recursive algorithms (1989)

• On founding the theory of algorithms (1998)

• What is an algorithm? (2001)

• Elementary algorithms and their implementations,
with Vasilis Paschalis (2008)

Applications

• Is the Euclidean algorithm optimal among its peers?,
with Lou van den Dries (2004)

• Arithmetic complexity
with Lou van den Dries (2009)

• A logical calculus of meaning and synonymy (2006)
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36,500,000 Google hits and no formal definition

• Wikipedia: An algorithm is a step-by-step procedure for calculations

• Common: Algorithms are Turing machines
or processes which can be simulated by Turing machines

Turing machines do not express faithfully low complexity algorithms
van Emde Boas: simulation . . . is very hard to define as a
mathematical object

? Knuth: A computational method [computation model] is . . .
An algorithm is a computational method which terminates in
finitely many steps for all [inputs]

• Girard (and others): An algorithm is expressed by a constructive proof
of a statement of the form (∀x ∈ A)(∃y ∈ B)P(x , y)

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 3/40



We need to make precise

• The mathematical structure of algorithms

• The way in which algorithms are effective (constructive, definable)

These two aspects of algorithms are related but separate
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Structure: computation models (machines, while programs)

X W

· · ·

x
f (x)

σ

s0in
out

S T

A computation model m : X Ã W is a tuple (S , in, σ,T , out) such that

(1) S is a non-empty set (of states)

(2) X is a set and in : X → S is the input function

(3) σ : S → S is the transition function

(4) T is the set of terminal states, T ⊆ S

(5) W is a set and out : T → W is the output function

• m(x) = out(σn(in(x))) where n = least such that σn(in(x)) ∈ T

• s := in(x); while(s /∈ T ){s := σ(s)}; return out(s)

• m computes the partial function m : X ⇀ W

Yiannis N. Moschovakis: What is an algorithm? (1) Computation models; the (almost) stadard view 5/40



Definability in M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
• Each Mi is a set of sort i including M boole = {tt, ff}
• Each ϕ ∈ Φ has a type (〈i1, . . . , in−1〉, j) (with ik 6= boole)

and ϕM : Mi1 × · · · ×Min−1 ⇀ Mj is a strict partial function

M is total if every ϕM is total

• A (usual) first-order structure M = (M, f1, . . . , fk−1,R1, . . . ,Rl−1),
with M and {tt, ff} as the basic universes and the relations
represented by their characteristic functions

• Unary arithmetic, N1 = (N, 0, S , Pd, =0)

• Binary arithmetic, N2 = (N, 0, 1, iq2, rem2, em2, om2, =0), with
iq2(x) = iq(x , 2), rem2(x) = rem(x , 2), em2(x) = 2x , om2(x) = 2x + 1

• An M-machine for a first-order M = (M, {ϕM | ϕ ∈ Φ})
is a computation model (S , in, σ,T , out) : Mn Ã Mj in which
S = Mk for some k and in, σ,T , out are definable by explicit
Φ-terms with branching, if A then B else C

• Turing machines on k symbols are Nk -machines (k-ary arithmetic)
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The (almost) standard view

? Algorithms are computation models

? Algorithms from given functions and relations are M-machines,
where the primitives of M include the given functions and relations
and some additional absolutely computable operations

E.g., a Turing machine from R ⊂ N2 has an oracle for R but
operates on the set of strings Σ∗ from some alphabet, uses the
basic operations on them and assumes a specific representation of
numbers by strings (typically unary or binary)

• These principles are implicitly assumed in much of complexity theory
and defended (with specific extra operations) by Gurevich and others

• There is no general agreement on which primitives of
computation are absolute—one of the problems with this view

• I will discuss a broader view, by which algorithms are specified by
systems of recursive equations and computation models are
implementations of elementary algorithms
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The Euclidean algorithm
For x , y ∈ N+ = {n ∈ N | n > 0}, with set of states S = N2

(∗) s := x ; t := y ; while(rem(s, t) 6= 0)[(s, t) := (t, rem(s, t))]; return t

where rem(s, t) is the remainder of the division of s by t,

• (∗) defines an (N, rem, =0)-machine ε which computes gcd(x , y)

callsremε (x , y) = the number of calls to rem

required to compute gcd(x , y) by ε

≤ 2 log(y) (x ≥ y ≥ 2)

Conjecture (open): For every algorithm α which computes the gcd
function from rem and =0:

for x , y with arbitrarily large min(x , y),

callsremε (x , y) ≤ callsremα (x , y)

• It assumes that “algorithm from rem, =0” and callsremα are defined
and is trivial for computation models with more primitives (e.g., TMs)
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The extended Euclidean (as a recursive algorithm)

Bezout’s Lemma. There are functions α, β : N+ × N+ → Z such that

(∗) if x , y ∈ N+, then gcd(x , y) = α(x , y)x + β(x , y)y

It is easy to check that (∗) holds if α(x , y), β(x , y) satisfy the system

α(x , y) = if (rem(x , y) = 0) then 0 else β(y , rem(x , y)),

β(x , y) = if (rem(x , y) = 0) then 1

else α(y , rem(x , y))− iq(x , y)β(y , rem(x , y))

where iq(x , y) is the integer quotient of x by y ;

and this expresses a recursive algorithm which computes suitable
functions α, β : N+ × N+ → Z from the primitives 0, 1, rem, iq,−, =0

• The corresponding recursive equation expressing the Euclidean is

gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))
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The color of leaves
A (binary, colored) forest is a structure

F = (F , s, d , Leaf, Red,=) where Leaf, Red ⊆ F and s, d : F → F

A path from x0 is any sequence p = (x0, . . .) of length |p| ≤ ∞ s.t.

i + 1 < |p| =⇒ [¬Leaf(xi ) & xi+1 ∈ {s(xi ), d(xi )}]

• F is grounded if it has no infinite paths, and on such F we set

R(x) ⇐⇒ every maximal path from x ends in a red leaf

(∗) R(x) ⇐⇒ if Leaf(x) then Red(x) else [R(s(x)) & R(d(x))]

• (∗) expresses a recursive algorithm ρ which decides R(x) on F and
there are many such divide-and-conquer algorithms (e.g., the mergesort)

• (Tiuryn 1989) On some grounded forest, no algorithm expressed
by an F-machine decides R(x)

? ρ can be implemented by many machines on F ′⊃F with more primitives
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The sieve of Eratosthenes
Primes = p(u0) where{

u0 = (2, 3, 4, 5, . . .),

p(u) = Print(head(u))̂p(sieve(head(u), tail(u))),

sieve(x , v) = if (x | head(v)) then sieve(x , tail(v))

else head(v)̂sieve(x , tail(v))
}

(S = (N→ N), u0, u, v ∈ S , p : S → S , x ∈ N, sieve : N× S → S)

• A system of recursive equations which expresses an algorithm
σ on S from head, tail, | , ̂ and (the act) Print

• sieve(x , v) removes from v all numbers divisible by x

• p(u) prints head(u) and then calls itself on sieve(head(u), tail(u))

• σ computes successively
u0 = (2, 3, 4, . . .), u1 = (3, 5, 7, . . .), u2 = (5, 7, 11, . . .), . . .
and (as a side effect) “prints” the heads of these sequences

• σ operates on completed infinite objects and never terminates

Yiannis N. Moschovakis: What is an algorithm? (2) Three classical algorithms 11/40



• The basic notion is that of algorithm from primitives
with a very broad understanding of “primitives”

• Problem: too many notions are associated with an algorithm:
calls to the primitives, recursive definitions, complexity functions,
termination, side effects (and interaction, which is more complex),
simulation, implementability, . . .

For specific algorithms many of these are simple and naturally
defined, but a general theory might be excessively complex

• The lesson from probability theory: it is even more complex, but
there is a useful and fairly simple basic notion:

A random variable is a measurable function X : M → R on a
sample space (a measure space of total measure 1)

• We look for a similar solution, which takes the basic notions of
the theory of algorithms from an existing mathematical theory

• Claim: For deterministic algorithms, the background theory is
least fixed point recursion on complete posets
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Basic poset theory, I

• A poset is a pair (X ,≤X ) where ≤X is a partial ordering of X

• A poset D is (directed- or chain-) complete if every linearly
ordered subset (chain) C ⊆ D has a least upper bound sup(C ).

Every complete poset has a least element, sup(∅) = ⊥
• A poset D is complete if and only if every directed subset C ⊆ D
has a least upper bound. (The proof requires the Axiom of Choice)

• A set X can be viewed as a discrete poset or represented by the
complete flat poset X⊥ = X ∪ {⊥}, where

s ≤X⊥ t ⇐⇒ s = ⊥ ∨ s = t

• The (naturally defined, cartesian) product D1 × · · · × Dn of
complete posets is complete
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Basic poset theory, II

• A function f : X → W is monotone if

x ≤X y =⇒ f (x) ≤W f (y),

and strict if f (x) 6= ⊥ =⇒ x is total (maximal) in X

• A function f : X → W is (Scott) continuous if

supX (C ) = x =⇒ supW {f (x) | x ∈ C} = f (x)

for every chain C ⊆ X or (equivalently) for every directed subset C ⊆ X

• Strict(X , W ), Cont(X , W ) and Mon(X ,W ) are complete if W is
complete, and

Strict(X , W ) ⊆ Cont(X ,W ) ⊆ Mon(X , W )

• For sets X ,Y , Strict(X⊥, Y⊥) ∼= (X ⇀ Y )
= the poset of all partial functions on X to Y ordered under inclusion
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Least fixed point recursion

Theorem (Least Fixed Point Theorem, LFP, classical)

Every monotone function f : D → D on a complete poset has a
least fixed point d = min(d ∈ D)[f (d) = d ], characterized by

f (d) = d , (∀d)[f (d) ≤ d =⇒ d ≤ d ]

Moreover: if f : X × D → D is monotone, then the function

g(x) = min(d ∈ D)[f (x , d) = d ] (x ∈ X )

is also monotone, and if f is continuous, then so is g

• The proof is “constructive”, i.e., d is built up by iterating f ,

d
0

= f (⊥), d
1

= f (d
0
), . . . , d = supξ∈Ords dξ

• In many applications, D = D1 × · · · × Dk is a product poset
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Definition by mutual recursion
The examples we gave were all definitions of the form

(∗) f (x) = f0(x , p) where{
p1(u1) = f1(u1, x , p), . . . , pk(uk) = fk(uk , x , p)

}

= f0(x , p) where
{

p1 = λ(u1)f1(u1, x , p), . . . , pk = λ(uk)fk(uk , x , p)
}

with p = (p1, . . . , pk);

the value f (x) is determined by computing the least solution tuple
px = (p1,x , . . . , pk,x) of the system within the braces and then setting

f (x) = f0(px) = f0(x , p1,x , . . . , pk,x)

• We argued in each case that (∗) expresses an algorithm for
computing f from f0, f1, . . . , fk

• Key idea: An algorithm is
the semantic content of a definition by simultaneous recursion
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? (Monotone) recursors α = (α0, . . . , αk) : X Ã W

• A recursor α : X Ã W on a poset X to a complete poset W is a tuple

α = (α0, α1, . . . , αk),

such that for suitable, complete posets D1, . . . ,Dk :

(1) Each part αi : X × D1 × · · ·Dk → Di , (i = 1, . . . , k) is monotone

(2) The head part α0 : X × D1 × · · · × Dk → W is also monotone

• (α1, . . . , αk) is the body of α;
Dα = D1 × · · · × Dk is its solution space;
and its transition mapping τα : X × Dα → Dα is

τα(x , d) = (α1(x , d), . . . , αn(x , d)) (x ∈ X , d ∈ Dα)

• The function α : X → W computed by α is

α(x) = α0(x , dx), where dx = min(d ∈ Dα)[τα(x , d) = d ]
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? (Monotone) recursors α = (α0, . . . , αk) : X Ã W

X Dα

W

α0

τα

(1) X , W are posets and W is complete

(2) The solution space Dα = D1 × · · · × Dα of α is the
(complete) product of complete posets D1, . . . ,Dk

(3) Each part αi : X × Dα → Di (i = 1, . . . , k) is monotone

(4) The head α0 : X × Dα → W is monotone

(5) The transition map τα : X × Dα → Dα is given by
τα(x , d) = (α1(x , d), . . . , αk(x , d))

• We express all this succinctly by writing

α(x) = α0(x , d) where {d = τα(x , d)}, (recursor)

(function) α(x) = α0(x , d) where {d = τα(x , d)}
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The importance of the solution space

α(x) = α0(x , d) where {d = τα(x , d)}, (x ∈ X , d ∈ Dα = D1×· · ·×Dk)

• The Morris example (Manna 1975)

p(s, t) = if (s = 0) then 0 else p(s − 1, p(s, t)) (s, t ∈ N)

• The “official” associated recursor (with a head) is

α(s, t) = p(s, t)

where {p = λ(s, t)[if (s = 0) then 0 else p(s − 1, p(s, t))]}
• If p varies over Strict(N2

⊥,N⊥) ∼= (N2 ⇀ N) (call by value), then

α(s, t) = p(s, t) = if (s = 0) then 0 else ⊥ (s, t ∈ N)

• If p varies over Cont(N⊥ × N⊥,N⊥) (call by name), then

α(s, t) = p(s, t) = 0 (s, t ∈ N)

• A variant of the sieve of Eratosthenes can be expressed by a
continuous recursor on the poset Streams(N,N) of all streams on N
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?Natural recursor isomorphism (identity)
Suppose α, β : X Ã W are recursors

α(x) = α0(x , d) where {d = τα(x , d)}, D = D1 × · · · , Dk

β(x) = β0(x , e) where {e = τβ(x , e)}, E = E1 × · · · × El

? A recursor does not change if we replace its posets by
isomorphic copies and permute the order of the parts in its body

We say that α is naturally isomorphic (equal) with β, α ∼= β, if

• k = l , i.e., α and β have the same number of parts

• There is a permutation π : {1, . . . , k}½→{1, . . . , k} and for each
i = 1, . . . , k, a poset isomorphism ρi : Di ½→Eπ(i), such that the
induced isomorphism ρπ : D ½→E preserves the parts, i.e.,

α0(x , d) = β0(x , ρπ(d)),

ρi (αi (x , d)) = βπ(i)(x , ρπ(d)) (i = 1, . . . , k)

• Natural recursor isomorphism is a very fine notion—perhaps too fine
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Operations on recursors, I

• Trivial recursors. Each monotone function f : X → W can be
viewed as a degenerate recursor δf = (f ) with empty body,

δf (x) = f (x) where { }

• Composition of a recursor with a function. For β : Y Ã W and
g : X → Y a monotone function, define α : X Ã W by

α(x) = β(g(x)) = β0(g(x), d) where {d = τβ(g(x), d)};

then α(x) = β(g(x))
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Operations on recursors, II

• Recursor composition. For γ : X Ã V and β : V ×Y Ã W , put

α(x , y) = β(γ(x), y)

= β0(v , y , d) where {v = γ0(x , e), e = τγ(x , e), d = τβ(v , y , d)};

then α(x , y) = β(γ(x), y)

• Composition with a function is not the same as composition with
the trivial recursor representing it: e.g., if β = δf and γ = δg ,

β(g(x)) = δf (g(x)) = f (g(x)) where { }
6∼= β(δg (x)) = δf (δg (x)) = f (v) where {v = g(x)}

(Both of these recursors compute the same function x 7→ f (g(x)))
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Operations on recursors, III

• Recursor combination. For given recursors β0, . . . , βk , put

α(x) = β0(x , d) where {d1 = β1(x , d), . . . , dk = βk(x , d)}
= β0

0(x , d , e0) where {d1 = β1
0(x , d , e1), . . . , dk = βk

0 (x , d , ek),

e0 = τβ0(x , d , e0),

e1 = τβ1(x , d , e1),

...

ek = τβk (x , d , ek)};

then α(x) = β
0
(x , d) where {d1 = β

1
(x , d), . . . , dk = β

k
(x , d)}

• This operation combines in parallel k + 1 recursive definitions

• Application: Proof of Kleene’s First Recursion Theorem
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Operations on recursors, IV, λ-substitution
Given γ : X × U Ã V , β : P × Y Ã W with P ⊆ Mon(U, V ) complete,
we want to define

(∗) α(x , y) = β(λuγ(x , u), y)

so that

(∗∗) α(x , y) = β(λuγ(x , u), y)

The obvious necessary hypothesis is that

for all x ∈ X , λuγ(x , u) ∈ P

and when this holds, we set (with p ranging over P)

α(x , y) = β(λuγ(x , u), y) = β0(p, y , e)

where
{

e = τβ(p, y , e), p = λuγ0(x , u, d(u)), d = λuτγ(x , u, d(u))
}

which insures (∗∗)
• Typically P = Strict(X , W ) in first order or higher type recursion
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The recursor representation of computation models
If m : X Ã W is a computation model expressed by the program

s := in(x); while(s /∈ T ){s := σ(s)}; return out(s),

we associate with m the tail recursor

αm(x) = p(in(x)) where {p(s) = if (s ∈ T ) then out(s) else p(σ(s))}

where p ranges over the poset of strict partial functions (S ⇀ W )

Theorem (ynm, Paschalis)

For any two computation models m,m′ : X Ã W and with the
natural notion of machine isomorphism,

m ∼= m′ ⇐⇒ αm ∼= αm′

• This result (with the specific definition of αm) insure that the
recursor representation αm of a computation model codes faithfully
all the combinatorial and complexity properties of m
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Implementations (sketch)

• For α, β : X Ã W , a reduction (or direct simulation) of α to β is
any monotone π : X × Dα → Dβ such that for all x ,∈ X , d ∈ Dα,

(R1) τβ(x , π(x , d)) ≤Dβ
π(x , τα(x , d))

(R2) β0(x , π(x , d)) ≤W α0(x , d)

(R3) α(x) = β(x)

• α ≤r β ⇐⇒ there is a reduction π : X × Dα → Dβ

• An implementation of α : X Ã W is any computation model
m : X Ã W such that α ≤r αm, and α is implementable if it has
an implementation

• Most standard “implementations” of recursive algorithms satisfy
this definition, but very little beyond this is known about this
notion which is central to our

? Main view: Algorithms are recursors and computation models
implement them—when they are implementable
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?Algorithms are recursors from given primitives

α(x) = α0(x , d) where {d1 = α1(x , d), . . . , dk = αk(x , d)}
is an algorithm from (α0, α1, . . . , αk); obvious but not very useful

• Example. Duplication on N from 0, S , Pd and =0:

α(x) = p(x , x) where
{

p(x , y) = if (y = 0) then x else S(p(x , Pd(y))
}

p(x , y) = x + y , α(x) = p(x , x) = 2x

• α is an algorithm from the function defined in the box

β(x) = p(x , x) where
{

p(x , y) = if q1(x , y) then x else q2(x , y),

q1(x , y) = χ=0(y), q2(x , y) = S(q3(x , y)),

q3(x , y) = p(x , q4(x , y)), q4(x , y) = Pd(y)
}

• Again β(x) = 2x , and β is an algorithm from 0,S ,Pd,=0, because
its parts are direct calls to these primitives and the conditional
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α = (α0, α1, . . . , αk) : X Ã W

α(x) = α0(x , d) where {d1 = α1(x , d), . . . , dk = αk(x , d)}
• What does it mean to say that

(∗) α is from Φ

• Φ must include the complete posets in the solution space
D = D1 × · · · × Dk of α
(to distinguish e.g., call-by-value from call-by-name)

• Φ may include “given” functions and operations on various
sets and posets (like 0, S , Pd, =0 in the example)

• The conditional and recursive calls should be allowed “for
free”, together (perhaps) with other logical operations

• A definition of (∗) in the most general case is difficult to
formulate (and in any case I don’t have one I like)

• I will develop here the simplest and most useful case of
first-order primitives and then discuss some of its extensions
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The term language L(Φ), M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
• Individual variables v i

0, v
i
1, . . . for each sort i ∈ I

• Function variables ps
0, p

s
1, . . . for each type s = (〈i1, . . . , in−1〉, j)

• Constants ϕ for each function symbol ϕ ∈ Φ

• Terms and their sorts and free and bound variable occurrences
are defined recursively, subject to the natural restrictions:

A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}

• In the recursive term A ≡ A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}:
- Each ui is a list of individual variables which are bound in all their

occurrences in the equation pi (ui ) = Ai (equivalent to pi = λuiAi )

- Each function variable pi is bound in all its occurrences in A

- sort(A) = sort(A0)
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Denotational semantics of L(Φ), M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}
• If type(p) = (〈i1, . . . , in−1〉, j), then p : Mi1 × · · · ×Min−1 ⇀ Mj

• For each term A, each sequence x of distinct individual and
function variables which includes all the free variables of A, and
each sequence x of objects of M with matching sorts and types

den(A){x := x} = the denotation of A when x = x

• Standard definition, using least-fixed-points for recursion

• A partial function or functional f : X ⇀ Mj is recursive in M if

f (x) = den(A){x := x} for some term A and variables x

• rec(N1) = rec(N2) =the classical recursive partial functionals on N
• John McCarthy’s elegant, deterministic definition of recursion on N
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Elementary algorithms, M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}
• Immediate: Z :≡ u | p(u1, . . . , um)

• Exp-irreducible: T :≡ Z | tt | ff | ϕ(Z1, . . . ,Zn) | if Z1 then Z2 else Z3

• An M-algorithm or algorithm from {ϕM | ϕ ∈ Φ} is any recursor

(∗) α(x) = α0(x , ~p) where{
p1(u1) = α1(u1, x , ~p), . . . , pk(uk) = αk(uk , x , ~p)

}

in which every αi is defined in M by an explicit irreducible term

• Key idea: the (absolute) primitives of first-order computation are

• the constants tt,ff,

• random access to function variables p(u1, . . . , um),

• calls to the given primitives and the conditional,

• mutual recursion
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Referential intensions, M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})
A :≡ tt | ff | v | p(A1, . . . ,An) | ϕ(A1, . . . ,An)

| if A then B else C

| A0 where {p1(u1) = A1, . . . , pk(uk) = Ak}

• With each term A and list x of distinct variables which includes
all the free variables of A, we can associate its referential intension

int(A)(x) = α0(x , ~p) where{
p1(u1) = α1(u1, x , ~p), . . . , pk(uk) = αk(uk , x , ~p)

}
,

an algorithm of M which computes den(A){x := x}
• This is done by a (careful) recursion on A, which takes into
account which subterms of A are immediate
• Immediate terms Z ≡ u | p(u1, . . . um)

are assigned functions, not recursors; they denote immediately
• Exp-irreducible terms Z | tt | ff | ϕ(Z1, . . . ,Zn) | if Z1 then Z2 else Z3

are assigned trivial recursors; they denote directly
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M = (M, {ϕM | ϕ ∈ Φ}), alg(M) = the algorithms of M

• The algorithms of M compute the M-recursive partial functions
and relations on M

• They can be easily specified using Φ-recursive programs, i.e.,
terms of L(Φ)

• alg(M) is closed under many operations on recursors, including
composition and recursion combination

• There is a small, interesting collection of facts about these objects

? The basic definitions and results can be extended easily to
structures whose universes are the sets in the higher types over
given basic sets {Mi}i∈I and whose primitives are higher type
objects of various kinds
Basic example: the Gentzen cut elimination algorithm on
extensions of arithmetic with the ω-rule (cf. Schwichtenberg’s
article in the Handbook of Logic)
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Applications to complexity in arithmetic

• Calls complexity. For each algorithm α : Mn Ã Mj of a structure
M = (M, {ϕM | ϕ ∈ Φ}) and each Φ0 ⊆ Φ, we can define

callsΦ0
α (x) = the number of calls to primitives ϕM with ϕ ∈ Φ0

made by α in the computation of α(x) (α(x)↓)

This agrees with the usual calls-complexity for “concrete
algorithms” defined by computation models

• Many more “natural” complexity functions including timeα(x) and

sizeα(x) = the size of the smallest set Mx ⊆ M

that α must see to compute α(x) ≤ callsα(x) = callsΦα(x)

• Obvious: (N, 0,S ,Pd,=0) = rec(N, 0, 1, iq2, rem2, em2, om2, =0)
but alg(N, 0, S , Pd, =0) 6= alg(N, 0, 1, iq2, rem2, em2, om2, =0)

• Complexity theory for elementary algorithms depends heavily and
essentially on the primitives included in the structure
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The weak optimality of Stein’s algorithm for coprimeness
x is coprime with y ⇐⇒ gcd(x , y) = 1 (x , y ∈ N+)

• The structure of Stein: Ns = (N, 0, 1,+,−· , iq2, rem2, <, =)
The primitives are Presburger (piecewise linear) functions and relations

• Stein’s algorithm σ : N+ × N+ Ã N computes gcd(x , y) and so
decides coprimeness in Ns with callsσ(x , y) ≤ C log max(x , y)

Theorem (van den Dries, ynm, 2004, 2009)

If an algorithm α from finitely many Presburger primitives decides
coprimeness on N, then for some r > 0 and all a > 2,

callsα(a, a2 − 1) > r log2(a
2 − 1)

It follows that Stein’s algorithm is optimal (up to a multiplicative
constant) from Presburger primitives on infinitely many inputs

• Similar lower bounds for Presburger algorithms hold for primality,
being a perfect square, having no square factors and several more
relations in arithmetic and algebra
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A lower bound for algorithms from division with remainder

Theorem (van den Dries, ynm, 2004, 2009)

Suppose α is an algorithm from finitely many Presburger
primitives, iq and rem, and ξ > 1 is a quadratic irrational; there is
some r > 0 such that for all sufficiently large coprime a, b ∈ N

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ callsα(a, b) > r log2 log2 a

In particular, this holds

• for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =
√

2)

• For Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

• This is one log short of the conjecture about the Euclidean
and the method of proof cannot prove it (Vaughan Pratt)

• The discovery of the results in this and the preceding slide
depend essentially on the notion of elementary recursive algorithm
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Frege’s sense and denotation as algorithm and value

• 1 + 1 = 2 vs. there are infinitely many primes
Same denotation (truth value) but different meaning

• Frege: Each closed well-formed“term” (including every sentence)
has a sense (meaning) which determines its denotation,

A 7→ sense(A) 7→ den(A)

• [The sense of a sign]
– may be the common property of many people,
– is grasped by everyone who is sufficiently familiar with the language,
– [is preserved by faithful translation]

• The sense contains the mode of presentation of the denotation

• Common view: sense(A) is a “process” which computes den(A)

• With a precise notion of (abstract)“algorithm” replacing
“process”, it is possible to turn this view into an interesting
mathematical theory of meaning and synonymy
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Adding meaning to Montague semantics

• Language: The typed λ-calculus with acyclic recursion Lλ
ar, an

extension of Richard Montague’s language of intensional logic
which can “express” substantial fragments of natural language

• Interpretation: In every higher type structure M over basic sets of
entities, truth values and states, each closed term A of Lλ

ar is assigned

a value den(A) and a referential intension int(A)

int(A) is an M-algorithm, the meaning of A, and it computes den(A)

• int(A) and the synonymy relation int(A) ∼= int(B) are definable in Lλ
ar

• The theory yields defensible accounts of some standard puzzles
about global and local synonymy in the philosophy of language, e.g.,

he is the thief 6∼=a George is the thief in a state a where he(a) = George

• It can express quantification and anaphora into propositional attitudes

George claims that someone stole his laptop
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Machines vs. recursors on total M = ({Mi}i∈I , {ϕM | ϕ ∈ Φ})

• An M-machine is a computation model (S , in, σ,T , out) : Mn Ã Mj

in which S = Mk for some k and in, σ,T , out are definable by
explicit Φ-terms

• Tiuryn’s Theorem: There is a structure M and an M-recursive
relation which cannot be decided by any machine of M

• Fact: Every algorithm α of a structure M can be implemented by
a machine of some M∗, an expansion of an extension of M

• Typically M∗ is the set of all finite sequences from the M ′
i s and

the additional primitives manipulate these strings—but there are
many choices for M∗ and no principled way to choose one among them

• Divide-and-conquer recursive algorithms (such as that of Tiuryn)
include the mergesort, the (finitary) Gentzen cut-elimination
algorithm, etc. Most (arguably all) their important properties can
be derived directly from their recursive specifications
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What are the absolute primitives of elementary algorithms?

• In modeling elementary algorithms by recursors, we assumed “for free”

(1) random access to function variables,
(2) calls to the primitives,
(3) branching, and
(4) mutual recursion

• In defining computation models which do not have function
variables, (1) is typically replaced by assignments

x := A (with an explicit term A)

• Random Access Machines (RAMs) over M = (M, {ϕM | ϕ ∈ Φ}):
allow a partial function F : M ⇀ M and assignments F (a) := b

• If 0, 1 and =0 are among the primitives of M for some 0, 1 ∈ M,
then equality on M is decided by the RAM program

F (x) := 1;F (y) := 0; if (F (x) = 0) return tt else return ff

• This can be managed for N1 or N2, but not in the abstract case
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