Relative meanings
and other (unexpected) applications of
the synonymy calculus

Yiannis N. Moschovakis
UCLA and ΜΠΛΑ (Athens)

Deduction in semantics workshop, 10 October, 2007
Referential uses of definite descriptions

Maureen Dowd in a recent opinion column in the New York Times, uses

President Bush, Mr. Bush, W., the President, the Texas President, he, him

to refer to the same person

Claim: In the context of the Dowd column, these phrases are synonymous

- I would use them interchangeably in a report of the column
- I would use them interchangeably in a translation of the column to Greek
- In a translation of a Greek column to English, I would translate πλανητάρχης (literally planet master) as the US president or Busch
Donnellan 1966 on Linsky’s example

Her husband is kind to her

...asserted on seeing a man (Smith) treating kindly a spinster, in the mistaken (perhaps shared) belief that he is her husband

Donnellan:

It seems to me that we shall, on the one hand, want to hold that the speaker said something true, but be reluctant to express this by “It is true that her husband is kind to her”

This shows, I think, a difficulty in speaking simply about “the statement” when definite descriptions are used referentially

Claim: *In this utterance, her husband is synonymous with Smith and so the utterance is true*
Outline

(1) Formal Fregean semantics
 (and there will be remarks on them throughout)
(2) Referential intension theory
(3) The significance and use of truth values
(4) Meaning and synonymy relative to linguistic conventions

1. Sense and denotation as algorithm and Value, 1994
2. A logical calculus of meaning and synonymy, 2006
3. (with E. Kalyvianaki) Two aspects of situated meaning, submitted

These are posted on my homepage
http://www.math.ucla.edu/~ynm
Frege on sense

“[the sense of a sign] may be the common property of many people”
Meanings are public (abstract?) objects

“The sense of a proper name is grasped [wird erfasst] by everyone who is sufficiently familiar with the language . . . Comprehensive knowledge of the thing denoted . . . we never attain”
Speakers of the language know the meanings of terms

“The same sense has different expressions in different languages or even in the same language”

“The difference between a translation and the original text should properly not overstep the [level of the idea]”
Faithful translation should preserve meaning
The methodology of formal Fregean semantics

- An *interpreted formal language* L is selected
- The *rendering* operation on a fragment of English:

 $\text{English expression} + \text{informal context} \xrightarrow{\text{render}} \text{formal expression} + \text{state}$

- Semantic values (denotations, meanings, etc.) are defined rigorously for the formal expressions of L and assigned to English expressions via the rendering operation
- Claim: L *should be a programming language*

 Slogan: *English as a programming language*
The typed λ-calculus with recursion $\text{L}_r^\lambda(K)$

An extension of the typed λ-calculus, into which Montague’s Language of Intensional Logic LIL can be easily interpreted (by Gallin)

Basic types $b \equiv e \mid t \mid s$ (entities, truth values, states)

Types: $\sigma \equiv b \mid (\sigma_1 \to \sigma_2)$

Abbreviation: $\sigma_1 \times \sigma_2 \to \tau \equiv (\sigma_1 \to (\sigma_2 \to \tau))$

Every non-basic type is uniquely of the form

$\sigma \equiv \sigma_1 \times \cdots \times \sigma_n \to b$

$\text{level}(b) = 0$

$\text{level}(\sigma_1 \times \cdots \times \sigma_n \to b) = \max\{\text{level}(\sigma_1), \ldots, \text{level}(\sigma_n)\} + 1$
$L_r^\lambda(K)$ - syntax

Pure Variables: $v_0^\sigma, v_1^\sigma, \ldots$, for each type $\sigma (v : \sigma)$

Recursive variables: $p_0^\sigma, p_1^\sigma, \ldots$, for each type $\sigma (p : \sigma)$

State parameters: \bar{a} for each state a (for convenience only)

Constants: A finite set K of typed constants

Terms – with assumed type restrictions and assigned types ($A : \sigma$)

$$A \equiv v | \bar{a} | p | c | B(C) | \lambda(v)(B)$$

$$| A_0 \text{ where } \{p_1 := A_1, \ldots, p_n := A_n\}$$

$$C : \sigma, B : (\sigma \rightarrow \tau) \implies B(C) : \tau$$

$$v : \sigma, B : \tau \implies \lambda(v)(B) : (\sigma \rightarrow \tau)$$

$$A_0 : \sigma \implies A_0 \text{ where } \{p_1 := A_1, \ldots, p_n := A_n\} : \sigma$$

Abbreviation: $A(B, C, D) \equiv A(B)(C)(D)$
L_\lambda^\gamma(K) - denotational semantics

- We are given basic sets T_s, T_e and $T_t \subseteq T_e$ for the basic types

$$T_{\sigma \rightarrow \tau} = \text{the set of all functions } f : T_{\sigma} \rightarrow T_{\tau}$$

$$P_b = T_b \cup \{\bot\} = \text{the “flat poset” of } T_b$$

$$P_{\sigma \rightarrow \tau} = \text{the set of all functions } f : T_{\sigma} \rightarrow P_{\tau}$$

Each P_{σ} is a complete poset (with the pointwise ordering)

- We are given an object $c = \bar{c} : P_{\sigma}$ for each constant $c : \sigma$

 - Pure variables of type σ vary over T_{σ}; recursive ones over P_{σ}

 - If $A : \sigma$ and π is a type-respecting assignment to the variables, then $\text{den}(A)(\pi) \in P_{\sigma}$

 - Recursive terms are interpreted by the taking of least-fixed-points
Rendering natural language in $L^\lambda_r(K)$

Abelard loves Eloise $\xrightarrow{\text{render}}$ loves(Abelard,Eloise) : \tilde{t}

Bush is the president $\xrightarrow{\text{render}}$ eq(Bush,the(president)) : \tilde{t}

liar $\xrightarrow{\text{render}}$ p where $\{p := \neg p\} : t$

truthhteller $\xrightarrow{\text{render}}$ p where $\{p := p\} : t$

$\tilde{t} \equiv (s \to t)$ (type of Carnap intensions)

$\tilde{e} \equiv (s \to e)$ (type of individual concepts)

Abelard, Eloise, Bush : \tilde{e}

president : $\tilde{e} \to \tilde{t}$, eq : $\tilde{e} \times \tilde{e} \to \tilde{t}$

$\neg : \tilde{t} \to \tilde{t}$, the : $(\tilde{e} \to \tilde{t}) \to \tilde{e}$

$\text{den(liar)} = \text{den(truthhteller)} = \bot$
Can we say nonsense in L_r^K?

Yes!
In particular, we have variables over states—so we can explicitly refer to the state (even to two states in one term); LIL does not allow this, because we cannot do this in English.

Consider also the term

$$A \equiv \text{rapidly(tall)(John)} : \tilde{t}$$

(John is rapidly tall? John talls rapidly?)

— only A is already a LIL-term

- Distinct grammatical categories are mapped onto the same type (both in LIL and in L_r^K), and so we can “say nonsense” in both formal languages

... and there is nothing wrong with this
Rendering natural language in $L^\lambda_r(K)$

John stumbled and fell $\xrightarrow{\text{render}} \lambda(x) \left(\text{stumbled}(x) \& \text{fell}(x) \right)(\text{John})$

(predication after coordination)

This is in Montague’s LIL, the Language of Intensional Logic
(as it is interpreted in $L^\lambda_r(K)$)

John stumbled and he fell $\xrightarrow{\text{render}} \text{stumbled}(j) \& \text{fell}(j)$ where \{\(j := \text{John}\)\}

(conjunction after co-indexing)

The **logical form** of this sentence cannot be captured faithfully in LIL — recursion models co-indexing preserving logical form
Meaning in $L^\lambda_r(K)$

- In slogan form: *The meaning of a term A is faithfully modeled by an algorithm* $\text{int}(A)$ *which computes* $\text{den}(A)(\pi)$ *for every assignment* π
- The referential intension $\text{int}(A)$ is (compositionally) determined from A
- $\text{int}(A)$ is an abstract (not necessarily implementable) recursive algorithm which can be defined in $L^\lambda_r(K)$
- Referential synonymy: $A \approx B \iff \text{int}(A) \sim \text{int}(A)$ (where \sim is a natural isomorphism relation between abstract, recursive algorithms)
- Claim: *Meanings are faithfully modeled*
- Claim: *Synonymy is captured* (defined)
Is this notion of meaning Fregean?

Evans (in a discussion of Dummett’s similar, computational interpretations of Frege’s sense):

“This leads [Dummett] to think generally that the sense of an expression is (not a way of thinking about its [denotation], but) a method or procedure for determining its denotation. So someone who grasps the sense of a sentence will be possessed of some method for determining the sentence’s truth value

...ideal verificationism

...there is scant evidence for attributing it to Frege”

Converse question: If you posses a method for determining the truth value of a sentence A, do you then “grasp” the sense of A? (Sounds more like Davidson rather than Frege)
The Reduction Calculus, Canonical Forms

- A reduction relation $A \Rightarrow B$ is defined on terms of $L_r^\lambda(K)$.
- Each term A is effectively reducible to a unique (up to congruence) irreducible recursive term, its canonical form $A \Rightarrow \text{cf}(A) \equiv A_0$ where $\{p_1 := A_1, \ldots, p_n := A_n\}$.

\[
\text{int}(A) = (\text{den}(A_0), \text{den}(A_1), \ldots, \text{den}(A_n))
\]

- The parts A_0, \ldots, A_n of A are irreducible, explicit terms (the “truth conditions” of A).
- Claim: $\text{cf}(A)$ is the logical form of A.

Synonymy Theorem. $A \approx B$ if and only if $B \Rightarrow \text{cf}(B) \equiv B_0$ where $\{p_1 := B_1, \ldots, p_m := B_m\}$ so that $n = m$ and for $i \leq n$, $\text{den}(A_i) = \text{den}(B_i)$.
Utterances and local meaning

- A **sentence** is a closed, parameter-free term $S : \tilde{t}$ (which denotes a *Carnap intension*, i.e., a function from states to truth values).
- An **utterance** is a pair (S, a) of a sentence $S : \tilde{t}$ and a state a; it is expressed in $L^\lambda_r(K)$ by the term $S(\bar{a}) : t$.
- The **local meaning** of a sentence S at a state a is $\text{int}(S(\bar{a}))$, the referential intension of the utterance.
 - Local meanings are the objects of knowledge, belief, etc.
- Every term of pure type $S : t$ is synonymous with an utterance $S'(\bar{a})$ (so that mathematical claims can be known, believed, etc.).
- Kalyvianaki introduces the **factual content** of a sentence S at a state a, another semantic value which captures “what S says about the world at state a”.
Presuppositions and errors

the King of France is bald $\xrightarrow{\text{render}} BKF \equiv \text{bald(\text{the(king of France)})}$

- What is the truth value of $BKF(a)$ when a is today’s state?
- Frege would leave it undefined
- Russell would make it false
- Executed as a program, $BKF(\bar{a})$ would return an error

using the definition

$$the(p)(a) = \begin{cases}
\text{the unique } x \text{ such that } p(b \mapsto x)(a), & \text{if one such } x \text{ exists}, \\
er, & \text{otherwise}
\end{cases}$$

where er is a “truth value” signifying “false presupposition”
Meaning under presupposition

\[BKF(\bar{a}) \Rightarrow \text{bald}(k)(\bar{a}) \text{ where } \{ k := \text{the}(p), \]
\[p := \text{king of}(f), f := \text{France}\} \]

Execution of the algorithm \(\text{int}(BKF(\bar{a}))\) successively computes:

1. \(f := \text{den}(\text{France}), \text{ so that for every state } b, f(b) = \text{France}\)
2. \(p := \text{den}(\text{king of France}), \text{ so that for every state } b, p(b) \iff p(b) \text{ is king of France}\)
3. \(k := \text{den}(\text{the(king of France)}), \text{ so that for every state } b, k(b) = \text{the(king of France)}(b)\)
4. \(\text{den}(BKF(\bar{a})) := \text{den}(\text{bald}(k))(a) = \text{bald}(k)(a) = \text{er}\)

Claim: Knowing this algorithm is tantamount to understanding the utterance \(BKF(\bar{a})\),

...and the “truth value” which is returned is of some (but little) significance
Truth values galore

- $\text{den(} \text{the king of France is bald, } a \text{)} = \text{er (there is no king of France)}$
- $\text{den(} \text{his wife is beautiful, } a \text{)} = \text{er (he has two wives)}$
- $\text{den(} \text{is snow white?, } a \text{)} = ?\text{true}$
- $\text{den(} \text{is the king of France bald?, } a \text{)} = ?\text{er}$
- ...

Perhaps also

$$a \text{ but } b = \begin{cases} \text{true,} & \text{if } a = b = \text{true}, \\ \text{false,} & \text{if } a = \text{true}, b = \text{false}, \\ \text{er,} & \text{otherwise} \end{cases}$$

by which $\boxed{A \text{ but } B \not\sim A \text{ and } B}$, for any A, B
Meaning and entailment

Consider the following statement at the current state:

If Hamlet is bald, then snow is black

Is it true or false?

- The entailment is problematic
- The meaning (as algorithm) is clear

Claim: *Entailment is a poor guide to meaning*

—and in many cases it is irrelevant

…(The logic of natural language is certainly many-valued and most likely quite complex)
Referential uses of definite descriptions

Maureen Dowd in a recent opinion column in the New York Times, uses

President Bush, Mr. Bush, W., the President, the Texas President, he, him

to refer to the same person

Claim: *In the context of the Dowd column, these phrases are synonymous*

- I would use them interchangeably in a report of the column
- I would use them interchangeably in a translation of the column to Greek
- In a translation of a Greek column to English, I would translate πλανητάρχης (literally *planet master*) as the US president or Busch
Relativized meaning and synonymy

- A linguistic convention is a tuple $\mathcal{C} = (C_1, \ldots, C_k, w)$, where
 - C_1, \ldots, C_k are closed terms of the same type σ
 - $w \in P_\sigma$
- The relativization of a term A to \mathcal{C} is the term
 $$A_\mathcal{C} \equiv A\{C_1 :\equiv c\} \cdots \{C_k :\equiv c\}$$
 (c a fresh constant, $c : \sigma$)
- The denotation of A relative to \mathcal{C} is $\text{den}(A_\mathcal{C})$ in the expanded language with $\bar{c} = w$
- The referential intension of A relative to \mathcal{C} is $\text{int}(A_\mathcal{C})$
- Synonymy relative to a convention:
 $$A \approx_\mathcal{C} B \iff A_\mathcal{C} \approx B_\mathcal{C}$$
 $$\iff \text{cf}(A_\mathcal{C}) \equiv A_0 \text{ where } \{p_1 := A_1, \ldots, p_n := A_n\}$$
 $$\text{cf}(B_\mathcal{C}) \equiv B_0 \text{ where } \{p_1 := B_1, \ldots, p_n := B_n\}$$
 and $\text{den}(A_0) = \text{den}(B_0), \ldots, \text{den}(A_n) = \text{den}(B_n)$
Synonymy relative to a convention \((C_1, \ldots, C_n, w)\)

- If \(C = (\text{Bush, the President, he, W., } \lambda(a)\text{Bush})\), then

 \[
 \text{Bush is ignorant} \approx_C \text{the President is ignorant} \approx_C \ldots
 \]

- If \(C = (\text{Hamlet, the Prince of Denmark, er})\), then

 \[
 \text{Hamlet was depressed} \approx_C \text{the Prince of Denmark was depressed}
 \]

In Greek:

\[
\mu\pi\alpha\tau\zeta\alpha\nu\alpha\kappa\eta\delta\varepsilon\zeta(x, y) \iff x \text{ and } y \text{ are married to sisters}
\]

- If \(C = (\mu\pi\alpha\tau\zeta\alpha\nu\alpha\kappa\eta\delta\varepsilon, \text{brothers in law, brothers in law})\), then

 \[
 \text{Ο Νιάρχος και ο Ονάσσης ήταν } \mu\pi\alpha\tau\zeta\alpha\nu\alpha\kappa\eta\delta\varepsilon \\
 \approx_C \text{Niarchos and Onassis were brothers in law}
 \]
Relative meaning and denotation

- If $\text{den}(C_1) = \cdots = \text{den}(C_n) = w$, then $\text{den}(A) = \text{den}(A_C)$
- If $\text{den}(C_1)(a) = \cdots = \text{den}(C_n)(a) = w$ and C_1, \ldots, C_n occur locally in A, then $\text{den}(A)(a) = \text{den}(A_C)(a)$
- In general, $\text{den}(A)(a) \neq \text{den}(A_C)(a)$, and it may be that

$$A(a) \approx_C B \text{ but } \text{den}(A)(a) \neq \text{den}(B)(a)$$
Amendment to the basic setup

The basic rendering operation becomes

$$\text{render} \quad \text{English expression} + \text{informal context} \rightarrow \text{formal expression} + \text{linguistic conventions} + \text{state}$$

which determine global and local meaning relative to the conventions

- The relativization operation relative to a set of linguistic conventions is very similar to coordination, but it uses a fresh constant rather than a variable
The (mythical) language speaker of Frege must know the linguistic part of the rendering operation,

\[\text{English expression + informal context} \xrightarrow{\text{render}} \text{formal expression + linguistic conventions} \]

and the reduction calculus, which constructs the algorithm that computes the value of a given term at a given state.

To compute the value of a term, i.e., to gain “comprehensive knowledge of the thing denoted”, requires knowledge of the values of the constants and (in many cases) infinite computing power; …and this “we never attain”