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There are 12 parts of problems, each worth 10 points for a total of 120 and 100 points
count for a “perfect” score; so you can skip a part or two or afford to make a small
mistake. Some of these parts are trivial and some are not—so do first those that you
can do quickly.

There is a blank page at the end which you can use for scratch, and the page before
it has a copy of the transition table for the recursive machine.

Solved!
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Problem 1. Let

C(x, y, z) = if (x = 0) then y else z =

{

y, if x = 0,

z, otherwise
(x, y, z ∈ N)

Determine whether each of the following equations is True or False under the indicated
assumptions and circle which it is:

(1a) True or False : for all partial functions g(~x), h1(~x), h2(~x) on N,

C(g(~x), h1(~x), h2(~x)) = if (g(~x) = 0) then h1(~x) else h2(~x)

Solution. This fails if g(~x) = 0, h1(~x)↓ and h2(~x) ↑.

(1b) True or False : for all partial g(~x) and total h1(~x), h2(~x):

C(g(~x), h1(~x), h2(~x)) = if (g(~x) = 0) then h1(~x) else h2(~x)

Solution. This is true.

(1c) True or False : for all partial g(~x) and h(~x):

C(g(~x), h(~x), h(~x)) = if (g(~x) = 0) then h(~x) else h(~x)

Solution. This is true.
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Problem 2. Consider the following recursive program (with just one equation) on
the partial algebra N0 = (N, 0, 1, S,Pd) of unary natural numbers,

p(x, y) = if (x = 0) then 1 else p(Pd(x), p(x, y))(E)

(2a) Show the computation of p(0, 3) by the recursive machine which starts with the
state p : 0 3, determine if it converges or diverges and determine the value p(0, 3) if
it converges.

Solution.

p : 0 3

if (0 = 0) then 1 else p(Pd(0), p(0, 3)) :

1 p(Pd(0), p(0, 3)) ? 0 :

1 p(Pd(0), p(0, 3)) ? : 0

1 :

: 1

The computation converges and yields p(0, 3) = 1.

(2b) Show the computation of p(2, 3) by the recursive machine which starts with the
state p : 2 3, determine if it converges or diverges and determine the value p(2, 3) if
it converges.

Solution.

p : 2 3

if (2 = 0) then 1 else p(Pd(2), p(2, 3)) :

1 p(Pd(2), p(2, 3)) ? 2 :

1 p(Pd(2), p(2, 3)) ? : 2

p(Pd(2), p(2, 3)) :

p Pd(2) p(2, 3) :

p Pd(2) p 2 3 :

p Pd(2) p 2 : 3

p Pd(2) p : 2 3

At this point the machine will “disregard” the first first two elements p Pd(2) of the
state (by the Stack Discipline Lemma 2C.1) and repeat the computation to reach the
state

p Pd(2) p Pd(2) p : 2 3

then go on to reach the state

p Pd(2) p Pd(2) p Pd(2) p : 2 3

etc., ad infinitum, in short, it will not converge, so p(2, 3) ↑

(Problem 2 continues on the next page)
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(Problem 2 continued from the preceding page)

(2c) Give an explicit definition of the partial function p(x, y) computed by the recur-
sive program E.

Solution.

p(x, y) =

{

1, if x = 0,

↑ otherwise, if x 6= 0.

This can be proved by replacing 2 in the preceding part by any x > 0.

(2d) Prove that the equation p(x, y) = if (x = 0) then 1 else p(Pd(x), p(x, y)) of the
program (E) has exactly one total solution and find it.

Solution. The total, constant function p(x, y) = 1 clearly satisfies the equation. If
q(x, y) is any total solution, we prove by induction on x that (∀y)[q(x, y) = 1].

Basis, q(0, y) = 1, by the definition.

Induction step:

p(x + 1, y) = p(x, p(x + 1, y)) = 1 (by the induction hypothesis).
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Problem 3. Suppose g(x), h(u, v), σ(x), τ(x, y) are total functions on N.

(3a) Prove that there is exactly one total function f(x, y) such that for all x, y,

f(0, y) = g(y),

f(x + 1, 0) = f(x, σ(x)),

f(x + 1, y + 1) = h(f(x, f(x + 1, y)), τ(x, y))

Solution. Let p(x, y) be the partial function computed by the program

p(0, y) = if (x = 0) then g(y)

else if (y = 0) then p(Pd(x), σ(Pd(x)))

else h(p(Pd(x), p(x, y)), τ(Pd(x),Pd(y)))

in the algebra (N, 0, 1, S,Pd, g, σ, h, τ). It satisfies the given system and it is quite
easy to prove by induction on x that (∀y)[p(x, y)↓ ].

(3b) True or false: if g, h, σ, τ are recursive functions, then f is also recursive.

Solution. True, by the Transitivity Theorem.

(3c) True or false: if g, h, σ, τ are primitive recursive functions, then f is also primitive
recursive.

Solution. False: a special case of this definition is the Ackermann function, which
is not primitive recursive; take

g(y) = y + 1, σ(x) = 1, τ(x, y) = 1, h(u, v) = u.
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Problem 4. The iterates φi : M → M of a (total) function φ : M → M are defined
for i ≥ 1 by the recursion

φ1(x) = φ(x), φi+1(x) = φ(φi(x)), . . .

so that φ2(x) = φ(φ1(x)) = φ(φ(x)), φ3(x) = φ(φ(φ(x))), . . .

Suppose M = (M, 0, 1, g, h) is a total algebra with both g, h : M → M unary, and
define the partial function f : M ⇀ M by

f(x) = gn(x) where n = (µi ≥ 1)[hi(x) = 0]

For example, if h(x) 6= 0, h2(x) 6= 0, h3(x) = 0, then f(x) = g3(x), and if hi(x) 6= 0
for all i, then f(x) ↑.

(4a) Specify a recursive program of M which computes f(x).

Careful : M is an arbitrary set, not necessarily N, and so we cannot use functions on
N.

Solution. The required system has two equations,

p(x) = q(x, x),

q(x, y) = if (h(y) = 0) then g(x) else q(g(x), h(y))

The claim is that

q(x, y) = gn(x) where n is least such that hn(y) = 0,

so that f(x) = q(x, x) = p(x)

(Problem 4 continues on the next page)
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(Problem 4 continued from the preceding page)

(4b) Prove the claim you made in part (4a), that the recursive program you specified
actually computes the partial function f(x).

Solution. We will prove that for all x, y

q(x, y) = gn(x) where n is least such that hn(y) = 0,

using the following two lemmas:

Lemma 1. For all x, y, if hi(y) 6= 0 for all i, then q(x, y) ↑.

Assume the hypothesis and look at the computation of q(x, y) by the recursive ma-
chine:

q : x y → if (h(y) = 0) then g(x) else q(g(x), h(y)) :

· · · → q(g(x), h(y)) · · · → q(g2(x), h2(y)) → . . .

This clearly goes on forever.

Lemma 2. For all n,

for all x and all y, if n = ny = µi[hi(y) = 0], then the recursive machine

started on q : x y terminates in the state : gn(x).

This is proved by induction on n ≥ 1.

Basis: n = 1, i.e., h(y) = 0; then easily q : x y → · · · → : g(x) in a few steps.

Induction step, n > 1. The key observation is that for all y,

h(y) 6= 0=⇒
(

ny = µi[hi(y) = 0] = nh(y) + 1
)

, where nh(y) = µi[hi(h(y)) = 0] + 1

so nh(y) = ny − 1 < ny. It follows that the induction hypothesis applies to g(x)
and h(y), so starting on p : g(x) h(y) it will eventually stop in the terminal state
: gn(g(x), and, of course, gn(g(x) = gn+1(x). At the same time, a simple computation
shows that (as h(y) 6= 0), if we start the machine on p : x y it will reach the state
p : g(x) h(y) and then go on to the correct value.

The two lemmas together imply that for all x, y,

q(x, y) = gn(x) where n = (µi ≥ 1)[hi(y) = 0];

because if hi(y) 6= 0 for all i, then both sides of this equation diverge by Lemma 1;
and if there is some i such that hi(y) = 0, then the two sides converge to the same
value by Lemma 2.


