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There are 17 problems or parts of problems and each of them is worth 7 points, for a
total of 119 points, 19 more than the 100 points which will count as a “perfect” test.
The problems vary widely in difficulty; do first those which are easy, there are enough
of them to give you an A.

Most of the problems test your knowledge of what we learned and do not require
any great ingenuity. You may—and in some places you will need to—use some of
the basic results we established, e.g., the Normal Form and Sm

n Theorems, the Σ0
1-

Selection Lemma, the Second Recursion Theorem and the closure properties of the
several collections of relations we have studied.

There is a blank page at the end which you can use for scratch.

A solved copy will be posted after the test.
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Problem 1. Suppose g(y) is a primitive recursive function and f(n, x) is defined by
the equations

f(0, x) = x, f(n + 1, x) = g(f(n, x)).

(1a) Prove that f(n, x) is primitive recursive, using only the definition of primitive
recursive functions.

Solution. f(n, x) is defined by the primitive recursion

f(0, x) = x = P 1
1 (x), f(n + 1, x) = h(f(n, x), n, x) where h(u, n, x) = g(P 3

1 (u, n, x)),

and h(u, n, x) is the composition of two primitive recursive functions and hence prim-
itive recursive.

(1b) Assume further that for all y, g(y) ≥ 2y + 1 and prove that

for all n ≥ 1, f(n, x) ≥ 2n(x + 1)− 1.

Solution. The proof is by induction on n ≥ 1.

Basis, n = 1: f(1, x) = g(x) ≥ 2x + 1 = 21(x + 1)− 1.

Induction Step. Assume the inductive hypothesis, that f(n, x) ≥ 2n(x + 1) − 1 and
compute:

f(n + 1, x) = g(f(n, x)) ≥ 2f(n, x) + 1 ≥ 2[2n(x + 1)− 1] + 1 (ind. hyp)

= 2n+1(x + 1)− 2 + 1 = 2n+1(x + 1)− 1.
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Problem 2. Suppose g : N → N is a total recursive function and consider the
recursive equation

p(x) = if (Prime(x)) then g(x) else p(x + 1).(∗)
Let

p(x) = g(µy ≥ x Prime(y)).

(2a) Prove that p satisfies (∗).

Solution. We plug p for p in the equation to see if it makes both sides equal, taking
cases on x.

If x is prime, then

p(x) = g(x) by the def of p(x),

= if (Prime(x)) then g(x) else p(x + 1).

If x is not prime, then

p(x) = p(x + 1) by the def of p(x),

= if (Prime(x)) then g(x) else p(x + 1).

(2b) Prove that p is the unique solution of (∗), i.e., if p : N ⇀ N is any partial
function satisfying (∗), then for every x, p(x) = p(x).

Solution. Using the fact that there are infinitely many prime numbers, we set

h(x) = µt Prime(x + t),

and we prove that if p satisfies (∗) then

p(x) = w =⇒ p(x) = w

by induction on h(x).

Basis. If h(x) = 0, then x is a prime and so

p(x) = g(x) and also p(x) = if (Prime(x)) then g(x) else p(x + 1) = g(x).

Induction Step. If h(x) > 0, then x is not a prime, h(x) = h(x + 1) + 1,

p(x) = g(µy ≥ (x + 1) Prime(y)) = p(x + 1),

and also

p(x) = if (Prime(x)) then g(x) else p(x + 1) = p(x + 1),

so the Induction Hypothesis insures that p(x) = p(x + 1) = p(x + 1) = p(x).
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Problem 3. The first two parts are about a collection E of relations (of all arities)
on N, e.g., the collection of all primitive recursive relations, Σ0

k, Π0
k, etc.

(3a) Define what it means for E to be closed under primitive recursive substitutions.

Solution. If R(u1, . . . , um) is in E , f1(~x), . . . , fm(~x) are primitive recursive functions
and

P (~x) ⇐⇒ R(f1(~x), . . . , fm(~x)),

then P (~x) is also in E .

(3b) Define what it means for E to be closed under bounded universal quantification ∀≤.

Solution. If R(i, ~x) is in E , then so is the relation

P (n, ~x) ⇐⇒ (∀i ≤ n)R(i, ~x).

(3c) For each of the collections of relations below determine whether it is closed or
not under each of the indicated operations by marking Y (for YES) or N (for NO)
the relevant block in the table; for example, the square to the right of PR and below
PrimSubs should be marked Y if you think that the collection of primitive recursive
relations is closed under primitive recursive substitutions. (No proofs are required.)

PrimSubs & ∨ ¬ ∃≤ ∀≤ ∃ ∀
PR
∆0

1

Σ0
k

Π0
k

Solution. Omitted, sorry; too messy to type and the problem is quite easy.
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Problem 4. Recall that We = {x | ϕe(x)↓} = {x | (∃y)T1(e, x, y)}.
(4a) Prove that there is a recursive partial function f(e, n) such that for all e, n,

(∗) if We has at least n members,

then
(
f(e, n)↓ & We has at least n members which are < f(e, n)

)
.

Solution. Put

P (e, n, u) ⇐⇒ Seq(u) & (∀i < n)[(u)i ∈ We] & (∀i, j < n)[(i 6= j)=⇒ (u)i 6= (u)j ].

This is a Σ0
1 relation, and the Σ0

1-Selection Lemma gives us a recursive partial g(e, n)
such that for all e, n,

We has at least n members=⇒ (∃u)P (e, n, u)=⇒ [g(e, n)↓ & P (e, n, g(e, n))].

The required result follows by setting

f(e, n) = max{g(e, n)i | i < n}+ 1.

(4b) Prove that there is no total, recursive function f(e, n) which satisfies (∗).

Solution. Assume that some total f(e, n) satisfies (∗), choose a total recursive
g(e, x) such that

Wg(e,x) = {y | T1(e, x, y)}
and compute:

(∃y)T1(e, x, y) ⇐⇒ Wg(e,x) 6= ∅ ⇐⇒ (∃y < f(g(e, x), 1))T1(e, x, y);

but this equivalence implies that the Halting Relation

H(e, x) ⇐⇒ (∃y)T1(e, x, y)

is recursive, which it is not.
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Problem 5. Recall that a r.e. set A is simple if A has infinite complement and every
infinite r.e. set intersects A.

(5a) Prove that if A is simple and X = {x0, . . . , xn} is a finite set, then the sets
A ∪X and A \X are both simple.

Solution. For A ∪X first: its complement is Ac \X, so infinite, since Ac is infinite
and X is finite; and every infinite r.e. set intersects A, so it intersects the larger set
A ∪X.

For A \ X, similarly: its complement is Ac ∪ X, so it contains Ac which is infinite;
and if B is any infinite r.e. set. then B \X is also infinite r.e., so there is some x such
that x ∈ A and x ∈ B \X, i.e., x ∈ A \X and x ∈ B, so B intersects A \X.

(5b) For the next two claims, decide whether they are true or not, and justify your
answer by a proof or a counterexample:

(1) For every infinite r.e. set A, there is a total, recursive function f , such that for
every x,

f(x) > x and f(x) ∈ A.

(2) For every r.e. set B with infinite complement, there is a total recursive function
f , such that for every x,

f(x) > x and f(x) /∈ B.

Solution. (1) This holds: because the relation

R(x, y) ⇐⇒ y > x & y ∈ A

is semirecursive and for every x there exists a y > x such that y ∈ A by the hypothesis,
so by the Σ0

1-Selection Lemma, there exists a total, recursive function f(x) as the claim
requires.

(2) This is not true when B is simple, because if such an f existed, then f [N] =
{f(x) | x ∈ N} would be an r.e. subset of Bc which is unbounded, so infinite.
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Problem 6. This problem is about the 2nd Recursion Theorem.

(6a) Suppose f(x) is a total recursive function; prove that there is a number z such
that

Wz = {f(z)}.

Solution. Choose z by the 2nd Recursion Theorem such that

ϕz(x)↓ ⇐⇒ x = f(z),

so that

x ∈ Wz ⇐⇒ ϕz(x)↓ ⇐⇒ x = f(z).

(6b) Let g(e) be a recursive partial function such that for all e,

if We = ∅, then g(e)↓ ;

Prove that there is some m such that Wm = {m} and g(m)↓ .

Solution. By the 2nd Recursion Theorem, there exists some number m such that

ϕm(x) =

{
1, if g(m)↓ & x = m,

↑, otherwise.

If g(m) ↑, then Wm = ∅ and therefore g(m)↓ ; so g(m)↓ , and by the definition ϕm(x)↓
only if x = m, i.e., Wm = {m}, which is what we wanted.
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Problem 7. Let G be the set of all codes of total recursive functions which are
increasing, i.e.,

e ∈ G ⇐⇒ ϕe is total and (∀x, y)[x < y =⇒ϕe(x) < ϕe(y)].

(7a) Prove that G is Π0
2.

Solution.

e ∈ G ⇐⇒ (∀x)(∃s)T1(e, x, s)

& (∀x)(∀y)(∀s)(∀t)
(
[x < y & T1(e, x, s) & T1(e, y, t)]=⇒U(s) < U(t)

)

(7b) Prove that G is not Σ0
2.

Solution. Let F = {e | (∀x)[ϕe(x)↓ ]}. We know that this is Π0
2 but not Σ0

2, so it is
enough to reduce F to G, i.e., to define a total, recursive f(e) such that

e ∈ F ⇐⇒ f(e) ∈ G.

For that it is sufficient to choose f(e) so that

ϕf(e)(x) = max{ϕe(i) | i ≤ x)}+ 1;

and we can define such an f(e) using the Graph Lemma and the Sm
n -Theorem, as

follows:

- Set

R(e, x, w) ⇐⇒ w > 0 & (∀i ≤ x)(∃u < w)[ϕe(i) = u] & (∃i ≤ x)[ϕe(i) = w − 1].

- Check that that R(e, x, w) is semirecursive and the graph of a partial function g(e, x),
which is therefore recursive.

- Choose g such that g(e, x) = {g}(e, x) = {S1
1(g, e)}(x) and set f(e) = S1

1(g, e),

- And finally check that

ϕe is total ⇐⇒ ϕf(e) is total and increasing.
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Problem 8. A collection A of r.e. sets is semieffective if there is a Σ0
1 set A such

that

We ∈ A ⇐⇒ e ∈ A.

For example, {We | We 6= ∅} and {We | (∃m)[2m + 3 ∈ We ∩Wm]} are semieffective.
Notice that the definition implies the following invariance property of A,

We = Wm =⇒
(
e ∈ A ⇐⇒ m ∈ A

)
.(∗)

Hint: For both parts, use the Second Recursion Theorem.

(8a) Prove that semieffective collections of r.e. sets are ⊆-monotone, i.e.,
(
We ∈ A & We ⊆ Wm

)
=⇒Wm ∈ A.(∗∗)

Solution. Fix e and m which satisfy the hypothesis of (∗∗) and use the Second
Recursion Theorem to get a z such that

x ∈ Wz ⇐⇒ x ∈ We ∨
(
z ∈ A & x ∈ Wm

)
.(∗ ∗ ∗)

Now check:

(1) We ⊆ Wz; directly from (∗ ∗ ∗).
(2) z ∈ A; because if z /∈ A, then (∗ ∗ ∗) gives Wz = We and then the invariance
property (∗) gives z ∈ A.

(3) Wz = Wm, easily from (2) using the hypothesis We ⊆ Wm.

Now m ∈ A by (3) and the invariance property of A again, which completes the
proof.

(8b) Prove that if We ∈ A, then there is a finite Wz ⊆ We such that Wz ∈ A.

Solution. Choose f̂ such that

m ∈ A ⇐⇒ (∃y)T1(f̂ , m, y),

fix e such that e ∈ A and then use the 2nd Recursion Theorem to get a z such that

x ∈ Wz ⇐⇒ x ∈ We & (∀u ≤ x)¬T1(f̂ , z, u).(∗ ∗ ∗∗)
Now check:

(1) Wz ⊆ We, directly from (∗ ∗ ∗∗).
(2) z ∈ A; because if not, then (∀u)¬T1(f̂ , z, u); hence for every x, (∀u ≤ x)¬T1(f̂ , z, u);
hence Wz = We by (∗ ∗ ∗∗) and so z ∈ A by the invariance property.

(3) If y = µuT1(f̂ , z, u), then x ∈ Wz =⇒x < y, directly from (∗ ∗ ∗∗) again, so Wz is
finite.
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