
Math 114C, Winter 2019, Solutions to HW #8

x4D.3. Are they true or not—and you must prove your answers:
(1) There is a recursive, partial function f(e), such that for every e,

if We is infinite, then f(e)↓ & f(e) ∈ We & f(e) > e.(∗)
(2) There exists a total recursive function f(e) which satisfies (∗∗).
Solution. (1) The relation

R(e, y) ⇐⇒ y ∈ We & y > e

is Σ0
1, and therefore, by the Σ0

1-Selection Lemma there exists a recursive partial
function f(e) such that for every e,

(∃y)[y ∈ We & y > e] =⇒ f(e)↓ & f(e) ∈ We & e < f(e);(∗∗)
this f(e) is the required one, since the hypothesis of the implication (∗∗) is
satisfied by any e such that We is infinite.

(2) We show that this does not hold, by contradiction. Assuming that it holds
with some total f(e), we choose by the 2nd Recursion Theorem some e such that

ϕe(x) =

{
1, if f(e) < x,

↑, otherwise,

and we notice that the set We = {x | x > f(e)} is infinite, so that from the
properties of f which we have assumed it follows that f(e) ∈ We, which implies
together with the characteristic property of ϕe that f(e) < f(e), which is absurd.

x4D.8. Let g(e) be a recursive, partial function such that for all e,

if We = N, then g(e)↓ ;

prove that there exist numbers m and k, such that

Wm = {0, 1, . . . , k} and g(m)↓ .

Hint: Apply the 2nd Recursion Theorem to the partial function

f(m,x) =

{
1, if (∀y ≤ x)¬T1(ĝ, m, y),
↑, otherwise,

where g(e) = {ĝ}(e).
Solution. Following the hint, let m from the 2nd Recursion Theorem such that

ϕm(x) =

{
1, if (∀y ≤ x)¬T1(ĝ, m, y),
↑, otherwise,

from which follows that

Wm = {x | (∀y ≤ x)¬T1(ĝ, m, y)}.
If g(m) ↑, then for every x, we have that (∀y ≤ x)¬T1(ĝ, m, y) holds, so that
Wm = N and g(m)↓ ; it follows that g(m)↓ , and the required conclusion holds
with k = µyT1(ĝ, m, y)−· 1. (Here we use the property ¬T1(ĝ, m, 0) of the basic
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relation of Kleene, which could be avoided with some more careful formulation
of the problem.)

x5A.4. Classify in the arithmetical hierarchy the relation

Q(e,m) ⇐⇒ ϕe v ϕm

⇐⇒ (∀x)
(
ϕe(x)↓ =⇒ [ϕm(x)↓ & ϕe(x) = ϕm(x)]

)
.

Solution. Q(e,m) is in the class Π0
2 \ Σ0

2. To show that it is Π0
2, we compute:

Q(e,m) ⇐⇒ (∀x)(∀w)[ϕe(x) = w =⇒ϕm(x) = w],

which shows that Q(e, m) is Π0
2, since the relation

ϕz(x) = w ⇐⇒ (∃y)[T1(z, x, y) & U(y) = w]

is Σ0
1. The basic idea for the computation of the lower bound is the reduction

ϕe is total ⇐⇒ (λt)0 v (λt)[0 · ϕm(t)],

where (λt)[. . . t . . . ] is the partial function with value . . . t . . . for each t. In detail,
let e0 be a code of the constant function C1

0 ,

ϕe0(t) = 0,

and let g(e) be a recursive function such that for every e,

ϕg(e)(t) = 0 · ϕe(t);

it follows that
ϕe is total ⇐⇒ Q(e0, g(e)),

and so the set
F = {e | ϕe is total}

would be Σ0
2, if Q were Σ0

2, while F is Π0
2-complete, 5A.6.

x5A.5. Classify in the arithmetical hierarchy the set

A = {e | We has at least e members}.
Solution. A is recursively enumerable, i.e., Σ0

1, with the computation

e ∈ A ⇐⇒ (∃u)[(∀i < e)(∀j < e)[i 6= j =⇒ (u)i 6= (u)j ]

& (∀i < e)][(u)i ∈ We]].

It is not Π0
1, because it is Σ0

1-complete, as follows.
Let

P (x) ⇐⇒ (∃y)R(x, y)

be a Σ0
1 relation, with R(x, y) recursive. We set

g(x, t) = µyR(x, y),

so that g is a recursive partial function; if ĝ is a code of g(x), then

P (x) =⇒ (∃y)R(x, y)
=⇒ (∀t)[{ĝ}(x, t)↓ ]
=⇒ (∀t)[{S1

1(ĝ, x)}(t)↓ ],

Let me know of errors or better solutions.
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so that if we define

f(x) = S1
1(ĝ, x),

then

P (x)=⇒Wf(x) = N=⇒ f(e) ∈ A.

On the other hand,

f(x) ∈ A =⇒ (∃t)g(x, t)↓ =⇒ (∃y)R(x, y)=⇒P (x),

so that P (x) ⇐⇒ f(x) ∈ A.

x5A.6. Classify in the arithmetical hierarchy the set of codes of bounded
recursive partial functions,

B = {e | for some w and all x, ϕe(x)↓ =⇒ϕe(x) ≤ w}.
Solution. For the easy direction, we compute:

(∃w)(∀x)[ϕe↓ =⇒ϕe(x) ≤ w] ⇐⇒ (∃w)(∀x)[(∃y)T1(e, x, y) =⇒U(y) ≤ w]
⇐⇒ (∃w)(∀x)[(∀y)¬T1(e, x, y) ∨ U(y) ≤ w],

and the relation on the right is obviously Σ0
2.

To show that this set is Σ0
2-complete, let

P (x) ⇐⇒ (∃w)(∀z)R(x, w, z)

where the relation R(x,w, z) is recursive, we set

g(x, t) =

{
(µw ≤ t)(∀z ≤ t)R(x,w, z) if (∃w ≤ t)(∀z ≤ t)R(x,w, z),
t otherwise,

and finally
f(x) = S1

1(ĝ, x), where g(x, t) = ϕ
ĝ
(x, t).

It is enough to show that

(∃w)(∀z)R(x,w, z) ⇐⇒ ϕf(x) is bounded,

and to this end we will use the obvious (from the definitions) facts that for every
x, ϕf(x) is total, and

t < s =⇒ g(x, t) ≤ g(x, s);
from these it follows that what we need to prove is the simple equivalence

(∃w)(∀z)R(x,w, z) ⇐⇒ (∃w)(∃t)(∀s ≥ t)[g(x, s) = w],

which is now (almost) obvious, by the definition of g(x, t).

x5A.7. Let A be any recursive set such that A ( N; classify in the arith-
metical hierarchy the set

B = {e | We ⊆ A}.
Solution. For the upper bound, we compute:

e ∈ B ⇐⇒ (∀x)[x ∈ We =⇒x ∈ A]
⇐⇒ (∀x)[x /∈ We ∨ x ∈ A],

so that B is Π0
1.

Let me know of errors or better solutions.
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For the lower bound, let

x ∈ C ⇐⇒ (∀u)R(x, u)

be any Π0
1 set (with the relation R(x, u) recursive), let x0 /∈ A (that exists from

the hypothesis), and set

g(x, v) = µu[v = x0 & ¬R(x, u)].

It follows that for all x, v,

g(x, v)↓ ⇐⇒ v = x0 & (∃u)¬R(x, u)
⇐⇒ v = x0 & x /∈ C,

so that with ĝ a code of g and f(x) = S1
1(ĝ, x) ,

x ∈ C =⇒ Wf(x) = ∅=⇒Wf(x) ⊆ A,

x /∈ C =⇒ Wf(x) = {x0} 6⊆ A,

in other words,

x ∈ C ⇐⇒ Wf(x) ⊆ A.

x5A.9. Prove that the graph

Gf (~x,w) ⇐⇒ f(~x) = w

of a total function f(~x) is Σ0
k if and only if it is ∆0

k.
Solution. Since f is total, we have the equivalence

¬[f(~x) = w] ⇐⇒ (∃v)[w 6= v & f(~x) = v],

which shows that if the relation Gf is Σ0
k, then its negation is also Σ0

k.

x5A.10. A total function f(~x) is limit recursive if there exists a recursive,
total function g(m,~x) such that

f(~x) = limm→∞ g(m,~x),

where the limit of a sequence of natural numbers is defined as usually,

limm→∞ am = w ⇐⇒ (∃k)(∀m ≥ k)[am = w].

Prove that a total f(~x) is limit recursive if and only if the graph Gf of f(~x)
is ∆0

2.
Solution. If f is limit recursive, then

f(~x) = w ⇐⇒ (∃n)(∀m)[m ≥ n =⇒ g(m,~x) = w],

so that the graph Gf is Σ0
2, so also ∆0

2, by the preceding problem. For the
converse direction, let

f(~x) = w ⇐⇒ (∃u)(∀v)P (~x, u, v, w)

with some recursive relation P (~x, u, v, w). We set

h(m,~x) = (µz ≤ m)[z = 〈(z)0, (z)1〉 & (∀v ≤ m)P (~x, (z)0, v, (z)1)]

and we Prove that

(*) [f(~x) = w & z = µt[t = 〈(t)0, w〉 & (∀v)P (~x, (t)0, v, w)]

Let me know of errors or better solutions.
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=⇒ lim
n→∞

h(n, ~x) = z;

this will complete the proof, as it implies that

f(~x) = lim
n→∞

(h(n, ~x))1.

Let w and z be as in the hypothesis of (*), so that

y = 〈(y)0, (y)1〉 < z =⇒ (∃v)¬P (~x, (y)0, v, (y)1),

and for every y < z, let vy be such that

¬P (~x, (y)0, vy, (y)1);

and, finally, let
n > z, v0, . . . , vz−1.

Since z < n, if h(n, ~x) = y for some y 6= z, we must have y < z; but then vy < n,
so (∃v ≤ n)¬P (~x, (y)0, v, (y)1) which is not compatible with h(n, ~x) = y, and so
completes the proof.

Let me know of errors or better solutions.


