Math 114C, Winter 2019, Solutions to HW \#8

x4D.3. Are they true or not-and you must prove your answers:
(1) There is a recursive, partial function $f(e)$, such that for every e, (*) if W_{e} is infinite, then $f(e) \downarrow \& f(e) \in W_{e} \& f(e)>e$.
(2) There exists a total recursive function $f(e)$ which satisfies $(* *)$.

Solution. (1) The relation

$$
R(e, y) \Longleftrightarrow y \in W_{e} \& y>e
$$

is Σ_{1}^{0}, and therefore, by the Σ_{1}^{0}-Selection Lemma there exists a recursive partial function $f(e)$ such that for every e,
$(* *) \quad(\exists y)\left[y \in W_{e} \& y>e\right] \Longrightarrow f(e) \downarrow \& f(e) \in W_{e} \& e<f(e)$;
this $f(e)$ is the required one, since the hypothesis of the implication $(* *)$ is satisfied by any e such that W_{e} is infinite.
(2) We show that this does not hold, by contradiction. Assuming that it holds with some total $f(e)$, we choose by the 2nd Recursion Theorem some e such that

$$
\varphi_{e}(x)= \begin{cases}1, & \text { if } f(e)<x \\ \uparrow, & \text { otherwise }\end{cases}
$$

and we notice that the set $W_{e}=\{x \mid x>f(e)\}$ is infinite, so that from the properties of f which we have assumed it follows that $f(e) \in W_{e}$, which implies together with the characteristic property of φ_{e} that $f(e)<f(e)$, which is absurd.
x4D.8. Let $g(e)$ be a recursive, partial function such that for all e,

$$
\text { if } W_{e}=\mathbb{N} \text {, then } g(e) \downarrow \text {; }
$$

prove that there exist numbers m and k, such that

$$
W_{m}=\{0,1, \ldots, k\} \text { and } g(m) \downarrow
$$

Hint: Apply the 2nd Recursion Theorem to the partial function

$$
f(m, x)= \begin{cases}1, & \text { if }(\forall y \leq x) \neg T_{1}(\widehat{g}, m, y) \\ \uparrow, & \text { otherwise }\end{cases}
$$

where $g(e)=\{\widehat{g}\}(e)$.
Solution. Following the hint, let m from the 2nd Recursion Theorem such that

$$
\varphi_{m}(x)= \begin{cases}1, & \text { if }(\forall y \leq x) \neg T_{1}(\widehat{g}, m, y) \\ \uparrow, & \text { otherwise }\end{cases}
$$

from which follows that

$$
W_{m}=\left\{x \mid(\forall y \leq x) \neg T_{1}(\widehat{g}, m, y)\right\} .
$$

If $g(m) \uparrow$, then for every x, we have that $(\forall y \leq x) \neg T_{1}(\widehat{g}, m, y)$ holds, so that $W_{m}=\mathbb{N}$ and $g(m) \downarrow$; it follows that $g(m) \downarrow$, and the required conclusion holds with $k=\mu y T_{1}(\widehat{g}, m, y) \doteq 1$. (Here we use the property $\neg T_{1}(\widehat{g}, m, 0)$ of the basic
relation of Kleene, which could be avoided with some more careful formulation of the problem.)
x5A.4. Classify in the arithmetical hierarchy the relation

$$
\begin{aligned}
Q(e, m) & \Longleftrightarrow \varphi_{e} \sqsubseteq \varphi_{m} \\
& \Longleftrightarrow(\forall x)\left(\varphi_{e}(x) \downarrow \Longrightarrow\left[\varphi_{m}(x) \downarrow \& \varphi_{e}(x)=\varphi_{m}(x)\right]\right) .
\end{aligned}
$$

Solution. $Q(e, m)$ is in the class $\Pi_{2}^{0} \backslash \Sigma_{2}^{0}$. To show that it is Π_{2}^{0}, we compute:

$$
Q(e, m) \Longleftrightarrow(\forall x)(\forall w)\left[\varphi_{e}(x)=w \Longrightarrow \varphi_{m}(x)=w\right]
$$

which shows that $Q(e, m)$ is Π_{2}^{0}, since the relation

$$
\varphi_{z}(x)=w \Longleftrightarrow(\exists y)\left[T_{1}(z, x, y) \& U(y)=w\right]
$$

is Σ_{1}^{0}. The basic idea for the computation of the lower bound is the reduction

$$
\varphi_{e} \text { is total } \Longleftrightarrow(\lambda t) 0 \sqsubseteq(\lambda t)\left[0 \cdot \varphi_{m}(t)\right],
$$

where $(\lambda t)[\ldots t \ldots]$ is the partial function with value $\ldots t \ldots$ for each t. In detail, let e_{0} be a code of the constant function C_{0}^{1},

$$
\varphi_{e_{0}}(t)=0,
$$

and let $g(e)$ be a recursive function such that for every e,

$$
\varphi_{g(e)}(t)=0 \cdot \varphi_{e}(t) ;
$$

it follows that

$$
\varphi_{e} \text { is total } \Longleftrightarrow Q\left(e_{0}, g(e)\right),
$$

and so the set

$$
F=\left\{e \mid \varphi_{e} \text { is total }\right\}
$$

would be Σ_{2}^{0}, if Q were Σ_{2}^{0}, while F is Π_{2}^{0}-complete, 5A.6.
x5A.5. Classify in the arithmetical hierarchy the set

$$
A=\left\{e \mid W_{e} \text { has at least } e \text { members }\right\} .
$$

Solution. A is recursively enumerable, i.e., Σ_{1}^{0}, with the computation

$$
\begin{aligned}
& e \in A \Longleftrightarrow(\exists u)\left[(\forall i<e)(\forall j<e)\left[i \neq j \Longrightarrow(u)_{i} \neq(u)_{j}\right]\right. \\
&\left.\&(\forall i<e)]\left[(u)_{i} \in W_{e}\right]\right] .
\end{aligned}
$$

It is not Π_{1}^{0}, because it is Σ_{1}^{0}-complete, as follows.
Let

$$
P(x) \Longleftrightarrow(\exists y) R(x, y)
$$

be a Σ_{1}^{0} relation, with $R(x, y)$ recursive. We set

$$
g(x, t)=\mu y R(x, y)
$$

so that g is a recursive partial function; if \hat{g} is a code of $g(x)$, then

$$
\begin{aligned}
P(x) & \Longrightarrow(\exists y) R(x, y) \\
& \Longrightarrow(\forall t)[\{\hat{g}\}(x, t) \downarrow] \\
& \Longrightarrow(\forall t)\left[\left\{S_{1}^{1}(\hat{g}, x)\right\}(t) \downarrow\right]
\end{aligned}
$$

so that if we define

$$
f(x)=S_{1}^{1}(\hat{g}, x),
$$

then

$$
P(x) \Longrightarrow W_{f(x)}=\mathbb{N} \Longrightarrow f(e) \in A
$$

On the other hand,

$$
f(x) \in A \Longrightarrow(\exists t) g(x, t) \downarrow \Longrightarrow(\exists y) R(x, y) \Longrightarrow P(x)
$$

so that $P(x) \Longleftrightarrow f(x) \in A$.
x5A.6. Classify in the arithmetical hierarchy the set of codes of bounded recursive partial functions,

$$
B=\left\{e \mid \text { for some } w \text { and all } x, \varphi_{e}(x) \downarrow \Longrightarrow \varphi_{e}(x) \leq w\right\}
$$

Solution. For the easy direction, we compute:

$$
\begin{aligned}
(\exists w)(\forall x)\left[\varphi_{e} \downarrow \Longrightarrow \varphi_{e}(x) \leq w\right] & \Longleftrightarrow(\exists w)(\forall x)\left[(\exists y) T_{1}(e, x, y) \Longrightarrow U(y) \leq w\right] \\
& \Longleftrightarrow(\exists w)(\forall x)\left[(\forall y) \neg T_{1}(e, x, y) \vee U(y) \leq w\right]
\end{aligned}
$$

and the relation on the right is obviously Σ_{2}^{0}.
To show that this set is Σ_{2}^{0}-complete, let

$$
P(x) \Longleftrightarrow(\exists w)(\forall z) R(x, w, z)
$$

where the relation $R(x, w, z)$ is recursive, we set

$$
g(x, t)= \begin{cases}(\mu w \leq t)(\forall z \leq t) R(x, w, z) & \text { if }(\exists w \leq t)(\forall z \leq t) R(x, w, z) \\ t & \text { otherwise }\end{cases}
$$

and finally

$$
f(x)=S_{1}^{1}(\widehat{g}, x), \quad \text { where } g(x, t)=\varphi_{\widehat{g}}(x, t)
$$

It is enough to show that

$$
(\exists w)(\forall z) R(x, w, z) \Longleftrightarrow \varphi_{f(x)} \text { is bounded, }
$$

and to this end we will use the obvious (from the definitions) facts that for every $x, \varphi_{f(x)}$ is total, and

$$
t<s \Longrightarrow g(x, t) \leq g(x, s)
$$

from these it follows that what we need to prove is the simple equivalence

$$
(\exists w)(\forall z) R(x, w, z) \Longleftrightarrow(\exists w)(\exists t)(\forall s \geq t)[g(x, s)=w],
$$

which is now (almost) obvious, by the definition of $g(x, t)$.
x5A.7. Let A be any recursive set such that $A \subsetneq \mathbb{N}$; classify in the arithmetical hierarchy the set

$$
B=\left\{e \mid W_{e} \subseteq A\right\}
$$

Solution. For the upper bound, we compute:

$$
\begin{aligned}
e \in B & \Longleftrightarrow(\forall x)\left[x \in W_{e} \Longrightarrow x \in A\right] \\
& \Longleftrightarrow(\forall x)\left[x \notin W_{e} \vee x \in A\right],
\end{aligned}
$$

so that B is Π_{1}^{0}.

Let me know of errors or better solutions.

For the lower bound, let

$$
x \in C \Longleftrightarrow(\forall u) R(x, u)
$$

be any Π_{1}^{0} set (with the relation $R(x, u)$ recursive), let $x_{0} \notin A$ (that exists from the hypothesis), and set

$$
g(x, v)=\mu u\left[v=x_{0} \& \neg R(x, u)\right] .
$$

It follows that for all x, v,

$$
\begin{aligned}
g(x, v) \downarrow & \Longleftrightarrow v=x_{0} \&(\exists u) \neg R(x, u) \\
& \Longleftrightarrow v=x_{0} \& x \notin C,
\end{aligned}
$$

so that with \hat{g} a code of g and $f(x)=S_{1}^{1}(\hat{g}, x)$,

$$
\begin{aligned}
& x \in C \Longrightarrow W_{f(x)}=\emptyset \Longrightarrow W_{f(x)} \subseteq A, \\
& x \notin C \Longrightarrow W_{f(x)}=\left\{x_{0}\right\} \nsubseteq A,
\end{aligned}
$$

in other words,

$$
x \in C \Longleftrightarrow W_{f(x)} \subseteq A
$$

x5A.9. Prove that the graph

$$
G_{f}(\vec{x}, w) \Longleftrightarrow f(\vec{x})=w
$$

of a total function $f(\vec{x})$ is Σ_{k}^{0} if and only if it is Δ_{k}^{0}.
Solution. Since f is total, we have the equivalence

$$
\neg[f(\vec{x})=w] \Longleftrightarrow(\exists v)[w \neq v \& f(\vec{x})=v],
$$

which shows that if the relation G_{f} is Σ_{k}^{0}, then its negation is also Σ_{k}^{0}.
x5A.10. A total function $f(\vec{x})$ is limit recursive if there exists a recursive, total function $g(m, \vec{x})$ such that

$$
f(\vec{x})=\lim _{m \rightarrow \infty} g(m, \vec{x}),
$$

where the limit of a sequence of natural numbers is defined as usually,

$$
\lim _{m \rightarrow \infty} a_{m}=w \Longleftrightarrow(\exists k)(\forall m \geq k)\left[a_{m}=w\right]
$$

Prove that a total $f(\vec{x})$ is limit recursive if and only if the graph G_{f} of $f(\vec{x})$ is Δ_{2}^{0}.

Solution. If f is limit recursive, then

$$
f(\vec{x})=w \Longleftrightarrow(\exists n)(\forall m)[m \geq n \Longrightarrow g(m, \vec{x})=w]
$$

so that the graph G_{f} is Σ_{2}^{0}, so also Δ_{2}^{0}, by the preceding problem. For the converse direction, let

$$
f(\vec{x})=w \Longleftrightarrow(\exists u)(\forall v) P(\vec{x}, u, v, w)
$$

with some recursive relation $P(\vec{x}, u, v, w)$. We set

$$
h(m, \vec{x})=(\mu z \leq m)\left[z=\left\langle(z)_{0},(z)_{1}\right\rangle \&(\forall v \leq m) P\left(\vec{x},(z)_{0}, v,(z)_{1}\right)\right]
$$

and we Prove that

$$
\begin{equation*}
\left[f(\vec{x})=w \& z=\mu t\left[t=\left\langle(t)_{0}, w\right\rangle \&(\forall v) P\left(\vec{x},(t)_{0}, v, w\right)\right]\right. \tag{*}
\end{equation*}
$$

$$
\Longrightarrow \lim _{n \rightarrow \infty} h(n, \vec{x})=z ;
$$

this will complete the proof, as it implies that

$$
f(\vec{x})=\lim _{n \rightarrow \infty}(h(n, \vec{x}))_{1} .
$$

Let w and z be as in the hypothesis of $\left(^{*}\right)$, so that

$$
y=\left\langle(y)_{0},(y)_{1}\right\rangle<z \Longrightarrow(\exists v) \neg P\left(\vec{x},(y)_{0}, v,(y)_{1}\right),
$$

and for every $y<z$, let v_{y} be such that

$$
\neg P\left(\vec{x},(y)_{0}, v_{y},(y)_{1}\right) ;
$$

and, finally, let

$$
n>z, v_{0}, \ldots, v_{z-1} .
$$

Since $z<n$, if $h(n, \vec{x})=y$ for some $y \neq z$, we must have $y<z$; but then $v_{y}<n$, so $(\exists v \leq n) \neg P\left(\vec{x},(y)_{0}, v,(y)_{1}\right)$ which is not compatible with $h(n, \vec{x})=y$, and so completes the proof.

