x4D.3. Are they true or not—and you must prove your answers:

(1) There is a recursive, partial function f(e), such that for every e,

(*) if W_e is infinite, then $f(e) \downarrow \& f(e) \in W_e \& f(e) > e$.

(2) There exists a *total* recursive function f(e) which satisfies (**). Solution. (1) The relation

$$R(e, y) \iff y \in W_e \& y > e$$

is Σ_1^0 , and therefore, by the Σ_1^0 -Selection Lemma there exists a recursive partial function f(e) such that for every e,

$$(**) \qquad (\exists y)[y \in W_e \And y > e] \Longrightarrow f(e) \downarrow \And f(e) \in W_e \And e < f(e);$$

this f(e) is the required one, since the hypothesis of the implication (**) is satisfied by any e such that W_e is infinite.

(2) We show that this does not hold, by contradiction. Assuming that it holds with some total f(e), we choose by the 2nd Recursion Theorem some e such that

$$\varphi_e(x) = \begin{cases} 1, & \text{if } f(e) < x, \\ \uparrow, & \text{otherwise,} \end{cases}$$

and we notice that the set $W_e = \{x \mid x > f(e)\}$ is infinite, so that from the properties of f which we have assumed it follows that $f(e) \in W_e$, which implies together with the characteristic property of φ_e that f(e) < f(e), which is absurd.

x4D.8. Let g(e) be a recursive, partial function such that for all e,

if $W_e = \mathbb{N}$, then $g(e) \downarrow$;

prove that there exist numbers m and k, such that

$$W_m = \{0, 1, \ldots, k\}$$
 and $g(m) \downarrow$.

HINT: Apply the 2nd Recursion Theorem to the partial function

$$f(m, x) = \begin{cases} 1, & \text{if } (\forall y \le x) \neg T_1(\widehat{g}, m, y), \\ \uparrow, & \text{otherwise,} \end{cases}$$

where $g(e) = \{\widehat{g}\}(e)$.

Solution. Following the hint, let m from the 2nd Recursion Theorem such that

$$\varphi_m(x) = \begin{cases} 1, & \text{if } (\forall y \le x) \neg T_1(\widehat{g}, m, y), \\ \uparrow, & \text{otherwise,} \end{cases}$$

from which follows that

$$W_m = \{ x \mid (\forall y \le x) \neg T_1(\widehat{g}, m, y) \}.$$

If $g(m) \uparrow$, then for every x, we have that $(\forall y \leq x) \neg T_1(\widehat{g}, m, y)$ holds, so that $W_m = \mathbb{N}$ and $g(m) \downarrow$; it follows that $g(m) \downarrow$, and the required conclusion holds with $k = \mu y T_1(\widehat{g}, m, y) \doteq 1$. (Here we use the property $\neg T_1(\widehat{g}, m, 0)$ of the basic

relation of Kleene, which could be avoided with some more careful formulation of the problem.)

x5A.4. Classify in the arithmetical hierarchy the relation

$$Q(e,m) \iff \varphi_e \sqsubseteq \varphi_m$$
$$\iff (\forall x) \Big(\varphi_e(x) \downarrow \implies [\varphi_m(x) \downarrow \& \varphi_e(x) = \varphi_m(x)] \Big).$$

Solution. Q(e,m) is in the class $\Pi_2^0 \setminus \Sigma_2^0$. To show that it is Π_2^0 , we compute:

$$Q(e,m) \iff (\forall x)(\forall w)[\varphi_e(x) = w \Longrightarrow \varphi_m(x) = w],$$

which shows that Q(e, m) is Π_2^0 , since the relation

$$\varphi_z(x) = w \iff (\exists y)[T_1(z, x, y) \& U(y) = w]$$

is Σ_1^0 . The basic idea for the computation of the lower bound is the reduction

$$\varphi_e \text{ is total } \iff (\lambda t) 0 \sqsubseteq (\lambda t) [0 \cdot \varphi_m(t)],$$

where $(\lambda t)[\ldots t \ldots]$ is the partial function with value $\ldots t \ldots$ for each t. In detail, let e_0 be a code of the constant function C_0^1 ,

$$\varphi_{e_0}(t) = 0$$

and let g(e) be a recursive function such that for every e,

$$\varphi_{g(e)}(t) = 0 \cdot \varphi_e(t);$$

it follows that

$$\varphi_e$$
 is total $\iff Q(e_0, g(e)),$

and so the set

$$F = \{ e \mid \varphi_e \text{ is total} \}$$

would be Σ_2^0 , if Q were Σ_2^0 , while F is Π_2^0 -complete, 5A.6.

x5A.5. Classify in the arithmetical hierarchy the set

 $A = \{ e \mid W_e \text{ has at least } e \text{ members} \}.$

Solution. A is recursively enumerable, i.e., Σ_1^0 , with the computation

$$e \in A \iff (\exists u)[(\forall i < e)(\forall j < e)[i \neq j \Longrightarrow (u)_i \neq (u)_j] \\ \& \ (\forall i < e)][(u)_i \in W_e]].$$

It is not Π_1^0 , because it is Σ_1^0 -complete, as follows. Let

Jet

$$P(x) \iff (\exists y)R(x,y)$$

be a Σ_1^0 relation, with R(x, y) recursive. We set

$$g(x,t) = \mu y R(x,y),$$

so that g is a recursive partial function; if \hat{g} is a code of g(x), then

$$P(x) \implies (\exists y) R(x, y)$$
$$\implies (\forall t) [\{\hat{g}\}(x, t) \downarrow]$$
$$\implies (\forall t) [\{S_1^1(\hat{g}, x)\}(t) \downarrow],$$

so that if we define

$$f(x) = S_1^1(\hat{g}, x),$$

then

$$P(x) \Longrightarrow W_{f(x)} = \mathbb{N} \Longrightarrow f(e) \in A.$$

On the other hand,

$$f(x)\in A \mathop{\Longrightarrow} (\exists t)g(x,t)\!\downarrow \implies (\exists y)R(x,y) \mathop{\Longrightarrow} P(x),$$

so that $P(x) \iff f(x) \in A$.

x5A.6. Classify in the arithmetical hierarchy the set of codes of bounded recursive partial functions,

$$B = \{ e \mid \text{for some } w \text{ and all } x, \ \varphi_e(x) \downarrow \implies \varphi_e(x) \le w \}.$$

Solution. For the easy direction, we compute:

$$(\exists w)(\forall x)[\varphi_e \downarrow \implies \varphi_e(x) \le w] \iff (\exists w)(\forall x)[(\exists y)T_1(e, x, y) \implies U(y) \le w]$$
$$\iff (\exists w)(\forall x)[(\forall y)\neg T_1(e, x, y) \lor U(y) \le w],$$

and the relation on the right is obviously Σ_2^0 .

To show that this set is Σ_2^0 -complete, let

$$P(x) \iff (\exists w)(\forall z)R(x,w,z)$$

where the relation R(x, w, z) is recursive, we set

$$g(x,t) = \begin{cases} (\mu w \le t)(\forall z \le t)R(x,w,z) & \text{if } (\exists w \le t)(\forall z \le t)R(x,w,z), \\ t & \text{otherwise,} \end{cases}$$

and finally

$$f(x) = S_1^1(\widehat{g}, x), \text{ where } g(x, t) = \varphi_{\widehat{g}}(x, t).$$

It is enough to show that

$$(\exists w)(\forall z)R(x,w,z) \iff \varphi_{f(x)}$$
 is bounded,

and to this end we will use the obvious (from the definitions) facts that for every $x, \varphi_{f(x)}$ is total, and

$$t < s \Longrightarrow g(x, t) \le g(x, s);$$

from these it follows that what we need to prove is the simple equivalence

$$(\exists w)(\forall z)R(x,w,z) \iff (\exists w)(\exists t)(\forall s \ge t)[g(x,s) = w],$$

which is now (almost) obvious, by the definition of g(x, t).

x5A.7. Let A be any recursive set such that $A \subsetneq \mathbb{N}$; classify in the arithmetical hierarchy the set

$$B = \{ e \mid W_e \subseteq A \}.$$

Solution. For the upper bound, we compute:

$$e \in B \iff (\forall x)[x \in W_e \Longrightarrow x \in A]$$
$$\iff (\forall x)[x \notin W_e \lor x \in A],$$

so that B is Π_1^0 .

For the lower bound, let

$$x \in C \iff (\forall u) R(x, u)$$

be any Π_1^0 set (with the relation R(x, u) recursive), let $x_0 \notin A$ (that exists from the hypothesis), and set

$$g(x,v) = \mu u[v = x_0 \& \neg R(x,u)]$$

It follows that for all x, v,

$$g(x,v) \downarrow \iff v = x_0 \& (\exists u) \neg R(x,u)$$
$$\iff v = x_0 \& x \notin C.$$

so that with \hat{g} a code of g and $f(x) = S_1^1(\hat{g}, x)$,

$$\begin{aligned} x \in C \implies W_{f(x)} &= \emptyset \implies W_{f(x)} \subseteq A, \\ x \notin C \implies W_{f(x)} = \{x_0\} \not\subseteq A, \end{aligned}$$

in other words,

$$x \in C \iff W_{f(x)} \subseteq A.$$

x5A.9. Prove that the graph

 $G_f(\vec{x}, w) \iff f(\vec{x}) = w$

of a *total* function $f(\vec{x})$ is Σ_k^0 if and only if it is Δ_k^0 . Solution. Since f is total, we have the equivalence

$$\neg [f(\vec{x}) = w] \iff (\exists v) [w \neq v \& f(\vec{x}) = v],$$

which shows that if the relation G_f is Σ_k^0 , then its negation is also Σ_k^0 .

x5A.10. A total function $f(\vec{x})$ is *limit recursive* if there exists a recursive, total function $g(m, \vec{x})$ such that

$$f(\vec{x}) = \lim_{m \to \infty} g(m, \vec{x}),$$

where the limit of a sequence of natural numbers is defined as usually,

 $\lim_{m \to \infty} a_m = w \iff (\exists k) (\forall m \ge k) [a_m = w].$

Prove that a total $f(\vec{x})$ is limit recursive if and only if the graph G_f of $f(\vec{x})$ is Δ_2^0 .

Solution. If f is limit recursive, then

$$f(\vec{x}) = w \iff (\exists n)(\forall m)[m \ge n \Longrightarrow g(m, \vec{x}) = w],$$

so that the graph G_f is Σ_2^0 , so also Δ_2^0 , by the preceding problem. For the converse direction, let

$$f(\vec{x}) = w \iff (\exists u) (\forall v) P(\vec{x}, u, v, w)$$

with some recursive relation $P(\vec{x}, u, v, w)$. We set

$$h(m, \vec{x}) = (\mu z \le m) [z = \langle (z)_0, (z)_1 \rangle \& (\forall v \le m) P(\vec{x}, (z)_0, v, (z)_1)]$$

and we Prove that

(*)
$$[f(\vec{x}) = w \& z = \mu t[t = \langle (t)_0, w \rangle \& (\forall v) P(\vec{x}, (t)_0, v, w)]$$

 $\implies \lim_{n \to \infty} h(n, \vec{x}) = z;$

this will complete the proof, as it implies that

$$f(\vec{x}) = \lim_{n \to \infty} (h(n, \vec{x}))_1.$$

Let w and z be as in the hypothesis of (*), so that

$$y = \langle (y)_0, (y)_1 \rangle < z \Longrightarrow (\exists v) \neg P(\vec{x}, (y)_0, v, (y)_1),$$

and for every y < z, let v_y be such that

$$\neg P(\vec{x}, (y)_0, v_y, (y)_1);$$

and, finally, let

$$n > z, v_0, \ldots, v_{z-1}.$$

Since z < n, if $h(n, \vec{x}) = y$ for some $y \neq z$, we must have y < z; but then $v_y < n$, so $(\exists v \leq n) \neg P(\vec{x}, (y)_0, v, (y)_1)$ which is not compatible with $h(n, \vec{x}) = y$, and so completes the proof.