Math 114C, Winter 2019, Solutions to HW \#7

x4C.1. Prove that if A is creative, B is r.e. and $A \leq_{1} B$, then B is also creative.

Solution. The hypothesis gives us one-to-one, recursive functions f and p such that

$$
\begin{aligned}
x \in A & \Longleftrightarrow f(x) \in B, \\
W_{e} \subseteq B^{c} & \Longleftrightarrow p(e) \in B^{c} \backslash W_{e} .
\end{aligned}
$$

From the figure it is obvious that the productive function for B^{c} which we need

is the function

$$
p_{B}(e)=f(p(g(e))),
$$

where g has the property that

$$
W_{g(e)}=f^{-1}\left[W_{e}\right] ;
$$

and a g with this property is the function $g(e)=S_{1}^{1}(\widehat{h}, e)$, where \widehat{h} is a code of $h(e, x)=\{e\}(f(x))$.
x4C.2. Prove that if A is simple and B is r.e., infinite, then the intersection $A \cap B$ is infinite.

Solution. If the intersection $A \cap B$ were finite, then there would exist some k such that $x \geq k \Longrightarrow x \notin(A \cap B)$; and in this case, the infinite, r.e. set $\{x \in B \mid$ $x \geq k\}$ would be a subset of the complement A^{c} of A, which is absurd, since A is simple.
x4C.3. Prove that if A and B are simple sets, then their intersection $A \cap B$ is also simple.

Solution. The set $A \cap B$ is r.e., and its complement is infinite (since it contains the complement of A), so that it is enough to show that

$$
W_{e} \text { infinite } \Longrightarrow W_{e} \cap A \cap B \neq \emptyset
$$

Towards a contradiction, let W_{e} be infinite such that

$$
W_{e} \subseteq(A \cap B)^{c}=A^{c} \cup B^{c}
$$

and let

$$
C=W_{e} \cap B
$$

C is r.e., and

$$
\begin{aligned}
t \in C & \Longrightarrow t \in W_{e} \& t \in B \\
& \Longrightarrow\left[t \in A^{c} \vee t \in B^{c}\right] \& t \in B \\
& \Longrightarrow t \in A^{c},
\end{aligned}
$$

i.e., $C \subseteq A^{c}$ and so (since A is simple), C is finite. It follows that

$$
W_{e} \cap B^{c}=W_{e} \backslash C
$$

is infinite, r.e. (as the difference of an infinite, r.e. and a finite set) and $W_{e} \cap B^{c} \subseteq$ B^{c}, which is absurd, since B is simple.
x4D.1. Prove that for some $z, W_{z}=\{z, z+1, \ldots\}=\{x \mid x \geq z\}$.
Solution. By the 2nd Recursion Theorem, there exists some z such that

$$
\varphi_{z}(x)= \begin{cases}1, & \text { if } z \leq t \\ \uparrow, & \text { otherwise }\end{cases}
$$

and obviously,

$$
W_{z}=\left\{t \mid \varphi_{z}(t) \downarrow\right\}=\{z, z+1, \ldots\} .
$$

x4D.2. Prove that for some $z, \varphi_{z}(t)=t \cdot z$.
Solution. The function

$$
f(z, t)=z \cdot t
$$

is recursive, and so there exists some z such that

$$
\varphi_{z}(t)=f(z, t)=z \cdot t
$$

x5A.1. Classify in the arithmetical hierarchy the set

$$
A=\left\{e \mid W_{e} \subseteq\{0,1\}\right\}
$$

Solution. A is Π_{1}^{0}-complete, so in the class $\Pi_{1}^{0} \backslash \Sigma_{1}^{0}$. Proof:

$$
x \in A \Longleftrightarrow(\forall y)\left[y \in W_{e} \Longrightarrow y \leq 1\right]
$$

so A is Π_{1}^{0}. To show the Π_{1}^{0}-completeness, we define for each recursive relation $P(x, y)$ the partial function

$$
g(x, t)=\mu y[\neg P(x, y)],
$$

with values depending only on x, so that if \widehat{g} is a code of it and

$$
f(x)=S_{1}^{1}(\widehat{g}, x)
$$

then

$$
\begin{aligned}
(\forall y) P(x, y) & \Longrightarrow(\forall t) g(x, t) \uparrow \\
\neg(\forall y) P(x, y) & \Longrightarrow(\forall t) g(x, t) \downarrow
\end{aligned} W_{f(x)}=\emptyset, W_{f(x)}=\mathbb{N} ;
$$

more specifically,

$$
(\forall y) P(x, y) \Longleftrightarrow W_{f(x)} \subseteq\{0,1\} \Longleftrightarrow f(x) \in A,
$$

and A is Π_{1}^{0}-complete.
x5A.2. Classify in the arithmetical hierarchy the set

$$
B=\left\{e \mid W_{e} \text { is finite and non-empty }\right\} .
$$

Solution. The proof is exactly as for (2) of 5 A. 6 , with a small change in the definition of the function g,

$$
g(x, u)=\mu y\left[u=0 \vee(\forall i \leq u) \neg Q\left(x, i,(y)_{i}\right)\right] .
$$

x5A.3. Classify in the arithmetical hierarchy the set

$$
C=\{x \mid \text { there exist infinitely many twin primes } \geq x\}
$$

where y is a twin prime number if both y and $y+2$ are prime.
Solution. If there exist infinitely many twin primes, then $C=\mathbb{N}$; and if not, then $C=\emptyset$, so that whatever the correct answer to the classical, open problem, C is recursive.

