x4B.8. Prove that the set

$$
K_{0}=\left\{e \mid(\exists y)\left[T_{1}\left((e)_{0}, e, y\right) \&(\forall z \leq y) \neg T_{1}\left((e)_{1}, e, z\right)\right]\right\}
$$

is r.e.-complete.
Solution. If we define the partial function

$$
g(x, t)=(\mu y) T_{1}(x, x, y)
$$

with code \widehat{g} so that

$$
\{\widehat{g}\}(x, t)=\left\{S_{1}^{1}(\widehat{g}, x)\right\}(t)=g(x, t),
$$

then, by the definitions, with $f(x)=S_{1}^{1}(\widehat{g}, x)$,

$$
\begin{aligned}
& x \in K \Longrightarrow W_{f(x)}=\mathbb{N} \\
& x \notin K \Longrightarrow W_{f(x)}=\emptyset
\end{aligned}
$$

We set

$$
h(x)=\left\langle f(x), e^{*}\right\rangle, \quad \text { where } W_{e^{*}}=\emptyset
$$

and we compute,

$$
\begin{aligned}
h(x) \in K_{0} & \Longrightarrow(\exists y)\left[T_{1}(f(x), h(x), y) \&(\forall z \leq y) \neg T_{1}\left(e^{*}, h(x), z\right)\right] \\
& \Longrightarrow h(x) \in W_{f(x)} \\
& \Longrightarrow W_{f(x)} \neq \emptyset \\
& \Longrightarrow x \in K
\end{aligned}
$$

and, in the opposite case,

$$
\begin{aligned}
h(x) \notin K_{0} & \Longrightarrow(\forall y)\left[T_{1}(f(x), h(x), y) \Longrightarrow(\exists z \leq y) T_{1}\left(e^{*}, h(x), z\right)\right] \\
& \Longrightarrow h(x) \notin W_{f(x)} \quad \text { because } W_{e^{*}}=\emptyset \\
& \Longrightarrow W_{f(x)} \neq \mathbb{N} \\
& \Longrightarrow x \notin K
\end{aligned}
$$

so $K \leq_{1} K_{0}$ and K_{0} is complete.
x4B.9. (The reduction property for the class of r.e. sets). Prove that if A and B are r.e., then there exist r.e. sets A_{1}, B_{1}, such that

$$
A_{1} \subseteq A, \quad B_{1} \subseteq B, \quad A_{1} \cup B_{1}=A \cup B, \quad A_{1} \cap B_{1}=\emptyset
$$

$$
A_{1}=(A \backslash B) \cup C, \quad B_{1}=(B \backslash A) \cup D
$$

Solution. If $x \in A \Longleftrightarrow(\exists y) P(x, y)$ and $x \in B \Longleftrightarrow(\exists z) Q(x, z)$ for suitable recursive relations $P(x, y)$ and $Q(x, z)$, we set

$$
\begin{aligned}
& x \in A_{1} \Longleftrightarrow(\exists y)[P(x, y) \&(\forall z \leq y) \neg Q(x, z)], \\
& x \in B_{1} \Longleftrightarrow(\exists z)[Q(x, z) \&(\forall y<z) \neg P(x, y)] .
\end{aligned}
$$

x4B.10. Prove that if A and B are complements of some r.e. sets A^{c} and B^{c} and $A \cap B=\emptyset$, then there exists a recursive C which separates A from B, i.e.,

$$
A \subseteq C, \quad C \cap B=\emptyset
$$

Hint. Apply the preceding Problem to the complements A^{c} and B^{c}.
Solution. The complements A^{c} and B^{c} are r.e., and we notice that their union is \mathbb{N}, since

$$
A^{c} \cup B^{c}=(A \cap B)^{c}=\emptyset^{c}=\mathbb{N}
$$

By the preceding problem there exist r.e. A_{1} and B_{1} such that (at first)

$$
A_{1} \cup B_{1}=A^{c} \cup B^{c}=\mathbb{N}, \quad A_{1} \cap B_{1}=\emptyset
$$

which implies that $B_{1}=A_{1}^{c}$, and so A_{1} is recursive; also

$$
A_{1} \subseteq A^{c}, \quad B_{1} \subseteq B^{c}
$$

i.e., $A \subseteq A_{1}^{c}, B \subseteq B_{1}^{c}=A_{1}$, so that A_{1} separates A from B.
x 4 B .11 . One of the two following propositions is true while the other is not. Give a proof of the true one and a counterexample of the one which is not true.
(1) If $A \subseteq B$ and A, B^{c} are r.e., then there exists a recursive set C such that $A \subseteq C \subseteq B$.
(2) If $A \subseteq B$ and A^{c}, B are r.e., then there exists a recursive set C such that $A \subseteq C \subseteq B$.

Solution. The picture becomes clear if we observe that for arbitrary $A, B, C \subseteq$ \mathbb{N},

$$
A \subseteq C \subseteq B \Longleftrightarrow\left[A \subseteq C \& C \cap B^{c}=\emptyset\right]
$$

namely, in both parts, the question is if there exists a recursive C which separates A from B^{c}. So we can formulate in another way the two parts of the problem:
(1) For any r.e. A, B^{c}, if $A \cap B^{c}=\emptyset$, then there exists a recursive set C which separates A from B^{c}. This does not always hold, by Theorem 4B.12.
(2) For any r.e. complements A, B^{c}, if $A \cap B^{c}=\emptyset$, then there exists a recursive set C which separates A from B^{c}. This holds by Problem x4B.10.
x2D.3. Prove that the only total solution of the equation (*) in Problem x1C.13* is recursive, but the equation (*) also has solutions which are not recursive partial functions.

Solution. The total, constant function $\mathrm{p}(0, y)=1$ obviously satisfies the equation $(*)$, and (by an easy induction on x), for every total function $\mathrm{p}^{\prime}(x, y)$ which satisfies the equation $(*), \mathrm{p}^{\prime}(x, y)=1$, for all x.
In order to find non-recursive, partial solutions of the equation $(*)$, let $g(y)$ be any partial function such that

$$
\begin{equation*}
g(y) \downarrow \Longrightarrow g(y)=1 \tag{**}
\end{equation*}
$$

We set

$$
\mathrm{p}_{g}(x, y)= \begin{cases}1, & \text { if } x=0 \\ g(y), & \text { if } x=1 \\ \uparrow, & \text { if } x \geq 2\end{cases}
$$

and we verify easily, by considering cases for x that the function $\mathrm{p}_{g}(x, y)$ satisfies the equation $(*)$. To complete the proof, we have to use the fact that there exist partial functions $g(y)$ which satisfy $\left({ }^{(*)}\right.$ and which are not recursive; we will prove this fact in the next chapter, but we can see it also with some set theory: because there exist uncountably many functions which satisfy (${ }^{* *}$) (as many as the sets of natural numbers), while the set of recursive partial functions is countable.

