
Math 114C, Winter 2019, Solutions to HW #5

x4A.2. Let R(~x,w) be a semirecursive relation such that for every ~x there
exist at least two numbers w1 6= w2 such that R(~x,w1) and R(~x,w2). Prove that
there exist two, total recursive functions f(~x), g(~x) such that for all ~x,

R(~x, f(~x)) & R(~x, g(~x)) & f(~x) 6= g(~x).

Solution. By the Σ0
1-Selection Lemma 4A.7 and the hypothesis, there exists a

total function f(~x), such that for all ~x,

R(~x, f(~x));

and since the relation R(~x,w) & w 6= f(~x) is semirecursive, by the same Lemma
and the hypothesis, it follows that there exists a total function g(~x) such that
for all ~x,

R(~x, g(~x)) & g(~x) 6= f(~x),

as the Problem requires.

x4A.3. Let R(~x,w) be a semirecursive relation such that for every ~x, there
exists at least one w such that R(~x,w).

(1) Prove that there exists a total recursive function f(n, ~x), such that

R(~x,w) ⇐⇒ (∃n)[w = f(n, ~x)].(1)

(2) Prove that if, in addition, for every ~x, there exist infinitely many w such
that R(~x,w), then there exists a total, recursive f(n, ~x) which satisfies (1) and
is “1-1 in n”, i.e., for all ~x,m, n,

m 6= n=⇒ f(m,~x) 6= f(n, ~x).

Solution. By the hypothesis,

R(~x,w) ⇐⇒ (∃y)P (~x,w, y),

where P (~x,w, y) is a recursive relation, and by the Σ0
1-Selection Lemma 4A.7

and the hypothesis, there exists a total function g(~x), such that for all ~x,

R(~x, g(~x)).

(1) We set

f(n, ~x) =

{
(n)0, if P (~x, (n)0, (n)1),
g(~x), otherwise.

(2) We define the required function f(n, ~x) by complete recursion 1B.16, as
follows:

f(n, ~x) =
(
µn[P (~x, (n)0, (n)1) & (∀i < n)[(n)0 6= f(i, ~x)]

)
0
.

The proof (from the hypothesis) that f(n, ~x) is total and has the required prop-
erty is not difficult.

x4B.1. Prove that there is a recursive, partial function f(e), such that

We 6= ∅=⇒ [f(e)↓ & f(e) ∈ We].
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Solution. The relation

R(e, y) ⇐⇒ [y ∈ We]

is Σ0
1, so, by the Σ0

1-Selection Lemma (4A.7), there is a recursive partial function
f(e) such that

f(e)↓ ⇐⇒ (∃y)R(e, y) ⇐⇒ We 6= ∅,
f(e)↓ =⇒ R(e, f(e)) =⇒ f(e) ∈ We;

this is the one we seek.

x4B.2. For each of the following propositions decide whether it is true for
arbitrary, recursively enumerable sets A and B. Prove your positive answers and
give counterexamples for the negative ones.
(1) A ∩B is r.e.
(2) A ∪B is r.e.
(3) A \B = {x ∈ A | x /∈ B} is r.e.
Solution. (1) is true, because the relation

x ∈ A ∩B ⇐⇒ x ∈ A & x ∈ B

is semirecursive (as a conjunction of semirecursive relations), and the correspond-
ing observation for disjunction shows that A ∪ B is also r.e. (3) is not true in
general, because it implies (with A = ∅) that the complement of every r.e. set is
r.e., which is not true for K.

x4B.3. Prove that every infinite r.e. set has an infinite, recursive subset.
Solution. By the hypothesis, there exists a (total) recursive f : N→ N which

enumerates the given A,
A = {f(0, f(1), . . . }.

We define g by the recursion,

g(0) = f(0)
g(n + 1) = f(µm[f(m) > g(n)]),

and we observe that g is a total function (since A is infinite, and, for every n, it
must have members > g(n)) and (by its definition), it is increasing,

g(0) < g(1) < · · · ;

so the set B = {g(0), g(1), . . . } enumerated by g is recursive, infinite, and (obvi-
ously) a subset of A.

x4B.4. Are the following claims true or false? Give proofs or counterexam-
ples.

(1) There is a (total) recursive function u1(e,m) such that for all e,m,

Wu(e,m) = We ∪Wm.

(2) There is a (total) recursive function u2(e,m) such that for all e,m,

Wu(e,m) = We ∩Wm.

Let me know of errors or better solutions.
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(3) There is a (total) recursive function u3(e,m) such that for all e,m,

Wu(e,m) = We \Wm.

Solution. (1) Let

f1(e,m, x) =

{
1, if ϕe(x)↓ & ϕm(x)↓ ,

↑, otherwise;

the graph of f1 is Σ0
1 with the computation

f1(e,m, x) = w ⇐⇒ w = 1 & ϕe(x)↓ & ϕm(x)↓ ,

so f1 is recursive. If f̂1 a code of it, then

{f̂1}(e,m, x)↓ ⇐⇒ x ∈ We ∩Wm,

so,

{S2
1(f̂1, e,m)}(x) = {f̂1}(e,m, x)↓ ⇐⇒ x ∈ We ∩Wm,

and

u1(e,m) = S2
1(f̂1, e, m)

is the function we seek, which moreover is primitive recursive.
(2) Exactly the same construction, with a partial function f2(e,m, x), such

that

f2(e,m, x) = w ⇐⇒ w = 1 & [x ∈ We ∨ x ∈ Wm].

(3) This is not true, by (c) of Problem 1.

x4B.5. Does there exist a total, recursive function f(e,m) such that for all
e,m,

Wf(e,m) = {x + y | x ∈ We and y ∈ Wm}?
You must prove your answer.

Solution. It is true: we set

R(e, m, t) ⇐⇒ (∃x, y)[t = x + y & x ∈ We & y ∈ Wm]

and we notice that R is a semirecursive relation, so that for some recursive partial
function g(e, m, t),

g(e,m, t)↓ ⇐⇒ R(e,m, t) ⇐⇒ (∃x, y)[t = x + y & x ∈ We & y ∈ Wm].

If ĝ is any code of g, then

g(e,m, t) = {S2
1(ĝ, e,m)}(t),

and with f(e,m) = S2
1(ĝ, e, m) we have

t ∈ Wf(e,m) ⇐⇒ g(e, m, t)↓ ⇐⇒ (∃x, y)[t = x + y & x ∈ We & y ∈ Wm],

which is what we wanted.

x4B.6. Let f : N→ N be a (total) recursive function, A ⊆ N and let

f [A] = {f(x) | x ∈ A}
f−1[A] = {x | f(x) ∈ A}

Let me know of errors or better solutions.
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be the image and the inverse image of A by f . For each one of the following
claims decide whether it is true or not, prove your positive answers and give
counterexamples for the negative ones.
(1) If A is r.e., is f [A] also r.e.?
(2) If A is r.e., is f−1[A] also r.e.?
(3) If A is recursive, is f [A] also recursive?
(4) If A is recursive, is f−1[A] also recursive?
Solution. The proofs for the positive answers use the fact that the graph

Gf (x,w) ⇐⇒ f(x) = w

of a total recursive function is a recursive relation, and the closure properties of
the class of semirecursive relations.

(1): yes, because

x ∈ f [A] ⇐⇒ (∃y)[y ∈ A & x = f(y)].

(2): yes, because
x ∈ f−1[A] ⇐⇒ f(x) ∈ A.

(3): not necessarily, because every r.e. (non-empty) set is a recursive image of
the recursive set N, by definition, but not every r.e. set is recursive.

(4): yes, because
x ∈ f−1[A] ⇐⇒ f(x) ∈ A,

and the set of recursive relations is closed under recursive substitutions.

x4B.7. The closure A of a set A ⊆ N under a partial function f : N ⇀ N
is the smallest set B such that B ⊇ A and B is closed for f , i.e.,

[x ∈ B & f(x)↓ ] =⇒ f(x) ∈ B.

(1) Prove that if A is r.e. and f(x) is recursive, then the closure A of A under
f is also r.e.

(2) Prove that there exists a primitive recursive function u(e,m), such that for
all e and m, the set Wu(e,m) is the closure W e of We under the recursive partial
function ϕm with code m.

Solution. We need to find a “construction” of A, and for this we define first
by recursion the sets

A0 = A, An+1 = f [An] = {y | (∃x)[x ∈ An & f(x) = y},
and we consider their union,

A =
⋃

n An.

By its definition, A is closed under f , because, if x ∈ A and y = f(x) ↓ , then
for some n, x ∈ An, and so, y = f(x) ∈ An+1 ⊆ A. On the other hand, if B
contains A and is closed under f , then by an easy induction, An ⊆ B for every
n, so A =

⋃
n An ⊆ B. It follows that

A =
⋃

n An,

and it is enough to show the required propositions for
⋃

n An.

Let me know of errors or better solutions.



5

We notice first that each An is r.e., since A0 = A is by the hypothesis, and
inductively,

t ∈ An+1 ⇐⇒ (∃x)[x ∈ An & t = f(x)].

For (2) (with A = We) which implies (1), the basic observation is that

x ∈ An

⇐⇒ (∃u0, u1, . . . , un)[u0 ∈ We & u1 = f(u0) & · · · & un = f(un−1) = x],

which is obvious — or it is easily shown by induction on n. We set

R(e, x) ⇐⇒ (∃u)(∃n)[(u)0 ∈ We & (∀i < n)[(u)i+1 = f((u)i)] & (u)n = x].

This relation is Σ0
1, and from the observation it follows that (with A = We),

x ∈ A ⇐⇒ R(e, x).

Let h(e, x) be a recursive partial function such that

R(e, x) ⇐⇒ h(e, x)↓ ;

if ĥ is a code of h(x), then

u(e) = S1
1(ĥ, e)

is the function we seek.

Let me know of errors or better solutions.


