
Math 114C, Winter 2019, Solutions to HW #3
Note: The optional problem was meant to be 2C.8.

x2B.3. For the following three recursive programs in N0,

p(x) = S(p(x)),(E1)

p(x) = p(q(x)), q(x) = x,(E2)

p(x, y) = p1(p(x, y), y), p1(x, y) = x.(E3)

(1) Which partial functions satisfy them, as systems of equations?
(2) Which partial functions do they compute, and how do their computations

differ?
Solution. (1) The program E1 is satisfied only by the empty partial function

ε, because if f(x) is any solution and f(n) ↓ for some n, then we have f(n) =
f(n) + 1, which is absurd. The equation of E2 is just the identity p(x) = p(x),
and it is satisfied by every partial function. The same for E3, which simply
expresses p(x, y) = p(x, y) in a different way.

(2) All three programs define the empty partial function, of one variable for
the first two and of two variables for the third, but their computations differ
significantly. This becomes apparent from their first steps which are as follows
(omitting some obvious transitions):

p : x → S(p(x)) : → S p(x) : → S p x : → S p : x → · · ·S S p : x

→ · · ·S S S p : x → · · ·
p : x → p q x : → p : x · · · → p : x → · · ·

p : x y → p1(p(x, y), y) : → p1 p x y y :
→ p1 p : x y y → p1 p1 p x y y : y → p1 p1p : x y y y · · ·

The obvious (and significant) differences of the computations of these programs
is that the state remains bounded (in length at most 4) in the computations of
E2; it grows indefinitely on its left-hand side in the computations of E1; and it
grows indefinitely on both sides in the computations of E3.

x2B.5. Construct a recursive program of N0 which computes the Ackermann
function, 1A.6.

Solution. The recursive definition of the Ackermann function is easily ex-
pressed in the language R:

A(n, x) = if (n = 0) then x = 1
else if (x = 0) then A(n−· 1, 1)
else A(n−· 1, A(n, x−· 1).

By the Theorem 2C.2, if we consider it as a program, this equation computes
a function A(n, x) which satisfies it. By (easy, double) induction on n we show
that for every n, x, A(n, x) ↓ ; so this A(n, x) is the Ackermann function, by
the definition of A(n, x) (as the unique, total function which satisfies the three
characteristic equations).
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x2B.6. Construct a recursive program which computes the function p(x, y)
in Problem x1C.8∗.

Solution. We consider the following program, with four equations:

p(x, y) = if (x = 0) then y

else if (y = 0) then S(p2(Pd(x)))
else S(S(p+(p3(p(Pd(x),Pd(y))), p(Pd(y),Pd(x)))))

p+(x, y) = if (x = 0) then y else S(p+(Pd(x), y))
p2(x) = p+(x, x)
p3(x) = p+(p2(x), x)

The problem requires us to prove that p(x, y) is the function p(x, y) of Prob-
lem x1C.8∗, and this is easier to do by appealing to the Theorem of Computa-
tional Soundness 2C.2: from this and familiar arguments, we infer that

p+(x, y) = x + y, p2(x) = 2x, p3(x) = 3x

and so the equation

p(x, y) = if (x = 0) then y

else if (y = 0) then 2Pd(x) + 1
else 3p(Pd(x),Pd(y)) + p(Pd(y),Pd(x)) + 2

which is easily equivalent to the system of the three equations of Problem x1C.8∗,
holds.

x2B.7. Construct a recursive program E in the expansion (N0, g, h, τ) of
N0 which computes the partial function f defined from the functions g, h, τ by
nested recursion, Problem x1B.19∗.

Solution. As for the Ackermann function, we consider the program

p(n, y) = if (n = 0) then g(y)

else h(p(x−· 1, τ(x−· 1, y−· 1)), x−· 1, y−· 1).

By Theorem 2C.2, the recursive partial function computed by this program sat-
isfies it, therefore it suffices to show that it is total, and so it is also the function
defined by nested recursion from the given g, h, τ , by definition. To see this, we
show by induction on n, that “for every x, p(n, x)↓”; we will omit this induction,
which is easy.

x2B.9. Prove or give a counterexample for each of the following two propo-
sitions:

(1) For every partial algebra M and every x0 ∈ M , the constant, one-place
function f(x) = x0 is M-recursive.

(2) For every number x0 ∈ N, the constant, one-place function f(x) = x0 on
the natural numbers is recursive.

Solution. (1) This does not hold in the (simplest) partial algebra (N, 0, 1, )
which has no primitives! To prove this by contradiction, we assume that the
constant function f(x) = 2 is computed by some program E with main symbol

Let me know of errors or better solutions.
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p, and we examine the computation of the value f(0) which is of the form

p : 0 → s1 → · · · → : 2.

We observe that 2 does not occur in the first state but occurs in the last one.
Let si+1 be the first state in which 2 occurs; but there are no transitions in this
algebra which introduce 2 (by simple inspection of the table), and so we arrived
at a contradiction.

(2) This is true, because each number n is defined by the closed, pure term
S(S(· · ·n times(0)) · · · ), and so it is computed by the program with the single
equation

p(x) = S(S(· · ·n times(0)) · · · )

x2B.10. Prove that for every partial algebra M and A ⊆ M , the set A is the
smallest M-closed subset of M which contains A, that is: A ⊆ A, A is M-closed,
and for every X ⊆ M , if A ⊆ X and X is M-closed, then A ⊆ X.

Solution. Suppose first that X ⊆ M , A ⊆ X and X is M-closed, and prove by
induction that for each k, A

(k) ⊆ X; this shows that A ⊆ X. For the converse
inclusion, check (easily) that A contains A and is M-closed.

x2B.8. Prove that the “equation”

f(x) =

{
0, if g(x) ↑,
g(x) + 1, otherwise.

“cannot be formalized in R”, but first explain what needs to be proved.
Solution. What we have to show is that there exists no term A of R with

one function constant g and one number variable v, such that for every partial
function g, if M = (N, S,Pd, g), then for every number x,

valM(A{v :≡ x}) =

{
0, if g(x) ↑,
g(x) + 1, otherwise.

Assume that there exists such a term A, let B be the term obtained from the
replacement of the constant g by some function variable p, and let E be the
program

p(v) = B.

It follows that for the partial function g = p computed by this program

(N, S,Pd, g) |= p(v) = B,

from which we conclude that

g(x) =

{
0, if g(x) ↑,
g(x) + 1, otherwise

and it is easy to see that such a partial function does not exist. (If it existed
it would be total, by the equation, and so, for every x, we would have g(x) =
g(x) + 1, which is of course absurd.)

Observation: the left-hand side f(x) of the equation we examine here does not
play any role! (And yet, this makes the problem difficult.)

Let me know of errors or better solutions.


