
Math 114C, Winter 2019, Solutions to HW #2

x1C.2. Prove that for all partial functions f, g, h : A ⇀ B,

f v f, [f v g & g v h] =⇒ f v h, [f v g & g v f ] =⇒ f = g.

Solution. By the definition, in order to show f v f we have to show that

f(~x) = w =⇒ f(~x) = w,

which is obvious. For the second part, we have to show that if

f(~x) = w =⇒ g(~x) = w and g(~x) = w =⇒h(~x) = w,

then

f(~x) = w =⇒h(~x) = w,

and this is again obvious. Finally, we have to show that if

f(~x) = w =⇒ g(~x) = w and g(~x) = w =⇒ f(~x) = w,

then f = g, that is, for every ~x, f(~x) = g(~x). We consider two cases: if both
values diverge (that is f(~x) ↑ and g(~x) ↑,), then f(~x) = g(~x), by the definitions;
and if the one value converges, (for example) f(~x) = w, then g(~x) = w = f(~x),
by the assumption.

x1C.8. (1) Prove that there exists exactly one partial function p(x, y) which
satisfies the equations

p(0, y) = y,

p(x + 1, 0) = 2x + 1,

p(x + 1, y + 1) = 3p(x, y) + p(y, x) + 2,

and compute the value p(3, 2) for this p.
(2) Prove that the unique solution of this system is primitive recursive (or

µ-recursive, if this is easier).
Solution. (1) First for the uniqueness, we accept that the partial functions p1

and p2 satisfy the system, and we show by induction on min(x, y) that

p1(x, y) = p2(x, y).

This holds trivially at the Basis, because, if min(x, y) = 0, then either x = 0
and

p1(0, y) = y = p2(0, y),

or x = z + 1 > 0 and y = 0, in which case

p1(z + 1, 0) = 2z + 1 = p2(z + 1, 0).

At the Induction Step,

p1(z + 1, w + 1) = 3p1(z, w) + p1(w, z) + 2
= 3p2(z, w) + p2(w, z) + 2 (Ind. Hypothesis)
= p2(z + 1, w + 1).
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For the existence of solution, we show by appealing to the Basic Recursion
Lemma 1A.2 with W = (N ⇀ N) (as in the corresponding proof for the Acker-
mann function, Lemma 1A.7) that for every n there exists (exactly one) function
pn with domain the pairs (x, y) such that x, y ≤ n, which satisfies the following
equations:

pn(0, y) = y, (y ≤ n),
pn(x + 1, 0) = 2x + 1, (x + 1 ≤ n),

pn(x + 1, y + 1) = 3pn(x, y) + pn(y, x) + 2, (x + 1, y + 1 ≤ n).

It follows (from these equations, by induction on min(x, y)) that

if n < m and x, y ≤ n, then pn(x, y) = pm(x, y).

Finally we define the function p(x, y) that we are looking for as the “union” of
all of them,

p(x, y) = w ⇐⇒ for some n, pn(x, y) = w.

(2) The function p(x, y) is primitive recursive indeed, but this is not obvious.
We outline two, different proofs.

(b1) We set

p1(x, y) = p(x, y), p2(x, y) = p(y, x),

and we verify easily (from the equations which p(x, y) satisfies) that these func-
tions satisfy the following system of “mutual recursion”:

p1(0, y) = y

p1(x + 1, y) =

{
2x + 1 if y = 0,

3p1(x, y − 1) + p2(x, y − 1) + 2 otherwise,

p2(0, y) =

{
0 if y = 0,

2(y − 1) + 1 otherwise,

p2(x + 1, y) =

{
x + 1 if y = 0,

3p2(x, y − 1) + p1(x, y − 1) + 2 otherwise.

Unfortunately, this is not precisely mutual primitive recursion, which we justified
in Proposition 1B.15; it is mutual nested recursion, for which we can prove
that it defines primitive recursive functions by the method of proof of 1B.15
and appeal to x1B.19∗. It follows that the functions p1(x, y) and p2(x, y) are
primitive recursive, which is what we want, since p(x, y) = p1(x, y).

(b2) The second proof is based on the generalization of definition by “complete
primitive recursion” which we proved in Proposition 1B.16 so that it applies to
definitions of functions of two variables. It is basically easier than the first proof
(because it does not need nested recursion), and we will outline it fairly concisely.

We set

h(w, n) =





(n)1, if (n)0 = 0,

2((n)0 − 1) + 1, if (n)0 > 0 & (n)1 = 0,

3(w)〈(n)0−1,(n)1−1〉 + (w)〈(n)1−1,(n)0−1〉 + 2, otherwise,

Let me know of errors or better solutions.
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and we define by primitive recursion the following function f(n):

f(0) = 1,

f(n + 1) = f(n) ∗ h(f(n), n),

where u ∗ v is the concatenation function, as in Proposition 1B.14. It is obvious
from the definition that for every n, the value f(n) is a sequence code, lh(f(n)) =
n, and

if i < n ≤ m, then (f(n))i = (f(m))i.(*)

We will show by induction on max(x, y) that for all x, y, the function

p(x, y) =
(
f(〈x, y〉+ 〈y, x〉+ 1)

)
〈x,y〉

satisfies the required equations, and so is primitive recursive. For the simple
cases (and without needing the induction hypothesis),

p(0, y) =
(
f(〈0, y〉+ 〈y, 0〉+ 1)

)
〈0,y〉

=
(
f(〈0, y〉+ 1)

)
〈0,y〉

(by (*))

= h(f(〈0, y〉, 〈0, y〉) = y,

p(x + 1, 0) =
(
f(〈x + 1, 0〉+ 〈0, x + 1〉+ 1)

)
〈x+1,0〉

=
(
f(〈x + 1, 0〉+ 1)

)
〈x+1,0〉

(by (*))

= h(f(〈x + 1, 0〉), 〈x + 1, 0〉) = 2x + 1.

Finally, and by appealing to the induction hypothesis:

p(x + 1, y + 1) =
(
f(〈x + 1, y + 1〉+ 〈y + 1, x + 1〉+ 1)

)
〈x+1,y+1〉

= h(f(〈x + 1, y + 1〉+ 〈y + 1, x + 1〉), 〈x + 1, y + 1〉)
= 3

(
f(〈x + 1, y + 1〉+ 〈y + 1, x + 1〉)

)
〈x,y〉

+
(
f(〈x + 1, y + 1〉+ 〈y + 1, x + 1〉)

)
〈y,x〉

+ 2

= 3
(
f(〈x, y〉+ 〈y, x〉+ 1)

)
〈x,y〉

+
(
f(〈x, y〉+ 〈y, x〉+ 1)

)
〈y,x〉

+ 2

= 3
(
f(〈x, y〉+ 1)

)
〈x,y〉

+
(
f(〈y, x〉+ 1)

)
〈y,x〉

+ 2

= 3p(x, y) + p(y, x) + 2.

The last equation is from the Ind. Hyp., and we also used the obvious (for the
classical coding)

〈x, y〉+ 〈y, x〉+ 1 ≤ 〈x + 1, y + 1〉+ 〈y + 1, x + 1〉.
From the theory up to this point, I know no easier proof that this function is

µ-recursive.

Let me know of errors or better solutions.
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x1C.9. For partial functions g(~x), h(w, y, ~x), prove that the recursive equa-
tion

p(y, ~x) = if (y = 0) then g(~x) else h(p(y−· 1, ~x), y−· 1, ~x)(1)

has exactly one solution, namely the partial function f which is defined by the
primitive recursion

f(0, ~x) = g(~x),
f(y + 1, ~x) = h(f(y, ~x), y, ~x)).

Solution. First we show that the function f(y, ~x) which is defined by the
primitive recursion

f(0, ~x) = g(~x)
f(y + 1, ~x) = h(f(y, ~x), y, ~x)

satisfies the equation (1).
We consider cases.
For y = 0, the left-hand side of (1) is f(0, ~x) = g(~x) (by the definition of f),

and its right-hand side is

if (0 = 0) then g(~x) else h(f(0−· 1, ~x), 0−· 1, ~x) = g(~x),

that is, they are equal.
For a successor y + 1, the left-hand side of (1) is

f(y + 1, ~x) = h(f(y, ~x), y, ~x),

again by the definition of f , and its right-hand side is

if (y + 1 = 0) then g(~x) else h(f((y + 1)−· 1, ~x), (y + 1)−· 1, ~x)

= if (y + 1 = 0) then g(~x) else h(f(y, ~x), y, ~x)

= h(f(y, ~x), y, ~x)

so that we have again equality.
For the uniqueness, let p(y, ~x) be such that for all y, ~x,

p(y, ~x) = if (y = 0) then g(~x) else h(p(y−· 1, ~x), y−· 1, ~x);(A)

we show by induction on y, that for all ~x, p(y, ~x) = f(y, ~x).
At the basis this is obvious, since (by (A)),

p(0, ~x) = if (0 = 0) then g(~x) else h(p(0−· 1, ~x), 0−· 1, ~x) = g(~x) = f(0, ~x).

At the induction step, we compute:

p(y + 1, ~x) = if (y + 1 = 0) then g(~x) else h(p((y + 1)−· 1, ~x), (y + 1)−· 1, ~x)
= if (y + 1 = 0) then g(~x) else h(p(y, ~x), y, ~x)
= h(p(y, ~x), y, ~x)
= h(f(y, ~x), y, ~x) (ind. hyp.)
= f(y + 1, ~x).

Let me know of errors or better solutions.
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x1C.10. Prove that the following recursive equation has a unique solution,
the function p(x, y) = gcd(x, y):

p(x, y) =





0, if x = 0 or y = 0,

p(y, x), otherwise, if x < y,

y, otherwise, if y | x,

p(y, rem(x, y)), otherwise.

(2)

Solution. The basic observation is that for all natural numbers x, y, d > 0,

d | x and d | y ⇐⇒ d | y and d | rem(x, y),

which follows immediately from the basic equation of division,

x = y quot(x, y) + rem(x, y).

So the common divisors of x and y are the same as the common divisors of y
and rem(x, y), and so these two finite sets have the same greatest member. If
we now set

g(x, y) =

{
0, if x = 0 or y = 0,

the least d which divides x and y, otherwise

=

{
0, if x = 0 or y = 0,

gcd(x, y), otherwise,
,

then by simple inspection we see that the function g(x, y) satisfies the given
equation. To show that it is the unique function which satisfies it, we show by
an easy (complete) induction on max(x, y) that if f(x, y) satisfies the equation,
then for all x, y, f(x, y) = g(x, y).

x2A.1. Prove that a word E is a term if and only if there is a term derivation
D = (A0, . . . , An) with E ≡ An.

Solution. First we notice that the set of words which occur in term derivations
is closed under term formation and so it contains every term; and for the converse
we prove by induction on n that if (A0, . . . , An) is a term derivation, then every
Ai is a term.

x2A.2. Prove parts (2) and (3) of Lemma 2A.5.
Solution. (2) Suppose Σ satisfies the (two) hypotheses of the Lemma and

contains all individual constants, let

Σ′ = the set of all strings which contain at least one variable,

and check (easily) that the union Σ∪Σ′ is closed under term formation; by the
definition of terms then, every term A is either in Σ or in Σ′—and A is not in
Σ′ if it is closed, so it must be in Σ.

The argument is similar for (3).

x2A.3. Prove the Lemma of Unique Readability of Terms 2A.6.
Solution. Part (a) is shown by induction on terms, where the basis A ≡ vi

is obvious. At the induction step, if, for example A ≡ fn
i (A1, . . . , An), and the

Let me know of errors or better solutions.
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word w ≡ w1 · · ·wi is a proper initial segment of A, then w ≡ fn
i , or w ≡ fn

i (,
or w ≡ fn

i (A1, . . . , Aj for some j, or w is an initial segment of fni (A1, . . . , Aj for
some (least) j, and in all these cases the desired result follows from the induction
hypothesis.

Part (b) is obtained easily again by induction on terms.

x2A.4. Prove that if A1, B1, A2, B2 are terms of T(M) and

A1 = B1 ≡ A2 = B2

then A1 ≡ A2 and B1 ≡ B2.
Solution. The identity symbol “=” occurs exactly once in an equation, so the

assumed identity of the two equations can only be true if A1 ≡ A2 and B1 ≡ B2.

x1B.24. (1) Prove that every section An(x) of the Ackermann function is
primitive recursive.

(2) Prove that for every primitive recursive function f(x1, . . . , xn), there exists
some m such that

f(x1, . . . , xn) < Am(max(x1, . . . , xn)) (x1, . . . , xn ∈ N).(3)

(3) Prove that the Ackermann function A(n, x) is not primitive recursive.
Hint: Call a function f(~x) A-bounded if it satisfies (3) with some m, and
prove that the collection of all A-bounded functions is primitively closed. Prob-
lems x1A.11 – x1A.14 provide the necessary Lemmas.

Solution. The basic functions S, Pn
i and Cn

q are obviously A-bounded, so it
suffices to show that the set of A-bounded functions is closed under composition
and primitive recursion.

Composition. Let f(~x) = h(g1(~x), . . . , gm(~x) with A-bounded h, g1, . . . , gm.
With the obvious interpretation of the notation, we compute:

f(~x) < Anh
(max(g1(~x), . . . , gm(~x))

< Anh
(max(An1(~x), . . . , Anm(~x))) (x1A.12)

≤ Ak(Am(max(~x))) (k = max(nh, n1, . . . , nm),
x1A.13, x1A.12)

< Ak+2(max(~x)) (x1A.14).

Primitive recursion. Let

f(0, ~x) = g(~x)
f(y + 1, ~x) = h(f(y, ~x), y, ~x)

and, from the hypothesis and Problem x1A.13, let k ≥ 2 be such that

g(~x) < Ak(max(~x))
h(w, y, ~x) < Ak(max(w, y, ~x)).

First we show by induction on y (and obvious Basis) that

f(y, ~x) < Ak+1(max(~x) + y).

For the Induction Step:

f(y + 1, ~x) < Ak(max(f(y, ~x), y, ~x))

Let me know of errors or better solutions.



7

< Ak(max(Ak+1(max(~x) + y), y, ~x) (ind. hyp.)
< Ak(Ak+1(max(~x) + y)) (x1A.12)
= Ak+1(max(~x) + y + 1).

From this inequality and the obvious

z + y < 3 + 2 ·max(z, y) = A2(max(z, y)) ≤ Ak(max(z, y))

it follows that

f(y, ~x) < Ak+1(Ak+1(max(y, ~x)))
< Ak+3(max(y, ~x)) (x1A.14).

x1C.12. Prove that there is no partial function g(y, ~x) such that equa-
tion (38) has exactly two solutions.

Solution. Towards a contradiction (without the parameters ~x), let f(y) and
h(y) be two different solutions, and let y be the least number for which f(y) 6=
h(y). At first we observe that (if y > 0),

g(y − 1) = 0 or g(y − 1) ↑,
otherwise f(y) = f(y − 1) = h(y − 1) = h(y), which contradicts the choice of y.
We show by induction that for every t,

g(y + t)↓ & g(y + t) 6= 0.(*)

For the basis, g(y) ↓ (otherwise f(y) = h(y) =↑), and g(y) 6= 0 (otherwise
f(y) = h(y) = y); and for the induction step, the induction hypothesis implies

f(y + t + 1) = f(y) 6= h(y) = h(y + t + 1),

which implies as in the basis g(y + t + 1)↓ & g(y + t + 1) 6= 0.
Finally we observe (by considering cases z < y and z ≥ y) that if (*) holds,

then the recursive equation (38) has infinitely many solutions, all the functions
of the form

fq(z) =

{
f(z), if z < y,

q, if z ≥ y,

for some q; and this is absurd.

Let me know of errors or better solutions.


