RECURSION AND COMPUTATION

YIANNIS N. MOSCHOVAKIS

Department of Mathematics
University of California, Los Angeles
and University of Athens

Version 1.2, December 2014

Recursion and computation

Version 1.0 was translated from the Greek by Garyfallia Vafeiadou
This is Version 1.2

(© 2018, Yiannis N. Moschovakis

Comments and corrections welcome, send to ynm@math.ucla.edu

CONTENTS

N OTATION . . oottt et e e e e 1
CHAPTER 1. PRIMITIVE AND p-RECURSIONovvuriennnnnnnnnn 3
1A. Recursive definitions and inductive proofs..................... 3
1B. Primitive recursive functions 11
1C. p-recursive partial functions...........l 21
CHAPTER 2. GENERAL RECURSIONttiittteeeiieeeannneennns 31
2A. Partial algebras ... 31
2B. Recursion and computation 39
2C. Soundness and least solutionsciiiiiii... 49
2D. Recursive partial functions on the natural numbers............ 56
CHAPTER 3. COMPUTABILITY AND UNSOLVABILITYvvuvrennn.n. 59
3A. Normal form and enumeration.................c.oviiueieeann... 59
3B. The Church-Turing Thesis. ..., 70
3C. Symbolic computation and undecidability 74
3D. Turing machines i 79
CHAPTER 4. RECURSIVELY ENUMERABLE SETS........ovvvenve..... 83
4A. Semirecursive relations 83
4B. Recursively enumerable sets. ..., 87
4C. Productive, creative and simple sets........................... 98
4D. The 2nd Recursion Theorem 101
CHAPTER 5. RECURSION AND DEFINABILITY . .vvvintnneeennnnnn.n. 107
5A. The arithmetical hierarchy oo, 107
5B. A bit of logic. ...t 113
5C. Arithmetical relations and functions........................... 118
5D. The theorems of Tarski, Gédel and Church.................... 121
CHAPTER 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS 127
6A. Recursive functionals..............c i 127
6B. Non-deterministic reCursionc.euueeeeeeeeneeo. .. 130

iii

iv CONTENTS

6C. The 1st Recursion Theorem,
6D. Effective operationsooiviiiiiiiiii ..
6E. Kreisel-Lacombe-Shoenfield and Friedberg.....................

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03.

iv

NOTATION

In these notes we will systematically use (as abbreviations) the following
basic notations from logic and set theory:

& :and, V:or, = :not, = :implies, <= :if and only if,

V : for all, 3 : there exists, 3! : there exists exactly one

x € A <= the element = belongs to the set A
A C B <= every member of A is a member of B
— (Va)[r € A=z € B
A =B <= the sets A and B have exactly the same members
<— ACB&BCA
{z | P(x)} = the set of all which have property P(z)
{reA|Plx)}={x|zecA& P(x)}
Ax B={(a,b)|ac Aand b € B}
= the set of ordered pairs (a,b) with a € A,b€ B
Ax BxC={(a,b,c)|la€e A be B,ce C}
= the set of triples (a,b,c) with a € A,b€ B,ce C

f:A— B <= fis a function with input set (domain) A
and output set (range) B

f:A— B <= fis an injection (one-to-one function)

f:A— B < f is a surjection (function onto B)

f:A—»B <= fis a bijection (one-to-one and onto function)

f:Ax B — C <= fis a function of two variables, on A and on B

The best way to get used to these notations, if you are not familiar
with them, is (in the beginning) to “translate” them and construct “para-
phrases” of them in English. For example, the symbolic expression of the
Induction Principle in section 1A.1 can be expressed in English as follows:

1

Every set A of natural numbers has the following property: if A
contains the number 0 and if, for every member n of A, the suc-
cessor n + 1 is also a member of A, then all the natural numbers
are members of A.

After some exercises of this kind the notation is learned and it becomes
clear why its use is indispensable in mathematics.

We also note that in mathematical texts, we often use the same letter
in different alphabets or different fonts to name different objects: so f is
different from its Greek equivalent ‘¢’, and (even worse), in section 2B,
systematically, ‘x” names some “syntactic variable” which is assigned the
natural number ‘z’.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 2

CHAPTER 1

PRIMITIVE AND p-RECURSION

We introduce recursive definitions and we study two important classes
of functions on the natural numbers, the primitive recursive and the u-
recursive functions.

1A. Recursive definitions and inductive proofs

The great 19th century mathematician Leopold Kronecker is alleged to
have said that

God gave us the natural numbers, all the rest is the work of man.
In order to make use of the numbers, however, God also gave us the fol-

lowing fundamental

1A.1. Induction Principle. The characteristic property of the set of
(natural) numbers

N={0,1,2,...}
is that every set A that contains 0 and is closed under the successor oper-
ation n +— n + 1 contains all the numbers, in symbols

(OeA&(vn)[neA:nHeA]):NgA.

Formally we appeal to the Principle of Induction in order to prove that
all natural numbers have some property P(n), by showing separately that

P(0) and (Vn)[P(n)=P(n+1)].

From these propositions and the Induction Principle, it follows that the set
A={n€N| P(n)} contains all the numbers, that is (for all n)P(n).

The induction principle also justifies proofs by complete induction, in
which we infer that all the natural numbers have some property P(n) by
showing that for every n,

(Vi < n)P(i) = P(n).

3

4 1. PRIMITIVE AND p-RECURSION

FIGURE 1. Recursive definition.

This is justified, because if we set
A={neN|(Vi<n)P(i)},

then, obviously 0 € A, since there are no numbers ¢ < 0
and so the proposition

(Vi < 0)P(i)

is trivially true; and the required implication n € A=n+ 1 € A follows
immediately from the induction hypothesis and the equivalence

(Vi <n+1)P(i) <= (Vi <n)P(i) and P(n).

The Induction Principle expresses our basic intuition that, if we start
from 0 and repeat indefinitely the successor operation, then we will reach
every natural number. The same intuition leads to the following funda-
mental result, which justifies recursive definitions on the set of natural
numbers:

1A.2. Basic Recursion Lemma. For all sets X, W and any given func-
tions g: X - W, h: W x N x X — W, there exists exactly one function
f:Nx X — W such that

f(0,2) = g(),

In particular, without the parameter x, for every wg € W and every
function h : W x N — W, there exists exactly one function f : N — W
which satisfies the equations

(2) f(0) =wo, f(n+1)=h(f(n),n).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 4

1A. RECURSIVE DEFINITIONS AND INDUCTIVE PROOFS

Figure 1 illustrates a recursive definition in the simplest case, where the
given function h : W — W does not depend on the recursion variable n
or on some parameter x, that is when the function f is defined by the
equations

f0) =wo, f(n+1)=h(f(n)).

Usually the Basic Recursion Lemma is proved from the Induction Prin-
ciple, which is why it is called a Lemma, cf. Problem x1A.1*. But the
Induction Principle also follows from the Basic Recursion Lemma by Prob-
lem x1A.2*%, and so these two principles express in different ways the same,
characteristic property of the natural numbers.

1A.3. Recursive definitions. From the purely mathematical point of
view, the Basic Recursion Lemma 1A.2 is a classical example of an existence
and uniqueness theorem for the solution of a system of equations, (1), where
“the unknown” is a function. Every proof of existence and uniqueness of
an object with a specified property defines that object. The importance
of the Basic Recursion Lemma flows from the following three fundamental
properties of recursive definitions:

(I) Most of the functions that arise in number theory and in computer
science are defined—or can be defined—recursively from simpler functions.

In the next section 1B we will get an idea of the richness of the set of
“primitive recursive functions”.

(IT) The recursive definition (1) produces a computable function f from
given computable functions g and h.

We will formulate this second principle rigorously and prove it in sec-
tion 2B, but it is intuitively quite obvious: if we have “algorithms” which
compute g and h, we can then compute any value f(n,z) setting succes-
sively

f(O,:v) zg(ac) = Wy
F(1,2) = h(wy, 0, x) = wy

fn—1,2)=h(wp_2,n —2,2) = Wp_1
f(n,z) = h(wp_1,n — 1,z).
(III) The form of recursive definition (1) leads in a natural way to in-
ductive proofs of properties of the function f(n,zx).
The connection

recursive definition — inductive proof

is one of the most fundamental in mathematics and theoretical computer
science and we will investigate it in depth. Here we confine ourselves to two

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 5

6 1. PRIMITIVE AND p-RECURSION

examples, starting with the classical proof of the commutativity of addition,
which uses the method of double induction. We write f(z,y) instead of x+y
in this example, and we prove the commutativity of f(x,y) using only its
recursive definition.

1A.4. PROPOSITION. The function f(x,y) on N defined by the recursive
equations
f0,9) =y
fle+1y)=flz,y)+1

is commutative, that is, for all x,y
f(x,y) =y, @).
PrOOF. We show by induction,

(3) (for all x € N)(Vy)[f(z,y) = f(y,2)].

Basis, x = 0, (Yy)[f(0,y) = f(y,0)]. This is a proposition about all y
and we will prove it by induction, the Subsidiary Induction for the basis of
the “main” inductive proof of (3).

Subsidiary Basis, y =0, f(0,0) = f(0,0), obviously.

Subsidiary Inductive Step. We accept the Subsidiary Induction Hypoth-
esis
(SIH) f(0,y) = f(y,0)

and we derive from it

fOy+1) = fly+1,0)
by a simple computation:
fly+1,0) = f(y,0) +1 (Definition)
= f(0,y)+1 (SIH)
=y+1 (Definition)
= f(0,y+1) (Definition).
At this point we have completed the Subsidiary Induction and proved
the BAsIS of the main induction.
INDUCTIVE STEP. We accept the INDUCTION HYPOTHESIS

(TH) (Vy)lf (z,y) = f(y, @)]

and we show, with another Subsidiary Induction, that

(Vlf(x+1Ly) = fly,z +1)].

Subsidiary Basis, f(x + 1,0) = f(0,2 + 1). This follows from the proof
of the Basis, where we showed that for every y, f(y,0) = f(0,y).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 6

1A. RECURSIVE DEFINITIONS AND INDUCTIVE PROOFS

Subsidiary Inductive step. We accept the Subsidiary Induction Hypothe-
518
(SIH) fle+1ly)=fly,z+1)
and we verify
fle+1ly+1)=fly+1,z+1)
by the following computation:
fle+ly+1)=flz,y+1)+1
=fly+1,z)+1

Definition)

IH)

(
(
=(fly,2)+1)+1 (Definition)
=(flz,y) +1)+1 (IH)
=flz+1Ly +1 (Definition)
=fly,z+1)+1 (SIH)
=fly+1l,z+1) (Definition). -

1A.5. REMARK. This method of proof is called double induction, because
the BAsIs and the INDUCTION STEP of the “main” induction are also proved
inductively. It is a feature of inductive proofs of propositions of the form

(V) (Vy) P(z,y)
like (3). The need for it becomes obvious if we try to prove directly the
special case

(V) f (2, 17) = f(17, z)].

Caution: the Induction Principle can be used to prove propositions of
the form

(4) (for all n € N)P(n),

and only propositions of this form. For example, if we want to prove
by induction some proposition of the form

(Vn)(Ym)Q(n, m),
we need to choose which P(n) we will use, e.g.,
P(n) < Q(n,y) (for fixed, constant y),
P(n) < Q(z,n) (for fixed, constant z),
P(n) <= (Vy)Q(n,y),
P(n) < (V2)Q(z,n),

or even some more complex proposition (Vn)P(n) for which we can prove
independently that

(Vn)P(n) = (Vz)(Vy)Q(z, y)-

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 7

8 1. PRIMITIVE AND p-RECURSION

In some cases, the most difficult part of an inductive proof is the choice of
some proposition of the form (4)—the induction loading device—which is
easy to show and implies the proposition we are interested in.

As a second example we consider a function less familiar than addition
but with equally interesting properties and many applications.

1A.6. The Ackermann function is defined by the so-called double re-
cursion

A(0,z) =z +1
(5) A(n+1,0) = A(n, 1)
Aln+1,z+1) = A(n, A(n+ 1,2));
and for every n, the section A, : N — N of the Ackermann is
(6) An(z) = A(n,).
For example,
Ao(z) =2 +1,

that is Ag is the successor function S on the natural numbers.

Definition (5) must be justified and its justification is interesting, because

it requires an appeal to the Basic Recursion Lemma for the definition of a
function f: N — W where W is a set substantially more complex than N.

1A.7. LEMMA. The system of functional equations (5) has ezactly one
solution, that is, it is satisfied by exactly one two-place function.

PRrROOF. Let W be the set of all one-place functions on the natural num-
bers, that is
pe W <= pisa function, p: N — N.

We define a function f : N — W by appealing to the Basic Recursion
Lemma, as follows:

f(0) =5,

that is the value f(0) is the successor function, S(z) = z + 1; and
fn+1) =h(f(n)),
where the value g, = h(p) of the function h : W — W is defined for every
p: N — N by the recursion
9p(0) =p(1), gp(z+1) =p(gp(x)).
If we set
ATL = f(n)a

then the functions A,, satisfy the following equations:
Ao(xz)=S(x)=2+1, Api1(x) =h(A,)(2),

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 8

1A. RECURSIVE DEFINITIONS AND INDUCTIVE PROOFS

so that
An+1(0) = h(An)(O) = An(l)a
Apyi(z+1) = Ap(h(An)(2)) = An(Anta ().
Finally we set
A(n,x) = A, (x)
and rewrite these equations,
A(0,z) = Ap(z) =z + 1
A(n+1,0)=A,+1(0) = A,(1) = A(n, 1)
An+ 1L,z +1)=Ap11(x+1) = Ap(Ansi(x)) = A(n, A(n + 1, 2)).

These are exactly the equations for which we wanted to show that they
have a solution.

The uniqueness of the solution is shown by double induction on n, or by
a careful application of the Basic Lemma, which guarantees the uniqueness
of the function f(n) = A,,, Problem x1A.7. -

The Induction Principle and the Basic Recursion Lemma are fundamen-
tal axioms for the natural numbers that cannot be proved, unless we have
some particular definition of the numbers in the context of a more general
theory, e.g., the theory of sets.

Problems for Section 1A

x1A.1*. Prove the Basic Recursion Lemma 1A.2 from the Induction
Principle. HINT: To define some f : N x X — W which satisfies the given
equations, we set

wmr = {(wo,...,Wp-1) | Wo,... ,wp—1 € W} (neN),
P(n,r,w) <= w = (wp,...,w,) € Wt
& wo = g(z) & (Vi < n)[wip1r = h(wg, i,)]
and we show by induction the proposition
(Vn)(3w)P(n, z, w).
Now for any n and z, let w = w(n,z) = (wo(n,x),... ,wy(n,x)) be the
unique sequence of length (n 4 1) for which P(n,z,w) holds and set
f(n,z) =s <= s=wy(n,z).

x1A.2*. Assume the Basic Recursion Lemma 1A.2 as an axiom and
prove the Induction Principle.

x1A.3. Prove that every non-empty set of natural numbers X C N has
a least element.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 9

10 1. PRIMITIVE AND p-RECURSION

x1A.4. Prove that for any pair of real numbers o« > 0, § > 0, there
exists exactly one natural number ¢, such that for some (real) r,

a=pq+r, 0<r<g.

It follows that r is also unique, since r = a — 8¢. The numbers ¢ and r are
the quotient and the remainder of the division of a by 8, and we denote
them by

quot(a, f) = q, rem(a,B) =r.
It is also convenient to set

quot(ca,0) =0, rem(a,0) = «,
so that these functions are defined for all o, and always satisfy the equa-
tion a = 3 - quot(ay, B) 4 rem(«, 3).

x1A.5. Justify recursive definitions of the form
f(o,fE) = gl(‘r)a

(7) f(L2) = g2(),
f(n+2,2) = h(f(n,2), f(n+1,2),n,),

where g1, g2, h are given functions on the numbers.
x1A.6. The Fibonacci sequence is defined by the recursion
(8) ap=0, a1 =1, apt2=0an+ans1.

(1) Compute the value ag.
(2) Prove that for every n,

1+
2

The basic observation is that A is one of the roots of the second degree
equation

9) 2 =x+1.

I

Gpao > A", where A =

Prove also that if p = 1_2‘/5 is the other root of (9), then, for every n
A — pn
V5

x1A.7. Prove that at most one function satisfies the system (5).

x1A.8. Compute the value A(3,2).

Ay =

x1A.9. For the Ackermann sections, show that
Ai(z) =2z +2, Az(z)=2z+3.

x1A.10. Find a “closed” formula for Az(x), like those for A; and Az in
the preceding problem.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 10

1B. PRIMITIVE RECURSIVE FUNCTIONS

x1A.11. Prove that for every n and every z, A, (z) > 1.

x1A.12. Prove that every section A, of the Ackermann function is
strictly increasing, that is

r<y=A,(z) < A, (y).
Infer that for all n,z, A, (z) > x. HINT: Prove by double induction that
An(z) < Ap(z+1).
x1A.13. Prove that for all n,m and =z,
n<m= A,(z) < An(z).
HINT: Prove by double induction that A, (z) < Ap41(2).
x1A.14. Prove that for all n and =z,

An(An(2)) < Apga(a).

1B. Primitive recursive functions

1B.1. DEFINITION. A set F' of functions of several variables' on the nat-
ural numbers is primitively closed if:

(1) The successor function S(z) = z + 1 belongs to F.
(2) For every n and ¢, the constant function of n variables

Cy(x1,. . 2n) =q

belongs to F. If n. = 0, then (by convention) CY = ¢, that is we identify a
function of “0 variables” with its (unique) value.

(3) For every n and i, 1 < i < n, the projection

Pz, ,xp) = x;
belongs to F. Notice that P} is the identity function on N, P} (x) = z.
(4) Closure under composition. If the m-place g(uq,... ,u,) and

the m, n-place functions

hi(Z), ... hn(T)
belong to F', with & = (z1,...,2,), then
(10) f(@) = g(ha(Z), ..., hn(T))

1A function of several variables on the set M is any function
f:M*— M
of one or more variables on M, and the arity of f is the number n of its variables. The
simultaneous study of all functions of several variables on a given set distinguishes logic

and computation theory from most other branches of mathematics where, typically, we
study separately the functions of one, or two, ..., or n variables.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 11

11

12 1. PRIMITIVE AND p-RECURSION

also belongs to F'.

(5) Closure under primitive recursion. If the n-place g and the
(n 4+ 2)-place h belong to F', and if the (n + 1)-place f is defined by the
equations
) {00z .

fly+1,7) = h(f(y, ©),y,7),
then f also belongs to F. By convention, we include in this scheme the
case n = 0, where the scheme takes the form
{ f(0)=q (=C7)
fly+1) = h(f(y),y)-

A function f is primitive recursive if it belongs to every primitively

closed set of functions. More generally, for any set W of functions of several

variables, a function f is primitive recursive in U if it belongs to every
primitively closed set which contains ¥. We use the notations:

Rp=A{f| f is primitive recursive},
Rp(¥)={f| fis primitive recursive in U},

so that
Ry =Rp(0)
For example, addition
s(zy) =z +y
is primitive recursive because it satisfies the equations
_ pl _
(12) S(an) - Pl (y) =Y,

s+ 1,y) = h(s(z,y),2,y) = s(z,y) + 1,
where the function h(w,z,y) = S(w) is primitive recursive because it is
defined by the composition

(13) hw, z,y) = S(P} (w, z,y)).

With similar use of projections we can show that the set R,(¥) is closed
under very general explicit definitions. For example, if

f(xay) = h(l'vgl(yax +]-)ﬂgQ(yay))v

then f is primitive recursive in h, g1, g2, because

(14) f(x,y) :h(Pf(I7y)’gr(xvy)’g;(xvy))v

where

(15) S*(w,y) = S(P{(z,y)) =z+1

(16) gf(x,y):gl(sz(x,y),S*(ac,) :gl(yax_'_l)
(17) 95 (x,y) = g2(P5 (z, y), P3 (x,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 12

1B. PRIMITIVE RECURSIVE FUNCTIONS

so that f is defined from the given functions by successive applications of

composition.

The following proposition is trivial but useful:

1B.2. PROPOSITION. The set R,(¥) of functions which are primitive
recursive in U contains U and is primitively closed.

ProoF. If, e.g., f is defined by primitive recursion from g,h € R,(¥),
then, g, h € F for every primitively closed F' which contains V¥; so, f €

F,

for every primitively closed F which contains ¥; so f € R,(¥). 5

For another example, the functions

g(w,y) =w+y

h(w,z,y) = g(P} (w, z,y), P§ (w,z,y))=w +y

are primitive recursive, and therefore, if we set

=C5(y)

f(a;—l—l,y) = h(f(a:,y),x,y) Zf(a?,y)—l-y,

then f(z,y) is also primitive recursive; but, obviously (by induction on z,
if it does not seem obvious!), f(z,y) = z -y, so multiplication too is a

primitive recursive function.

In the future we will sometimes apply Proposition 1B.2 tacitly, without

explicit mention.

1B.3. PROPOSITION. Addition x+y, multiplication x-y and the following

functions are primitive recursive.

#1. Factorial:
xl=1-2---z

#2. Predecessor:
Pd(z) = if (x = 0) then 0 else z — 1

#3. Arithmetic subtraction:
z=—y=if (z <y) then Oelse z —y
#4. min(z,y)

#5. max(z,y)

#6. |z — y|

0=1
(x+ 1) =2l (z+1)

min(z,y) =z =~ (z =+ y)
max(z,y) = (z + y) - min(z,y)

|z —yl=(z-y)+ (y— 2)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.
January 27, 2019, 10:03.

13

13

14 1. PRIMITIVE AND p-RECURSION

#7. x¥ 20 1
9t — v . g

The proof of this and several more of the results in this section are easy,
and we will skip them or deal with them in the problems.

1B.4. DEFINITION. The characteristic function of a relation P(Z) is
the function

(19) Xpl#) = {1’ 1D,

0, otherwise,

and the relation P(¥) is primitive recursive if XP(:E’) is primitive re-
cursive. The same for sets: the characteristic function of A C N is the
function

1, ifx € A,

0, otherwise,

(20) XA(QC) = {

and A is primitive recursive if x A is primitive recursive.

1B.5. PROPOSITION (Definition by cases). If P(Z) is a primitive recur-
sive relation, g(Z) and h(Z) are primitive recursive functions and f(¥) is
defined from them by cases,

L)e@), i P(D),
(@) = {h(i"), otherwise,

then f(Z) is also primitive recursive.

PRrROOF. f(%) = XP(f)g(i") + (1= Xp(f))h(f). -
By applying this Proposition repeatedly, we can show that the set of

primitive recursive functions is closed under definitions with n cases, for
every n > 2.

1B.6. PROPOSITION. (1) The following functions and relations are prim-
1tive recursive:

#8. x=y x_(z,y) =1- |z —y]
#9. <y, <y X (z,y) =1 (x=y)
X (,y) = x(z+1,y)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 14

1B. PRIMITIVE RECURSIVE FUNCTIONS

#10. rem(z,y) rem(0,y) = 0

z+1, ify=0,
1,
rem(z + 1,y) rem(z,y) +
otherwise, if rem(z,y) + 1 < y,
0, 0therw1se
#11. 2|y (x divides y) (z,y) =1+ rem(y, x)

#12. quot(x,y) quot(0,y) = 0
0, if y = 0,

t 1
quot(z +1,y9) = { T (x’y). o
otherwise, if rem(xz 4+ 1,y) =0,

quot(zx, y), otherwise

(2) The set of primitive recursive relations is closed under the proposi-
tional operators —,V, & , =, e.g., if

P(7) < Q%) & R(%)
and @, R are primitive recursive, then P is also primitive recursive.
(3) If the relation Q(Y) and the functions fi(Z), ..., fm(¥) are primitive
recursive, then the relation
P(f) Aand Q(fl(f)7 tet 7fm(f))
is also primitive recursive.
(4) If g(i, X) is primitive recursive, then so are the functions
@) =32,,90.7), g(y,T) =],.,90,7),
with
Zi<0g(iaf) = 0) Hi<Og(i7£) =1L
(5) If P(i, &) is primitive recursive and
Q(z, %) < (F < 2)P(i, %)
R(z,%) < (Vi < 2)P(i, %),
then Q(z,%), R(z,Z) are also primitive recursive.
For the proofs we refer again to the problems.

1B.7. COROLARY. If the relation P(i,Z) and the function f(Z) are prim-
itive recursive, then the relations

Q) < (Ji < f(@))P(,

R(Z) < (Vi < f(2)P(,

&

&

)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 15

15

16 1. PRIMITIVE AND p-RECURSION

are also primitive recursive, and the same with < in the place of <.

It follows that the primality relation
Prime(z) <= x is a prime number
18 primitive recursive.

PRrROOF in Problem x1B.10. -

1B.8. The bounded minimalization operator is defined by

the least ¢ < z such that R(i,Z), if (3i < 2)R(i,),

z+1 otherwise.

(ni < 2)R(i,&) = {

1B.9. PROPOSITION. For every primitive recursive relation R(i,T), the
function

f(2,%) = (pi < 2)R(i, T)

—

is primitive recursive. It follows that if g(Z) is also primitive recursive,
then the function

WE) = (pi < g(2))R(i, ¥) (= fg(T), T))
18 primitive recursive.

PROOF in Problem x1B.12. -

1B.10. COROLARY. The function
p; = the i’th prime number
18 primitive recursive.
PROOF. The function p; is defined by primitive recursion
Po =2
Div1 = (pt < pi! + D)[p; <t & Prime(t)],

because (easily, x1B.11) for every k, there exists a prime number p such
that k <p < kl'+ 1. .

1B.11. Codings. A coding of a set A in a set C is any injection
c:A— C,

which (theoretically) allows us to “recover” any element x € A from its
code ¢(x), for example, the function which assigns to every adult US cit-
izen their Social Security number. Coding is a basic technique of logic
and computability theory, characteristic of the subjects, and we will define
several codings of many sets, with various, useful properties.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 16

1B. PRIMITIVE RECURSIVE FUNCTIONS

1B.12. Sequence codings. Let N* be the set of all finite sequences
of natural numbers, so that A, (0),(1,5),(2,7,3),... € N*, where A is the
empty sequence. A coding

():N*"—N
of N* in N is primitive recursive, if for every sequence of natural numbers
(ug, ... yUp_1),
(21) u; < (Ugy .- ,Un—1) (1< n);
the relation
(22) Seq(u) <= u = (ug,...,un—_1) for some ug, ... ,up_1
is primitive recursive; for every n, the n-place function
(23) Fr(uo, o ytp_1) = (Ug, .. y,Un_1)

is primitive recursive; and there are primitive recursive functions which
satisfy the following:

Th({ug, ... ,Un-1))
(24) proj({ug, ... ,un—1),1) = ((ug,... ,Un-1))i =u (i<mn)
append((ug, - -+ , Upn—1),Y) = (U, -+ , Un—1,Y)-

n
i

It is also technically useful to require that
[=Seq(u) Vi > Th(u)] = 1h(u) = (u); =0,

although the values lh(u), (u); are of no importance when v is not a se-
quence code or i is greater than the length of the sequence coded by u. We
observe that with (21), these requirements imply that for all u,

(25) u> 0= (u); < u.

1B.13. PROPOSITION. There exists a primitive recursive coding of N*,
specifically the “classical” coding

U (7 Up—1+1
(26) <U0,.‘. ,’U:n71> :p00+1 'p11+1"'pn,1 +
with (A) = 1.
PROOF in Problem x1B.15. -

The classical coding of N* is not “efficient”, and we will introduce in the
problems more realistic codings which are used in complexity studies. From
the point of view of computability, however, which is our main concern, all
primitive recursive codings of N* are equivalent, cf. Problem x1B.25.

From now on we fix a specific primitive recursive coding () : N* — N,
which need not be the classical one.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 17

17

18 1. PRIMITIVE AND p-RECURSION

1B.14. PROPOSITION. There exist primitive recursive functions u | i (re-
striction) and u * v (concatenation), such that

(Ugy -+ s Up—1) * {(V0y -+ s Um—1) = (Ugy v s Upn—1,V0y+ - y V1)
<U0,... ,Un_1> rZ:<UQ, ,ui_1> (’LSH)
PROOF in Problem x1B.16. -

1B.15. PROPOSITION (Mutual primitive recursion). Suppose the func-
tions g1, g2, h1 and he are primitive recursive and define f1 and fo by the
system of equations

f1(0,%) = g1(7)
(y+1 f) hl(fl(yvf)af2(yvf)’yaf)
f2(0,%) = g2(7)

fg(y+17$) h2(f1(y7)f2(y7)yaf)

It follows that f1 and fy are also primitive recursive.
PROOF in Problem x1B.17. n

1B.16. PrROPOSITION (Complete primitive recursion). Suppose the
function h is primitive recursive and let

f(y7 f) = h(<f(07 f)? AR 7f(y; 17f)>7y7 5)7
so that f(0,%) = h((A),0,2), f(1,2) = h((f(0,%)),1,%), etc.. It follows
that f is also primitive recursive.

PROOF. First we define by primitive recursion the function

9(0, %) = (A),
9(y+1,%) = g(y, T) = ((g(y, T), y, T)),
and then we verify that the function

fy. %) = (9(y +1,2)),
satisfies the required equation. We finally show by complete induction on
y that only one function satisfies the given system of equations. -

Problems for Section 1B

1B.17. A primitive recursive derivation (or program) is any se-
quence of functions of several variables

E = (fo, f1,-- s fa)

such that for every j < mn one of the following is true:
(1) f; is one of the basic primitive recursive functions S, P}, Cy-

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 18

1B. PRIMITIVE RECURSIVE FUNCTIONS

(2) f; is defined by composition (10), where g, h1, ... , hy, are basic primi-
tive recursive functions or in the sequence fo, ... , fj_1, before the j’th place
in F.

(3) f; is defined by primitive recursion (11), where g and h are basic
primitive recursive functions or in the sequence fo, ..., fj—1, before the
7’th place in E.

x1B.1. Prove that f : N¥ — Nis primitive recursive if and only if f = f,
for some primitive recursive derivation (fo, f1,... , fn)-

x1B.2. Prove (directly, from the definitions) that if
f(@,y) = hg1(y), 92(y. @),)
and h, g1, go are primitive recursive, then f is also primitive recursive.
x1B.3. Prove that if g : N> — N is primitive recursive, then the function
f(z,y) =gy, x)
is also primitive recursive.
x1B.4. Prove that for every n > 1, the n-place functions
min, (x1,...,2,) = the least of z1,..., 2,
maxy,(z1,...,T,) = the greatest of z1,..., 2,
are primitive recursive.

x1B.5. Prove that the exponential function f(z,y) = ¥ (with 0° = 1)
is primitive recursive.

x1B.6. Prove that the binary relations =z < y, < y are primitive
recursive.

x1B.7. Prove that the functions quot(m,n) and rem(m,n) are primitive
recursive.

x1B.8. Prove (4) of Proposition 1B.6.
x1B.9. Prove (5) of Proposition 1B.6.
x1B.10. Prove Corollary 1B.7.

x1B.11. Prove that for every n, there exists a prime number p such
that n < p < n!+ 1. (One of the corollaries is that there exist infinitely
many prime numbers, the so-called Fuclid’s Theorem.) HINT: If n! + 1
isn’t prime, then some prime number p | (n! + 1).

x1B.12. Prove that if the binary relation R(z,y) and the function g(x)
are primitive recursive, then the function

f(x) = (ny < g(x))R(z,y)

is also primitive recursive.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 19

19

20 1. PRIMITIVE AND p-RECURSION

The greatest common divisor of two numbers x,y > 1 is, well, the greatest
number which divides both of them, when one common divisor exists:

0, ifx=00ry=0,
(27) ged(z,y) = 4 the greatest m such that
m |2 and m |y, otherwise.

x1B.13. Prove that the function ged(x,y) is primitive recursive.

x1B.14. Why can we not define the notion of “primitive recursive coding
of N*” with the simple

1-1, primitive recursive function () : N* — N

instead of the complicated (and several) conditions on which we based the
definition?

x1B.15. Prove that the “classical coding” of N* in Proposition 1B.13 is
primitive recursive.

x1B.16. Prove that the following two functions (restriction and concate-
nation) are primitive recursive:

wli = (ug, ... ,ui—1) ifu={(ug,...,up—1) with ¢ <n,
0, otherwise,
(U0 - e o s Un—1500y o+ s Vm—1), if w= {ug,... ,up_1),
Uxv= ’U:<1}0,...,’l}m_1>,
0, otherwise.

x1B.17. Prove Proposition 1B.15.

x1B.18 (Complete primitive recursion for relations). Prove that
if the relation H(w,y,Z) is primitive recursive and P(y,¥) satisfies the
equivalence

then P(y,) is also primitive recursive.

x1B.19* (Nested recursion). Prove that for any three functions g(x),
h(w,z,y) and 7(x,y), there exists exactly one function f(x,y) which sat-
isfies the equations

f(O,y)Zg(y), f(as—l—l,y):h(f(x,T(a:,y)),a:,y);

and if the given functions are primitive recursive, then f(x,y) is also prim-
itive recursive.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 20

1C. u-RECURSIVE PARTIAL FUNCTIONS

x1B.20. Define a primitive recursive injection g : N x N »— N, such that
g(z.y) < (x+y+1)%
More generally, show that for every n > 2, there exists a primitive recursive
injection g, : N® »— N; such that
(28) gn(Z1y .o xn) < Pp(x1,... ,20),
where P, (z1,...,2,) is a polynomial of degree n.

x1B.21. Prove that for every n > 2, there is no one-to-one function
g : N® — N which satisfies (28) with a polynomial of degree < n — 1.

x1B.22. Prove that there is a primitive recursive coding of sequences,
such that for every n, and all z1,... ,z,,

(X1, xn) < 2"Pp(21,. .., Tn),
where the polynomial P, is of degree n.
x1B.23. Prove that for every coding () : N* — N of the sequences from
: max{(z1,...,Tn) | T1,... ,xn <k} >2" (k,n>2)
x1B.24*. (1) Prove that every section A, (x) of the Ackermann function
is primitive recursive.

(2) Prove that for every primitive recursive function f(z1,... ,x,), there
exists some m such that

(29) flz,...,zn) < Ap(max(xy,...,2,)) (21,...,2, € N).

(3) Prove that the Ackermann function A(n, x) is not primitive recursive.
HiNT: Call a function f(Z) A-bounded if it satisfies (29) with some m, and
prove that the collection of all A-bounded functions is primitively closed.
Problems x1A.11 — x1A.14 provide the necessary Lemmas.

x1B.25. Prove that if the functions
()1,()2:N*—N

are primitive recursive codings, then there exists a primitive recursive func-
tion 7 : N — N, such that

T((Z)1) = (F)2 (T N).

1C. p-recursive partial functions

A number z is a twin prime if it is prime and z + 2 is also prime; for
example, 5 is a twin prime but 7 is not. There exist exactly thirty five twin
primes smaller than 1000, the following, each coupled with the next prime
which follows it:

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 21

21

22

3:5
41:43
137:139
227:229
347:349
569:571
809:811

5:
59:
149:
239:
419:
599:
821:

1. PRIMITIVE AND p-RECURSION

7
61
151
241
421
601
823

11:13
71:73
179:181
269:271
431:433
617:619
827:829

17:
101:
191:
281:
1463
641:
857:

461

19

103
193
283

643
859

29:
107:
197:
:313
:523
1661
:883

311
521
659
881

31
109
199

The conjecture that there exist infinitely many twin primes is a famous open
problem, and (as number theorists tell us) there is no realistic expectation
that it will be proved soon. Suppose that it is true and define the function

p! = the i-th twin prime number,

so that (by the table),

The function p; obviously satisfies the recursive equation

where

po =3, ps =107, pi, = 881.

pé =3,

pitJrl = h(pzt + 1)7

(30) h(w) = the least twin prime = > w = (uy > w)Prime’ (y),

and the relation

Prime’(z) <=z is a twin prime

is primitive recursive. This however does not imply that the function p}
is primitive recursive (as in the proof of the analogous Proposition 1B.10
for the function p;), because we cannot show that the function h(w) is
primitive recursive—and this because we don’t know some bound for the
next twin prime. On the other hand, the function h(w) can be computed

by an obvious dumb search, where we successively check the conditions

Prime’(w + 1), Prime’(w + 2), Prime’(w + 3),...,

until we find some w + 1 4 ¢ which is, indeed, a twin prime. For example,

h(7) because

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.

h(6)

January 27, 2019, 10:03.

8) because
9) because
10) because

11) because

—Prime’(6)

—Prime’(7)

—Prime
—Prime
—Prime’(10)

(

(®)
9)
(

because Prime’(11).

22

1C. u-RECURSIVE PARTIAL FUNCTIONS

and then the function p; is computed by the primitive recursion which
defines it from h,?

po =3, pi = h(pg +1), ... ,p{ = h(p/_1 +1).

Despite its derogatory name, dumb search is perhaps the most basic
procedure in the construction of algorithms on natural numbers. It is ex-
pressed by the (unbounded) minimalization operator which is applied
to a relation like bounded minimalization in 1B.8:

(31) (ui > y)R(i,)
= the least i > y (if there exists one) such that R(i, Z),
and somewhat more simply for a dumb search which starts from 0,
piR(i, &) = (pi = 0)R(i, T).

Its application, however, leads naturally to the introduction of “partial
functions” which do not always deliver a value, and we give its precise
definition in this wider context.

1C.1. DEFINITION. A partial function (from the input set A to the
output set or range B)
f:A— B (note the half-arrow)
is any function
f:Ao— B (Ag=Domain(f) C A)
from a subset Ag of A, its domain of convergence. We write
f(z)| <= =z € Domain(f) (f(x) converges)
f(z)1 < x ¢ Domain(f) (f(z) diverges),
and occasionally, in definitions, the ungrammatical
f(z) =1 which means that f(x)7 .

For n-place partial functions f,g : N — N on the natural numbers, we
also write
f(@) >0 = [f(@)] & f(@) >0,
f(@) <g(y) <= f@)| &gH)] & f(@) <g(y),
etc. The extreme case of a partial function is the totally undefined (empty)

function with

(32) Domain(e) = @, so that for all z,e(x) 1 .

2We should note that the program which created the table of twin primes at the
beginning of this section is based on a much more efficient algorithm which uses the
“sieve of Eratosthenes”.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 23

23

24 1. PRIMITIVE AND p-RECURSION

On the other hand, every (ordinary, total) function f: A — B is a partial
function, with Domain(f) = A.

If f,g: A— B and z € A, we write
f(@) = g(x) <= (f@)1 &g(x)1)V flx) = gla),

so that with the ungrammatical use of f(x) =1 above,
f=9 < (V2)[f(z) = g(z)].
We also set
(33) fEg —= (VO)[f(@)] = (@) =g(D)].
The relation f C g is (easily, x1C.2) a partial ordering on the set
(A—=B)={f|f:A— B}

of all partial functions with input set A and range B, that is
fef (foo&gch)=rsch (fCokgCf)=/=g

1C.2. Composition and primitive recursion. These operators are
interpreted for partial functions by the natural way that we compute them:
if, e.g., gh: A—=Band f: B> =~ C, thenforall x € A,w € C,

fl9(@),h(z)) =w <= (Ju,v € B)[g(x) =u & h(z) =v & f(u,v) = wl;
and if
f(0,%) = g(2)
fly+1,5) =h(f(y,¥),y,T)

and g, h are partial functions on N, then, for all y, Z,w € N,
(34) f(y,%) =w <= (Jwo,...,wy €N)

(wo = 9(@)

& (Vi,0 < i < y)[w; = h(w; - 1,i— 1,7)]

& wy = w)
It follows from this definition that

9(@) 1T = (V)[f(y,2) 1],

because, for each y, the computation of the value f(y, ¥) ultimately depends

—

on the computation of f(0,) = g(Z)

Equivalence (34) gives an ezplicit definition for the partial function f(y, &)
and is known as Dedekind’s analysis of recursion. Note that it uses the
quantifier (3w, ... ,w, € N) on finite sequences of natural numbers.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 24

1C. u-RECURSIVE PARTIAL FUNCTIONS

With these notions, we can extend the definition of the set R, (¥) of ¥-
primitive recursive functions to the case where ¥ contains partial functions.
We use this in 1C.4 below.

1C.3. DEFINITION. The minimalization of the partial function g(i, Z)
is the partial function

(35) f(y,) = (wi > y)[g(i, %) = 0]
= the least 7 > y, such that
g(i,%) =0& (Vj > y)lj <i=g(,2)] & g(j, 7 #0].
Equivalently:

(i > y)[g(i,7) = 0] = w
= gw,2)=0& (Vj 2 y)lj <w=g(j,7)| & g(j,Z) #0].

For example,

g() T = (ui = 1[g(i) = 0] T,

even if g(2) = 0. We also observe that if g(i, Z) is a total function and we
set

R(i,%) < ¢(i,%) =0,
then (ui > y)[g(i, @) = 0] = (wi > y)R(i, &) according to definition (31).
1C.4. DEFINITION. A partial function f : N — N is y-recursive in the
set of partial functions W if f belongs to every set of partial functions which

contains ¥ and is primitively closed and closed under minimalization. In
symbols:

Ru(¥) ={f| [is precursive in ¥}, R, =R,(0).

A relation R(%) or set A C N is p-recursive if its characteristic function is
p-recursive.

The set R, (¥) of partial functions which are p-recursive in ¥ is closed
under primitive recursion by its definition, i.e.,

Rp(¥) € Rpu(W).

We will show later that the converse inclusion does not hold, but this is not
obvious now. We can prove immediately, however, the closure of R, (¥)
under the branching operator, which is especially useful when we apply it
to partial functions:

1C.5. DEFINITION. The branching of three, given partial functions ¢(%),
9(Z), h(Z), is the partial function

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 25

25

26 1. PRIMITIVE AND p-RECURSION

(36) f(&) =1if (¢(Z) = 0) then g(Z) else h(Z)

with the convergence condition
f@)] = [e(@) =0& g(@) 1]V [c(@)] & () >0 & h(Z)]].

Note that the convergence of branching requires the convergence of the test
¢(Z) but does not require the convergence of both values g(Z) and h(Z): for
example, whether g(x)] or g(x) T,

if (0 =0) then z else g(x) = x.

1C.6. PROPOSITION. For every set of partial functions ¥, the sets R, (V)
and R, (V) are closed under branching.

PRrROOF. For the given definition
f(&) =1if (¢(&) = 0) then ¢g(Z) else h(Z),
the first temptation is to set, by primitive recursion,
fl(oaf) = g(f),
and try to show
(37) f(@) = fi(c(@), 2),
so that if ¢,g,h € R, (¥), then f € R,(¥) C R,(¥). This does not work,
Problem x1C.5, and we set instead, successively,
©0(0,) = 0, ©1(0,7) =0
poli+1L,7) = g(7), (i +1,7) = h(@),
J1(@) = o(1 = ¢(F), T) + p1(c(F), 7))
and now the equation (37) follows easily, Problem x1C.5. o
1C.7. Recursive equations. The Ackermann function (1A.6) is not
primitive recursive, and it is not obvious (yet) whether it is p-recursive.
Problem x1B.19* gives another interesting example of a function for which
it is not easy to show that it is primitive recursive, or p-recursive for that
matter. These functions, however, are computable, because the recursive
equations which determine them yield algorithms for the computation of

their values, e.g., in Problems x1A.6 and x1A.8. The next Proposition gives
one more (somewhat peculiar) example of this kind.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 26

1C. u-RECURSIVE PARTIAL FUNCTIONS

1C.8. PROPOSITION. The minimalization
fly, @) = (i = y)lg(i, &) = 0]
of a partial function g is the C-least solution of the recursive equation
(38) p(y, Z) = if (g(y,Z) = 0) then y else p(y + 1, Z),
that is:

(1) The recursive equation (38) holds for all y, % if we set p := f.
(2) If some partial function p satisfies (38) for all y, &, then f C p.
PRrOOF. (1) We have to show that for all y, Z,
(39) f(y, &) = if (g(y, F) = 0) then y else f(y +1,7),
and we consider the three cases,
9, T) 1, g(y,T) =0, g(y,T) > 0.
The truth of (39) is obvious in the first two of them. In the third case, if
(Vi > y)[g(i,) T vg(i,Z) > 0],
then, obviously,
fly, @)1 and f(y+1,2)7
so that we have equality again. Finally, if, for some w > y,
9w, 7) =0 & (¥ > y)li < w=>g(i,) > 0],
then f(y,Z) = f(y+ 1,%) = w, and we have again equality.
(2) We need to show that if for all Z,y,
(40) p(y, %) = if (9(y, ¥) = 0) then y else p(y + 1,),
then, for every and all y and w > v,
[y, %) = w=p(y,7) = w.
We use induction on the difference w — y.
At the Basis, w = y, and immediately, by the definition of f and (40),
[y, @) =y =ply,).
At the INDUCTION STEP, w > y and ¢(y,Z) > 0, so that
w=f(y,@)=fly+1,7) (by (39))
=p(y+1,%) (ind. hyp.,
sincew — (y+1) = (w —y) — 1),
=p(y, ¥) (by (40)). B

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 27

27

28 1. PRIMITIVE AND p-RECURSION

This example is especially important because it shows that the equa-
tion (38) which seems to define the value p(y, Z) from the next p(y + 1, ¥)
(1) in fact expresses the basic dumb search procedure. For example, to
compute the value p(2,Z) by this equation, we apply it repeatedly,

p(2,%) =p3,2)=---

until (perhaps) we find some m such that g(m,Z) = 0, in which case we
know that p(2,Z) = m. The example shows that the relation between
recursion and computation which we pointed out in (II) of 1A.3 applies
much more widely than the classical case of primitive recursion. It is the
key idea for defining the fundamental class of (general) recursive partial
functions which we will take up in the next Chapter.

Problems for Section 1C

x1C.1. Prove that for all partial functions f,g: A — B,

(1) f=9= (zeA)f(z)] = g(x)l]
and
(2) f=g9g = (VreAweDB)f(x)=w <= g(z) =w)].

x1C.2. Prove that for all partial functions f,g,h: A — B,
JEf, [fEg&ygEN=fCh, [fCg&ygCfl=/[=y.
x1C.3. Consider the definitions

g(z,y,z) =if (x = 0) then y else z,
fi(t) = g(t, (), 1),
fa(t) = if (t =0) then h(t) else t
where h(t) is some partial function. Is the equation
f1(t) = f2(t)
true for every t? (Give a proof or a counterexample.)

x1C.4. Prove that if the relation R(i,Z) is p-recursive, then the partial
function

is also p-recursive.

x1C.5. Explain why the first idea for the proof of 1C.6 does not work,
and give the details of the correct proof.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 28

1C. §~-RECURSIVE PARTIAL FUNCTIONS
x1C.6. (1) Prove that the partial function €™ : N* — N of n variables
with Domain(e™) =) is p-recursive.
(2) Suppose g(Z), h(Z) are p-recursive partial functions and let

3 = {g(f) if h(#) L,

T otherwise.
This means that
Domain(f) = Domain(g) N Domain(h),
and for x € Domain(f), f(x) = g(x). Prove that f is also y-recursive.

x1C.7. Prove that the classes R,(¥) and R, (V) are closed under defi-
nitions with k£ + 1 cases, of the form

9:(Z), if (@) >0,...,ck—1(Z) > 0,c,(Z) =0,
gk+1(f) if Cl(f) >0,... ,Ck_l(f) > O,Ck(f) > 0.

x1C.8*. (1) Prove that there exists exactly one partial function p(z,y)
which satisfies the equations

P(0,y) =y,
plz+1,0) =2z + 1,
p(x+1,y+1)=3p(z,y) +ply, z) + 2,

and compute the value p(3,2) for this p.

(2) Prove that the unique solution of this system is primitive recursive
(or p-recursive, if this is easier).

x1C.9. For partial functions ¢(Z), h(w,y,Z), prove that the recursive
equation

(41) p(y, %) = if (y = 0) then g(Z) else h(p(y = 1,Z),y ~ 1, %)

has exactly one solution, namely the partial function f which is defined by
the primitive recursion

f(0,%) = g(2),
f(y + 1af) = h(f(yaf>7yvf))

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 29

29

30 1. PRIMITIVE AND p-RECURSION

x1C.10 (The Euclidean algorithm). Prove that the following recursive
equation has a unique solution, the function p(z,y) = ged(x, y):

0, ifxr=0o0ry=0,

p(y,), otherwise, if x < y,
(42) p(z,y) = L

Y, otherwise, if y | z,

p(y,rem(z,y)), otherwise.

x1C.11. Give examples of partial functions ¢(y, Z) such that equation (38)
admits:
(1) The empty partial function & as the only solution.
(2) Only one solution, which is a total function.
(3) Infinitely many solutions.

x1C.12*. Prove that there is no partial function g(y,) such that equa-
tion (38) has exactly two solutions.

x1C.13*. (1) Prove that the recursive equation

(%) p(x,y) = if (x = 0) then 1 else p(x = 1,p(z,y))
has a least solution p, and give a formula for this solution.

(2) Prove that there exists only one total function f which satisfies the
recursive equation (), and this function is not the least solution.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 30

CHAPTER 2

GENERAL RECURSION

The first rigorous definition of (general) recursive partial functions on
the natural numbers was given by Godel in 1934, following a suggestion of
Herbrand, and the basic results about recursive functions were proved by
Kleene in the 1930’s. We will develop a generalization to partial algebras
of a very simple and elegant version of the Gédel-Herbrand-Kleene defin-
ition. It is due to John McCarthy (1963) and it reveals more clearly the
relationship between recursion and computation.

This approach to recursion theory is based on ideas from logic and pro-
gramming, and in the first section of the chapter we will prepare the ground
by presenting (briefly) the required preliminaries.

2A. Partial algebras

Characteristic—and for us the main—example of a partial algebra is the
basic structure of arithmetic
(43) Ny = (N,0,1,5, Pd),

where S and Pd are the successor and the predecessor functions on the
natural numbers. In general:

2A.1. DEFINITION. A (partial) algebra is a tuple
M= (M,0,1, f1,..., fk),
where M is a set, the universe of M; 0,1 € M and 0 # 1; and for each
i=1,... K,
fi: MV —~ M
is a partial function of arity n;. Here we allow n; = 0, in which case f; is a

0O-place partial function on M, i.e., a constant (some member of M) or the
totally undefined partial function of 0 arguments.

An algebra is total if every f; is a total function.

31

32 2. GENERAL RECURSION

Expansions. In almost everything we do, we will only need algebras on
the natural numbers, including ezpansions of Ny of the form

(No, f1,-- s fm) = (N,0,1, S, Pd, f1,..., fm)
and the standard first order structure on N
(44) N=(N,0,1,+,").
Other basic examples of partial algebras are the structures
(Z,0,1,+,—,-), (F,0,1,4,—,,+),
where Z = {0,1,—1,2, -2, ... } is the set of (positive and negative) integers,
and F'is a field, e.g.,

F = Q = the set of rational numbers = {E |z, y €Z,y # O}
)
or FF =R = the set of real numbers.

Division r + s is a partial function on a field (since it does not converge
when s = 0), and so fields are not total algebras.?

2A.2. The term language T(M): syntax. With every partial algebra
M we associate the formal language T = T(M) of terms, whose alphabet
comprises the following symbols:

e the individual variables: VO, Viyeee

o the individual constants (members of M): x (xeM)

e the function constants: f1,...,fx (arity(f;) = n;)
e the symbols for branching: if then else

e the punctuation symbols: , ()

e and the symbol for equality: =

From these symbols we single out the vocabulary of M

(45) v=(f1,...,fx) (arity(f;) = n;)

31In logic we study structures

M= (M,c1,...,en, R1,..., RL, f1,.- -, fK),

where the primitives are distinguished elements of M, relations, and (total) functions on
M. The partial algebras that we are using here are seemingly more special, as we do not
allow distinguished elements or relations; but we can represent members of M by O-place
functions and n-ary relations by their characteristic functions. So partial algebras are
in fact more general than the structures of first order logic, as we allow partial (not
necessarily total) functions f1,..., fx. Those who know logic should also notice that in
the definition of terms below, we allow branching.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 32

2A. PARTIAL ALGEBRAS 33

which provides notation for the “given” (primitive) partial functions of M,
while the remaining symbols are common to all partial algebras on M. The
vocabulary of Ny is the pair (S, Pd).

Words from a set ¥ are finite sequences of elements (or symbols) of X,
for example the words

vi7 (of length 1) 0= (Ovsfy Pd01zqz3if =else

from the alphabet of T. As in these examples, we will write words by simply
arranging the symbols in a row, without commas. The concatenation of
two words is denoted (literally) by the concatenation of their symbols, so
that for the two words we gave as examples, their concatenation is the word

0= (OV3f2Pd01x1:v3if:else
We use the symbol ‘=’ to denote the relation of word equality, so that
f2: (Ofl = f2: (Ofl but f2: (Ofg ;é f2: (1f2

The obvious reason for using “=" for word equality is that ‘=’ is a symbol
(of the alphabet of T), so its use for the equality between words would
cause confusion.

We often use Greek letters to name symbols and words,

o= o0y - Oy
The empty word is denoted by ‘A’, so that for every word «,
Aa=aA =«

The “syntactically correct” expressions of T—those which mean some-
thing—are separated into terms and equations. We define first the terms,
following the same idea that we used to define primitive recursive functions.

2A.3. DEFINITION (Terms and subterms). A set T of words from the
alphabet of T(M) is closed under term formation if it satisfies the
following conditions:

(T1) T contains every x € M, including 0 and 1.
(T2) T contains every individual variable v;.
(T3) If the words Ay, ... ,A,, are in T, then the word

fi(A1, ..., Ap,)

is also in T'.
(T4) If the words Ay, Ay, Az are in T, then the word

(if (A1 =0) then A, else Aj3)

isalsoin T.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 33

34 2. GENERAL RECURSION

A word E is a term if it belongs to every set T which is closed under
term formation, and we let

TERMS = TERMS(M) = the set of all terms of T(M).
A word A is a subterm of a term F if it is a term and a part of E, i.e.,
E=cAT

for suitable (possibly empty) words o, 7. In particular, every term E is a
subterm of itself.

Notice that the empty word A is not a term: because the set T of all
non-empty words is (trivially) closed under term formation.

The definition of terms is often expressed informally by the “equivalence”
(46) A=x ‘ Vi | fi(Al, . 7Anl) | (If (A1 = 0) then A2 else A3)
which we read as follows:

A word A is a term if it is a member of M, or an individual variable,
or of the form f;(A41,...,A,,) where Ay,...,A,, are terms, or
of the form (if (41 = 0) then Ay else A3) where A, Ay, A3 are

terms—and only if A satisfies one of these conditions.

2A.4. Pure and closed terms. A term A is closed if no individual
variable occurs in A, and pure if the only individual constants which (pos-
sibly) occur in A are 0 and 1. Examples in T(N):
S(0) : closed, pure, S(13) : closed, not pure,
Pd(vy) : pure, not closed,
(if (vi = 0) then 3 else 1) : neither closed nor pure

The recursive definition of terms justifies inductive proofs of properties
of them:

2A.5. LEMMA (Induction on terms). Let 3 be a set of words in the al-
phabet of T(M) such that
A17~-~ 7Ani €Y = fz(Ala 7Anb) ey,
A, B,C e€X¥ = (if (A=0) then B else C) € X.
(1) If ¥ contains all the individual constants and variables, then ¥ con-
tains all the terms.

(2) If ¥ contains all the individual constants, then ¥ contains all the
closed terms.

(3) If ¥ contains 0, 1 and all the individual variables, then ¥ contains
all the pure terms.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 34

2A. PARTIAL ALGEBRAS

PRrOOF. (1) is immediate: because the hypothesis says that ¥ is closed
under term formation, and so it includes every term, by the definition.

We leave (2) and (3) for Problem x2A.2. o

How can we show that the word (S(1) is not a term? The rigorous proof

is based on part (1) of the next technical but important Lemma, where the
word « is a proper initial segment of the word 3 if
B=aywith BZA, vy#A

2A.6. LEMMA (Unique readability of terms). (1) For every term A, the

number of occurrences of the left parenthesis ‘(7 in A is equal to the number
of occurrences of the right parenthesis ‘)’ in A.

(2) No proper initial segment of a term is a term.

(3) The set of terms is closed under term formation, and if A = aq -+ auy
is a term, then exactly one of the cases (T1) — (T4) applies with T the set
of terms.

PROOF in Problem x2A.3. -

The word (S(1) is obviously not a term, since it has more left parentheses
than right ones.

Lemma 2A.6 also justifies recursive definitions of functions on the terms.

2A.7. LEMMA (Recursion on terms). For each set W and given func-
tions ®1,®% (i=1,...,K), ®3, there exists a unique function

® : TERMS — W

such that
forx € M, ®(z) = ®1(x), D(v;) = D1(vi),
O(f;(A1,...,An,)) = PL(P(A1),...,P(4n,)),
O (if (A =0) then B else C) = &5(P(A), P(B), d(C)).
PROOF in Problem x2A.5. -

Similar results hold for the sets of closed and of pure terms, justifying
recursive definitions on them, Problem x2A.6.

2A.8. DEFINITION (Equations). An equation of M is a word of the form
A=B
where A and B are terms of M.

Notice that the syntaz of T(M) is completely determined by the set M
and the vocabulary v = (f1,... ,fx) of M, that is, it does not depend on
the interpretations fi,..., fx of the function symbols in M. These are
used to define the semantics of T(M), as follows.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 35

35

36 2. GENERAL RECURSION

2A.9. The term language T(M): semantics. The value valy(A)
of a closed term A in the partial algebra M is defined recursively by
the following conditions by appealing to Lemma 2A.7 for closed terms,
cf. Problem x2A.6:

(DT1) valu(z) =z, for x € M.

(DT2) If valm(A4;) = wj for j=1,...,n;, then
valy(f, (Al,... JAR)) = fl(wl,... s Wh,)
(DT3) If E = (if (A=0) then B else ('), then

ValM(B) if ValM (A) = 07

V) = {va1M<c> if valu(4)| & valm(4) # 0.

Notice that the definition can yield valy(E) T, since the primitives of
the algebra M are allowed to be partial functions: for example, if f1(1) 1

then valm(f1(1)) = f1(1) 7.

2A.10. Simplified notation (misspellings). As is usual in logic, we ra-
rely put down “grammatically correct” terms and equations. In practice,
we use the ordinary mathematical symbols instead of their formal coun-
terparts, e.g., x,y, ... or sometimes x,y, ... for individual variables instead
of vi,va,..., f,g9,+,-,Dp, ... for function constants instead of f,fs, ..., etc.
We also omit or introduce more parentheses and “blank spaces” if this
facilitates readability and we use infiz notation, writing for example

(x+y) - z instead of - (+(z,y), 2)
The “grammatically correct” expression for (38) (with the suitable vocab-
ulary) is
p(vlv V2,... 7Vn+1)
= (If (fl(vl,v2, ce ,Vn+1) = O) then Vi else p(S(Vl),Vg7 . 7Vn+1))
while its simplified rendering in T(Ng, g,p) is
(47) p(y, @) = if (g(y, ¥) = 0) then y else p(S(y), 7).
Definitely more readable.

2A.11. Substitution of constants. For each term A, each individual
variable x and each x € M, we set

A{x := z} = the result of replacing x by z in the term A.

More generally, for any distinct individual variables X = x1, ... ,X,, and any
T=x1,...,Tm € M,
(48) AR =7y =A{x1 =21} {xm =T}

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 36

2A. PARTIAL ALGEBRAS

For example, in T(Ny),
S(S(V)){x:= 17} = S(S(17)).
2A.12. Term functions (generalized polynomials). If E is a term and

X =Xq,...,X, 18 a list of distinct variables which includes all the variables
in E, we set for any & = (x1,... ,2,) € M,

fe(@) =valu(E{X:=2}) (¥eA™)
or, with lots of dots rather than vectors,
fe(x1,...,xn) =valm(E{x1 := 21, ... ,Xp = 2n}) (21,...,2, € M).

The partial function fr : M™ — M is the term function or generalized
polynomial defined in M by E and the list X.

For example, in simplified notation on Ny,
for the term E = if (x = 0) then SS(x) else Pd(z),
fe(z,y,2) =if (x = 0) then 2 else z - 1;
and if F' is a field and ag, ... ,a, € I, then
if E=ag+aix+ -+ apx”, then fp(z) =ap+ a1z + -+ + apz™,

which is where the “generalized polynomial” name comes from.

A partial function f: M™ — M which is definable in this way by a term
FE and a sequence of variables X is variously called term definable, explicit,
or a generalized polynomial of M.

2A.13. Model theoretic notation. For any two closed terms, we write
(49) M A=B < valu(A) = valu(B)
= (valM(A)T & valu(B) 1)\/(Elw e M) (valM(A) = valy(B) = w).
In particular, if B = w is a constant,
MEA=w < valy(4) = w.
This notation (from logic) avoids the use of subscripts and is sometimes

easier to read than the valy() notation, especially in the second case, when
A is a complex term and w € M.

This notation can also be extended to arbitrary terms A, B which need
not be closed: if the list of distinct variables X includes all the variables
that occur in A and B, we set

(50) M A= B < (VZ)[fa(?) = [B(Z)].
For example,

Ny = Pd(S(z)) =«

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 37

37

e Correction

1/20/15

38 2. GENERAL RECURSION

is a basic identity of Ng. (And Problem x2A.7 verifies that the choice of
the particular list X is irrelevant in this definition.)

Problems for Section 2A

2A.14. A term derivation in T(M) is any finite sequence
D = (Ay,...,A,)
of words such that for every j < n one of the following is true:

(TD1) A, is a constant x € M.

(TD2) A; is an individual variable v;.

(TD3) A; =f,(En,...,E,,), where f; is a function symbol with arity n;
and the words E1, ..., E,, occur in (Ao,...,Aj_1), before the j'th place
in D.

(TD4) A; = (if (E1 = 0) then Ej else E3), where the words Ey, E1, Es
occur in (Ag,...,A;_1), before the j'th place in D.

x2A.1. Prove that a word F is a term if and only if there is a term
derivation D = (Ay,...,A,) with E = A,.

x2A.2. Prove parts (2) and (3) of Lemma 2A.5.

x2A.3. Prove the Lemma of Unique Readability of Terms 2A.6.

x2A.4 (Unique readability for equations). Prove that if Ay, By, As, Bo
are terms of T(M) and

A1 = Bl = A2 = B2
then A; = Ay and By = Bs.
x2A.5. Prove Lemma 2A.7.

x2A.6. State and prove Lemmas similar to 2A.7 which justify recursive
definitions on the closed and the pure terms.

x2A.7. Suppose all the individual variables which occur in a term A are
in the list X and y is a variable which does not occur in A. Prove that for
all ¥,y € M,

fa(@) = fa(@,y)

x2A.8. Prove that if M is total, then every generalized polynomial of
M is a total function.

x2A.9. Prove that for every generalized polynomial f(z1,... ,2,) of Ng,
there is a number M such that
flz,. .. zn) <max(x1,...,2,)+ M (21,...,2, € N).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 38

2B. RECURSION AND COMPUTATION 39

Infer that addition = + y is not a generalized polynomial of Ny.

(Intentionally left blank so the paging agrees with the printed version.)

2B. Recursion and computation

We extend here the term language T(M) associated with a partial algebra
M so that we can give recursive definitions. Our main aim is to define and to
prove the basic properties of the fundamental class of (general) recursive
partial functions in M.

2B.1. The programming language R(M): syntax. The vocabulary
of R(M) extends that of T(M) by the addition of function or recursive
variables

Po,PT, ... (n=0,1,..., arity(p}') = n),
infinitely many for every arity n =0,1,....
From the syntactical point of view, the function variables are treated

exactly like the function constants fi,...,fx of T(M): so the terms of
R(M) are defined by the recursion

A=z | Vi | fl(Al, ,An7) | p?(Al, ,An)
| (if (A1 = 0) then A else A3)

and have all the properties that we have proved—unique readability, etc.
They are naturally interpreted in expansions of M: if, for example, all the
function variables in a term E are in the list p = p1,... , pm, then E can
be evaluated in any expansion (M, py,...,p,) which associates a partial
function p; of the appropriate arity with each function variable p; that
occurs in F.

A term of R(M) is explicit if no function variables occurs in it, i.e., if
it is a term of T(M). And as before, a term is pure if the only individual
constants that (may) occur in it are 0 or 1 and closed if no individual
variables occur in it.

A formal recursive equation is an expression
P(X1,... ,Xn) = A,
in the vocabulary (fi,...,fx,p§,pY,...) of R(IM) where

e p is a recursive variable or arity n, i.e., p = p} for some j;
® Xi,...,X, are distinct individual variables; and

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 39

40 2. GENERAL RECURSION

e Ais a pure term of R(M) in which no individual variables other than
X1, ... ,Xp OCCUL.

The equation is explicit if A is explicit.
For example,
p(z) =if (x=10) then 1 else 0
is an explicit equation in every partial algebra;
p(x) = if (x =0) then 0 else S(p(Pd(x)))
is a recursive (but not explicit) equation of Ng; and
p(x) = S(y)

is not a recursive equation, because the variable y occurs on the right-hand
side but not on the left-hand side.

Finally, a recursive program of the partial algebra M is any system of
recursive equations

(€0) Po(Xo) = Eo
(E) :
(ex) Pr(Xk) = Ek

where the function variables pg, ... , px are distinct and they are the only

function variables which occur in the terms Ey,... , EFy. The equations of
E are called (recursive) definitions of the function variables py,. .. , pk.

The basic idea of the semantics of R(M) is that each program FE assigns
(and expresses an algorithm that computes) a partial function

Py MM = M (if arity(p;) = ki)
to each recursive variable p; defined by it, so that py, ... ,p; satisfy E, i.e.,

for all tuples &; from M.
Before defining rigorously the correspondence

E— (Eo,... 75]6)

we consider some examples—using “simplified notation”, i.e., without wor-
rying about using the correct fonts and spelling out all the terms correctly.

The definition
(E1) p(z,y) = S(y)

is by itself a program of Ng, which defines (explicitly) the binary function
variable p. The semantics should obviously give

E(as,y) = ValNo (S(y)) =y+1

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 40

2B. RECURSION AND COMPUTATION

and this is what they will do.
The equation

(£2) p(y, &) = if (9(y,) = 0) then y else p(S(y), z)

is a program of (Ng,g) where g : N**! —~ N, and there are examples of
functions g for which the equation (E2) can have many solutions, Prob-
lem x1C.11; for each g however, there exists a least solution of (E2) by
Proposition 1C.8, the partial function

p(y,) = (pi > y)[g(i,) = 0],
and this is the solution p that the semantics of R(Ng, g) will assign to the
symbol p.
Finally, we consider the following trivial example of a program, with the
single definition

(E3) p(z) = p(x).

Equation (Ej3) is satisfied by all partial functions; the semantics will yield
the empty partial function
p(x) = e(x), ie., for all z,p(x) T,
which is, again, the least solution of (FEs), as in example (E2).
After these preliminaries, we proceed to the rigorous definition of the
semantics of R(M). The basic idea is to associate with each recursive
program E and each recursive variable p; of F a machine which computes

some partial function p,, and we must first make precise what we mean by
“machine”. We give the definition in two stages.

2B.2. DEFINITION. A transition system is any triple
T=(5-,T),
where:
(1) S is a non-empty set, the set of states of 7.
(2) — is a binary relation, the transition relation on S.

(3) T C S is the set of terminal states of 7, and they do not trigger any
transitions,

(51) s€T = (Vs')[s A §].

A state s which satisfies the right-hand side of (51) but is not terminal
is stuck (or inactive). So the states are classified into three categories,
terminal, stuck and active, that is those that have at least one “next”
state. The system 7 is deterministic, if every state s has at most one
successor state, that is

(52) s =5 &s— =35 =5"

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 41

41

42 2. GENERAL RECURSION

For an example, set
(53) m—1n <= m>n, m—on < m=n+ 1.

The system (N, —1, {0}) is non-deterministic, while the system (N, —, {0})
is deterministic.

2B.3. Computations. A partial computation of a transition system 7°
is any finite path (sequence)

(54) Y=(s9g—=5——)

in the graph (S,—). A partial computation Y is terminal or convergent if
the last state s, is terminal and stuck or stalled if s, is stuck. An infinite
(divergent) computation is any infinite path

Y:(80—>$1—>"').

The length of a finite, partial computation as in (54) is n + 1.

The transition system 7 computes the partial function 7 : S — T on the
set of states if, for all s € S and t € T,

(55) m(s) =t < (3(s0,...,5n) € C(T))[s0 =5 & s, =],
where
(56) C(T) = the set of all terminal computations of 7.
It follows that

n(s)] <= (@(s0n... .50) € O(T))[s0 = 5]

Non-deterministic transition systems need not compute any partial func-
tion on S, but every deterministic system computes exactly one 7 : S = T
which is defined by (55). More than that: if 7 is deterministic, then for
each state s there exists exactly one terminal, stuck or infinite complete
computation

(57) comp(s) = compz(s) = (s — 87 — 53— +++)
which cannot be extended. It is defined by the recursion
S0 = S,

{the unique s’ such that s,, — s’, if there is one such s’,
Sn+1 =

T, otherwise.

In order to compute a partial function f : A — B with a transition
system 7, we have to enrich 7 with some means of “inputting” elements
from A and “extracting values” in B.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 42

2B. RECURSION AND COMPUTATION
/
S S
s T
A | input output B
\\xSH

FIGURE 2. Abstract machine.

2B.4. DEFINITION. An abstract or sequential machine with input
set A and output set (or range) B is any quintuple

M = T (input, output) = (S, —, T, input, output),
where 7 = (5, —,T) is a transition system and the following additional
conditions hold:
(4) input : A — S is the input function of M.
(5) output : T'— B is the output function of M.

The machine 7 (input, output) computes the partial function f: A — B if
for all x € A, w € B,

(58) f(z)=w
<~ (3(s0,-.-,8,) € C(S,—,T))[so = input(z) & output(s,) = w].
A machine is deterministic if 7 is deterministic, and in this case it com-

putes the partial function f : A — B which is defined by (58). A non-
deterministic machine need not compute a partial function.

2B.5. Recursive machines. For each program E of a partial algebra
M we define a transition system 7 (E) = 7 (E, M) as follows:

(1) The states of 7 (F) are all words s of the form

ag ... Oém,_liﬂo ﬂn—l

where the elements ag, ... ;,m,, o, --. , Bn—1 of s satisfy the following con-
ditions:

e cach «; is a function symbol (constant or variable), or a closed term,
or the special symbol ?, and
e cach (3; is an individual constant, that is 3; € M.

Recall that a term A is closed if it does not contain individual variables, and
notice that in each state the special symbol ¢’ has exactly one occurrence.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 43

43

44 2. GENERAL RECURSION

The states of 7 (F, M) are the same for all programs of the partial algebra
M and so we also call them states of M. For example, the word

p? 3S(3) 1if 7:301
is a state of Ng, as are the words
Pd 13 p?(S(2)) : 1023

or even

This is the simplest state of the recursive machine.
(2) The terminal states of 7 (FE) are the words of the form

Lw

that is those with no symbols on the left of > and only one constant on
the right. All the machines based on 7 (E) will have a common output
function, the function which simply reads this constant,

output(: w) = w.

(3) The transition relation of 7 (F) is defined by the seven cases in the
Transition Table 1. This means s — s’ holds if it is a special case of some
line of the Table. Notice that the transitions (e-call) are the only ones which
“call” the primitives of M and so they depend on M, while the transitions
(i-call) are the only ones which depend on the specific program E.

The system 7 (E) is obviously deterministic.

For each m-place recursive variable p of E, the recursive machine
T(E,p) is derived from the transition system 7 (F) by the addition of
the input function

input(¥) =p: &
and computes the partial function p = py : M™ — M, where
(59) @) =w <= p:Z¥—s —- — 1w
We also use the notation
(60) M E |+ p(@) =w <= pg(@) =w

which makes apparent the dependence of p on the partial algebra M. In
practice, when the specific program E and the partial algebra M are obvious
from the context, we will simply refer to the partial function p.

The main symbol of a program F is the function variable py defined
by the first equation of E, and F computes the partial function p, in M.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 44

2B. RECURSION AND COMPUTATION 45

(pass) az: f —axf (zeM)
(e-call), in general af,: 208 — a : fi(¥)p
(e-call), for Ng aS:zf—a:x+1p

aPd:zf—a 210

(i-call) ap 0 — aB{X:=%}: 0
(comp) ah(Ay,...,An): B > ahA -~ A, B
(br) a (if (A=0)then BelseC): 8 - aBC?A: (3

(br0) aBC?:08 -aB:pj
(brl) aBC?:yf —alC: 3 (y#0)

e The underlined words are those which change in the transition.

e ¥=ux1,...,x, is an n-tuple of individual constants.

e In the external call (e-call), f = f; is a primitive partial function of M with
arity (fi) =n; = n.

e In the internal call (i-call), p; is an n-place recursive variable of the program
E which is defined by the equation p;(X) = E;.

e In the composition transition (comp) h is a function symbol (constant or
variable) with arity(h) = n.

TABLE 1. Transitions of the system 7 (E, M).

For example, if one of the equations of F in Ny is the explicit equation

then, for every z, p(z) = x + 2 by the following computation:

p:x — SS(x): — SSk): — SSuz:
—-SS:z2—=8:1z2z+1—:2+2

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 45

46

if (2=

S if (1=

S Sif (0=

FIGURE 3. The computation of 2 + 3 by the program
= if (i = 0) then z else S(p(Pd(i),

p(i,

x)

2. GENERAL RECURSION

S 3 S(p(P (1
53 5((Pd(1)
S(p(Pd(1),
S S p(Pd(1),3

S SpPdl)3 :

S S p Pd(1)
SSpPdl

S SpPd :
SSp :

0) then 3 else S(p(Pd(0),))
S S 3 S(p(Pd(0),3)) ?
d(0),

S S 3 S(p(Pd(0 »

SS3 :
S S
S

23

23 (i-call)
(br)
(pass)

2 (brl)
(comp
(comp
(pass)
(comp)

3 (pass)
(Pdl)

13 (i-call)
(br)
(pass)
(brl)
(comp
(comp
(pass)
(comp)
(pass)

13 (Pdl)

03 (i-call)
(br)
(pass)
(br0)
(pass)

3

4 (9

5

For a more interesting example, we observe that addition is defined re-
cursively in Ng by the program with the single equation

p(i,

z) = if (i = 0) then z else S(p(Pd(7),

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.

January 27, 2019,

10:03.

46

2B. RECURSION AND COMPUTATION 47

Figure 3 shows the computation of the value p(2,3) = 5.

2B.6. M-recursive partial functions, relations and sets. An n-
place partial function f : M™ — M is recursive in the partial algebra M
(or M-recursive) if f = p for some program E of M and some recursive
variable p of F, i.e., if

f(@)=w <= ME I p(&) =w
with the notation of (60). Since the order in which we enumerate the equa-
tions of a program does not change the definition of the partial functions p,
a partial function f: M™ — M is M-recursive if and only if it is computed
by some program of M, i.e., f(Z) = Po(Z) where pg is the main symbol of
FE, Problem x2B.2. We set
RM)={f: M" = M| f is M-recursive}.

A relation P(Z) on M is M-recursive if its characteristic function (19)
is M-recursive, and a set A C M is M-recursive if its characteristic func-
tion (20) is M-recursive.

For the algebra Ny and its expansions in which we are especially inter-
ested, we will write

R=R(N,0,1,5, Pd) ={f:N*" = N| f is Ng-recursive},
and for every set W of partial functions of several variables on N,
(61) R(V)={f:N"—=N| fis (No, fi1,..., fx)recursive
for some fi,..., fx € ¥},

so that R = R(0). A partial function on N is recursive if it is Ng-recursive
and recursive in U if it is (N, ¥)-recursive, and similarly for relations on
N and subsets of N.

Problems for Section 2B
x2B.1. Describe the partial computations of the transition systems (53)
and determine the partial functions that they compute.

x2B.2. Prove that a partial function f(Z) is M-recursive if and only if
it is computed by some recursive program of M.

x2B.3. For the following three recursive programs in Ny,

(E1) p(z) = S(p()),
(E2) p(z) =plq(z)), q(z) =2,
(E?)) p(x,y) :pl(p(xvy)’y)v pl(xay) = .

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 47

48 2. GENERAL RECURSION

(1) Which partial functions satisfy them, as systems of equations?
(2) Which partial functions do they compute, and how do their compu-
tations differ?

x2B.4*. Prove that there exists a unary recursive relation R(z) which
is not primitive recursive.

x2B.5. Construct a recursive program of Ny which computes the Ack-
ermann function, 1A.6.

x2B.6. Construct a recursive program which computes the function
p(z,y) in Problem x1C.8*.

x2B.7. Construct a recursive program E in the expansion (Ng, g, h,7)
of Ny which computes the partial function f defined from the functions
g, h, T by nested recursion, Problem x1B.19*.

x2B.8*. Prove that the “equation”
0, if g(z) 1,
flx) = .
g(z) + 1, otherwise.
“cannot be formalized in R”, but first explain what needs to be proved.

x2B.9. Prove or give a counterexample for each of the following two
propositions:

(1) For every partial algebra M and every zy € M, the constant, one-
place function f(x) = xo is M-recursive.

(2) For every number x¢ € N, the constant, one-place function f(x) = zo
on the natural numbers is recursive.

2B.7. DEFINITION. (1) A set X C M is closed under the primitives of a
partial algebra M or M-closed if 0,1 € X, and

(a:l,... ,&n, € X and fi(zq,... ,xni):w)ﬁweX, (t=1,... ,K).

(2) For each set A C M, set recursively
2% = aufo,11,

A AP @) | @) & TF=a1,. . an € AT i=1,... K}
The union A = U;ioz(k’ is the set generated by A in M.

x2B.10. Prove that for every partial algebra M and A C M, the set A
is the smallest M-closed subset of M which contains A, that is: A C A,
A is M-closed, and for every X C M, if A C X and X is M-closed, then
ACKX.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 48

2C. SOUNDNESS AND LEAST SOLUTIONS
x2B.11*. Prove that if f: M™ — M is M-recursive, then

flay,...,zn)] = f(z1,... ,xn) € {z1,..., 20}

HINT: Prove the stronger proposition, that if A € M and the partial
function f : M™ — M is M-recursive, then the set A generated by A is
closed under f, that is

(xl,...,xnez&:f(xl,...,mn):w)éwez.

2C. Soundness and least solutions

In the two, fundamental theorems of this section we give a structural
characterization of the partial functions computed by the transition systems
T (E, M) which imply the basic properties of the class of M-recursive partial
functions.

Key to the proofs is the following, simple
2C.1. LEMMA. For every partial computation
ag:fo—ar:f— =y B
in the system T (E,M) and any words o*, §* such that
o ag: fo B
is a state, the sequence
atag:fo B =t B B = At am By B
is also a partial computation of T (E, M).
It follows that if
ag:fo—an:f—
is a divergent computation and o™ ag : By B is a state, then the sequence
atag: fo B =t By BT
is also a divergent computation.

PRrOOF is by induction on m > 0, and it is trivial at the basis m = 0, by
the hypothesis. At the induction step, we assume that the sequence

OZ*QO:ﬁOﬂ* _’a*al:ﬂlﬂ* —>"'—>O‘*am5ﬂmﬂ*

is a partial computation, we examine separately the seven cases which
justify the transition

Qo © ﬁm — Q41 - 6m+1

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 49

49

50 2. GENERAL RECURSION

in the given computation, and it is obvious that in each of these cases, the
same line from Table 1 also justifies the transition

a” ot B B — " apmyr : B B
The second conclusion is obtained by applying the first to all the partial
computations

apg:fPo—a1:f1— = am:Bm (MEN) 4

2C.2. THEOREM (Soundness of R(M)). For any recursive program E
of M= (M,0,1, f1,..., fx) with recursive variables pg, ... , Pk, let

M= (M,py,...,Pr) = (M,0,1, f1,..., fK,Pos--- »Pr)-
It follows that for every closed term A in the vocabulary (f1, ... ,fx, po,... , Pr):
(1) If valiz(A) 1, then the computation compr(A :) of T(E,M) with
initial state A : is infinite or gets stuck.
(2) If valiz(A) = w, then the computation compz(A :) of T(E, M) with
initial state A : converges with terminal state : w.

(3) The partial functions Py, ... ,Py Satisfy the system E in the partial
algebra M.

In particular, every recursive program of M has solutions.

PrROOF. For (1) and (2) we use induction on the given, closed term A.
We consider cases:

(T1) If A=x € M, then valy(A) = z, and the computation

T (pass)

yields the correct value.
(T2)If A = fi(Ay,...,A,,) for aprimitive f; of M, then the computation
comp(A :) starts with the transition
fi(Aq,...,A,,) : (comp)
fi A1 NN Anl :

We consider three subcases for what happens after this:

(T2a) For some j, valz(A;) T, and so valy;(A) 1. If j is the largest
number < n; with this property, then by the choice of j and the induction
hypothesis, the computation comp(A :) starts with the steps

fi(Ar, .o Ay (comp)
fi Av oo Ag, (ind. hyp.)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 50

2C. SOUNDNESS AND LEAST SOLUTIONS 51

fi Al An;,fl L Wnp, (md hyp)

fi Al Aj L Wi v Wy

i

By the induction hypothesis again, the computation
comp(4;:)=A4;: ma1: 0 — -

is infinite or gets stuck, since valy;(A;) T, and by Lemma 2C.1, the com-
putation
fi Al Aj—l Aj CWi41 v Why

—>f1 Al Aj,1 Oéliﬂl Wiq1 =+ Wpy — 00

is also infinite or gets stuck, which implies that comp(A :) has the same
property.

(T2b) There are elements w1, ... ,wy, in M such that valg;(A;) = w; for
j=1,...,n; but fi(wy,... ,wy,)T. In this case, by the induction hypoth-
esis and by appealing again to Lemma 2C.1, the computation comp(A :)
starts with the steps

filAr, ... Ay, (comp)
fiAr .0 Ay, (ind. hyp.)
fi A1 N An,;fl L W, (ll’ld hyp)
fi v wrwy - wn,
and here the computation stops (gets stuck) because f;(w1,... ,wn,)T.
(T2c) valyz(fi(A1, ..., A,,)) = w, so that there are elements wy, ... , wy,
in M with valg;(A;) = w; for j = 1,... ,n; and fi(w1,... ,wy,,) = w. From

the induction hypothesis and by Lemma 2C.1 once more, the computation
comp(A :) is now as follows:

fi(Ar,.o0 Any) (comp)
JiAr ..o Ap, (ind. hyp.)
fiAdr ..o Apo1 wp, (ind. hyp.)
fi s wiwy - wp,
: fi(w17"' 7wni)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 51

52 2. GENERAL RECURSION

which is what we needed to prove.

(T3) If A=p;(Ay,...,A,,) for some n-place function variable p; of E,
then the computation comp(A :) starts with the transition

pi(A1,...,A,,) : (comp)
Pi A1 Anl :

We consider three subcases as in (T2):

(T3a) For some j, valg(A;) T, so valgz(A) 1.

(T3b) There are elements wy, ... ,w, in M such that valy(A;) = w; for
j=1,...,n,but p;(wr,... ,wy) 7.

(T3c) valy(pi(Ai, - .. , Ay)) = w, which means that there are wy, ... ,wy,
in M such that valy;(A4;) = w; for j =1,... ,n and p;(wy,... ,w,) = w.

For case (T3a) the proof is exactly the same as for (T2a). For (T3b)
and (T3c), the proofs are slight variants of the ones for (T2b) and (T2c)
based on the definition of p;. For (T3c), for example, from the induction
hypothesis and by Lemma 2C.1, the computation comp(A4 :) is

pi(A1,..., Ay) : (comp)
pi A1 ... Ay (ind. hyp.)
pi A1 ... A, Wy, (ind. hyp.)
p; : wy wy -+ w, (definition of p;)
2 pi(wy, .. wy)

which is what we needed to show.
(T4) A = (if (A1 = 0) then A else A3). We leave this for Problem x2C.1.

(3) By the definition of the recursive machine,
p;(¥) = w <= there exists a terminal computation
E{X=%}: 581 — - — :w,
because the computation of p,(Z) starts with the steps
p; : & (i-call)
EA{X:= 2} -
Now (1) and (2) imply that

Ei{)_(';z f}: — 8 e — W = Valm(Ei{)?:Ef})Zw,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 52

2C. SOUNDNESS AND LEAST SOLUTIONS

so that
pi(7) =w <= valg(E{X:=2}) =w
which is what we needed to show. -

2C.3. COROLARY. The set of the M-recursive partial functions contains
the primitive partial functions f1, ..., fx of M, the projections
‘Pin(xla"'vxn)::ri (Z:]_,,TL)
and the constants Co(Z) =0 and C1(Z) =1, and it is closed under compo-

sition and branching.

PROOF. For the given partial functions, we observe that for the program

(Efz) p(x17"'?x7li):fi(x1)"' 7xni)
obviously, p(Z;) = f(&;), since p satisfies Ey,. For the projections and the
constant functions 0 and 1 we also use the obvious programs with a single
equation,

p(%) = x4, p(Z) =0, p(Z) = 1.

For branching, the hypothesis provides programs F., E, and Ej, of M
and specific recursive variables ¢, g and h of these programs, and we have
to construct a new program E which defines some “fresh” variable p, so
that

Pp(Z) = if (¢g. (%) = 0) then gg () else hg, (Z),

where the subscripts suggest the programs which compute ¢g,, 9g, and

hg,. Using alphabetic variants (for the recursive variables) of E., E,, Fj,
we can assume that these programs have no common function variables,
and we set

E=E .+ E;+ Ej + {p(Z) =if (c(&) = 0) then g(&) else h(Z)},

where by “4” we mean the collection of all definitions in the given pro-
grams. We note that F is a program, since every recursive variable in it is
defined exactly once. Moreover,

cp(%) =g (),
just because every computation
compg (c: %) =c:¥—ay: 0 —---

of E. is also a computation of F, and so (by the determinism of programs)
it is the only computation in E which starts with the state ¢ : Z, that is

compp,_(c: ¥) = compg(c: T);

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 53

53

54 2. GENERAL RECURSION

so ¢g = ¢g,, and the same, of course, holds also for the symbols g and
h. Finally, by Theorem 2C.2, the function py satisfies the equation which
defines it in F, and so

p(Z) = if (¢p(F) = 0) then Gy (7) else hp(T)
=if (¢g, () = 0) then gp () else h, (7).
The proof for composition is similar, Problem x2C.3. =

2C.4. COROLARY. For each partial algebra M = (M,0,1, f1,..., fx)
and any g : M™ =M, f: M™ — M,

(9€ R(M) & f € R(M,g)) = f € R(M),
where (M, g) = (M,0,1, f1,..., fK,q) is the expansion of M by g.
PrOOF. Problem x2C.4. -

The next theorem gives a characterization of the canonical solutions of
a program E computed by the recursive machine:

2C.5. THEOREM (Least Fixed Points). For any program E of a par-
tial algebra M with recursive variables po, ... ,pg, the partial functions
Po,--- P computed by T (E) are the C-least partial functions which satisfy
the equations of E.

ProOF. The functions py, . .. , p;, satisfy the system E by Theorem 2C.2,
so it suffices to show that if p, ... , p) also satisfy the equations of E, then
pi(@) =w=pi(F)=w (i=0,...,k).

So we assume that the functions py, ... , pj, satisfy the equations of F, and
we consider the two structures

M:(Maﬁov"'75k)a M/:(M,pé),,p%)

By Theorem 2C.2, we know that for each closed term A in the vocabulary
(f1,-- 5 fK, PO+ -+, Pr), if Valiz(A) = w, then the computation comp(A :)
of 7(E) is terminal with : w its last state. We will show by induction on
m, that for each A and every w,

(62) ifA: - a;:01— - nu_1:Pm-1 — :w, then valy (A) = w.
In the special case A = p;(z1,... ,2,), this yields

P, (%) = w = valw (p;(¥)) = w=p;(Z) = w,
which is what we need to show.

For the proof of (62) we examine the form of A, and the argument is
trivial (as in the proof of 2C.2) in all the cases except when

A = [31(1417 . 7An)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 54

2C. SOUNDNESS AND LEAST SOLUTIONS

In this case the computation has the form

pi(Alv"'aAn) :
pi Ar -+ Ap

P Al Anfl L Wp

D w
Now the induction hypothesis implies that
valw (A1) = wy,...,valw (A,) = w,, valyw (E;{X := ¥}) = w

because the computations which correspond to these values have smaller
length. So

valy (pi(A1,...,A)) = pi(valm (A1), ... ,valu (Ay))
=pi(wi,...,wp)
= valy (E;{X := v}) = w,
where the last equation because by the hypothesis
M’ = p;(X) = E;. B

Problems for Section 2C

x2C.1. Give the missing argument for case (T4) in the proof of The-
orem 2C.2. HINT: It is very much like the argument for case (T2), only
simpler.

x2C.2*. (1) Prove that for each program FE in a total algebra M, and
each n-place recursive variable p if F, no computation of the form
(*) pP:Zi,...,Tp — 81 — " 7 Sm.
is stuck, cf. 2B.3.

(2) Prove that if M is a partial algebra, p is an n-place function variable
of some program F in M and the finite computation (*) is stuck, then its
last state is of the form

afi:yla"'vyni/g

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 55

95

56 2. GENERAL RECURSION

where f; is one of the given partial functions of M, and f;(y1,... ,yn,) 1.
HiNT: Use the method of proof of Theorem 2C.2.

x2C.3. Prove that the composition (10) of M-recursive partial functions
is M-recursive.

x2C.4. Prove Corollary 2C.4.

x2C.5. Prove that if P(Z) and Q(Z) are recursive relations on the partial
algebra M, then the relations

Ri(T) < —P(
Ry (7) < P(2) & Q(2),
Ry(7) <= P(@)V Q(Z).

z)

are also M-recursive.

x2C.6. Prove that the union A U B, the intersection A N B, and the
difference
A\B={x€ A|z ¢ B}
of two M-recursive sets are M-recursive sets.

Prove also that the singleton {0} is M-recursive in every partial algebra
M, while in some partial algebra, the singleton {1} is not recursive.

2C.6. DEFINITION. For each f: M — M, the iteration f: NxM — M
of f is defined by the recursion
)=z, " 2) = f(f"().
x2C.7*. Prove that if g,h : M — M are M-recursive partial functions,
then the function

f(z) = ¢g™(x) where m = (un > 1)[h"(z) = 0].

is also M-recursive.

2D. Recursive partial functions on the natural numbers

Recall definition (61)

R(P)={f:N*"=N| fis (No, f1,..., fx)-recursive
for some f1,..., fx € U}

of the set of partial functions which are recursive in a set ¥ of partial
functions of several variables on the natural numbers. We collect in one
theorem the basic properties of R(¥) which follow from the results in the
two previous sections. These also hold, of course, for the set

R = R(0) = R(Ny)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 56

2D. RECURSIVE PARTIAL FUNCTIONS ON THE NATURAL NUMBERS

of the (absolutely) recursive, partial functions on N.

2D.1. THEOREM. The set R(¥) is primitively closed and closed under
minimalization, so that

R,.(U) C R(W).
In particular, every p-recursive partial function is recursive.

PRrROOF. The set R(¥) contains the projections, the constants 0 and
1 and the givens S(z) and Pd(x) since every R(No,0,1, f1,..., fr) with
fi,--+, fr € U has these properties by Corollary 2C.3.

We leave the primitive closure of R(¥) as a problem, x2D.1.

To show show that R(¥) is also closed under minimalization, suppose
g € R(¥) and

[y, @) = (i > y)[g(i,) = 0.
By Proposition 1C.8, the function f is the least solution of the recursive
equation

f(y, @) =if (g(y, @) = 0) then y else f(y+1,7).

This is a program by itself, so (by Theorem 2C.5), f is computed by this
program and f € R(¥ U {g}); but if g € R(¥), then R(¥ U {g}) = R(¥)
by Corollary 2C.4. 4

Problems for Section 2D

x2D.1. Prove that if g(Z) and h(w,y,Z) are recursive in ¥ and the
function f(y,Z) is defined from them by primitive recursion (11), then
f(y, %) is also recursive in W.

Leat
(63) N, = (N, 0, 1, Parity, iqs, ems, oms)
where Parity(x) is 0 or 1 accordingly, if « is even or odd, and
iqe(x) = quot(z,2), emq(x) =2z, omgy(x)=2z+1.

The primitives of N are most natural when we want to represent natural
numbers by their binary expansion,

$:$0+$12+$222+-'-—|—J)k2k (aclgl)
Recall also the “standard” structure N = (N, 0, 1, +, -) defined in (44).
x2D.2. Prove that R(Ng) = R(Ny) = R(N).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 57

o7

58 2. GENERAL RECURSION

x2D.3*. Prove that the only total solution of the equation () in Prob-
lem x1C.13* is recursive, but the equation (*) also has solutions which are
not recursive partial functions.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 58

CHAPTER 3

COMPUTABILITY AND UNSOLVABILITY

From the central results in this Chapter stem the most important applica-
tions of recursion theory on the natural numbers which we will develop in
the sequel. We will lay the necessary mathematical foundations for these
applications, and we will establish the relationship between “recursion” and
“computability” — the famous Church-Turing Thesis.

3A. Normal form and enumeration

The main result of this Section is the following,

3A.1. Normal Form and Enumeration Theorem [Kleene|. There
is a primitive recursive function U(y), and primitive recursive relations
To(e,x1,... ,Zn,y) (n > 1) and functions ST (e, z1,... ,2m) (n,m > 1)
with the following properties:

(1) An n-place partial function f(Z) on the natural numbers is recursive
if and only if there is some number e (a code of f) such that

(64) f(@) =U(pyTn(e, Z,y)) (F=z1,... 2, €N).
(2) (The S!*-Theorem). Foralle, y, Z=z1,... ,2m and & = x1,... , Ty,
(65) U(uyTmin(e, 2,2, y)) = U(uyTa(S,' (e, 2), T, y))-

Moreover, the functions S (e, Z) are one-to one.

From the normal form (64) it follows that every recursive partial func-
tion can be defined using primitive recursive functions and a single dumb
search, and in particular, every recursive partial function is p-recursive. In
addition, if we set

(66) pe () = U(uyTn(e, T,y)),
then equation (64) implies that, for each n, the sequence

n n
PosP1y---

99

60 3. COMPUTABILITY AND UNSOLVABILITY

enumerates all n-place recursive partial functions, in such a manner that
the (n 4 1)-place partial function

" (e, T) = o (¥) = UpyTa(e, 7,y))
is recursive. The number e is called a code or Godel number of the partial
function ¢7.

The basic idea for the proof is to code in N (as in 1B.11) the recursive
programs of Ny and the terminal computations of recursive machines, so
that the following two conditions hold:

(1) The basic computation relation

(67) Tn.(e,x1,...,Zn,y) <= e is the code of a recursive program F
and y is the code of a terminal computation of E
with input pg : z1,... ,Tn
is primitive recursive.

(2) There is a primitive recursive function U(y), such that if y is the code
of a terminal computation Y, then

(68) U(y) = the output value of Y.

If we can do this, then (1) in Theorem 3A.1 follows immediately and its
meaning becomes clear. The significance of the more technical Part (2) will
be explained in the sequel.

In the manipulations with primitive recursive functions and relations that
we need to make, we will repeatedly use sequence codes defined in 1B.12.
To simplify some formulas, we set

(wij = (W), (wigwk = ((w)i)j)k, ete.,
first(u) = (u)g, last(u) = (u)lh(u) e
so that when n > 0,
first((ug, - .. , Un—1)) = up = the first element of (ug,... ,u,—1),
last({ug, ... ,Un—1)) = tp—1 = the last element of (ug,... ,un—1).
For example
(40,2), (1,0)))o.1 = 2, ({(0,2), (1,0)))r0 = 1.

We will also need some technical properties of sequence codes, including
the following;:

3A.2. LEMMA. For the classical coding (1B.13), put
(69) seg(u, i)

_ ((u),, (u)i+17 . ,(U)j-_ 1>, if Seq(u) & 0<1i <j < lh(u),
0, otherwise.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 60

3A. NORMAL FORM AND ENUMERATION 61

The function seg(u,i,j) is primitive recursive,
seg(u,1,7) < u,
and if i > 0 or j < lh(u), then seg(u,i,7) < u.
PROOF in Problem x3A.1. -

The proof of Theorem 3A.1 requires a sequence of definitions and lemmas
which provide primitive recursive codings for the basic sets of objects of
the theory of the programming language R = R(Ny). More specifically, we
will define successively injections

for each of six basic sets associated with recursive machines and their com-
putations, and we will prove that various decoding functions and relations
which extract information about the objects in these sets from their codes
are primitive recursive.

1. Symbols. For the individual variables, the numbers, the primitives
and the recursive function variables, we set first

Vil = (0,0,),)y = (0,1,m), [S]y = (1,1,0),
[Py = (1,1, 1), [pi'h = (1,n,2+1);
and for the remaining eight symbols
if then else , () = 7
that are used by the recursive machines for Ny, we use the codes
(2,0),...,(2,7),
e, [if]1 =(2,0), [then |y = (2,1), ..., [?]1 = (2,7).
Notice that the code of a number n is much greater than n, e.g.,
[1]1 = (0,1,1) = 2-3% . 5% = 450.
Quite obviously, we are not concerned here with the efficiency of the coding.
2. Words. For every word
o= Qoo O,
from these symbols, we set
[apaq - - anla = ([aol1, [ea]1, - - s [@n]1)-
For example,
[S(vi)l2 = ([S]1, [(J1, valy, D) = ({1, 1,0), (2,4), (0,0, 1), (2,5)),
[p1(v1,0)]2 = (P11, [(1, [valu, [1 [0]1, D) = -+ -

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 61

62 3. COMPUTABILITY AND UNSOLVABILITY

In particular, this definition assigns codes to the terms of R(Ng), which
are among these words.

Remark. The number variables v; and the number constants n are
symbols, but they are also terms of length 1. So they have two different
codings, as symbols and as terms, and we must be careful not to confuse
them:

[Vi]l = <0,0,i>, [Vi]g = <<0,0,Z>>
[n]l = <07 1’n>7 [’I’L]g = <<07 17n>>'
For example, [0]; = (0,1,0) = 2- 32 -5 =90, while [0] = (90) = 2°%.

3. Recursive equations. A (formal) equation is determined by its two
sides, which are terms, and we set

[P(V) = Els = ([P(V)]2, [E]2)-

4. Recursive programs. If E = (e,...,ex) is a program, then each
e; is an equation. We set

[Ela = ([eols, - - s [ex]s)-

5. States. The elements on the left-hand side of a state are either
closed terms or function symbols or the symbol ‘?’, while the elements on
its right-hand side are constants, i.e., numbers. We set:

[Oé(), P @ Ty [50, P ,ﬁn,1]5 = <<[a0]', ey [am,l]/>, <[,6()]1, ey [ﬁn,1]1>>,

where

o] [a]1, if a4 is a function symbol or ‘77,
a;) =
’ [a]2, otherwise, i.e., if a; is a closed term.

Again, we need to be careful, because the number constants are coded as
symbols on the right and as terms on the left-hand side; for example,

[2:2]5 = ({{({(0,1,2))),((0,1,2))) = some huge number.

We notice that when w is the code of a state « : 3, then first(u) is the code
of the left-hand side «, and last(u) is the code of the right-hand side g.

To verify that the function a — [a]5 is one-to-one on the set of states,
we note that no number is at the same time the code of a function symbol
or ‘7’ and also the code of a closed term; because the first symbol of each
closed term E is one of

S, Pd, n, pj, (

with code > 2, so that for every term E, first([E]z) > 2, while if u is the
code of a symbol, then first(u) < 2.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 62

3A. NORMAL FORM AND ENUMERATION

6. Computations. For each sequence of states s = (sg,... ,Sk), we set

[807 . 75k]6 = <[80]5, ceey [Sk]5>.
This codes all sequences of states, and in particular the terminal computa-
tions of the machine for any recursive program.

At this point definitions (67) and (68) have been made precise, and for
Part (1) of the theorem it suffices to show that the relation T, (e, Z,y) and
the function U(y) are primitive recursive.

The second task is easy by a careful reading of the definitions, which
shows that we can simply set

(70) U(y) = last(y)1,02
(Problem x3A.3).

The first task involves a substantial amount of computation. We will
show that T, (e, Z,y) is primitive recursive in a sequence of three lemmas
which introduce codings for several auxilliary sets and establish their basic
properties.

3A.3. LEMMA. The following relations and functions are primitive re-
cursive:

IndVar(v) <= v is the code of some v;
<~ v=1(0,0,(v)2)
IndConst(c) <= c is the code of a number
<~ ¢=(0,1,(c)2)
FunVar(f) <= f is the code of some p}'
= [=0Lu) & (fhz21&(f)2=2
FunConst(f) <= f is the code of S or of Pd
= f=[ShvV/[f=I[Pd:
FunSymb(f) <= FunVar(f) V FunConst(f)

arity(f) = the arity of the function symbol f
(if f is the code of a function symbol)

=/
PROOF is trivial. -
3A.4. LEMMA. The relation
Term(u) <= wu is the code of a term

18 primitive recursive.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 63

63

64 3. COMPUTABILITY AND UNSOLVABILITY

PROOF. By 2A.14, a term derivation is a sequence of words
D= (AOa'-' 7An)

which satisfies certain conditions (TD1) — (TD4) that correspond to the
conditions in the definition of terms 2A.3. We code term derivations in the
obvious way, as sequences of words

[Ao, ... An] = ([Ao]2, - -, [An]2),
and we check first that the relation
TermDer(d) <= d is the code of a term derivation

is primitive recursive. This is because we can verify whether d is a code of
a term derivation by examining its components (d);, (d),; etc. and using
bounded quantifications. Looking at (TD1) — (TD4) in 2A.14, the precise
equivalence we need is

TermDer(d) <= Seq(d) & (Vj < lh(d))Seq((d),)
& (v < () (Ra(d,)V Ro(d,)V Rs(d,) V Ra(d, 7))

where

Ry(d,j) <= A; = c for some constant ¢ € N
g (d)J = <(d)j70> & IndCOHS‘D((d)jyo),

Ry(d,j) <= Aj = v, for some individual variable v;
< (d); =((d);,0) & IndVar((d);,0)

R3(d,j) <= A; =f;(By,...,By,) with By, ..., By, earlier in D
<= FunSymb((d);,0)) & (d);1 = [(1 & (d)jjh((d)j)«_ , =Dh
& h((d);) = arity((d);0) + 3
& (Vi < axity((d);0)) 3k < 1)[(d);42 = ()]

Ry(d,j) <= A, = (if (B1 = 0) then B; else Bj)
with By, By.Bs3 earlier in D
<= (a clause similar to that for R3, only simpler, Problem x3A.4)
From this and Problem x2A.1 it follows that
(71) Term(u) <= (3d)[TermDer(d) & u = (d)jy, 4 - 4]-
This, however, does not suffice to prove that Term(u) is primitive recursive:

we need to find a bound for d in this equivalence, and this comes from the
following, improved version of Problem x2A.1:

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 64

3A. NORMAL FORM AND ENUMERATION

Sublemma. A word E is a term if and only if there is a term derivation
D= (4,,...,A,) with E = A, such that:
(1) every word A; which occurs in D is a subterm of E.
(2) no word occurs twice in D,

Z<j§n:>Az§_éA]

Proof of the Sublemma. The implication (<) does not need the extra
hypotheses (1) and (2): for any term derivation D = (Ag,...,A,) of E,
we simply check by induction on j < n that each A; is a term, and in
particular, £ = A,, is a term.

The implication (=) is proved by induction on terms. For example,
in the most complex case, if E = f(E,...,Ey) for a function symbol f,
the induction hypothesis gives us “nice” derivations D', ..., D* of each of
the terms Ey,... , Ey, and then lining these up and placing FE at the end
produces a sequence

D=A},... B, A2 ... By, ... Ak . By f(E,... E)

which is a term derivation of E. It clearly satisfies (1) in the Sublemma,
since every term which occurs in it is a subterm of some F;, and hence a
subterm of E = f(Fy,...,E). Now, the point is that if we successively
delete from D every term A; which occurs earlier in D, the resulting se-
quence is still a term derivation which ends with £ and no word occurs
twice in it, as required. - (Sublemma)

Suppose now that D = (A4g...,A,) is a term derivation of some term
E = A,, which satisfies (1) and (2) of the Sublemma and [E]; = u. If
m = lh(u) is the length of the term E, then obviously (and coarsely)
n 4+ 1 < m?2; because each A; is a piece of E and there are fewer than m?
choices of a point in E where it starts and another point when it ends.
Also, [A;]2 < u by Lemma 3A.2; so

(D] = [Ao, ..., Ap] < u™ = oHW?* < "
and hence (71) can be rewritten in the form

Term(u) < (3d < u(“2))[TermDer(d) & u= (d)lh(d) 4l

The function (u — u(“2)) is primitive recursive, and so this equivalence
completes the proof that Term(u) is primitive recursive. -

3A.5. LEMMA. The following relations and functions are primitive re-
cursive:

ClTerm(u) <= w is the code of a closed term
< Term(u) & (Vi < lh(uw))-IndVar((u);)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 65

65

66 3. COMPUTABILITY AND UNSOLVABILITY

CompTerm(u) <= u is the code of a term p;}'(A41,...,A,)
<= Term(u) & FunVar(first(u))

SubTerm(u,v) <= v is the code of a subterm of the term with code u
< Term(u) & Term(v) & (Fi,j < 1h(uw))[i < j & v = seg(u, i,)]

PrTerm(u) <= u is the code of a term pf(v',... ,v")
<= CompTerm(u) & (Vv < u)[SubTerm(u,v) = IndVar(v)]

Eq(e) <= e is the code of a recursive equation
<= e = (first(e), last(e)) & PrTerm(first(e)) & Term(last(e))

& (Vi < Ih(last(e))) (IndVar((last(e))i)

— (3] < Ih(first(e))[(last(e)); = (fixst(e));])

Prog(e) <= e is the code of a program
<= Seq(e) & lh(e) > 0 & (Vi < 1h(e))[Eq((e);)]
& (Vi < 1h(e))(Vj < 1h((e)in)
[FunVar((e)i,1,;) = (3k <1h(e))[(e)i1,; = (€)r,0.0]]

State(s) <= s is the code of a state
> s=((s)o, (s))
& (Vi < Ih((s)o) (FunSymb((s)o,i) V (s)o,i = [v CITerm((s)o,:))
& (Vj < 1h((s)1)IndConst((s)1,5)

TermState(s) <= s is the code of a terminal state
< State(s) & 1h((s)o) =0 & 1h((s)1) =1

Rep(u, j,) =q¢ the result of replacing the variable

with code j = [v;] by the constant z in the term with code u

FullRep(u, v, w) =q¢ the result of replacing

the variables with codes (v)g, ... ,last(v)
by the constants (w)o, ... ,last(w) in the term with code u
TrPrTerm(u) =ar ([Vi,J1,--- 5 [Vi J1) (i w=[p"(Viy,.-.,vi)]2)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 66

3A. NORMAL FORM AND ENUMERATION

Transition(e, s,s") <= Prog(e) & State(s) & State(s")
& s — s in T(E) for e = [Ely

Comp(e,y) <= y is the code of a terminal computation
in 7(E) for e = [E]4
<= Prog(e) & Seq(y) & lh(y) > 1
& (Vi < lh(y) — 1)Transition(e, (y)i, (¢)i+1)
& TermState(last(y))

T.(e,Z,y) < Prog(e) & Comp(e,y)
& first(first(y)) = (first(first(first(e))))
& last(first(y)) = [z122 - -)2
PROOF. The primitive recursiveness of all the relations and functions
in this list except for Transition(e, s, s’) is quite simple, or at the least,

routine. The computation for Transition(e, s, s’) requires some work and
we leave it for a problem, x3A.5%. -

The three Lemmas 3A.3 — 3A.5 together complete the proof of Part (1)
of Theorem 3A.1.

PROOF OF PART (2) oF THEOREM 3A.1. To prove the S™-Theorem,
we must compute from the code e of any program E that computes the
partial function

9(?/17 oo s Yms Ty e ,l’n) = SOE(:J7:Z:)

and given numbers Z = 21, ... , z,, the code ST*(e,) of some other program
E> which computes the partial function

f2(Z) = g(%, %)
Suppose the first equation of F is
pO(V17 e Vmy V41, - - - 7Vm+n) = E07

where we have assumed specific variables in it to simplify the computa-
tion (which would otherwise be even messier). So pg is the main function
variable of E' and

Suppose ¢ is a function variable of arity n which does not occur at all in
the program F, and consider the formal equation

(72) Q(Vm-i-la e avm-‘rn) = pO(Zl) e aZm)Vm-‘rlv e 7Vm+n)7

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 67

67

68 3. COMPUTABILITY AND UNSOLVABILITY

where each Z; = 5%(0) is a closed, pure term which denotes the number
zi—the numeral of z;, as it is sometimes called. It is quite obvious that
the program

Ez = (72) followed by F

computes Fz with main symbol ¢, and that we can compute its code prim-
itive recursively from the code of E, the number ¢ such that ¢ = p}’, and
the numbers 7}

Sy'(e, Z)
= (P! (Vint1y -+ sVintn) = P0(Z1y -« s ZinsVint1s« -« s Vintn)]3) * €.

So the problem of defining S (e, Z) comes down to finding some number
i such that the function variable p* does not occur in E at all, and by (25),
we can just take i = e. Finally, we let

f*(e) = [pZ(Verly-“ 7Vm+n) ZPO(ZL'-- 7Zm7vm+17-" 7Vm+n)]37

we check (routinely) that f*(e) is primitive recursive, and we set

5 (e,2) = {<f*(e)> we, if Prog(e),

(0,e, 2) otherwise.

The definition by cases exploits the fact that no sequence of the form (0, e,)
is the code of a program, which insures that S]*(e, Z) is one-to-one on all
inputs. a

The S}'-Theorem is a more-or-less obvious consequence of the fact that
our codings are so-to-speak “primitive recursive”, and the proof of it was
messy, precisely because it required us digging into the details of these
codings. It is a very useful result, as we will see, partly because we will be
able to avoid a great many coding computations by appealing to it.

We confine ourselves here to just three consequence of Theorem 64 which
illustrate some of its uses.

3A.6. COROLARY. A partial function f : N — N is recursive if and
only if it is p-recursive.

PROOF. The p-recursive partial functions are recursive by Corollary 2D.1,
and the Normal Form Theorem obviously implies that every recursive par-
tial function is p-recursive. a

It should be emphasized that the normal form (64) rarely—if ever—
gives an efficient algorithm for the computation of a function, which in
most cases is specified easily (and more naturally) by general recursion.
The Ackermann function is a good example of this: its recursive definition
is very simple, while a direct proof that it is u-recursive and the derivation
of a normal form for it are not quite that simple—try it.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 68

3A. NORMAL FORM AND ENUMERATION

The Normal Form Theorem is the main tool for establishing negative
results, that certain interesting relations are not recursive. The basic model

for such results is the following theorem of Turing:
3A.7. COROLARY (Turing). The halting relation
(73) H(e,z) < wo(z)]
18 not recursive.
PROOF. Notice that directly from its definition,
H(e,2) <= (By)Ti(e,2,)

<= Prog(e) & the recursive machine with code e

terminates on input x.

If it were a recursive relation, then the total function

po(x)+1, if H(z,z
o) = 4 £ (o)

0, otherwise

would be recursive; but then, for some e and all x we would have
f(x) = @e(x),

which is absurd for z = e.

Our third Corollary is an application of the S)*-Theorem:

3A.8. COROLARY. Primitive recursion is primitive recursive in the codes;
i.e., for each n, there exists a primitive recursive function u(e,m) = u™(e,m)
such that if the partial function f is defined by the primitive recursion

f(0,7) = 7 (%)
fly+1,3) = 03,2 (f(y, 7). 9,7,
then
[y, @) = oyl (0, 2).
PRrROOF. The partial function
9(0,e,m, %) = ¢" (e, T)
"2 (m, g(y, e,m,), y, T)

is recursive, because R is closed under primitive recursion, so

gly+1,e,m, @) =¢

h(67m7y7 f) = g(y7 e,m,f),

is also recursive and so it has some code h. Tt follows that

9y, e;m, @) = he,m,y, &) = ¢ (e,m,y, 7) = o117 (y, %),

82, (h,e;m)
and we can set

u(e,m) = S,%H(E, e,m).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03.

69

69

* v.(r) = pu(x) +
1 need not be true
for all z, only for
those x’s for which
wz(z)]; but pe(e) |,
because @.(z) is to-
tal, which gives the
contradiction on the
next line.

70 3. COMPUTABILITY AND UNSOLVABILITY

Problems for Section 3A

x3A.1. Prove Lemma 3A.2.

x3A.2. Prove that every recursive partial function f(Z) has infinitely
many codes, i.e., there exist infinitely many numbers e such that f = 7.

x3A.3. Prove that if T,,(e, Z,y) is defined by (67) and U(y) is defined
by (70), then (68) holds.

x3A.4. Give a precise definition of the relation R4(d,7) in the proof of
Lemma 3A 4.

x3A.5*. Prove that the relation Transition(e, s, s) is primitive recursive.
(This computation has many details and it is not feasible to record them
all. What is required in this Problem is to explain the architecture of the
proof, and to work out some of the more interesting cases.)

x3A.6. Prove that some primitive recursive function u(n) gives for each
n a code of the Ackermann section A, (z).

x3A.7. Prove that the composition of recursive partial functions is prim-
itive recursive in the codes, in the following sense: for some primitive re-
cursive function u(z, e, m),

Prrz.e.m) (B) = 9202 (T), 01 (E)).-

x3A.8*. Prove that there is a recursive partial function f(x) which does
not have a total recursive extension, i.e., there is no total recursive function
g such that f C g.

3B. The Church-Turing Thesis

Our main aim in this section is to explain and (at least partly) justify
the following fundamental principle. It was formulated by the American
Alonzo Church and the British Alan Turing in 1936, independently and in
different forms.

3B.1. Church-Turing Thesis CT. A function f : N* — N is com-
putable if and only if it is recursive.

The Church-Turing Thesis identifies our intuitive understanding of what
it means for a function f : N — N to be computable by some algorithm
with the precise claim that f is recursive. It is usually claimed for par-
tial functions f : N — N also, but most of its (many and important)
applications depend on the simpler formulation for total functions.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 70

3B. THE CHURCH-TURING THESIS

E1 E2 E:E1+E2

FIGURE 4. Area as integral.

The implication
f recursive = f computable

is the trivial direction of the Thesis, and it is generally considered obvious
“by definition”: today, if not in 1936, it is easy to view the recursive ma-
chines defined in 2B.5 as “ideal versions” of electronic computers, or even
as real computers with access to “unlimited memory”, and they certainly
compute the values of their least fixed points. The significance of the Thesis
lies in its essential direction,

f computable = f recursive
typically invoked in the contrapositive:
if f is not recursive, then no algorithm computes f.

This allows to prove rigorously that a specific function f is absolutely non-
computable—not computable by any algorithm—by verifying that f is not
recursive.

The Church-Turing Thesis cannot be proved rigorously, as it identifies the
intuitive notion of computability with the rigorous (mathematical) notion
of recursiveness. In other words, it cannot be a theorem, so that within
mathematics it has the status of a definition. To understand its meaning,
it is useful to examine the role that definitions play in mathematics—how
they are justified and what they are used for.

For a classical example, consider the area of a simple region E bounded
by the z-axis, the vertical lines z = a and x = b and the graph of a positive,
continuous function f. It is defined in calculus by an integral,

b
(74) Area(E):/ f(x)dx.

This is not arbitrary, of course, or it would not be useful. The integral for-
mula (74) gives the correct value in important applications, e.g., it predicts

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 71

71

72 3. COMPUTABILITY AND UNSOLVABILITY

that the area of a circle with radius 7 is 772, which can then verified by
measurements.

In other words, the first requirement for a mathematical definition of
some intuitive notion is that it agrees with the known examples, those which
make the notion interesting. For the Church-Turing Thesis, this comes
down to arguing that

(75) if a known algorithm computes f : N — N then f is recursive.

This is not in dispute today: apart from the long list of (primitive) re-
cursive functions in section 1B and the strong closure properties of the
class of recursive partial functions that we have proved, there is also the
experience of more than seventy years of research which have yielded no
“counterexample”—no function which is considered (generally by the math-
ematical community) to be computable but which is not recursive.

Can we be sure that no counterexample of the Church-Turing Thesis will
be found in the future? Consider the classical solution of the corresponding
problem for the notion of area, which is based on the following three basic
intuitions for simple regions as in Figure 4:

(1) The area of a rectangle with sides « and 3 is the product «f3.

(2) If By C E, ie., the simple region E; is a part of another F, then
Area(F;) < Area(FE).

(3) If the simple region F is the union of two simple regions E; and Fs
as in Figure 4, then Area(F) = Area(F;) + Area(Es).

If we assume these as axioms, then equation (74) is a theorem: it can be
shown that it gives the only way to assign a real number Area(E) to every
simple region E so that (a) — (c) hold.*

Turing made an extensive analysis of what it means for a function to be
“computable” which led him to propose his version of CT. It was based on
the simple and obvious intuition® that

(76) computability = mechanical computability.

e . . b .
4This is, in effect, the standard result that the Riemann integral fa f(x)dx exists for

every continuous function f.

5It may be a “simple” and “obvious” intuition today, when high school students are
regularly using computers and the words “computation” and “mechanical computation”
are viewed as synonyms. In 1936, however, electronic computers, programs and oper-
ating systems did not exist, and the mathematical tradition associated the notion of
“computable function” with mathematical algorithms typically expressed by recursive
definitions. The archetypical examples of computable functions were the numerical op-
erations computed by the so-called “school algorithms” (for multiplication and division
in the decimal system), and the greatest common divisor, computed by the Euclidean
algorithm x1C.10.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 72

3B. THE CHURCH-TURING THESIS

After that, Turing defined rigorously a specific class of abstract (and very
simple) machines which today bear his name, the Turing machines; he
argued convincingly that the computations of any “constructible” machine
can be “simulated” by some Turing machine; and, finally, he conjectured
that for every function f,

f is computable <= f is computable by a Turing machine.

To complete the story, Church had already proposed a little earlier the
claim that for every f,

f is computable <= f is A-definable,

where “A-definable” means “computable by some term” of the formal lan-
guage of the A-calculus which he had introduced. The equivalences

f is Turing computable <= f is A-definable <= f is recursive

were proved almost immediately afterwards (by Turing and Kleene), and
they closed the circle which led to the formulation of the Church-Turing
Thesis in the form 3B.1.

Whether the analysis of “mechanical computability” given by Turing
constitutes a complete justification of the Church-Turing Thesis (just as
the analysis we outlined justifies the correctness of the definition of area
for simple regions) is debatable—and sometimes debated hotly. In any case,
we will consider it briefly in the next Section but we will not elaborate on it
here. We will show instead that the mechanical computability of a partial
function f implies its recursiveness if the machine that does the computing
satisfies some very weak “effectivity conditions” which are satisfied by all
ideal computers (as we understand these today) and by all “models of
computation” that have been introduced.

3B.2. A recursive coding of an abstract machine (as in 2B.4)
M = (S, T, —,input, output)
with input set N” and output set N is any coding
c:9—N

of the states of M in the natural numbers such that the following functions,
relations and sets are recursive:

S, = dS)={x|@s € 8)lels) = 2]}
T. c[T] = {z| (Fs € T)[e(s) =]}
r—.7 = z,2' €8, &cHz)— D)
— (3s,5 €9)c(s) =z & c(s') =a" & s — &

output(c™'(x)), ifz e T,

input,(¥) = c(input()), output,(z) = {0 otherwise

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 73

73

74 3. COMPUTABILITY AND UNSOLVABILITY

3B.3. THEOREM. FEvery partial function computed by an abstract ma-
chine which admits a recursive coding is recursive.

PROOF. The proof is a small part of the proof of the Normal Form Theo-
rem 3A.1, without the computations which are now given by the hypothesis.
We set

C(Z,y) < vy is the code of a computation on input &
< Seq(y) & (y)o = input.(Z)
& (¥i < In(g))[i +1 < 1h(y) = (1) = B)is1]
& Wngyy -1 € Te-

The relation C(Z,y) is recursive by the hypothesis and the closure prop-
erties of recursive relations, and if the given machine computes the partial
function f, then

f(@) = Outputc((uyo (@, y))lh - 1),

so that f(Z) is recursive. o

The idea now is that if a machine M (with input set N and output set
N) can be “constructed” in some precise sense, then the states of M must
be finite objects, which can be coded simply in the natural numbers (as in
the proof of 3A.1), so that the basic relations are recursive, in other words,
the proposition that

every machine which can be built admits a recursive coding;

and the basic observation is that the Church-Turing Thesis follows rigor-
ously from this claim and Turing’s basic intuition (76).

3C. Symbolic computation and undecidability

Sometimes we appeal to the Church-Turing Thesis to avoid giving a
rigorous proof, i.e., we claim that some partial function is recursive by
giving an intuitive description of some algorithm which computes it. Such
“sinful” (lazy) appeals can certainly be avoided with some additional work.
The Church-Turing Thesis is used in an essential way in proofs of negative
results, non-computability of functions or undecidability of relations, usually
relations on the set of words from some finite alphabet.

3C.1. Undecidability. Let ¥ = {ao,...,a,} be a finite (non-empty)
alphabet, and let ¥* the set of all words (finite sequences) from ¥, including
the empty word A. We set [a;] =i and code ¥* in N in the simplest way:

[80 e Sk—l] = <[So}7 e [Sk_1]> (SQ L. Sp—1 € E)

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. T4

3C. SYMBOLIC COMPUTATION AND UNDECIDABILITY

An n-place relation (or “problem”) P on X* is decidable or solvable if there
exists a recursive function x(z1,... ,z,) such that
Put,... up) <= x([ui],. . [ua]) =1 (u1,...,uy € %),

otherwise P is undecidable or unsolvable.

The basic tool for undecidability proofs is a characterization of the de-
cidable relations on X* in terms of some model of symbolic computation
directly, i.e., without reference to codings. In Section 3D we will review
briefly the classical (and historically first) such model, the famous Turing
machines. Here we introduce a second classical example due to Post, who
also proved the first undecidability result in pure mathematics, outside of
mathematical logic and computability theory.

3C.2. A rewriting system (or semi-Thue system) is a structure
R= (2,00 — 10,...,06 = T%) = ({ag,... ,an}, 00 = T0,... , 0k — Tk),
where the alphabet ¥ is a finite set and in the transition rules o; — 7; the
sequences o;, 7; are (possibly empty) words from ¥, i.e., members of X*.
The system R defines the following basic transition relation on ¥*:
a—pgrf = (Qa,a2,0,7€X)o—-T&a=aj0as & 8= arTas],
ie., a« —p B if B is derived from « by the replacement of some part o of
a by some word 7, so that ¢ — 7 is a rule. For example, in the rewriting
system
R = ({a,b},a — aa,a — bb),
we have the basic rewritings
a — g aa — g aaa — g abba.
The (complete) transition relation of R is the “transitive closure” of
—R,
a—rfB & a—par —p - —SRa-1 —R
<~ (Bag,...,an)[a0 =«
& (VZ < n)[al —R Oi+1 & Qp = ﬂ},
so that in the example a —% abba, but a /4% bbb (Problem x3C.1). The
word « is terminal in R if there is no § such that a —g 3,

Tr ={a| (VB)|a £ A,
like any o € {b}* in the example. Note that in these general rewriting
systems, we do not separate into “terminal® and “stuck” words, i.e., we
call terminal all stuck words.
Finally, for S C ¥*, the system R is deterministic on S, if

@eS&a—pB&a—rf]=p=0 €5,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 75

7

76 3. COMPUTABILITY AND UNSOLVABILITY

so that the example is not deterministic on the complete {a,b}*, but it is
deterministic on {b}*.

The recursive transition systems 7 (F, M) are, basically, rewriting sys-
tems, except that we distinguish “terminal” from “stuck” words and (more
significantly) the alphabet ¥ is infinite, as we have to include all constants,
i.e., all natural numbers in the case M = Ny which concerns us. The next,
technical but basic result gets around this obstacle by setting

(77) x=$11---18 (zeN),

i.e., coding numbers with strings of 1’s.

3C.3. THEOREM. FEvery recursive, partial function f : N — N is com-
puted by a rewriting system R, in some (finite) set of symbols ¥ which
contains the special symbols f,1,8, : in the following sense:

flxr,...,zp) =w <= f:ix1X0- "X, =) W
Moreover, R is deterministic on the set

(78) S ={a: B] the symbol > does not occur in the words «, 5}.

We omit the proof which involves a good deal of “programming” in
rewriting systems.

3C.4. The word problem for semigroups. For each rewriting system
(79) R= (%00 —70,.-. ,0k — Tk),

let ~r be the smallest equivalence relation on X* such that
1. o, ~g T3, for i <k,
2. 0 ~pT=aof ~ atf, for all a, f € ¥*,

and for every o € ¥*, let
[l ={8€X"[B~ra}
be the equivalence class of u. The set of the equivalence classes
[R] ={lo] | a € X"}

is the semigroup (generated by ¥ and presented by R), and the relation ~g
is called the word problem for this semigroup. The terms are, obviously,
from algebra and they can be justified, but we will not do this here.

3C.5. THEOREM (Emil Post). There is a rewriting system R such that
the relation o =% B is not decidable, and the word problem o ~g (3 for the
semigroup [R] is unsolvable.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 76

3C. SYMBOLIC COMPUTATION AND UNDECIDABILITY

PrOOF. Let Ry = (¥,00 — T9,...,0r — T) be a rewriting system
which computes the recursive partial function
f@) =0 pyTi(z,z,y)
by Theorem 3C.3, so that
fl@)l <= f:x—>% :0;

it follows that the relation o —7% [is not decidable, because if it were,
then the domain of definition {z | f(z) |} would be recursive, which it is
not, 3A.7.

To infer that the relation ~g is not decidable either, we observe first that

a~p B = N, Wma=r&m=>7,
& (Vi <n)[yi = Y41 Vv —R Vit1 V Yir1 =R Yills
easily in the direction = by the definition of ~g (since the relation on the

right is an equivalence relation), and by a trivial induction on n in the
direction <. It follows that it is enough to show that (with S as in (78))

(80) (Vi <m)[vi ="i+1 V¥ =R Vi1 V Vit1 —R V]
&&veS&y,=:0
= =:0Vy—g :0,
which implies that for o € .5,
a~p 10 <= a=:0Va—}g :0,
so that
f:x—=50 < f:x~g0

and excludes the decidability of ~r as before. Finally, we show (80) by
induction on n and with trivial basis, since for n = 0 the condition (80)
says that wg = : 0= wg = : 0. The induction step is also trivial if for
some 4, w; = w;y1, or if, for every i < n, w; —pr w;1+1. On the other hand,
the state : 0 is terminal, so w;41 —pr w; cannot hold for every 4, and so
there remains the case that for some largest i,

Wit1 — R Wi,
and therefore, also,
Wit+1 — R Wi+2,
and from these two and the determinism of R on S it follows that w; = w; 2,

which with the induction hypothesis complete the proof, because we can
simply remove w;41 from the given sequence. —

From the numerous mathematical problems which have been proved un-
solvable we mention here only two.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 7

7

78 3. COMPUTABILITY AND UNSOLVABILITY

3C.6. The word problem for groups. For every finite alphabet ¥ =
{ag,...,an}, let
Y, =YU{ay", ... a,t

! are new symbols; and for every rewriting system

where aal,... , Gy
R=(X4,00 = 70),...,06 = Tk))
in X7, let ~p be the smallest equivalence relation on X7 such that
1. 0, g 73, for i <k,
2. aiai_l ~p ai_lai ~p A, where A the empty word,
3. 0 ¥p 1= o ~ atf, for all a, f € ¥*,

and for every a € X7, let
[el, ={B Xy | B ~ra}
the equivalence class of c. The set of the equivalence classes

[Rl, = {led, | e 55}
is the group generated by R, and the equivalence relation ~p is called the

word problem for this group. As for the semigroups, the terms obviously
originate from algebra and can be justified, but we will not do this here.

3C.7. THEOREM (S. Novikov, W. Boone). There exists a rewriting sys-
tem R such that the word problem for the group [[R]]g s unsolvable.

This difficult result has important corollaries for group theory and alge-
braic topology.

3C.8. THEOREM (Hilbert’s 10th Problem). The problem whether a
giwven Diophantine polynomial

k Ky
P(xl"" axn): E akh--»,knl'll'”xn
kit++kn,<d

in n variables with coefficients in Z = {...,—1,0,1,...} has integer roots
is unsolvable.

This theorem was proved by Yuri Matijasevich in 1970 following a great
deal of work by Hilary Putnam, Julia Robinson and Martin Davis and 70
years after the question was asked. Perhaps more than any other result, it
helped establish recursion theory as a subject with significant applications
in pure mathematics.

Problems for Section 3C

x3C.1. For which words 23 - - -z, does the relation a —% x122- - @y,
hold, for the rewriting system R = ({a, b}, {a — aa,a — bb}?

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 78

3D. TURING MACHINES 79

3D. Turing machines

We define here Turing machines and give a brief account (without proof)
of the main fact about them.

3D.1. DEFINITION. A Turing machine is a triple M = (X, S*, T') where:
(1) ¥ is a finite set of symbols, which includes the special blank symbol w.
(2) S' is a non-empty, finite set, the set of internal states of M. We
assume that ¥ N S = 0.
(3) T is a finite set of quintuples of the form

(81) Q2= Q)
where Q and ' are internal states, z and z’ are symbols, and the
move m is 0, +1 or —1. This is the set of transitions or table of M.
A machine M is deterministic if for every internal state @ and every
symbol z, there is at most one transition Q —— @’ in the table of M
which starts with (Q, z).
In the picture that Turing sketches, at each step of its computation the
machine is in a particular internal state () and is “looking” at one “cell” of

an infinite (in both directions) “tape” with finitely many non-empty cells.
We picture this (complete) state of M by the doubly infinite word

aQB=--aln) -a0)QB0) - Bn)--
in the alphabet ¥ U S?, i.e., Q is an internal state and a(n),8(n) € &

S
for every n. The wvisible symbol of o @S is B(0), and the pair (Q, 5(0))
determines completely how M will transform the state.

For example, if the internal state is () and the tape is empty, then
the state is L” > Qu™ = ...LuQuu--- and the visible symbol is w.

Briefly, all the machine can do is to change internal state, change the
visible symbol and move no more than one position to the left or to the
right. The possibilities are determined by the entries in the table of M
and they are illustrated compactly in Table 2, in the second column with
Turing’s notation, and in the third as a transition system on the set of
states

{0,Q,8]a,8€X",Qe S

this is a bit different, because we need to deal with the states

aQA AQ3 AQA

where the empty word on the left represents v~
They can be described as follows, assuming that

the state is « @ § and x = 3(0).

o0

and on the right ..

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 79

80

(0)

(1)

3. COMPUTABILITY AND UNSOLVABILITY

t xz y -
1 a,Bexr
Q
QI L Qe t 2y | aQuf — ' QB
7 aQA — ax'Q'A
QT |t oy | aQuf — aQw's
T OZQA — O(Q/CE/A
Qi Ll t 2y - |ayQaB — aQ'yr'B
1 ayQA — aQ'yz'A
Q' AQxrf — AQ'u' B

TABLE 2. The transitions of a non-deterministic Turing machine.

If there is no basic transition in the table which starts with @) and =,
then the complete situation is declared terminal and the computation
stops.

If the table has a transition

Q zx' 0 Q/
with move m = 0, then the machine “chooses” such a transition,
changes = to 2’ and changes its internal state from @ to @', i.e.,

anﬂ/_’aQ/Ilﬁl

If the table has a transition

Q z x +1 Q/
with move m = 1, then the machine “chooses” such a transition,
changes z to 2/, changes its internal state from @ to @’ and moves
one place to the right, i.e.,

anﬂ/_’a«r/Qlﬁl
If the table has a transition
Q za —1 Q/
with move m = —1, then the machine “chooses” such a transition,

changes z to z’, changes its internal state from @ to @’ and moves
one place to the left, i.e.,

O/nyﬂ/—’O/Q/yﬂilﬁ/

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 80

3D. TURING MACHINES

With this definition, a Turing machine is a transition system by Defini-
tion 2B.2 and the various notions associated with transition systems apply
to it: a computation of M is any (finite or infinite) sequence

80581y -+« »Sky .-+
where each s; is a complete state and s; 11 is the result of an action of the
machine at s;;

s —»* s’ <= (3 computation)[s, s1,... ,5,_1,5'];
and if M is deterministic, then there is exactly one (terminal or infinite)
computation which starts with any complete state @ zam Q'. (We do

not distinguish between stuck and terminal complete states in this version
of Turings’s definition.)

To compute a (partial) function f : N — N with a Turing machine we
need an input and and output function, and the most usual choice for these
are

input(Z) =, START 11---1,11--- 1.+ 111,
—— Y— ——
r1+1 Ta+1 Tp+1
output(L™ END 11---1,8 = w,
w+1
where START and END are specified internal states.

3D.2. THEOREM. Fwvery recursive partial function f : N* — N can be
computed by a deterministic Turing machine.

This basic result is proved by showing that the class of Turing computable
partial functions is primitively closed and also closed under minimalization,
so that it contains all recursive partial functions. It is a long and rather
tedious exercise in “Turing machine programming” and we will skip it.

The converse is an easy consequence of Theorem 3B.3, so

3D.3. Theorem. A partial function f : N™ — N is (deterministically or
non-deterministically) Turing-computable if and only if it is recursive.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 81

81

CHAPTER 4

RECURSIVELY ENUMERABLE SETS

Recall that a relation R(Z) on the natural numbers is recursive if its
characteristic function is recursive, and a set A C N is recursive if its
membership relation

Ra(z) < z€ A

is recursive. We will study here the basic mathematical properties of the
recursive (partial) functions, relations and sets, but also the semirecursive
relations and the recursively enumerable sets, the simplest non-computable
mathematical objects. The basic tools we will use are the robust closure
of the class of recursive partial functions R (2C.3, 2C.4, 2D.1), the Nor-
mal Form and Enumeration Theorem 3A.1 and the 2nd Recursion Theo-
rem 4D.1.

In appealing to Theorem 3A.1, we will often simplify the notation by
omitting the superscript

@e () = oo (%) = U(uyTh(e, Z,y))

(which can be read off the input & ..., Zn) and using in some cases
Kleene’s alternative notation,
(82) {e}(@) = 02 (%) = U(uyTn(e, T, y)).

This is “typographically” convenient (fewer super- and sub- scripts), but
also helps understand better some of the proofs, as it places “on the same
level” the program e and the data . Finally, we will also use the notation

(83) We ={z | e(z)]}
for the domain of convergence of the recursive partial function with code e.
4A. Semirecursive relations

To facilitate the formulation of definitions and results in the sequel, we
list here and name the most basic operations on relations.

83

84 4. RECURSIVELY ENUMERABLE SETS

(=) P(#) <= -Q(2) (negation)

(&) P(#) < Q(¥) & R(Z) (conjunction)

(V) P(Z) < Q%) V R(¥) (disjunction)

(=) P(#) <= Q%)= R(Z) (implication)

E)] P(#) <= (Fy)Q(Z,y) (existential quantification)
(3<) P(z7) = (Fi<2)Q(Z,1) (bounded ex. quant.)

v) P(@) < (Vy)Q(Z,y) (universal quantification)
(V<) P(z,%) <= (Vi < 2)Q(Z,1) (bounded univ. quant.)
(84) P(Z) < Q(fr(D),..., fm(Z)) (substitution)

For example, we have already shown that the set of primitive recursive
relations is closed under all these operators (with primitive recursive f;(Z))
except for the (unbounded) quantifiers 3,V, under which it is not closed
by Theorem 3A.7. We have also shown (mostly in problems) the closure
properties of the recursive relations:

4A.1. PROPOSITION. The set of recursive relations is closed under the
propositional operators —, & ,V,=, the bounded quantifiers 3<,V< and
substitution of (total) recursive functions, but it is not closed under the
quantifiers 3,V.

4A.2. DEFINITION. (1) A relation P(¥) is semirecursive if for some
recursive partial function f(Z),
P(@) <= [f(@)] .
(2) A relation P(Z) is ©Y if for some recursive relation Q(Z,v)
P(I) = (F)Q(T.y).
4A.3. PROPOSITION. The following are equivalent, for any relation P(Z):
(1) P(&) is semirecursive.
(2) P(7) is XY.
(3) P(Z) satisfies an equivalence
P(7) < (F)Q(Z,y)
with some primitive recursive Q(Z,vy).
PROOF. (1)=>(3) by the normal form theorem; (3) = (2) trivially;
and (2) = (1) setting
f(@) = mQ(7,y),
so that

(BT, y) = f(@)] . 8

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 84

4A. SEMIRECURSIVE RELATIONS

We have already seen the classical, simplest example of a relation which
is semirecursive but not recursive, the halting relation H(e,z) in Corol-
lary 3A.7.

4A.4. PropPOSITION (Kleene’s Theorem). A relation P(X) is recursive if
and only if both P(Z) and its negation —P(Z) are both semirecursive.
ProoF. If P(Z) is recursive, then
Q(Z,y) < P(@), Ry < P
are also recursive and (trivially, by vacuous quantification)
P(¥) <= (Fy)Q(Z,y)
-P(Z) < (Jy)R(Z,y).
For the other direction, if
P(¥) <= (Fy)Q(Z,y)
—P(Z) < (Iy)R(Z,y)
with recursive relations @ and R, then the function
f(@) = wy[R(Z,y) v Q(Z,y)]
is recursive, total, and
P(Z) < Q(, f()). B

4A.5. PROPOSITION. The set of semirecursive relations is closed under
recursive substitutions, under the “positive” propositional operators &,V,
under the bounded quantifiers 3<, V<, and under the existential quantifier
3; it is not closed under negation — or under the universal quantifier V.

PRrROOF. Closure under recursive substitutions is obvious, and the fol-
lowing transformations show the remaining, positive claims of the proposi-
tion:

(y)Q(F,y) v By)R(Z,y) <= (Bu)[Q(T,u) V R(T, u)]
(BT, y) & F)R(T,y) <= (Fu)[Q(Z, (u)o) & R(Z, (u)1)]
(32)(F)Q(T,y,2) <= (Bu)R(Z, (w)o, (u)1)
(3 <2)BY)Q(T,y,49) < (Fu)[(w)o < 2 & Q(F, (u)1, (u)o)
(Vi < 2)By)Q(T, y,4) <= (Fu)(Vi < 2)Q(T, (u)i, 1)

On the other hand, the set of semirecursive relations is not closed under
negation or the universal quantifier, since otherwise the basic halting rela-
tion

H(e’ :E) g (Ely)Tl (6, z, y)
would have a semirecursive negation and so it would be recursive by 4A .4,
which it is not. =

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 85

85

86 4. RECURSIVELY ENUMERABLE SETS

The graph of a partial function f(Z) is the relation
(85) Gy(Z,w) <= f(&) =w,

and the next, simple proposition gives in many cases the easiest proofs of
recursiveness for partial functions:

4A.6. PROPOSITION (Graph Lemma). A partial function f(Z) is re-
cursive if and only if its graph G ¢(Z,w) is a semirecursive relation.

PRrOOF. If f(&) is recursive with code f, then
G(@w) < (W)T(f.7,9) & Uly) = w),
so that G ¢(&, w) is semirecursive; and if
f(@) =w <= (3u)R(Z, w,u)

with some recursive R(Z,w,u), then
£@) = (uB(E, (o, (w)1)) .
so that f(Z) is recursive. o
The last result in this section simplifies significantly many constructions.
4A.7. PROPOSITION (X9-Selection Lemma). For every semirecursive

relation R(Z,w), there is a recursive partial function f(Z) such that for
all Z,

(Gw)R(Z,
(Gu)R(,

w) <= f(Z)]
w) = R(Z, f(Z)).

PROOF. By the hypothesis, there exists a recursive relation P(Z,w,y)
such that

(k) R(Z,w) < (Jy)P(Z,w,y),
and the conclusion of the Lemma follows easily if we set
5@ = (nuP(@ (o, (W) . .

It is suggestive and sometimes convenient to use the notation
(86) f(@) = (vw)R(Z, w)

for the partial function f(#) where v is read as some; but it is important
to remember that f(Z) is not uniquely determined by the semirecursive
relation R(Z), it needs a representation of R(Z) as in (xx) for its definition.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 86

4B. RECURSIVELY ENUMERABLE SETS

Problems for Section 4A

x4A.1. Prove that the partial function
fle;u) = (@e((w)o), - pe((Win(yy - 1))

is recursive.

x4A.2. Let R(Z,w) be a semirecursive relation such that for every &
there exist at least two numbers w; # we such that R(Z,w;) and R(¥, wa).
Prove that there exist two, total recursive functions f(Z), ¢g(Z) such that
for all 7,

R(Z, f(¥)) & R(T, g(T)) & f(T) # 9(T).

x4A.3*. Let R(Z,w) be a semirecursive relation such that for every Z,
there exists at least one w such that R(Z,w).
(1) Prove that there exists a total recursive function f(n,Z), such that

(87) R(Z,w) <= (3n)w = f(n,T)].

(2) Prove that if, in addition, for every &, there exist infinitely many
w such that R(Z,w), then there exists a total, recursive f(n,Z) which
satisfies (87) and is “1-1 in n”, i.e., for all Z m,n,

m #n= f(m,7) # f(n, T).
4B. Recursively enumerable sets

4B.1. DEFINITION. A set A C N is recursively enumerable (r.e.), if
A = (0 or some recursive total function f : N — N enumerates A,

(88) A= fIN] = {f(0), f(1),... }.
4B.2. PROPOSITION. (1) The following are equivalent for any A C N:
(a) Aisre.

(b) The relation x € A is semirecursive, so that
A = Domain(g) = {z [g(z) |}

for some recursive partial function g.
(c) A is finite, or there is a recursive injection f : N — N which enumer-
ates A, A = f[N].

(2) The sequence
Wo, Wi, ...

enumerates the r.e. sets, so that the relation x € W, is semirecursive.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 87

87

88 4. RECURSIVELY ENUMERABLE SETS

(3) A set A C N is recursive if and only if it is finite or there exists a
(strictly) increasing, recursive function which enumerates A,

A={f0) <f1) <f2)<---}
PrOOF. For (3), first, we recall (as in x1A.12) that a function f : N — N
is strictly increasing if
fln) <fln+1) (neN),
which implies immediately (by induction) that
n < f(n);

it follows that if A is enumerated by an increasing, recursive f, then

r€A = (In<z)z=f(n),

and A is recursive. For the other direction, if A is recursive and infinite,
then the function

f(0) = (pa)[z € A]
fn+1) = (uz)lz > f(n) & x € A]
is recursive, increasing and enumerates A.
(1) The implication (a) = (b) is trivial for A =), and if A = f[N], then
r€A <= (Fi)[xr=f(i)]
The converse (b) => (a) is also trivial for A =, and if o € A and
x €A <= (Fy)R(z,y),

then A is enumerated by the recursive total function

if =R
f(u) _ L0, 1 ((U)Oa (u)l)v
(w)o, if R((w)o, (w)1)-
Finally, the implication (c¢) = (a) is trivial, as is (a) = (c) for finite A.
It remains to show that if A is infinite and

A={f(0),f(1),...}
for some recursive function f, then A is also enumerated by some one-to-
one recursive function. The basic idea is to “delete the repetitions” from
the enumeration by f, something that obviously leads to a total, one-to-one
recursive enumeration of A. For the rigorous proof of this proposition, let

B={n| (Vi <n)[f(i) # f(n)]}
be the recursive set of the positions where new members of A are enumer-
ated by f; then B = g[N] for some increasing g(n) by part (3), and A is
enumerated by the composition h(n) = f(g(n)), which is the composition
of two injections and hence injective.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 88

4B. RECURSIVELY ENUMERABLE SETS

NN

FI1GURE 5. Deletion of repetitions.

Part (2) follows by the characterization (b) of (1). —|

4B.3. COROLARY. Every recursive set is r.e., but there exist r.e. sets
which are not recursive, e.g.,

(89) H' = {x | H((x)o, (x)1)}.
ProOOF. If H' were recursive then the halting relation (73) would also
be recursive, since
H(e,z) < (e,z) € H'. =
The class of r.e. sets has a very rich structure and it has been studied

intensely. Here we will confine ourselves to (very few) basic results, which
give an idea of its properties.

4B.4. DEFINITION. A reduction of a set A to B, is any (total) recursive
function f which satisfies the equivalence

(90) r€eA < f(z) €B.
For any two sets A, B C N, we set:
A <,, B <= there exists a reduction of A to B,
A <; B <= there exists a one-to-one reduction of A to B,
A = B <= there exists a reduction of A to B which is a permutation,

where f : N—N is a permutation if it is a bijection, one-to-one and onto
N. Obviously,
A=B— A<, B— A<, B.
4B.5. PROPOSITION. For all sets A, B, C,
A<, Aand[A<,, B& B<,,C]=A<,, C,

and the same holds for the stronger reductions <1 and =; moreover, the
relation of recursive isomorphism = is symmetric,

A=B < B=A.
PROOF. For the transitivity of these relations, we notice that if, by the
hypothesis
xr€A < g(r)e Band y € B < h(y) € C,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 89

89

90 4. RECURSIVELY ENUMERABLE SETS

for given recursive functions, then
r €A < hg(x)) € C,
so that the composition f(z) = h(g(x)) reduces A to C. o

4B.6. DEFINITION. A set B is r.e. complete if it is r.e. and each r.e. A
is reducible to B by a recursive injection, A <; B.

For example, the set H' that we defined in (89) is complete, because each
r.e. set is of the form W, for some e, and

reW, < ¢.(v)] & (e,z) € H'.
A little simpler is Post’s “diagonal” set
(91) K =A{z| () T(z,z,9)} ={z | ea(z)l},
whose completeness is not quite immediate:
4B.7. PROPOSITION. The set K is r.e. complete.

ProoF. For any r.e. set
A=A{z|g(x)l}
(with recursive g(z)), set
Wz, y) = g(x)
and choose some code h of h, so that for any y,
r €A <= h(z,y)l
= ()]
= {Si(ha)}y)! .

This equivalence holds for every ¥, so in particular it holds for y = S{ (}\L, x)
and gives

red = {8}(hx)}(5}(h.x))]
— Sl(h,z) € K,
which reduces A to K by the injection f(z) = S} (/H, x). =
The next, basic theorem shows in part that up to recursive isomorphism
there exists only one r.e. complete set. It is, however, much stronger than

this: it holds for all sets A, B, not only for recursively enumerable sets—and
this is what makes the proof not so simple.

4B.8. THEOREM (Myhill’s Theorem). For any two sets A, B,
A<, B& B<; A=— A=B.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 90

4B. RECURSIVELY ENUMERABLE SETS

PrOOF. The argument is a constructive version of the classical Schroder-
Bernstein Theorem about sets, and it is based on two lemmas about non-
empty sequences of pairs

(92) W = (@0,%0), (€1, 91),- - (Tn, Yn)-
A sequence W of this form is injective if
i#Fj=r, Fz; &y #y;] (1,5 <n),

and good (as an approximation to an isomorphism) for A and B if it is
injective and in addition

r, € A < y;,€B (i <n).
For any sequence of pairs W as in (92), we set
X:{x07xl>~-~7xn}7 Y:{y07y1>"‘7yn}'

LEMMA X. If A <; B, then for every injective sequence (92) and each
x ¢ X, we can find some y ¢ Y such that the extension

(93) W' = (20,90), (¥1,91),- -+ 5 (T, Yn), (2, 1)
18 injective, and if W is good, then W' is also good.
ProF Oor LEMMA X. The hypothesis gives us a recursive one-to-one
function f : N>— N such that
r€A < f(z)eB.

We define by recursion
20 = f(z)

o if 2 ¢ Y,
Zitl = Co
f(z;) otherwise, if z; = y;,

and we verify two basic properties of the sequence zg, 21,
(1) If W is injective, then
zi €Y = z0,21,...,2; are all distinct and {zg,...,2;} C f[X U{z}].

Proof is by induction on 4, and it is obvious at the basis since zg = f(z).
At the induction step, we assume that z;;1; € Y. This implies that z; € Y;
because if z; ¢ Y, then z;11 = 2z; by the definition, which contradicts the
assumption that z;41 € Y. So the induction hypothesis assures us that
20, %1, ... , % are all distinct and lie in f[X U {z}]. It suffices to prove
that z;11 is not in {zo,...,2;}. Notice that z;11 # 2o, since zo = f(z),
zit1 = f(x;) for some j, ¢ X and f is an injection. So it suffices to
derive a contradiction from the assumption that

Zi+1 = 241 for some k < i,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 91

91

92 4. RECURSIVELY ENUMERABLE SETS

and the definition gives us that
zi+1 = f(x;) where y; = z; and zx41 = f(xs) where z, = ys,.
Using this and the hypotheses that f and W are injective, we have
zig1 = zp1 = (f(x)) = f(2s)) = (25 = 25) = (y; = ys) = 20 = 23
and this contradicts the induction hypothesis.

Now (1) implies that for some j < n+2, z; ¢ Y (since Y has n + 1
members), and the first claim in the Lemma holds if we set y = z; for the
least such j.

(2) If W is good, then for each i, x € A < z; € B.
Proof. Fori =0,z € A < f(z) = z9 € B, by the hypothesis on f.
Inductively, if z; ¢ Y with ¢ > 0, then
r€A <= z41=2%€B
by the induction hypothesis, and if z; € Y, then
r€Ad = z=y;€B (for some j, by the induction hypothesis)
= z;€A (because the given sequence is good)
< f(z;) =241 € B.
This completes the proof of the Lemma -

The symmetric Lemma Y gives us for each injective sequence W and
each y ¢ Y some x ¢ X such that the extension W' = W, (z,y) is injective
and also good, if W is good. The construction of the required recursive per-
mutation proceeds by successive application of these two Lemmas starting
with the good sequence

Wo = (0, £(0)), Xo={0},Yo={f(0)}.
Odd step 2n + 1. Let y = min(N \ Y3,) and extend W, by applying
Lemma Y, so that y € Yo,,41.
Even step 2n+2. Let 2 = min(N\ X5, 1) and extend Ws,, 11 by applying
Lemma X so that z € Xg,, 0.

In the end, the union (J,, W, is the graph of a permutation h : N—N
which reduces A to B,

r€A < h(zr) €B.

The recursiveness of h follows from the construction and completes the
proof that A = B. —

4B.9. Proofs of undecidability. If A <,,, B, and B is recursive, then
A is also recursive; it follows that if A <,, B and A is not recursive, then
B is not recursive either. Together with the completeness of K, this simple
proposition is the first, basic tool for the proof of non-recursiveness of sets

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 92

4B. RECURSIVELY ENUMERABLE SETS 93

and relations: because if we show that A <,,, B with some A which is not
recursive (e.g., K), then it follows that B is not recursive.

4B.10. ProrosITION (Example). The set
A={e|W. #£0}

is r.e. but not recursive.

PrOOF. The set A is r.e. because the relation

e€ A = (Fx)[zeW,]
is E(l). To show that K <; A, we set
gle,x) = pyTi(e,e,y)
so that the value g(e, z) is independent of z,
O i

and, for every z,
ee K < g(e,x)],
so that
e€ K < (Jx)g(e,x)l;
it follows that if g is a code of g(z,y), then

e€ K <« (3z)[{g}(e =)]

= (32)[{51(g,) }(z) 1]
<= LVS}G;@ #0

Jz)
Jz)

> Si(g,¢) € A,

so K <; A and A is not recursive. -

We notice that with this construction,

ec K < WS}(E,e) =N
= Ws} Ge) has at least 2 members
so that the sets
B={e|W.,=N}, C=/{e| W, has at least 2 members}

are not recursive either.

4B.11. A recursive separation of two sets A and B is any recursive
set C such that A C C and BN C = .

If AN B # (), then, obviously, there is no separation of A from B, and
if A is recursive and A N B = (, then, obviously again, A separates itself
from B.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 93

94 4. RECURSIVELY ENUMERABLE SETS

4B.12. PROPOSITION (Kleene). There exist r.e. sets Ky and K;i such
that Ko N K1 = () and there is no recursive separation of Ko from K.

PRrOOF. We set
Ko={e| @)[T1((e)o,e,y) & (V2 < y)-Ti((e)1,€,2)]},
Ki=A{e| (32)[T1((e)r,e,2) & (Vy < 2)-Ti((e)o, €, y)]},
and we show first that KyNK; = () by contradiction: because if e € KoN K}
and
y" = py[Ti((e)o, e, y) & (V2 <y)-Ti((e)1, e, 2)]
2= /’LZ[TI((e)la €, Z) & (\V’y < Z)_‘Tl((e)oa €, y)]7
then, by the definitions,
y* < 2 = Tl((e)anay*) & (\V’y < Z*)_‘Tl((e)oaeay)
S Tl((e)()u €, y*) & ﬁ{Z—‘l((e)(b €, y*)7
and the opposite hypothesis z* < y* also gives a contradiction by a similar
argument.

To show that K7 and K5 are recursively inseparable, again by contradic-
tion, suppose W,, W, r.e. sets such that

Ko CWe, KiCW,, W.nW,=0 W.UW, =N,
and let t = (m, e); we compute:
teW., = (32)Ti(e, (m,e),2) & (Vy)-T1(m, (m,e),y)
because W, N W,, =0
— @)[Ti(e, (my€), 2) & (Vy < 2)=T3(m, (m, €),)
= (m,e) € K3 by the definition
= (m,e) € W, because K1 C W,,,
sot € W.NW,, which is absurd. It follows that t € W,,,, since W, UW,,, = N,

but the symmetric computation derives again from this that ¢t € W,,, N W,
which is absurd. —

4B.13. Turing reducibility. A set A is Turing reducible to a set B if
its characteristic function y A is recursive in the characteristic function XB
of B, in symbols
(94) A<r B <= x4 € R(No,xp)-
Quite obviously,
A <m B= A <r B7

so Turing reducibility is weaker than the reducibilities we have been study-
ing. It is also the most natural: A <; B means that that some algorithm

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 94

4B. RECURSIVELY ENUMERABLE SETS

with access to all the values of x5 can decide whether z € A or not. The
corresponding equivalence relation

A= B < A<r B & B <t A.

is the most natural notion of “recursive equivalence” for sets. This is triv-
ially a reflexive and transitive relation, Problem x4B.12. Its equivalence
classes are the Turing degrees (of unsolvability)

degr(A) = {B| B =r A},
and the preordering <r induces on them the partial ordering
a<rb < (JA€a,Beb)[A<r B]
< (VAe€a,Beb)[A<r B]
We also set
0 = deg() (= deg(A) for every recursive A), 0" = deg(K),
where K is the canonical, complete recursively enumerable set (91).
The partial ordering <7 on the set D of Turing degrees has been and still
is one of the most extensively studied objects of recursion theory since it

was introduced by Emil Post in 1944. We will not study it in these notes,
but it is worth stating three of the most basic results about it.

4B.14. THEOREM. (1) For every set A C N there exists some B with
higher degree of unsolvability, deg(A) <r deg(B).

(2) (Kleene-Post). There exist sets A, B C N which are incomparable
with respect to <, i.e., A L1 B and B £7 A.

(3) (Friedberg-Muchnik). There ezist r.e. sets A, B C N which are in-
comparable with respect to <, i.e., A L1 B and B L1 A, therefore also

0<p deg(A) <7 o’
and the same for B.

The improvement (3) of (2) is stated separately because it was an open
problem (“Post’s Problem”) from 1944 until its solution in 1956. The
priority method by which it was finally solved is still used extensively and
is one of the basic methods of proof in computability theory.

Problems for Section 4B

x4B.1. Prove that there is a recursive, partial function f(e), such that

W, £ 0= [f(e)| & fle) € W.].

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 95

95

96 4. RECURSIVELY ENUMERABLE SETS

x4B.2. For each of the following propositions decide whether it is true
for arbitrary, recursively enumerable sets A and B. Prove your positive
answers and give counterexamples for the negative ones.

(1) ANBisr.e.
(2) AUB isr.e.
(3) A\B={zxe€ A|x ¢ B}isr.e.

x4B.3. Prove that every infinite r.e. set has an infinite, recursive subset.
x4B.4. Are the following claims true or false? Give proofs or counterex-
amples.
(1) There is a (total) recursive function u; (e, m) such that for all e, m,
L@L(&nw =W, UW,,.
(2) There is a (total) recursive function ug (e, m) such that for all e, m,
LVL(&NQ =W.NW,,.
(3) There is a (total) recursive function ug(e, m) such that for all e, m,
Wu(eﬂn) =W, \ Wi,
x4B.5. Does there exist a total, recursive function f(e,m) such that for
all e, m,
Weem) ={z+y |z e W, and y € W, }7?
You must prove your answer.
x4B.6. Let f: N — N be a (total) recursive function, A C N and let
flAl={f(z) |z € A}
Al ={z | f(z) € A}
be the image and the inverse image of A by f. For each one of the following
claims decide whether it is true or not, prove your positive answers and give
counterexamples for the negative ones.
(1) If Aisr.e., is f[A] also r.e.?
(2) If Aisr.e., is f~1[A] also r.e.?
(3) If A is recursive, is f[A] also recursive?
(4) If A is recursive, is f~![A] also recursive?

x4B.7*. The closure A of a set A C N under a partial function f: N — N
is the smallest set B such that B O A and B is closed for f, i.e.,

[xe B& f(x)]]= f(z) € B.

(1) Prove that if A is r.e. and f(z) is recursive, then the closure A of A
under f is also r.e.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 96

4B. RECURSIVELY ENUMERABLE SETS

(2) Prove that there exists a primitive recursive function u(e, m), such
that for all e and m, the set Wy) is the closure W, of W, under the
recursive partial function ¢, with code m.

x4B.8. Prove that the set
Ko ={e| @)[T1((e)o. e, 9) & (V= < y)=Ti((e)1,e,2)]}
is r.e.-complete.

x4B.9. (The reduction property for the class of r.e. sets). Prove that
if A and B are r.e., then there exist r.e. sets Ay, By, such that

Ay CA B CB, AiUB,=AUB, AiNB=0.

A =(A\B)UC, B, =(B\A)UD

x4B.10 (The separation property for the class of r.e. complements).
Prove that if A and B are complements of some r.e. sets A¢ and B¢ and
AN B =), then there exists a recursive C' which separates A from B, i.e.,

ACC, CnB=J.
Hint. Apply the preceding Problem to the complements A¢ and B°.

x4B.11. One of the two following propositions is true while the other is
not. Give a proof of the true one and a counterexample of the one which
is not true.

(1) If AC B and A, B¢ are r.e., then there exists a recursive set C' such
that AC C C B.

(2) If AC B and A°, B are r.e., then there exists a recursive set C' such
that AC C C B.

x4B.12. Prove that A<y B& B<r C=— A <y C.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 97

97

98 4. RECURSIVELY ENUMERABLE SETS

4C. Productive, creative and simple sets

Up until now, the only r.e., non-recursive sets that we have met are r.e.
complete, and the question arises whether every r.e. set is either recursive
or r.e. complete. The question was asked by Emil Post in his 1944 paper
which introduced Turing reducibility, and it was his main motivation for
posing Post’s Problem, whether there exist Turing-incomparable r.e. sets.
He could not prove Part (3) of Theorem 4B.14 which solves this problem,
but he was able to show that there are r.e. sets which are neither recursive
nor r.e. complete using the stronger reducibility A <; B. We present here
his constructions, which have applications beyond solving the basic problem
for which they were introduced.

4C.1. DEFINITION. A function p : N »— N is a productive function
for a set B if it is recursive, one-to-one and

We € B=p(e) € B\ We;
and B is productive if it has a productive function.
A set A is creative if it is r.e. and its complement
A°={zeN|z ¢ A}
is productive.

4C.2. PROPOSITION. The set K is creative, with productive function for
K¢ the identity p(e) = e.

PrOOF. We must show that

W, CK°=eec K°\ W,

ie.,
(MteW.—=t¢ K|l—=]e¢ K & e ¢ W,|.

The hypothesis of the implication is

(v)[{e}(t) | = {t}(t) 1]
and the conclusion is simply

{er(e) 1,
because
e¢d K < eg¢ W, < {e}(e) 1;

and the hypothesis implies the conclusion, because if {e}(e) |, then setting
t = e in the hypothesis we have {e}(e) T, which is absurd. o

4C.3. COROLARY. FEvery r.e. complete set is creative.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 98

4C. PRODUCTIVE, CREATIVE AND SIMPLE SETS

We leave the proof for Problem, x4C.1.

The converse of this corollary also holds and gives a “structural” char-
acterization of r.e. completeness, but its proof is not so simple and we
will put it off until the next section. In the remainder of this section, we
will construct non-recursive r.e. sets which are not creative, and hence not
complete.

4C.4. PROPOSITION. FEwery productive set B has an infinite, r.e. subset.

PROOF. The idea is to define a function f : N — N by the recursion
f(0) =ep, where W, =10
f(x +1) =some code of Wy U{p(f(x))}

where p(e) is the given productive function for B. If we achieve this, then
by an easy induction we can check that for every =z,

Wi@) & Wi+ € B,
so that the set
A=Wio)UWpayU...={y | Gx)ly € W)}

is an r.e., infinite subset of B. For the computation of the required h(w, x)
such that

fle+1)=h(f(z),2),
we set first
R(e,y,z) < z €W, Vz=y.

This is a semirecursive relation, and so for some g,

z€WeU{y} < {g}(e,y,2)|
= {8{G.e.y)})l,

which means that if we set

u(e,y) = S7(g: e, y),
then

Wae) = We U{y}.
Finally we define

h(w, z) = u(w, p(w)),
and in the definition of f, we put

f@+1) =h(f(z),z) = u(f(z),p(f(z))).
It follows that
Wiar1) = Wy U{p(f(z))}

as the proof required. B

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 99

99

100 4. RECURSIVELY ENUMERABLE SETS

4C.5. DEFINITION. A set A is simple, if it is r.e. and its complement
A€ is infinite and does not have an infinite, r.e. subset, i.e.,

W,NA=0= W, is finite.
4C.6. THEOREM (Emil Post). There exists a simple set.
PrROOF. The relation
R(z,y) < yeW, &y>2x

is semirecursive, so by the %9-Selection Lemma 4A.7 there exists a recur-
sive, partial function f(x) such that
Ty e W, &y > 2] = flz)l
— f(x)] & f(x) e W, & f(x) > 2.

The required set is the image of f,

(95) A={f(z)| f(=)|} ={y | Cx)[f(2) = y]}
={y | 3Bz)[f(z) =y & 2z < y]},

where the last equation follows from the definition of the relation R(x,y).
(1) The set A is semirecursive by its definition, because the graph of f(x)
is 229.

(2) The complement A€ is infinite, because

yeA&y<2z= (3z)ly=f(z) & 2z <y < 27]
= (F2)[y = f(z) & z < 2],
which implies that at most z from the 2z + 1 numbers < 2z belong to A;

it follows that some y > z belongs to the complement A€, and since this
holds for every z, A€ is infinite.

(3) For each infinite W,, W, N A # (), because

W, infinite = (3y)[y € We & y > 2¢]
= fle)l & f(e) e We
= f(e) e W.N A. -

4C.7. COROLARY. Simple sets are neither recursive nor r.e. complete;
so there exists an r.e., non-recursive set which is not r.e. complete.

PROOF. A simple set A cannot be recursive, because then its infinite
complement would be r.e. without intersecting A; and it cannot be r.e.
complete, because it is not creative by Proposition 4C.4. —

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 100

4D. THE 2ND RECURSION THEOREM 101

Problems for Section 4C

x4C.1. Prove that if A is creative, B is r.e. and A <; B, then B is also
creative.

x4C.2. Prove that if A is simple and B is r.e., infinite, then the inter-
section A N B is infinite.

x4C.3*. Prove that if A and B are simple sets, then their intersection
AN B is also simple.

x4C.4. For the next two claims, decide whether they are true or not,
and justify your answer by a proof or a counterexample:

(1) For every infinite r.e. set A, there is a total, recursive function f,
such that for every x,

f(z) >z and f(z) € A.

(2) For every r.e. set B with infinite complement, there is a total recursive
function g, such that for every =z,

g(z) >z and g(z) ¢ B.

x4C.5*. (1) Prove that if A is simple, f(z) is total, recursive and one-
to-one and the inverse image f~![A] has infinite complement, then the set
f71[A] is simple.

(2) Prove that if we omit any one of the hypotheses total, one-to-one,
infinite complement of f~![A], then the conclusion of Part (1) does not
necessarily hold.

4D. The 2nd Recursion Theorem

In this section we will prove a misleadingly simple theorem of Kleene
which has surprisingly strong and unexpected consequences. We will use it
here for just one, important application, another theorem of Myhill which
identifies the r.e., complete and the creative sets, but we will also find it
very useful later in Chapter 6.

4D.1. THE 2ND RECURSION THEOREM. For every recursive, partial func-
tion f(z,Z), there exists a number z* such that for all Z,

(96) o= (7) = {2"}(Z) = f(z", D).
In fact, there is a primitive recursive function h(e) (which depends only

on the length n of the list Z = x1,... ,x,) such that if [= ., then (96)
holds with z* = h(e), i.e., for all e, T),

(97) @h(e)(f) = Soe(h(e)wf)'

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 101

102 4. RECURSIVELY ENUMERABLE SETS

The theorem gives immediately some simple propositions which show
that the coding of recursive partial functions has many unexpected (and
somehow peculiar) properties.

4D.2. ProprosITION (Examples). There exist natural numbers z3 — z4
such that

0 (@) =21, @u(x) =20+, W, ={23}, W, ={0,...,24}.
ProOOF. For z1, we apply the 2nd Recursion Theorem to the function
flz,x) =2

and we set z; = z*; it follows that
Pz (2) = f(21,2) = 21.
The rest of the proofs are similar and equally simple. n
PROOF OF THE 2ND RECURSION THEOREM. Let

9(z,7) = f(S,(2,2), 7).
This is a recursive partial function, and so the Normal Form Theorem
supplies us with a code c¢ of it, so that

{Sk(e.2)} (@) =[{e} (2, 8) = 9(=.7) | = F(SL(=.2).9).

The conclusion of the 2nd Recursion Theorem follows from this equation if
we set

2% = Sc,c).
For the stronger version (97), choose d so that
pale,z, @) = 906(8711(27 Z)7).
By the S}*-Theorem,
c= S7lz+1(d7 €)
is a code of ¢.(SL(z,2), %), and the required function is:
h(e) = S,(c,¢) = Sp(Snpa(d€), Sy (de)). .
As a much more significant example of the strength of the 2nd Recursion

Theorem, we show the converse of Corollary 4C.3, i.e., that every creative
set is r.e. complete (and something more).

4D.3. THEOREM (Myhill). The following are equivalent for any r.e. set A:
(1) There exists a recursive partial function p(e) such that
WenA=0= (ple)| &ple) € A°\W,).
(2) There exists a total recursive function q(e) such that
(98) WeNA=0=qe) € A°\ W..

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 102

4D. THE 2ND RECURSION THEOREM

(3) A is creative, i.e., (98) holds with a one-to-one recursive q(e).
(4) A is r.e. complete.
In particular, an r.e. set A is complete if and only if it is creative.

PRrROOF. (1) = (2). For the given, recursive partial function p(e), there
exists by the 2nd Recursion Theorem a number z such that

{51 (2.0} (t) = palest) = {%(t)’ if p(S1(:e))

T, otherwise.

We set q(e) = p(Si(z,e)) for this 2 and we notice that g(e) is a total
function, because

q(e) = p(Si(z,e) T = Wsi(ze) =0 (by the definition)
= p(Si(ze))] -
Moreover, since ¢(e) |, Wsi(z.e) = We by its definition, so
WeNA=0=q(e) =p(51(z) € A°\ Wei(ze) = A\ We
which is what we wanted to prove.

(2) = (3) This implication does not need the 2nd Recursion Theorem
and could have been given in Section 4C.

For the given function ¢(e) which satisfies (98), we first notice that there
exists a recursive partial function h(e) such that

Wiey = We U{q(e)};

and then we set, recursively,
9(0,e) =e

gi+1,e) = h(g(i,e)),

so that (easily, by induction on)
Wg(iJrl,e) = We U {Q(g(ov 6)), q(g(la 6)), (R ,q(g(Z, 6))}
It follows that for i > 0,
(99) WenA=10
= q(g(i,e)) € A\ (We U{q(9(0,¢€)),q(g(L,e)),...,q(g(i — 1,€))}),
and, more specifically,
(100) Wen A= 0= (vj <ila(g(i,e)) # a(g(j,e))].
Finally, we set
f(0) = q(0),

and for the (recursive) definition of f(e+ 1), we first compute successively
the values ¢(g(0,e +1)),...,q(g(e + 1,e + 1)) and we consider two cases.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 103

103

104 4. RECURSIVELY ENUMERABLE SETS

Case 1. If these values are all distinct, then one of them is different from
f(0),..., f(e), and we set

J=(pi<(e+1)(Vy <e)lq(glie+ 1)) # fy)]
fle+1)=q(g(j,e+1)).
Case 2. There exist i,j < e+ 1, i # j, such that
q(g(i,e+1)) = q(g(j, e +1)).
In this case we set
fle+1) =max{f(0),...,f(e)} + 1.

It is obvious from the definition that f(e) is recursive and one-to-one,
and that it is a productive function for A° follows immediately from (100)
and (99).

(3) = (4). If g(e) is a productive function for A° and B is any r.e. set,
then by the 2nd Recursion Theorem there exists a number z such that

1, ifz e B &t=q(Si(z,2)),
sz(l',t) = . (1())
T, otherwise;

the function f(z) = q(Si(z, x)) is one-to-one, as a composition of injections,
and reduces B to A, as follows.
Ifzxe Ba then WS%(Z,:L’) = {Q(Sll(zax)} = {f(x)}a and
fl@) ¢ A= WanNA=10
= q(S%(Z,LI?)) € A° \ WS%(Z,:L’)
= f(z) € A\ {f(2)},
which is absurd; so f(z) € A. On the other hand, if z ¢ B, then W1,) =
0 C A so f(z) = q(Si(z, 7)) € A°.
Finally, (4) = (1) by Corollary 4C.3. =

Problems for Section 4D

x4D.1. Prove that for some z, W, = {z,z+1,...} = {z |z > z}.
x4D.2. Prove that for some z, ¢, (t) =t - z.

x4D.3*. Are they true or not—and you must prove your answers:
(1) There is a recursive, partial function f(e), such that for every e,
(%) if W, is infinite, then f(e)] & f(e) € We & f(e) > e.

(2) There exists a total recursive function f(e) which satisfies (x).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 104

4D. THE 2ND RECURSION THEOREM

x4D.4. Prove that for every recursive total function f(z), either there
exists some z such that f(z) is odd, and for all z,

pz(2) = f(z+),
or there exists some w such that f(w) is even, and for all ,
ow(®) = fRw+z+1).

x4D.5. Determine whether it is true or false and prove your answer: for
every recursive total function f(z), there exists some z such that

Wiy = We.

x4D.6. Determine whether it is true or false and prove your answer: for
every recursive total function f(z), there exists a z such that

Pr(t) =¢=(t) (eN).

x4D.7. (1) Prove that for every recursive total function f(z), there ex-
ists some number z such that

W, ={f(2)}.
(2) Prove that there exists some number z such that
v.(2)] and W, ={p.(2)}.
x4D.8*. Let g(e) be a recursive, partial function such that for all e,
if W, =N, then g(e)|;
prove that there exist numbers m and k, such that
W, =40,1,... k} and g(m)] .

HiNT: Apply the 2nd Recursion Theorem to the partial function

Fmz) = {1, if (Vy < 2)-Ty(3,m.y),

T, otherwise,
where g(e) = {7}(e).
x4D.9*. Let g(e) be a recursive partial function such that for all e,
if W, =0, then g(e);
Prove that there is some m such that W,,, = {m} and g(m)|.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 105

105

CHAPTER 5

RECURSION AND DEFINABILITY

In this chapter we will study those relations on the natural numbers which
can be “constructed” starting with the recursive relations and applying
repeatedly the non-effective operations of first-order logic, the quantifiers
J and V. Basic corollaries of this study are the classical theorems of Tarski,
Godel and Church in Section 5D, but there are many others, in logic, set
theory and even mathematical analysis.

5A. The arithmetical hierarchy

A semirecursive relation R(Z) satisfies an equivalence

R(¥) < (Fy)Q(Z,y)
with some recursive Q(Z,y). To verify whether R(Z) holds for a particular
Z we need, in principle, to check all the decidable propositions

Q(Z,0),Q(7,1)...,

so we can say that the “distance in complexity” of R(Z) from the recursive
Q(Z,y) is just one existential quantifier. The next definition makes precise
this intuitive notion of “distance from decidability” for relations on N. It
is the main tool for the classification of complex, undecidable relations.

5A.1. The arithmetical classes. The classes of relations X, 119, A9
are defined by the following recursion on k£ > 1:
¥ : the semirecursive relations
19 = —%9 : the negations (complements) of relations in X
29,1 = 3 : the relations which satisfy an equivalence of the form
P(%) <= (3y)Q(&,y) with some Q(F,y) is I}
AY = %9 N1IY : the relations which are both ¥9 and II9.

A set A C N is in one of these classes I' if its membership relation x € A
belongs to T'.

107

108 5. RECURSION AND DEFINABILITY

Suppose, for example that Q(z,y) is a recursive relation and put
R(z) <= Q(z,y) is true for infinitely many y's;
It follows that R(x) is I19, since
R(z) <= (Vt)3Ey)[R(z,y) & y > 1].
5A.2. Canonical forms. The arithmetical classes X, TI? are easily
characterized by the following “canonical forms”, i.e., P(&) belongs to one

of these classes I' if and only if it is equivalent with a relation in the canon-
ical form for I" with some recursive relation Q:

D (Fy)Q(Z, y)
m (Vy)Q(Z, y)
% (3y1) (Vi) Q(Z, y1, y2)
g (Vyl)(ﬂm) (%, y1,y2)

)

Eg t (Fy)(Vy2) Fys)Q(F, y1, Y2, vs

For example, if the relation P(Z) is I19, then, by the definitions,

P(%) <= -Pi () with P, € X9,
< ~(3y1)Pa(Z, 1) with Py € T19,
= —(3y1)~5(Z,y1) with Ps € X9,

o (30) () QF 1) with Q recursive,
= (Vy1)(Fy2)Q(Z, y1,y2)

A full proof of this for every X9, II? can be given easily by induction on k.
5A.3. THEOREM. (1) For every k > 1, the classes X9, 119 and AY are
closed under recursive substitutions and under the operators &, V, 3< and
V<. Moreover, for every k > 1:
o The class AY) is closed under negation —.
e The class 22 is closed under the existential quantifier 3.
e The class Hg is closed under the universal quantifier V.
(2) For every k > 1,

(101)) C AL,
and so the arithmetical classes satisfy the following diagram of inclusions:
by} D) D
- < < < ¢ <
AV AY AY
< C < C < c
I} 13 115

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 108

5A. THE ARITHMETICAL HIERARCHY

PROOF. First we show the closure of all arithmetical classes under re-
cursive substitutions, by induction on k. This fact is known for £ = 1 by
Proposition 4A.5, and inductively (for the case X9 ;) we compute:

P(Z) <= R(fi(@),..., fa())
= (FQ(fi(D),..., ful@),y), with Q € TIY, by the definition
— (Fy)Q'(Z,y) with Q' € TIY by the induction hypothesis.
The rest of Part (1) is easily checked, by induction on k and applications
of the transformations in the proof of Proposition 4A.5.

Part (2) is also proved by induction on k, where, at the basis, if
P(Z) <= (3y)Q(Z,y)

with a recursive @, then P is certainly X9, since every recursive relation is
I19. Tt is also II9, since, obviously,

P(Z) < (V2)(Iy)Q(Z,y)
and the relation
Ql(fazvy) — Q(fay)

is recursive. The proof at the induction step is exactly the same, and the
inclusions in the diagram follow easily from (101). -

More interesting is the following theorem which justifies the name “hier-
archy” for the classes ¥9, I19:

5A.4. The Arithmetical Hierarchy Theorem. For all n,k > 1:

(1) (Enumeration for X) There is an (n+ 1)-place relation S, (e, T)
in the class $9 which enumerates the n-place, 3% relations: i.e., an n-ary
relation P(Z) is XY if and only if for some e,

P(%) < Skn(e).

(2) (Enumeration for IIY) There is an (n+ 1)-place relation Py (e, T)
in the class 119 which enumerates the n-place, 113 relations: i.e., an n-ary
relation P(Z) is I1Y if and only if for some e,

P(Z) < Pyn(e).

(3) (Hierarchy) The inclusions in the diagram of Proposition 5A.3 are

all strict, i.e.,

50 50 520
¢ ¢ ¢
AY A9 Af
S G S S
1_[1 H2 HS

)(/7
)(/7
//>

O
O

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 109

109

110 5. RECURSION AND DEFINABILITY

PRrOOF. For (1) and (2) we set recursively
Sin(e, @) <= (Fy)Thle,Z,y), Pinle, @) <= —Skn(e,T)
Sk+1,n(€, &) <= (FY)Pent1(e, T,y),
and the proofs are easy, by induction on k. For (3), we observe that the
diagonal relation
Dy(z) <= Sii(z,2)
is Eg but cannot be Hg; because if it were, then for some e we would have,
-ﬂSkJ(x,x) < SkJ(e,x)

which is absurd for z = e. It follows that for each k, there exist relations
which are X9 but not 119, and from this follows easily the strictness of all
inclusions in the diagram. 4

5A.5. A (complete) classification of a relation P(Z) in the arithmetical
hierarchy is the determination of the “least” arithmetical class to which
P(Z) belongs, i.e., the proof of a proposition of the form

PeX{\I} or Pell)\X) or PeAl,\(Zhull))
for some k. For example, in 4B.10 we showed that
{e | W, # 0} e 29\ 9.

The complete classification of a relation is in some cases very difficult, so
we often settle for the computation of some “upper bound”, namely some
k such that P € 22 or P e Hg. The basic method for the computation
of some “lower” bound, when this is feasible, is the proof that the given
relation is complete in some class X9 or II? as in the next result.

5A.6. PROPOSITION. (1) The set F = {e| . is total} is in 113\ X9.

(2) The set Fin = {e | W, is finite} is in X9 \ I13.

PROOF. (1) The upper bound is obvious, since

e€F — (Vo) 3Jy)Ti(e, z,y).

To show by contradiction that F' is not ¥9, we consider any relation P(z)
in I1Y. By the definition, there is a recursive Q(x,u,v) such that

P(z) <= (Yu)(Fv)Q(z,u,v.)
Set
[z, u) = po Q(z, u,v).
If fis a code of the (recursive, partial) f(x,u,v), then

Plr) < (Vu)[f(z,u)]]
— (Vu){f}z,u)]

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 110

5A THE ARITHMETICAL HIERARCHY
= (Vu)[{S](f,2)} ()]
— Sll(f, z) € F;

it follows that if F' were 9, then every IIJ relation would be X9, which
contradicts Part (3) of the Hierarchy Theorem 5A.4.

(2) The upper bound is again obvious,
e € Fin < (3k)(Va)[xr € W=z < k].
For the lower bound, let P(x) be any 39 relation, so that
P(z) <= (Fu)(Mv)Q(z,u,v)
with some recursive Q). We set

9@, u) = py (Vi < u)=Q(z, 1, (¥):),
so that if g is a code of g, then

(Fu)(V0)Q(z,u,v) <= {u|g(xz,u)l} is finite
< {u|{g}(z,u)|} is finite
< {u|{S](g,2)}(u)]} is finite
<= S{(g,z) € Fin.
This implies that Fin is not 119, because if it were, then every X3 relation
would be IT3, which it is not. -

The upper bound computations in this proof were trivial, and indeed
they are usually very easy. When they are not completely obvious, their
derivation involves applying the closure properties of Theorem 5A.3 and, in
some cases, a good choice for the definition of the relation we are classifying.
For example, in classifying Fin, we used without comment the equivalence

W, is finite <= W, is bounded;
we might have chosen to start with the more direct
W, is finite <= (Jy,n)[We ={(%)o,---, (¥)n}]
which is true enough but does not lead easily to the conclusion that Fin is

%9 (check it out).

Another trick which often helps, especially in the derivation of lower
bounds, is to work with II rather than X9: i.e., to prove that P(Z) is
¥9-complete by showing that —P(Z) is I1-complete. This, in fact, gives
an easier argument for (2) of the Proposition (check it out).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 111

111

112 5. RECURSION AND DEFINABILITY

Problems for Section 5A

x5A.1. Classify in the arithmetical hierarchy the set
A={e|W.C{0,1}}.

xbA.2. Classify in the arithmetical hierarchy the set

B = {e | W, is finite and non-empty}.
x5A.3. Classify in the arithmetical hierarchy the set

C = {« | there exist infinitely many twin primes > x},
where y is a twin prime number if both y and y + 2 are prime.
xbA.4. Classify in the arithmetical hierarchy the relation
Qe,m) < ¢c & om
= (70) (¢e(@) | = [pm(@)] & 2el@) = Pm(@)]).

x5A.5. Classify in the arithmetical hierarchy the set

A = {e | W, has at least e members}.

x5A.6. Classify in the arithmetical hierarchy the set of codes of bounded
recursive partial functions,

B = {e| for some w and all z, v.(z)| = p.(z) < w}.

xbA.7. Let A be any recursive set such that A C N; classify in the
arithmetical hierarchy the set

B={e| W, C A}
x5A.8. (1) Prove that the relation
C(e) <= W, is r.e. complete

is arithmetical, and place this relation in some Zg or Hg for as small a k
as you can. (Do not try to show that your classification is complete.)

(2) Do the same for the relation

D(e) <= W, is creative.
x5A.9. Prove that the graph

Gi(#w) < f(@)=w

of a total function f(Z) is ¥ if and only if it is AY.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 112

5B. A BIT OF LOGIC 113

x5A.10%. A total function f(Z) is limit recursive if there exists a recur-
sive, total function g(m, Z) such that

f(@) = limpy,— o0 g(m, T),
where the limit of a sequence of natural numbers is defined as usually,

Prove that a total f(Z) is limit recursive if and only if the graph Gy of
(@) is AY.

5B. A bit of logic

We outline here briefly the few facts that we need about first order or
elementary definability on total algebras
M= (Ma0517f17"' afK) = (Mm]?)v

which we will call (first-order) structures. The restriction to structures
simplifies things considerably, and in any case, our main interest is the
classical structure of arithmetic

(102) N=(N,0,1,+,-),
The basic definitions extend naturally those in Section 2A.

5B.1. The first-order language FOL(M): syntax. FOL(M) is (essen-
tially) an expansion of the language T = T(M) in 2A, but we put down the
definitions in full.

The alphabet of FOL(M) comprises the following symbols:

o individual variables: VO, V1, -

e individual constants: x(xz € M)), including 0, 1
e function constants: f1,...,fx (arity(f;) = n;)
e the punctuation symbols: , ()

e the symbol of equality: =

e and the symbols of first-order logic: - & VvV — 3V

FOL(M) differs inessentially from T(M) in that it does not have notation
for branching—which makes its terms a bit simpler— but substantially
because it has notation for the quantifiers V and 3.

Terms. As for T(M), these are defined by the recursion

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 113

114 5. RECURSION AND DEFINABILITY

And as in 2A.10 for T(M), we will rarely, if ever spell out terms correctly.
In FOL(N), for example, we will write
x+y for +(vi,va),
and z(y + 2)? for -(vs,-(+(v,va), +(vi,v2))),

or sometimes

xy for - (vi1,v1)
when it is important to make it clear that x and y are formal variables, vy
and v; in this example.
Formulas. The prime formulas of FOL(M) are the words of the form

A=Ay

where A; and As are terms. The formulas are defined recursively, starting
with the prime formulas and using the operators of logic, so that every
formula which is not prime is in one of the forms

(o) (1) & (a2) (a1) V(a2) (a1) = (a2) 3Fvi(ar) Vvi(ar)
where o, s are formulas of smaller length. In compact form:
(104) «a:=A; = A,
| —(aa) [(1) & (az2) | (a1) V (a2) | (a1) — (a2)
| Avi(aq) | Vv;(ar)
We will also use simplified forms for formulas, writing for example
(%) (W) (Vy)[x+y =y +x] for Vi (Vva(+(v1,v2) = +(v2,v1)))

A formula « is pure if no constants from M occur in it except (perhaps)
0,1.

The terms and formulas of FOL(M) satisfy unique readability lemmas
like Lemma 2A.6 for T. These are quite routine to formulate and prove
(by induction) and we will not take them up in detail. They are, however,
important, as they allow us to prove properties of terms and formulas by
induction and to define operations on them by recursion, as we did for the
terms of T(M) by appealing to Lemma 2A.7.

We will define precisely the semantics of FOL(M) below, but intuitively, a
formula o means what its natural translation into (mathematical) English
says: the formula in (x), for example, is read

“forall z and all y, x + y =y + 7,

and it expresses in FOL(N) the commutative law for addition. However,
the quantifiers 4 and V bring to the language some new phenomena that
do not show up in the simpler T(M). It is useful to look at some examples
before we go into the formal definitions.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 114

5B. A BIT OF LOGIC 115

Consider the following four formulas in the language of arithmetic and
their meaning in the structure N:

a=xy=y, B=W)kxy=y], v=)(Wyxy=y], d=yVx=0.
Whether « is true or not evidently depends on what the variables x,y are
set to: if x := x and y := y, then, clearly,
Xy=yistrue <= zy=y <= y=0orz=1.

The truth value of the second formula § is independent of what x stands
for: if y := gy, then

(VxX)[xy =vy] is true <= for all z, 2y =y <— y =0.
The third formula v does not depend on the values of x and y:
(Wx)(Vy)[xy =y] is true <= for all x and y, 2y =y < fi,
i.e., v is plain false. The fourth one is more interesting; if x := x, then
(W) (Vy)[xy =y] Vx=01is true <= fforz =0 < z=0.

The interesting bit is that although the variable x has three occurrences in
this formula, the first two “don’t count”, and we can replace x by any z Z y
in them without changing the formula’s meaning,

(W) (¥y)[xy =y] Vx=0is true <= (Vz)(Vy)[zy =y]V x =0 is true.

The value of x comes into play in its third occurrence and determines
the truth value of the formula. We say that “x is bound in its first two
occurrences but free in its third”, by the following precise definition of
these notions:

5B.2. Free and bound occurrences of variables. The free occurren-
ces of variables in formulas are defined by recursion as follows.

(F1) FO(A = B) = all the occurrences of variables in A = B.

(F2) FO(—(a)) = FO(a), FO((e) & (8)) = FO(a) UFO(), and similarly
for the other connectives.

(F3) FO(Vv;(a)) = FO(Iv;()) = FO(a) \ {vi}, meaning that we remove
from the free occurrences of variables in « all occurrences of v;.

In particular, the first occurrence of v; in 3v,;(«) is not free.

An occurrence of a variable which is not free in a formula « is bound in
a. The free variables of « are the variables which have at least one free
occurrence in « and, intuitively, the truth of falsity of o depends only on
the values assigned to them.

A term or formula is closed if it has no free variables; and a closed
formula is a sentence.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 115

116 5. RECURSION AND DEFINABILITY

5B.3. The free substitution operation. For any formula «, individ-
ual variable v and x € M, we set

(105) a{v:=x} = the result of replacing v by =

in all the free occurrences of v in «a.

For example, (Vu[u +v = u]) {v:=12} = Vu[u+12 = u], and the restriction
to replacing only into free occurrences of variables is needed because, in this
example, (Vu[u +v= u]){u =12} = (V12[12+v = 12}) which is evidently
meaningless.

5B.4. The first-order language FOL = FOL(M): semantics. We now
extend to the sentences of FOL(M) the denotation function valy(A4) de-
fined on closed terms in 2A.9. The denotation of a sentence is a truth value

tt or ff, and here it is really easier to use model theoretic notation: we will
define the satisfaction or truth relation
M E a <= M satisfies « <= «a is true in M
and then set
t, if MEa,
ff, otherwise.

valu(a) = {

The definition is by recursion on the sentence a:

M} A =B < valy(A) = valu(B)
M —(a1) <= M} a; (< it is not the case that M = ay)
M= (1) & (a2) <= MEa; and M = as
M (1) V() <= MEaor ME o
ME (1) = () <= MFEaoor MEa;y
M E 3v;(aq) < for some x € M, M = oy {v:=z}
M = W;(aq) < forevery z € M,M = o {v :=z}.

These famous conditions are due to Tarski, who was criticized for “claim-
ing the obvious” since all they do is to explain how to read the formal
expressions of FOL in English. Indeed, this is all they do—and it is what
they should do; but they are very useful, nonetheless, because they allow
us to make precise and prove rigorously by induction many properties of
formulas which are not easy to formulate precisely or check easily from their
translation into English. One of the most basic of these is the following:

5B.5. Elementary relations and functions. Suppose M is a struc-
ture; « is a pure formula, i.e., no constants from M occur in « except
perhaps 0,1; X = x1,... ,X, is a list of distinct variables which includes all

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 116

5B. A BIT OF LOGIC

the free variables of a; and R(z1,...,zy) is an n-ary relation on M. We
say that « defines R in M with respect to X, if
(106) R(Z) <= MEa{x1 =x1,... ,xy =x,} (T€M").

A relation R(Z) is first-order definable in M or elementary in M or
just M-elementary if it is defined by a pure formula with respect to some
list of distinct variables; and a function f : M™ — M is elementary if its
graph (85) is an elementary relation.

Problems for Section 5B

x5B.1. For each occurrence of a variable in the following formulas, de-
termine whether it is free or bound:

a=fi(vi,0) = fa(v2), B =3Ii(fi(v1,0) = fa(v2))
7 = (fi(ve,0) = fa(v2)) & (Fva(fi(ve, 0) = fa(va))), 0 :=Vva(v),
x5B.2 (Renaming of variables). Let M be any structure and suppose
that « defines R(Z) in M with respect to the list of distinct variable

X1y.-« yXpn, 1., (106) holds. Let yq,...,y, be any list of distinct variables
which do not occur (free or bound) in «, and let

B:=a{x1:=y1,.-. ,Xn = Yn}t
be the result of replacing every x; by y; in a. Prove that 8 defines R(Z) in
M with respect to yi,...,Vyn, i.€.,
107) R@E) <= M {y =21 yui= o} (Fe MM,

Infer that if P(Z) and Q(&) are both first-order definable in a structure
M, then there exist pure formulas o and 3 and a list z1, ... ,z, of distinct
variables such that « defines P(Z) in M with respect to zj,...,z, and 8
defines Q(Z), also with respect to zj, ... ,z,. HINT: Use induction on «.

This simple fact is very useful in proving the closure properties of the
class of relations which are elementary in a structure M. For example:

x5B.3. (1) Prove that if P(Z) and Q(Z) are both elementary in M, then
so is their conjunction

R(Z) < P(Z) & Q(Z).
(2) Prove that if P(Z,y) is elementary in M, then so is
R(¥) <= (Fy)P(Z,y).

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 117

117

118 5. RECURSION AND DEFINABILITY

5C. Arithmetical relations and functions

The study of first-order definability in arbitrary structures is one of the
main aims of model theory and a tremendous amount of work has gone—
and is going—into it. Here we are concerned only with the elementary
relations in the standard structure N of arithmetic, and our first aim is
to show that they coincide with the arithmetical relations on N, those
which occur in the arithmetical hierarchy defined in Section 5A.

5C.1. THEOREM. The class A of elementary relations in N is the small-
est class of relations on N with the following properties:

(1) The relations
z=y, =0, z=1 x4+y=2 =z-y==2

are in A.

(2) A is closed under substitutions of projections P/*(Z) and under the
logical operators, -, & , VvV, —, 3, V.

It follows that the inequality relation
<y <= (F2)[z+2z=1y]

is elementary in N, and that the class of N-elementary relations is closed
under N-elementary substitutions, since

P(fl(f)’ 7fm(‘f))
= Q) Cun)Ai(@) = w1 & - & fnl@) = wm & Plwr, ... ,wm)l.

OUTLINE OF PROOF. Let B be any collection of relations on N which
satisfies (1) and (2) and prove by induction on the formulas that if « defines
R(Z) with respect to some xi,...,X,, then R(Z) is in B. The argument
requires repeated appeals to Problem x5B.2 but is quite easy. It proves that
every relation which is elementary in N belongs to every class of relations
B which satisfies (1) and (2). For the converse, it is enough to prove that
A satisfies (1) and (2), and this is also easy, by (essentially) the same
argument. a

This simple theorem seems to suggest that the language of arithmetic
cannot deal with exponentiation, which would make it a very poor language
indeed. In fact 2% is N-elementary, as are all primitive recursive functions
and relations. We need the following standard result from number theory
to prove this.

5C.2. THE CHINESE REMAINDER THEOREM. Suppose thatdy,... ,d; are
relatively prime numbers, i.e., no two of them have a common factor other

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 118

5C. ARITHMETICAL RELATIONS AND FUNCTIONS

than 1, and wy < dy, ... ,wy < dy. Then there exists some number a such
that

wo = rem(a,dp), ... ,w; = rem(a, dz).

PRrROOF. Consider the set D of all (¢ + 1)-tuples bounded by the given
numbers dg, ... ,dy,

D ={(wo,...,w) | wg < dp,...,wp <di}.
This has |D| = dyd; - - - d; members. Let
A={ala<|D|}
which also has dyd; - - - d; members, and define the function f: A — D by
f(a) = (rem(a,dp),rem(a, dy), ... ,rem(a,d;)).

Notice that f is one-to-one, because if f(a) = f(b) with a < b < |D|,
then b — a is divisible by each of dy, . .. ,d; and hence by their product |D]|
by Problem x5C.2; so |D| < b — a, which is absurd since a < b < |D|. We
now apply the Pigeonhole Principle: since A and D are equinumerous and
f:A— D is an injection, it must be a surjection, and hence whatever the
tuple (wo, ... ,w:), there is an a < d such that

7(a) = (rem(a, dp), rem(a,dy), ... ,rem(a,d;)) = (wo, ... ,w;). -
5C.3. LEMMA (Godel’s f-function). The function
B(a,b,1) =rem(a, 1+ (i + 1)b)

is N-elementary, and for every sequence of numbers wo, ... ,wy, there exist
natural numbers a and b, such that

w; = B(a,b,1) (i=0,...,9).
PROOF. The function §(a, b, %) is elementary in N because
Bla,b,i) = w <= (ac)(a =1+ (i +D)b)e+w & w< 1+ (i+ 1)b).

For the second claim, let

d = max(wo, ... ,wy,y) +1
b=d!
zi=14+(+1)b=14+ G+ 1)d! (i=0,...,y).
Note that the numbers zg, 21, ... , 2, are relatively prime, i.e., there is no

prime number dividing any two of them; because if p is prime and a common
divisor of z; and z; with ¢ < 7 <y, then:
1. p > d, otherwise p|d!, and this is absurd, since p|1 + (i + 1)d!, and
2. p divides the difference (j — i)d!, so p|(j —4) or p|d!,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 119

119

120 5. RECURSION AND DEFINABILITY

and this is also absurd, since j—i < y < d < p and p does not divide d!, as in
1. Finally, by the Chinese Remainder Theorem, since wg < 2o, ... , Wy < 2y,
there exists some a such that

wy = rem(a, 29) = B(a,b,0),... ,w, =rem(a, zy) = B(a,b,y). -

5C.4. THEOREM. (1) Every primitive recursive function is elementary
in N.

(2) A relation is elementary in N if and only if it is arithmetical, i.e., it
occurs in Eg for some k. In symbols:

A=U, 2k =U I}
PrOOF. (1) It suffices to show that the functions S, Cp and P;* are

1
N-elementary, and that the set of N-elementary functions is closed under

composition and primitive recursion, and from these only the last is not
trivial.

If the function f(y, Z) is defined by the primitive recursion
f(0,7) = g(7)
fly+1,7) = h(f(y, Z),y,T),
then, by Dedekind’s analysis of recursion (34),
fy, @) =w <= (Bwo,...,wy)[g(Z) =wo & w=w,
& (Vi <y)h(wi, i, T) = wit]];

this is obvious, with w; = f(i,Z) for the direction (=), and by induction
on i < y for the direction (<). It follows, by the Lemma, that

[y, %) =w = (Ba)(3)[g(7) = H(a,b,0) & w = B(a,b,y)

(Vi < y)[h(B(a,b,i),i,&) = B(a,b,i+ 1)]]
which implies immediately, by the closure properties of A, that the graph
of f(y, @) is in A.

(2) The inclusion X9 C A is simple, by induction on k, and the inverse
inclusion A C Uk Eg follows from the characterization 5C.1. =

Problems for Section 5C

x5C.1 (Exponentiation is not polynomial). Prove that the exponential
27 is not defined by a term in N: i.e., there is no term A of the language
of arithmetic with just one variable x such that for every x € N,

valy(A{x := z}) = 2%.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 120

5D. THE THEOREMS OF TARSKI, GODEL AND CHURCH

x5C.2. Prove that it dy, ... ,d, are relatively prime and each of them
divides a number d, then their product dids - - - d,, divides d. HINT: There
are many ways to prove this basic fact. Perhaps the simplest way to see
it is to appeal to the Fundamental Theorem of arithmetic: Fvery number
w > 1 can be expressed uniquely as a product w = q1 - - qm of a sequence
of primes which is non-decreasing, g1 < -+ < ¢m.

5D. The theorems of Tarski, Godel and Church

To prove these basic results, we will use once more the method of coding
(or arithmetization), characteristic of the subject.

5D.1. Coding of pure formulas. With each symbol ¢ of the first-order
language of arithmetic FOL = FOL(N) (other than constants > 1), we as-
sociate a natural number [c] by the simple enumeration,

01+‘:_'&\/—>E|V(),VOV1
012 3456 78 91011121314 15 ...

so that [3] = 9, [vo] = 14, etc.; and we code words from this alphabet as
usual, using sequence codes,

[sos1---sn] = ([so], [s1], - -, [sn])
e.g.,
[Bv2(0 = va)] = ([3], [val, [(], [0], [=], [va], D])-
By the methods of Chapter 3, it is not difficult to show that the basic meta-
mathematical, syntactical relations of the language are primitive recursive
in the codes. These include
Formula(a) <= a is the code of a (pure) formula
Free(a,i) <= a is the code of a formula «
and v; occurs free in «

Sentence(f) <= a is the code of a sentence,

etc. Finally we set

(108) Truth = Truth(N)

= {a | a is the code of a pure sentence which is true in N}.

This is the set of natural numbers which codifies all (first-order) arith-
metical truths: every interesting proposition of number theory can be
expressed by a pure sentence of FOL(N), and so it is true exactly when its
code is in Truth.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 121

121

122 5. RECURSION AND DEFINABILITY

5D.2. LEMMA. Ewvery arithmetical relation R(Z) is 1-1 reducible to the
set Truth, i.e., there exists a (one-to-one) recursive function f(Z) such that

(109) R(%) <> f(&) € Truth.

PROOF. For each natural number z we define the term A(xz) by the
recursion,

A0)=0, Az +1) = (Az)) + (1),
so that the numeral A(z) is closed and denotes (in N) the number z,

val(A(x)) = z.

It follows (easily, by the Tarski conditions) that for every formula a with
free variables in the list xq,... ,Xp,

NE af{x; :=21,... , %y = 2pn}
<~ NE (3x) - (Fxp)x1 = A(z1) & -+ & xp = Alzy) & 0
= [(3x1) - Fxn)[x1 = Ax1) & -+ & % = A(z) &] € Truth;

and so, if the formula o defines the relation R(Z) as in (106), then (109)
holds with the function

f(@) =13x1) - Fxn)[x1 = Ax1) & -+ & xp = Azy) & @]
which is easily recursive and one-to-one. -

5D.3. Tarski’s Theorem. The set Truth is not arithmetical, and in
particular, it is not recursive.

PROOF. If Truth were arithmetical, then it would be 2, for some k,
and so, by the Lemma, every arithmetical relation would be X9, which
contradicts the Hierarchy Theorem 5A.4 (3). =

It is hard to overemphasize the foundational significance of Tarski’s The-
orem. Combined with the Church-Turing Thesis, it says in part that there
18 no algorithm which can decide whether an arbitrary sentence of arith-
metic is true or false—even if we just want to know the truth value, i.e.,
we do not ask for an algorithm which produces justifications for the true
sentences.

Mathematicians, however, are very much interested in justifications, i.e.,
proofs. Godel’s celebrated First Incompleteness Theorem deals with this
aspect of the foundations of arithmetic and places some severe restrictions
on proof systems for arithmetic, what we might call attempts to aziomatize
the theory of numbers. We cannot do it full justice here, since we have not
studied the relevant material from logic; but we can formulate and prove
an abstract result which captures its essential content.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 122

5D. THE THEOREMS OF TARSKI, GODEL AND CHURCH

5D.4. Proof systems. A proof system for arithmetic is any set P of
finite sequences (ay, ... ,a,) of pure FOL(N)-formulas such that the last
formula «, is a sentence. The proofs of P are its members, and we write

Fp a <= there exists a proof («aq, ... ,qa,) € P with a, = a.

If Fp a, we say that « is a theorem of P.

In studies of formal, axiomatic number theory, we consider specific proof
systems which attempt to capture our intuitions about logic and arith-
metic. Typically we call a sequence (ag,...,a,) a formal proof if each
«; is either an axiom of logic or an axiom of arithmetic, or it follows by
some logical or arithmetical rule of inference from formulas o, ..., qy,
with j1,...,4; < i listed earlier in the proof than «;. Different choices of
axioms and rules of inference lead to different proof systems that express
different intuitions, but always have some claim that the proofs that are
accepted provide justifications for the theorems.

This preliminary notion allows for very silly proof systems, of course,
e.g., the set of all sequences of formulas which end with a sentence, or the
set of all sequences of length 1 whose only member is a true sentence «, etc.
There are, however, two obvious and reasonable conditions we can impose
on a proof system P which make it worth considering.

(1) Soundness: For every pure sentence «,
if Fpa, then N | «,
so that P proves only true sentences.
(2) Decidability for proofs: The relation

Proofp(y) <= (3ao,...,an € P)ly = ([ao],-- -, [an])]

18 TECUTSIVE.

The second condition expresses (by the Church-Turing Thesis) the basic
practice of mathematics, that Somebody’s claim that he has proved some
theorem (the existence of infinitely many twin primes, for example), can
be “checked”—there is a generally accepted effective method which decides
whether Somebody’s ramblings constitutes a rigorous proof of his claim or
not, according to the axioms and the rules of logic that we have accepted.

All specific proof systems which are seriously studied are decidable for
proofs and sound—or, at the least, are hoped to be sound by their inventors.

There is a third property which we would want a good proof system P
to have:

(3) Completeness: For every pure sentence «,

either Fp a or Fp —a.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 123

123

124 5. RECURSION AND DEFINABILITY

A proof system for arithmetic which would be sound, decidable for proofs
and complete, would “codify” in some specific way some basic principles of
logic and arithmetic which suffice to solve all problems of number theory.
There were many serious attempts in the first third of the 20th century to
find such a system, but they all failed—and they could not have succeeded:

5D.5. Godel’s 1st Incompleteness Theorem. There is no proof sys-
tem for arithmetic which is sound, decidable for proofs and complete.

ProOF. If P has all three properties, then for each pure sentence «
Fpa=N[Ea
because the system is sound, and
NEaoa = N} -«
= Fp - (by soundness)
= Fp a (by completeness).
It follows that

Truth = {[o] |Fp a}
= {e | Sentence(e) & (Jy)[Proofp(y) & e = last(y)]},
and so the set Truth is X9, by the hypothesis of decidability for proofs for
P. This contradicts Tarski’s Theorem 5D.3. -

Whether the Church-Turing Thesis is true or not does not come up in
the specific applications of the 1st Incompleteness Theorem, because in
practice, the axiomatic systems that have been studied are all decidable
for proofs. It is hard to imagine a useful axiomatization of number theory
where we could not tell whether an alleged proof is indeed acceptable.

To formulate the last basic result of this section, consider the first-order
language FOL(M) for an arbitrary structure M = (M, 0,1, f1,..., fx). A
pure sentence « of FOL(M) can be interpreted in every structure

MI:M7O/71/7f{7"'7f}{)
of the same vocabulary v = (f1,...,fx) and for such sentences we set
= a <= for every algebra M’ with v(M’) = v(M), M’ = a.

These are the valid pure sentences of FOL(M), those which are true
in every structure, independently of the universe M or the interpretations
f1,--., fi of the constant symbols. They include trivial sentences like

aV a,

and one might guess that they are all trivial, but this is not true.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 124

5D. THE THEOREMS OF TARSKI, GODEL AND CHURCH

By the classical Completeness Theorem of Godel,
E a <= «is a theorem of classical, first-order logic,

and the decidability for proofs of classical logic implies that for every vo-
cabulary (f1, ... ,fx), the set of (codes of) valid pure sentences of FOL(M)
is semirecursive. On the other hand:

5D.6. Church’s Theorem. For some structure M, the problem whether
a pure sentence o of FOL(M) is valid is unsolvable.

OUTLINE OF PROOF. Let

E =:(fb,jﬁ7--- 7]&()

be any primitive recursive program according to definition 1B.17. It is not
difficult to construct a first order sentence

agp=ap & -+ & ag

using formal symbols 0,1,S,Pd, fy, ... ,fx which “expresses formally” the
definitions in F; if, e.g., the projection symbol P3 occurs in E, then the
sentence

(Yv1)(Wva) (Vv3) [P3 (1, va.vs) = vo]
is one of the «;’s, and if f is defined in E by the primitive recursion

f(0)=5
fly+1)=h(f(v),v),

then the sentence
f(0) = A(5) & (Wv1)[f(S(v1)) = h(f(v1),v1)]

is also one of the «;’s. With this definition, it follows without great difficulty
that for each function f; defined in F and all £ = zq,... ,z,,w € N,

fild) =w <= = ap — fi(A(z1),... ,Az,)) = A(w).

Finally, we apply this Lemma to the case that fx is the characteristic func-
tion of the relation T} (z, z, y) and we show quite easily that the decidability
of the validity relation leads to a contradiction. a

This is (essentially) Church’s proof, but the result was also independently
proved by Turing. It hence since been extended to several specific vocab-
ularies, including that of arithmetic: i.e., the set of all pure, valid FOL(N)
sentences is undecidable.

The decision problem for provability in first order logic was a big open
question at the time (1936), heavily promoted by none other than David
Hilbert and generally referred to in German as the Entscheidungsproblem.
Its solution did much to popularize the Church-Turing Thesis and the then
emerging theory of computability among mathematicians.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 125

125

CHAPTER 6

RECURSIVE FUNCTIONALS AND EFFECTIVE
OPERATIONS

In this chapter we will study generalized programs, “non-deterministic” and
with “external” function variables, and we will explore their applications,
especially in the theory of “computable functionals”. Most of the results we
will prove hold for all partial algebras, but the most interesting phenomena
manifest themselves fully in the classical algebra Ng = (N, 0,1, S, Pd) and
its expansions.

6A. Recursive functionals

6A.1. DEFINITION. A generalized recursive program of Ny is any
system of recursive equations

(60) PO(fO) = EO :EO[:EO7PO"~' yPE,dps - - - aql]
(E) :

(ek) Pk(fk) = Ek :Ek[fk?ap()v"' s Pesdys - - - 7ql]
where the function variables po,...,pk,dy,-..,q; are distinct, as in the
basic definition in section 2B, but F supplies definitions only for the in-
ternal (bound) variables py, ... ,px while it also allows the occurrence of
external (free) variables q,,...,q; in the pure terms Fj, ..., E), as the
notation E;[Z;po,. .- ,Pk,dys--- ,d;] suggests. A program of this kind is

interpreted naturally in arbitrary expansions
(Nanlv"' aql) = (N,O,I,S,Pd,(J17... aql)

of Ny, i.e., if we consider the variables q;, ... ,q; as constants which name
given partial functions q1,... ,q, just as f1,... ,fx name the given partial
functions f1, ..., fik of a partial algebra. With the notation of (60), we set

(110) aE(f>q17"' 7ql):w
<~ (No,q1,-..,q@), E F po(Z) =w with q; :==¢q1,... ,q9, :=q
<~ E,.¢:=q4F po(¥) =w.

127

128 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

More generally, for each internal variable p of E,

(111) E,g:=qF p(@) =w

<~ (No,q1,...,q), F F p(&) =w with qy :=q1,...,9; := q.
The notation here omits the reference to the algebra N since this is the
only algebra which we will use in this chapter. It shows explicitly the
assignment q; := qi,...,q; := ¢ to the external variables: this is useful,

as we will often interpret the same program with different—all possible—
assignments to its external variables.

The programs we studied in Chapter 2 (without external function vari-
ables) are now called autonomous.

6A.2. Functionals. The partial function a(Z,q) in (110) is an example
of a functional in N i.e., of a partial function which accepts as input values
natural numbers and partial functions of several variables, and (when it
converges) yields a value in N. Some simple, additional examples:

a1 (%) = f(&) (where f: N® = N),
as(p,r)=p(0) (p:N—=N,g:N* =N),
eval"(Z,p) =p(¥) (p:N" —=N).
The first of these makes clear that it is not necessary for a functional to
have partial function arguments, i.e., every partial function is a functional;
and as is an example with no natural number arguments, only partial

functions. Note also that for every partial function r, with S(z) = z + 1
and e the “empty” partial function,

az(S,r)=5(0)=1, as(e,r)=¢(0)=1.

The call or evaluation functionals eval”(Z, p) are perhaps the simplest
non-trivial functionals. Some of their values are

eval'(z,8) = S(x) =z + 1, eval’(z,y,2, P3) = Pj(z,y,2) = y.

6A.3. DEFINITION. A functional a(Z,q) is recursive, if it is computed
by some recursive program E with external variables q;,... ,q;,i.e., 0 = ag
in (110), or, equivalently,

a(Z,d) =w <= E,§:=qt p@ =w
for some internal variable p of E. We set
R = the class of recursive functionals on N,

extending our earlier use of this notation.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 128

6A. RECURSIVE FUNCTIONALS

6A.4. LEMMA. (1) The class R of recursive functionals includes all re-
cursive partial functions and the call functionals eval™. It is closed under
substitution into its number arguments

04(37727) = 6('71(5717)7 cee 77m(fvm7mu

branching

a(Z,p) = if (B1(Z,p) = 0) then [o(Z, p) else B3(Z, p),

and minimalization

a(y, Z,p) = (wi > y)[B(, %,p) = 0].
(2) The class R is closed under explicit definitions of the form

(112) O[(xh s 3 Ty P1y e 7pm) = ﬂ(xa1a o 5 Tag s Pbyyee- apbl)a
where ay, ... ,ar, by,... b are sequences from the index sets 1,... ,n and
1,...,m respectively.

PROOF. The functional eval™(Z, ¢) is computed by the program
p(T) = q(Z).
The proofs of the other parts of (1) are exactly those of 2C.3 and 2D.1.
Part (2) justifies the addition of new variables and the identification of
others, e.g., definitions of the form
a(z,z,y,p,q,7) = By, 2,y,y,p,7,7,)
and its proof is easy, Problem x6A.1. -

By this Lemma and the methods of Chapter 2, we can easily show the
recursiveness of many simple functionals by simple computations. For ex-
ample, if 8(y, z, q) is recursive, then

(113) a(z,y,p,q) =1if (B(y,y,q) = 0) then y + 1 else p(2y, x)
is also recursive by the following detailed proof: we first set
a1(z,y,p,9) = B(Y,y,q) explicit
az(z,y,p,q) =Sy) =y +1
Bi(z,y,p) =2y
Ba(z,y,p) = P (x) ==
Bs(x,y,p) = eval® (81 (z, y,p), Ba(x, Y, p), p) = P(2y, 7)
az(z,y,p,q) = B3(z,y,p) = p(2y,2)
and then by branching,

)
explicit)
explicit)
explicit)

substitution)

o~ o~~~ o~ o~

explicit),

a(m7y7paQ) = lf (al(xayvpa Q) = O) then a2(xay7pa Q) else 043(33’%]?7 q)

In many cases, however, the easiest way to prove that some functional is
recursive is to write some program which computes it.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 129

129

130 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

Problems for Section 6 A

x6A.1. Prove part (2) of Lemma 6A.4.
x6A.2. Write a program which computes the functional

a(z,p) = pi[p(z + i) = 0].

6B. Non-deterministic recursion

In the definition 2B.4 of abstract machines we allowed non-deterministic
transition relations, so that the arguments for the Church-Turing Thesis
in section 3B are as broadly applicable as possible. We have not studied
non-deterministic recursive programs up until now, but they have their
uses.

6B.1. DEFINITION. A non-deterministic recursive program is any
system of definitions

(eo) po(Zo) = Eo
(E) :
(ex) Pr(Th) = Ej
as in Definition 6A.1, where we now allow more than one definition for the
internal function variables. We use the same notation for such, generalized
programs, their internal and external variables are defined as before, and
their states, computations and terminal computations are defined just as
for the deterministic programs in section 2B, only we now allow many
computations on the same input. It is characteristic of these programs
that they do not necessarily determine a partial function p for each internal
variable p.

Every program can be viewed as non-deterministic since the definition
does not require many definitions for some variable, it only allows them.

6B.2. Some examples. The program with two equations
(E1) p(z) =0, plz)=1
does not compute a partial function: what would p(0) be?
On the other hand, the program

p(z) = =, n(y) =0,
(EQ) p(x) =x+1, 9(37) = W(P(l‘))

computes the constant function f(z) = 0, even though it assigns no partial
function p to the variable p. For each z, E5 has two computations of the
value () with the computations illustrated in Figure 6.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 130

6B. NON-DETERMINISTIC RECURSION 131

0:x
}
np:x
n:x n:x+1
! |
:0 :0

FIGURE 6. The computations of Fjs.

Even more interesting is the program
(E5) n(z) =

for which again 6(z) = 0, but now there are infinitely many computations
on each input as follows:

0:x

! |]

prax+l pSSn:x _
} !
:0 p :x+2

Finally, consider the following example of a non-deterministic program
with one external variable (q):

r) = 6(n(x)),) =

(Ey) Po(z) = 0(n(z)), n(x)
q

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.
January 27, 2019, 10:03. 131

132 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

If we assume that the computational semantics for non-deterministic pro-
grams with external function variables are basically the same as for deter-
ministic ones, we would expect that F4 computes the functional

0, ifq(0)] Vq(1)],
(114) av(@,q) = {T, otherwise.

After these preliminaries, we give the precise computational semantics
for non-deterministic recursive programs:

6B.3. Non-deterministically recursive functionals. A partial func-
tion f (&) is non-deterministically recursive if there exists a non-deterministic
program E without external variables and some recursive variable p of E,
such that for all 7,

(115) f(@) =w <= N, EF p(Z) = w
<> there exists a terminal computation of £

with input p : # and terminal state : w.

In other words, E computes f(Z) if, for every Z:

(1) There exists at least one terminal computation with input p : Z and
terminal state : f(Z); and
(2) every terminal computation of E on input p : Z has terminal state
It is important to notice that the definition allows divergent computations
(of “infinite length”) as in E3 above, which are simply disregarded.

The definition extends easily to functionals: in the simple case with just
one variable over partial functions, a functional a(Z, q) is non-deterministi-
cally recursive if there is a non-deterministic program F with one external
variable q and some internal variable p, so that for all 7, p, w,

a(Z,q) =w <= E,q:=qt p(Z) =w.
We set
Rnq = the set of non-deterministically recursive functionals.

6B.4. LEMMA. A partial function f(&) is recursive if and only if it is
non-deterministically recursive.

PRrROOF. The coding of symbols, programs, states, computations, and
generally of the whole theory of recursive programs in Section 3A is trivially
extended to non-deterministic programs with just one difference in the
details: in the definition of the relation Prog(e) we simply omit the last
condition which forbids multiple definitions of the same function variable.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 132

6B. NON-DETERMINISTIC RECURSION

This allows the existence of many computations on the same input, i.e., it
is possible that there exist y1,y2 such that

25 3& Y2 & Tn(eaf7y1) & Tn(€7f7y2),

but the basic result does not change: if (115) holds for some f and some
program F without external variables and with code e, then

f(@) =w < (3Y)[Tale, ,y) & Uly) = w,
so that the graph of f(&) is X{ and f(%) is recursive. =

For functionals, however, non-deterministic recursion is a proper exten-
sion of deterministic recursion, in fact the functional an, (z, ¢) in (114) is not
deterministically recursive. It is easy to see this directly, by considering the
computations of any deterministic program which might compute a (z, q).
But it is better to take a more general approach which helps clarify the
notions.

6B.5. DEFINITION. A functional «(Z,p) is:
e monotone if for all partial functions p, ¢, and all Z, w,

(al#p) =w & pC g) = a(@,q) = w;
e continuous if for every p and all &, w,
a(Z,p) = w=(3r) (1" Cp&a(@r)=w&ris ﬁnite),

where a partial function is finite if it has a finite domain of conver-
gence; and
e deterministic if for every p and all &, w,

a(Z,p) =w= (3r C p) (a(f, r)=w
& (V' Er)a(z,r)]| =1 = r])

The definitions are similar for functionals (%, p) with more variables, only
messier to put down.

For example, the functional

« =
Q 1, otherwise,

{0, if p(0) |,

is not monotone; the functional

0, if pis total
Ble) = {T, otherwise

is not continuous; and the functional (114) is not deterministic, Problem
x6B.2.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 133

133

134 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

6B.6. THEOREM. (1) Every non-deterministically recursive functional is
monotone and continuous.

(2) Every (deterministically) recursive functional is deterministic.
It follows that there exist non-deterministically recursive functionals which
are not recursive, e.g., ay(z,q) in (114).

PROOF. (1) For the monotonicity, we assume, that for some (possibly
non-deterministic) program E with main symbol py and an external vari-
able q

alZ,q) =w <= E,q:=qF po(Z) = w,
that some computation
(116) Po:T—a1:01— - —ay: By —w

of F with the assignment q := ¢ yields the value «(%,q) = w, and that
q C r; and we observe that the same sequence of states is a computation
of E for the assignment q := r, because the transitions

af q:y BF =t q(y) B
which call q are not stuck (otherwise the computation would stop), so

q(9)], and therefore r(¢) = q(¥), so the same transition also holds for the
computation with the assignment q :=r.

In the same way, the computation (116) for the assignment q := ¢ is also
a computation for the assignment q := r, where r(%) converges only for
the (finitely many) values of ¢ which are called in (116), and so «(Z,q) is
continuous.

(2) If the program F is deterministic, then exactly one computation (116)
computes the value po(Z) = w for the assignment q := ¢, and the (finite)
partial function r in the proof of continuity is the least r C ¢ partial func-
tion such that «(Z,r)], otherwise the computation (116) would terminate
“earlier”. —

For the functionals in the class R,q there exists a simple and useful
normal form which uses the following coding.

6B.7. Coding of finite functions and sets. For every z € N, we set
de 1) = {(z)i =1, i <Ih(z) & (2); >0,
T, otherwise,
d(i) = d(z,1),
D, ={i|d.(i)]}.
The partial function d(z,) is recursive; the sequence

do,dy, ...

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 134

6B. NON-DETERMINISTIC RECURSION

enumerates all finite, partial functions of one variable; and the sequence
Dy, Dy, ...
enumerates all finite sets so that
i€D, < i<lh(z) & (2); > 0.
In particular, the relation ¢ € D, is primitive recursive.

6B.8. Normal Form Theorem for R,q. A functional a(Z,p) is non-
deterministically recursive, if and only if there exists a recursive relation
R(Z,w, z,y) such that

(117) a(Z,p) =w <= (F2)[d. Cp & (Fy)R(Z, w, z,y)].
ProOOF. For the (=) direction with & = (x1,...,2,), set

Tr(e, @, 2,4,y) <= e is the code of some (possibly non-deterministic)
recursive program E and only pg is external in
and y is the code of a terminal computation of
on input p§ : & for the assignment p; := d..
This relation is primitive recursive by the methods of 3A, and, easily, if E
is such that
a(@,p) =w < E,p; :=pt py(Z) =w,
then
a(Z,p)=w <= (F2)[d. Cp & (Fy)[Tr(e, @, 2,i,y) & U(y) = w].

For the other direction, we assume that the functional «(Z,p) satisfies

the equivalence (117), we set
h(z7) = (myR(E, W)o, 2 W) .

and we observe that the functional

Bz, Z,p) =if (Vi <1h(z))[d.(i)] = p(i) = d.(7)] then h(z,Z) else T

is recursive, by the closure properties of the recursive functionals 6A.4. Let
E be a (deterministic) program which computes the functional 5(z, Z, p)
with main symbol pg, so that

B(z,Z,p) =w < E,pg:=pt po(z, %) =w.

Let E’ be the non-deterministic program constructed by adding to E the
following equations, with new variables:

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 135

135

136 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

The terminal computations of E’ starting with 6 : Z are of the form

0 :x
pn: 0%
p:z«®@

Cw

and since, from the moment that the value z is computed on, the transitions
which we added to F are not activated anymore, it follows that

w = 0(7) = (2,7, p),
so that by the definitions,
(118) d: Cp & (Jy)R(Z,w,z,y),

ie., a(Z,p) = w. On the other hand, if a(Z,p) = w, then there exists a z
such that (118) holds, and with the transitions of n(¢) in E’, there exists a
computation of E’ which reaches the point

po: 2z Z.

For example, if z = 2, the computation successively reaches the states

0:x
pon: 0
poSn:0%
ppSSn:027
poSS : 0%
poS : 1%
po : 2%

From this point on, the computation continues with the transitions of E
and finally yields the correct value

Eo(zaf):ﬂ(zafap):a(f7p) 4'

Problems for Section 6B

x6B.1. Determine which of the following two functionals are recursive
or non-deterministically recursive and prove your answer:

a(p) = if (3z)[p(xz) = 1] then 1 else T
B(p) =1if 3z)p(z) =1 & (Vi < z)p(i) = 0] then 1 else T

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 136

6B. NON-DETERMINISTIC RECURSION 137

x6B.2. Prove by counterexamples that none of the conditions in defini-
tion 6B.5 follows from the other two.

x6B.3. Prove that for for any two sets A, B,
A <p B <= there is some «a(z,p) € Rpq such that XA(x) = oz, XB).
HINT: Appeal to the Normal Form Theorem 6B.8.

6B.9. DEFINITION (Many-valued non-deterministic recursion). The
non-deterministic program
p(z) =0, p(z) =1,
computes no partial function, because, obviously, for every z it has two
computations
p:x—":0 p:z—" :1,
and so it does not determine a specific value p(z). It is, however, natural to

consider as the value p(x) computed by E the set {0,1} of the two values
0 and 1, and the next definition makes this notion rigorous.

For each function variable p in a given non-deterministic recursive pro-
gram E (without external variables), we set
p(Z) = {w |w € N & there exists a computation p: Z — -+ — : w of E
or w =1 and there exists a divergent computation of E
p:Z¥—ay:0 — -}
For example, the “value” of the program
p(z) =0, p(x) =1, p(z)=p2)
is Ba) = {0, 1,1}

x6B.4. Give examples of non-deterministic programs with main symbol
p for which:

(1) Bla) = NU{1}.
(2) p(z) ={0,1,... ,z}.
x6B.5. Let E be a program which computes addition with main func-

tion symbol +, and letE the non-deterministic extension of F, by the
definitions

p(r) =1, p(z) =p(x)+p(x).
What is the set p(0);

x6B.6. Let Fy be a program which computes the function 2z and let E
be the non-deterministic extension of Fy by the definitions

p(x) =1, p(z)=2p(x).
What is the set p(0);

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 137

138 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

x6B.7*. Prove that if for some non-deterministic program E with main
symbol p the set p(x) is infinite, then T€ p(z), i.e., there exists some di-
vergent computation of E starting with the state p : . HINT: The proof
requires an application of Kdnig’s Lemma.

6C. The 1st Recursion Theorem

The result in this section complements the 2nd Recursion Theorem. It
is especially important for the foundations of recursion theory.

6C.1. LEMMA. For each non-deterministically recursive functional o(Z, p),
the partial function
f(fvela ce 7€l) = a(f79061? e 7<p€l)
18 TeCursive.

PROOF. For the case with only one function variable, where the notation
is simpler, we have from the Normal Form Theorem 6B.8 an equivalence

o(Z,p) =w <= J2)[d, Cp & (Fy)R(Z,w, z,y)],
where R(Z,w, z,y) is a recursive. So
(@ &) =w < (@2)[d: C g & @GR w, 7))
= (3)[(Vi <Ih(z)[d.(i)] = pe(i) = d.(3)]
& () R(Z,w, z,y)],
and f(Z,e) is recursive because its graph is %Y. -
6C.2. The 1st Recursion Theorem. For every monotone and contin-
uous functional a(xy,...,x,,p) where p is an n-place function variable,
there exists a least solution P of the recursive equation
p(Z) = a(Z, p),
which is characterized by the conditions
(1) for all ¥, p(Z) = a(Z, D), and
(2) for every g : N* —~ N,
if (VZ,w)[a(F, q) = w=q(&) = w], thenDC 7.
Furthermore, if a(Z,p) is non-deterministically recursive, then p is re-

cursive.

PrOOF. We first observe that the uniqueness of a partial function p
which satisfies (1) and (2) of the theorem is trivial; because if p has these
two properties and P’ the corresponding

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 138

6C. THE 1ST RECURSION THEOREM 139
(1) P(@) =a@p),
(2)" for every ¢: N — N,
(V& w)[e(, q) = w==q(7) =w|]=p C g,
then p C P by (1)) and (2) with ¢ = P/, and o’ C p by (1) and (2)’
with ¢ = p. So it remains to show the existence of a partial function p

which satisfies (1) and (2) and its recursiveness, in the case that «a(Z,p) is
non-deterministically recursive.
We set

P°(Z) =7 (so P is the totally undefined partial function),

and, recursively,
FLE) = al#, 7).

Lemma. p° Cp' CP* -+,
so that for some partial function p: N — N,
(119) P(@) =w < (@n)[p"(7) = wl.

Proof. We show by induction on n that p" C p"*!. The basis, p° C p!
is obvious, because p° C ¢, for every ¢. For the induction step:

T =w = a(Z,7") = w by the definition
= a(Z,p"M) = w
by the induction hypothesis " C p"**

and the monotonicity of «(Z,p)

= "M(Z) = w by the definition. = - (Lemma)
Proof of (1). We need to show that for all ¥ and w,
(%) =w <= a(Z,p) = w,
and we will verify separately the two implications.
For p(¥) = w= (&, p) = w first, we compute:
p(E) =w = (3n)[p""H(Z) =w] (by the definition)
= (In)[a(Z,p")) =w] (by the definition)
= o(Z,p) =w (monotonicity of a(p)).

For the converse direction, assume that a(Z,p) = w. By the continuity of
a(Z,p), it follows that there exists some finite, partial, function p* C P,
with domain of convergence

{f()v e 75147—1} = {f | p*(f)l}7
such that
(120) a(Z,p*) = w.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 139

140 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS
By the definition of p, for every i < k, there exists some n;, such that
p* (%) =p(@;) =p™ (Z3) (i <k),
and if n = max{ng,...,nE_1} + 1, then
p*(%;) =p" (7)) (i <k),
i.e., p* C p". The monotonicity of a(#,p) now implies that

=n+1

a(Z,p) =w=—a(Z,p") =w=Dp"" (X)) =w

which with (120) completes the proof of (1).
Proof of (2). Suppose that for some ¢: N = N
(VZ, w)|a(Z, q) = w = q(Z) = w].
The required p C ¢ follows from
p"Cq (neN)
which obviously holds for n = 0. Inductively,

PV E) = w = a(Z,7") =w by the definition
q

= «a(Z,q) =w by the induction hypothesis
and the monotonicity of o

= ¢(¥) =w by the hypothesis for q.

Finally, if (&, p) is non-deterministically recursive, then the partial func-
tion

fle, @) = a(Z,)
is recursive by Lemma 6C.1, so that for some number]?,
{S1(f.0)}@) = {F}(e,) = a(@, pe).

It follows that if ey is some code of the empty partial function p°(7) = 1
and we set, recursively,

9(0) =co, g(n+1)=S}(f.g(n),
then, for every n, g(n) is a code of p"; so
p(E) =w <= (3n)[{g(n)}(Z) = w],

and P is recursive, since its graph is %Y. —

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 140

6D. EFFECTIVE OPERATIONS 141

6D. Effective operations

In this and the next section we consider functionals (&, p) where the
variables py, ..., p;, range over recursive (not arbitrary) partial functions,
so that a can “call” its variables by their codes, i.e., “by name” in the termi-
nology of programming languages. It is customary to call these functionals
“operations”.

6D.1. DEFINITION. An operation (on the recursive partial functions)

is any partial function
a:N"x Py x---xPp —N,
where PP is the set of all recursive partial functions of £ variables,
i ={et e e N}

and the operation « is effective if the partial function
(121) f(fvela"' 7em):a(fagpe17"' asoem)
is recursive.

We notice that the partial function f which computes the operation «
satisfies the following invariance property:
(122) Per = Pzir- -+ Pem = Pz :>f(f,€1,... 7em) = f(fazly-‘- 7Zm);
and (obviously) every recursive partial function f which satisfies (122) com-
putes the operation

O[(f, Peyye-- a‘ﬂem) = f('fa €1y--. 567”)'

The basic theorem of this section is that the effective operations (essen-
tially) coincide with the non-deterministically recursive functionals, and
one direction of this fact follows immediately from 6C.1. The key for the
converse direction is the following

6D.2. LEMMA. FEvery effective operation is monotone and continuous.
PRrROOF. We consider only operations « : P{ — N, the proof of the general

case being only notationally more complex.

For the proof of monotonicity, let p C ¢, where
P = ¢e and ¢ = @m,

and let f a code of a partial function which computes «, i.e., for every z,

(123) ale) = {F}(2).
We also assume that

alpe) = w,
and we need to show a(p,,) = w.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 141

142 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

The relation
R(z,2,0) = o(@) =vor ({F}(2) = w & g () =)
is semirecursive; the hypothesis . C ¢,,, implies that
R(z,z,v) = pm(z) = v;

so R(z,z,v) is the graph of some partial, recursive function g(z,x); and
then the 2nd Recursion Theorem implies that ¢,-(x) = g(z*, z) for some
number z*, so that

(124) 0+ (T) =v <= p(x)=vor ({f}(z*) =w & op(x) = v).
We now observe the following:

(1a) a(p.«) = {f}(z*) = w. Because if this is not true, then p,« = @,
by (124) and so a(p.-) = a(p.) = w.

(1Ib) .+ = @m, directly from the hypothesis ¢, C ¢, and (1a).
It follows that a(pm) = a(p.+) = w.

The construction for the proof of continuity is a slight variation of the one
we used for monotonicity. First we find from the 2nd Recursion Theorem
some z* such that
(125) @.«(x) =v

— (Vu< x)ﬁ[T1(f, 2" u) & Uu) = w] & pe(z) =0,
and we observe:

(2a) a(p,.+) = w. Because in the opposite case,

(Vu)=[T1(f, 2", u) & U(u) = w],
so for every ,
(Vu < 2)= [Ty (f, 2, u) & Ulu) = wl,
and so, by (125), .« = e and a(p.+) = a(pe) = w.
(2b) .+ C @, directly from (125).

(2¢) The partial function ¢, is finite, as it converges only if

(126) z < (pu)[T1(f, 2%, u) & Ulu) = w). =

6D.3. The Myhill-Shepherdson Theorem. An operation « is effec-
tive if and only if it is the restriction to the recursive partial functions of
some non-deterministically recursive functional, i.e., if for some 5 € R g4,

AT, Peys e s Pen) = B, Peys o s e)-

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 142

6D. EFFECTIVE OPERATIONS

PRrROOF. One direction has been proved in Lemma 6C.1. For the other,
we consider only operations a(p) with one, one-place variable. By the
Normal Form Theorem 6B.8, it suffices to define a semirecursive relation
R(z,w), such that

(127) alp) =w <= (3z)[dy Cp & R(z,w)).

If d is a code of the partial function d(z,4) which enumerates all finite,
partial functions, then

d: (1) = {d} (1) = {S1(d. 2)}(),
and so, if the partial, recursive function f(e) computes «(p), then the
relation R
R(z,w) <= a(d.) =w < f(S{(d,2)) =w
is semirecursive, and (127) follows with this R(z,w) by Lemma 6D.2.

6D.4. COROLARY (Rice-Shapiro). A recursive partial function f(e) sat-
isfies
We = Wm:>f(e) = f(m),
if and only if there is a semirecursive relation R(x,w) such that
fle) =w <= (3z)[Dy C W, & R(z,w)],
where the enumeration Dg, D1, ... of the finite sets has been defined in 6B.7.

We leave the proof for Problem x6D.6.

Problems for Section 6D

x6D.1. Let f(z) be a recursive partial function such that
[f(e)l & We = Wm]zf(m)lv
show that for every e,
f(e)| = there exists a finite W, such that W, C W, and f(z)] .

x6D.2. Let f(e) be a recursive partial function such that f(e) <5 for
every code e of a total, one-place function ¢.. Is it true or false that there
must be some m such that ¢, is not total, but f(m) | and f(m) < 57.
Prove your answer.

x6D.3. Let f(e) be a recursive partial function such that
We=0= f(e)l .

(1) Prove that for some W, # 0, f(e)|.

(2) Prove that for every m, there exists some e such that

We =Wy, and f(e)] .

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 143

143

144 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

x6D.4. Prove that for every effective operation «(z,p), the recursive
equation

p(z) = a(z,p)
has a recursive (partial) solution.

x6D.5. Prove that for every effective operation «(x,p), the recursive
equation

p(z) = a(z, p)
has a least solution, which is recursive.

x6D.6. Prove the Rice-Shapiro Theorem 6D.4.

x6D.7 (Rice’s theorem). Prove that if a total function f(e) satisfies
the invariance property

W = Wm:>f(e) = f(m),
then f(e) is constant.

x6D.8*. (1) Prove that there exists a recursive partial function f(e) such
that for every e,

(128
(129

fle)l = (Fx)lpe(z)l],
(B2)lpe(x)] = we(f(e))] -

(2) Prove that there is no partial recursive function f(e) which satisfies
the conditions (128), (129), and in addition

(130) Pe = pm = f(e) = f(m).

)
)

6E. Kreisel-Lacombe-Shoenfield and Friedberg

The basic message of 6D.3 is that there is no way to use a program
P (or a code of it) which computes a recursive partial function p in the
computation of properties of p other than the obvious: in the process of
the computation we can use P to compute any value p(u) of p we need. The
corresponding problem for effective operations on total recursive functions
is more difficult and has a more interesting answer.

For each k = 1,2, ..., let F}, be the set of all recursive (total) functions
of k variables,

k= {0l | (VD) (Fy)Tu(e, 7,9)}.

In particular,] is the set of all recursive sequences of natural numbers.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 144

6E. KREISEL-LACOMBE-SHOENFIELD AND FRIEDBERG

6E.1. DEFINITION. An operation (on the total recursive functions) is

any partial function
a:N"xFp x-- . xF, —N;

and the operation « is computable if there exists some recursive partial
function f(Z,eq,...,e,) such that
(131) gpel’ ttt 7<p€7n 6 IFT éa(f7 ()061) R ’wem) = f(f’ 617 M ’67n)7
where F" =, F}..

Here the partial function f which computes the operation « satisfies the
mvariance property:

(132) Per = Pzis-- 1P, = Pz,, € F”
= f(Z,e1,...,em) = f(Z 21, ,2m)
which is significantly weaker than the corresponding property (122) for

operations on the recursive partial functions. For example, the partial
function

T, otherwise

fle) = {17 it (Vi < e)[pe(i) = 0],

satisfies (131) and computes (rather unnaturally) the operation
a(p) =1

on F7). Tt does not satisfy (122) and does not compute any operation on
the space P".

There are two obvious questions, for the simpler case of operations « :
F{:—N:

6E.2. Question 1. Can we find, for each effective operation o : F] — N,
some recursive, partial function which computes it according to (131) and
which also satisfies the strong invariance property (122)%

Equivalently, as we will see:

6E.3. Question 2. Does there exist a recursive (or non-deterministically
recursive) functional o : Py — N such that

X eFl = a(X) =a"(X)?

The basic content of the Kreisel-Lacombe-Shoenfield Theorem and of
Friedberg’s counterexample which we will show in this section is that the
answer is positive in both of these questions for effective total operations
o F7 — N, for which

X eF = aX)],
but (in general) negative for operations which diverge for some values of
their variables.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 145

145

146 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

6E.4. LEMMA. Let a(X) be an effective operation on the space F] and
f(e) a recursive partial function which computes it,

pe € F1 =>a(pe) = f(e),
and let X = ¢, € F{ be a recursive sequence such that
a(X)=f(e)=weN.

It follows that for every k € N, there exists a sequence X : N — N such
that:

(1) t <k= Xy(t) = X(t).

(2) a(Xk) = a(X) =w.

(3) Xy is eventually zero, i.e., for somel and allt > 1, X(t) = 0.

ProoF. By the 2nd Recursion Theorem 4D.1, for every k, there exists
a code z = z(k) of a recursive partial function, such that

0. (1) = {Sﬁe(t)a ift<kor (Vu< t)—|[T1(fA, z,u) & U(u) = w),

(133) = .
0, otherwise,

where f is a code of f, i.e., fle) = @f(e). We set

Xi(t) = @2 ()
and we verify successively the required properties.
(1) . (t) is a total, recursive function and, for every ¢t < k, . (t) = we(t),
directly from (133).

(2) (Bu)[Ty (], z,u) & Uu) = w)], ie., a(p,) = f(e) = w. If not, then
(V)= (T3 (f, 2,0) & Uu) = w];

from this it follows that, for every ¢, (Vu < t)-[T} (f, z,u) & Uu) = wl;
S0 Y, = e, by (133), and f(z) = f(e) = w, by the hypothesis that f is
F7-invariant.

(3) For every t > (pu)[Ty(f,z,u) & U(u) = wl], @.(t) = 0, directly
from (133). =

The Lemma asserts that the eventually zero (and hence recursive) se-
quences occur “densely” in every set

Vw={X€eF] |a(X)=w} (weN),

i.e., for every X € V,,, there exist eventually zero sequences in V,, which
“agree” with X on arbitrarily long, initial segments. The eventually zero
sequences are coded simply, by the (basically) same coding which we used
for finite, partial functions:

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 146

6E. KREISEL-LACOMBE-SHOENFIELD AND FRIEDBERG

6E.5. Coding of eventually zero functions. Let

T (A
e (1) = ez, 7).
It follows that the function c(z,4) is recursive and the sequence
€Oy Cly .-
enumerates all eventually zero sequences, so that
(i) # 0=1i < lh(z).
Also, there exists a primitive recursive function
(134) ((z) = Si(¢,z) (where oo, t) = c(,t)),
such that
ce(t) = c(@,t) = Qua) (1)

6E.6. THEOREM (Continuity of effective operations on F}). For each ef-
fective operation o : F] — N and every X € FY, if a(X)], then there exists
some k € N, such that for every Y € F7,

(a1 & (e < BV () = X(1)]) = a(¥) = a(X).

In particular, if « is total, so that, for every Y € F}, a(Y") |, the conclusion
takes the simpler form

VMt <K[Y () =X)]= aY) = a(X).
PROOF. Let f(e) be a recursive, partial function which computes a(X),
so that
Pe = Pm €F7{:>f(6) :f(m)

The idea of the construction is to find some z such that

X(t), ifin <t “steps” f(z) does not converge,

z() = .
cz(t), otherwise

where the eventually zero ¢, is chosen (compatibly with the first case, if it
exists) so that

aley)] & aleg) # a(X).
If we achieve this, then we will have f(z) = «(X), with an argument which
is by now familiar, and from this we will conclude that if

k = the “number of steps” in which f(z) converges,
then there is no x such that

a(ez) | & alea) # a(X) & (VE < k)le(t) = X (1)];

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 147

147

148 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

from which, with Lemma 6E.4, we will conclude further that there is no
recursive sequence Y such that

(Vi <B)[Y () = X(10)] & a(Y)] & aY) # a(X),
which is what we needed to prove. In detail:
By the 2nd Recursion Theorem, for every e, there is a code z, such that

(135) :(t) =
e, IO & (Vu< O[T 2 u) & Uw) = £e),
Cy(ze) (1), i fle)l & (Fu < H[T1(f, z,u) & U(u) = f(e)],
1, otherwise, i.e., if f(e) T,
where N N
COIIlp(f, Z) = MyTl(fa Z, y)
is the length of the computation of f(z) (if f(z)]) and

(136) g(z.e) = (va)[f(2)] & f(u(z))] & f(z) # f(e(x))
& (vt < comp(f, 2))[ex () = e (8)].

Here «(x) is from (134), so that ¢, (,) = ¢, and by the X9-Selection Lemma 4A.7,
g(z, e) converges exactly if there exists some z such that
F@) 1 & f@)] & f(2) # @) & (< comp(f, 2))[ea(t) = e (1)),
and, when it converges, it chooses some x = g(z, €) with these properties.

We now suppose that X = ¢, € F] and a(X) = f(e)|.

(1) f(2) | and f(z) = f(e); otherwise . = ¢, € F] and f(z) = f(e),
which is absurd. We set
(137) k = comp(f, z).

(2) There is no eventually zero function ¢, such that

alca) L & f(u(x)) = ales) # fle) & (Vt < comp(F, 2))[ca(t) = pe(t)]:
Because if such a function existed, then g(z,e)| and ¢y) has this prop-
erty, so that, by the construction, ¢, = cy(;) and

f(2) = f(lg(2,€))) = alcg(ze)) # f(€),
which contradicts (1).
(3) For every Y € F7,

[a(Y)] & Vt<K)[Y () =X@)]=aY) =a(X).

This follows now from Lemma 6E.4: because if a(Y) = v # f(e), then
there exists some eventually zero ¢, which agrees with Y (and, therefore,
and with X) for ¢t < k, and for which a(c,) = v # f(e), and that contradicts
(2). -

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 148

6E. KREISEL-LACOMBE-SHOENFIELD AND FRIEDBERG

This theorem is the basic discovery and it is called “the Kreisel-Lacombe-
Shoenfield Theorem”, or it is attributed to the Russian mathematician
Ceitin who proved it independently. The name, however, is more appropri-
ate for the next stronger result:

6E.7. THEOREM (Kreisel-Lacombe-Shoenfield, Ceitin). For every effec-
tive operation o : F] — N on the total recursive functions, there is a
recursive functional o : Py — N, such that

(138) (X €T} & a(X)]) = a(X) = a*(X).
In particular, if o : F] — N is total, then
X e Fl = a(X) = o"(X),
and the questions 6E.2 and 6E.3 have positive answers for total effective
operations.

PROOF. Let]?be a code of some recursive, partial function which com-

putes a, i.e.,
ve € Fl = a(pe) = f(e) = @f(@)'

The crucial observation is that the proof of the Continuity Theorem 6E.6
is constructive, and specifically that the number & in (137) is the value of
a recursive, partial function o(e), which converges when e is a code of a
recursive sequence @, such that a(p.) = f(e)|. The partial function g(z, e)
is recursive indeed, as a function of two variables, with the definition (136);

by the version (97) of the 2nd Recursion Theorem with parameter, there
exists some primitive recursive h(e) such that (135) holds if we set

z = h(e);
and, finally, the number k that we need is computed by
(139) k = o(e) = comp(f, h(e)).

We now reexamine the proof of 6E.6, to see what it gives us without the
hypothesis that . is total:

LEMMA. For every e, with z = h(e), if
fle)l & fle) = f(z) & (Vt < a(e))pe(t) |,
then, for every X,
(X eFl & a(X)| & (< o(@)X(1) = po(t)) = a(X) = f(e).

Proof. Towards a contradiction, we assume the hypothesis for e and that
for some X € F7,

a(X)] & (vt <o(e))[X(1) = ge(t) & a(X) # f(e)]-

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 149

149

150 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

By lemma 6E.4 now, there exists some eventually zero c, such that

a(cz) = a(X) # f(e) & (Vi < o(e))ca(t) = we(t);
and by the definition of g(e,z) and (135), cy(c) has this property and
2 = Cge,z) € Fy; 80 f(2) = f(g(e,2)) # f(e), which contradicts the
hypothesis.

The set
A={e| fle)l & fle) = f(h(e)) & (Vt < o(e))pe(t)]},

of all numbers e which satisfy the hypothesis of the Lemma is semirecursive,
so there is a (primitive) recursive relation R(e,u) such that
e€ A <= (u)R(e,u).

The functional

v(p) = (py)[(Vt <y)pt)] & R((y)o, (¥)1)]

is (easily) recursive. It follows that

B(p) = f((v(p))o),

is also recursive, and it is not difficult, by the Lemma, to show now that
[X € F] & a(X)]]= a(X) = B(X),
which is what we needed to show. =

The rather careful formulation of the Theorem is necessary, because of
the following counterexample:

6E.8. THEOREM (Friedberg). There exists an effective (partial) opera-
tion o : F] — N such that:

(1) a(Xo) =1, where, Xo(t) =0, for everyt.

(2) For every k, there exists some X, € F} such that

(Vt < k)Xp(t) =0 and a(Xy) T .

It follows that the operation « is not the restriction to F| of any non-
deterministically recursive functional.

PROOF. The second claim follows from (1) and (2), because, if o were the
restriction to Fj of some (non-deterministically) recursive g, then 3(Xy) =
1; so the computation of the recursive machine which computes the value
B(Xo) terminates and, until it terminates, it calls finitely many values of
Xo; and if k is the maximum number for which the computation used the
value X(k), then, obviously, the computation will terminate and will give
the value 1 for every X such that (V¢ < k)X (t) = 0.

To construct a and prove the first proposition, we set:

(140) cc A e (Vt<e)pe(t) =0,

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 150

6E. KREISEL-LACOMBE-SHOENFIELD AND FRIEDBERG
(141) ee B <= (Im e A)(3k)(Vt < k) (%(t) = pm(t) =0
& pelk+1) = gmk+ 1)1 & polk+1) £0),

(142) f(e)=if (e€ AUB) then 1 else 7.
Lemma. The partial function f is recursive and F{-invariant, i.e.,

Ve = pm € F1=> f(e) = f(m).
Proof. Suppose ¢, = ¢, € F7, and f(e) = 1. We need to show that
f(im)=1.
Case 1. e = pm = Xo. In this case m € A, so f(m) = 1.

Case 2. ¢. = pm # Xo and e € A. Now (141) holds with m =e, k =¢
and m in place of e, so m € B and f(m) = 1.

CASE 3. ¢ = om # Xo and e € B. In this case there must exist
“witnesses” m € A and k which satisfy (141) and verify that e € B; the
same witnesses satisfy (141) with m in place of e, so that m € B and
fim)=1. - (Lemma)

The effective operation « : F] — N computed by f obviously has property
(1) in the Theorem. To show (2), for any k, we set

C={e€cA|le<k& Vt<k)p.(t)=0& pe(k+1)| & pe(k+1)#0}.
The set C' is finite, and (if k is sufficiently large) non-empty, say
C=A{e,...,en};
We set
0, ift<kort>k+l,
Xi(t) = .
max{@e, (k+1),...,0, (k+1)}+1, ift=~k+1,

so that, certainly, (V¢ < k)[Xx(¢) = 0], and it is enough to get a contradic-
tion from the hypothesis that there exists some e such that

pe =X &eec AUB.
CASE 1. ¢, = X and e € A. By the definition of A,
e€ A= (Vt <e)lp.(t) =0]
= e<k since . (k+1)=Xp(k+1)#0
= ec(C

and the last is absurd, because Xy (k + 1) # we(k + 1) for every e € C.

CASE 2. p. = X and e € B. There exist now witnesses m € A and
k' verifying that e € B, and k' = k + 1, since (Vt < k)[X(t) = 0] and
Xi(k+1) #0. Also, m € C, since m € A and @, (k + 1) # 0. But these

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 151

151

152 6. RECURSIVE FUNCTIONALS AND EFFECTIVE OPERATIONS

lead to a contradiction as in the first case, since Xg(k + 1) # @m(k + 1),
for every m € A. 5

Problems for Section 6E

x6E.1. Let f(e) be a recursive partial function such that
(V2)[pe(@) = 0] = f(e) = 3;
show that for every k, there exists some m, such that

(1) (V&) [pm ()]

(2) (Vo < Fk)[om(z) = 0].
(3) (Fz)[pm(x) # O]

(4) f(m) = 3.

x6E.2. Is the following proposition true or not: Let f(e) be a recursive
partial function such that

(Va)[pe(z) = 0] = f(e) L;
for every k, there exists some m, such that

(1) (V) [pm(z) 1].

(2) (Vo < F)[om(z) = 0].
(3) (Fz)[pm(x) # 0O].

(4) f(m) L.

Prove your answer.

Recursion and computation, by Yiannis N. Moschovakis
English Version 1.2.
January 27, 2019, 10:03. 152

