
RECURSION AND COMPUTATION

YIANNIS N. MOSCHOVAKIS

Department of Mathematics

University of California, Los Angeles

and University of Athens

Version 1.2, December 2014

Recursion and computation
Version 1.0 was translated from the Greek by Garyfallia Vafeiadou
This is Version 1.2
c© 2018, Yiannis N. Moschovakis

Comments and corrections welcome, send to ynm@math.ucla.edu

CONTENTS

Notation . 1

Chapter 1. Primitive and µ-recursion . 3
1A. Recursive definitions and inductive proofs . 3
1B. Primitive recursive functions . 11
1C. µ-recursive partial functions . 21

Chapter 2. General recursion . 31
2A. Partial algebras . 31
2B. Recursion and computation . 39
2C. Soundness and least solutions . 49
2D. Recursive partial functions on the natural numbers 56

Chapter 3. Computability and unsolvability 59
3A. Normal form and enumeration. 59
3B. The Church-Turing Thesis. 70
3C. Symbolic computation and undecidability . 74
3D. Turing machines . 79

Chapter 4. Recursively enumerable sets . 83
4A. Semirecursive relations . 83
4B. Recursively enumerable sets . 87
4C. Productive, creative and simple sets . 98
4D. The 2nd Recursion Theorem . 101

Chapter 5. Recursion and definability . 107
5A. The arithmetical hierarchy . 107
5B. A bit of logic . 113
5C. Arithmetical relations and functions . 118
5D. The theorems of Tarski, Gödel and Church . 121

Chapter 6. Recursive functionals and effective operations127
6A. Recursive functionals . 127
6B. Non-deterministic recursion . 130

iii

iv CONTENTS

6C. The 1st Recursion Theorem . 138
6D. Effective operations . 141
6E. Kreisel-Lacombe-Shoenfield and Friedberg . 144

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. iv

NOTATION

In these notes we will systematically use (as abbreviations) the following
basic notations from logic and set theory:

& : and, ∨ : or, ¬ : not, =⇒ : implies, ⇐⇒ : if and only if,

∀ : for all, ∃ : there exists, ∃! : there exists exactly one

x ∈ A ⇐⇒ the element x belongs to the set A

A ⊆ B ⇐⇒ every member of A is a member of B

⇐⇒ (∀x)[x ∈ A =⇒x ∈ B]

A = B ⇐⇒ the sets A and B have exactly the same members

⇐⇒ A ⊆ B & B ⊆ A

{x | P (x)} = the set of all x which have property P (x)

{x ∈ A | P (x)} = {x | x ∈ A & P (x)}
A × B = {(a, b) | a ∈ A and b ∈ B}

= the set of ordered pairs (a, b) with a ∈ A, b ∈ B

A × B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}
= the set of triples (a, b, c) with a ∈ A, b ∈ B, c ∈ C

f : A → B ⇐⇒ f is a function with input set (domain) A

and output set (range) B

f : A � B ⇐⇒ f is an injection (one-to-one function)

f : A→→B ⇐⇒ f is a surjection (function onto B)

f : A�→B ⇐⇒ f is a bijection (one-to-one and onto function)

f : A × B → C ⇐⇒ f is a function of two variables, on A and on B

The best way to get used to these notations, if you are not familiar
with them, is (in the beginning) to “translate” them and construct “para-
phrases” of them in English. For example, the symbolic expression of the
Induction Principle in section 1A.1 can be expressed in English as follows:

1

2

Every set A of natural numbers has the following property: if A
contains the number 0 and if, for every member n of A, the suc-
cessor n + 1 is also a member of A, then all the natural numbers
are members of A.

After some exercises of this kind the notation is learned and it becomes
clear why its use is indispensable in mathematics.

We also note that in mathematical texts, we often use the same letter
in different alphabets or different fonts to name different objects: so f is
different from its Greek equivalent ‘ϕ’, and (even worse), in section 2B,
systematically, ‘x’ names some “syntactic variable” which is assigned the
natural number ‘x’.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 2

CHAPTER 1

PRIMITIVE AND µ-RECURSION

We introduce recursive definitions and we study two important classes
of functions on the natural numbers, the primitive recursive and the µ-
recursive functions.

1A. Recursive definitions and inductive proofs

The great 19th century mathematician Leopold Kronecker is alleged to
have said that

God gave us the natural numbers, all the rest is the work of man.

In order to make use of the numbers, however, God also gave us the fol-
lowing fundamental

1A.1. Induction Principle. The characteristic property of the set of
(natural) numbers

N = {0, 1, 2, . . . }
is that every set A that contains 0 and is closed under the successor oper-

ation n 7→ n + 1 contains all the numbers, in symbols
(
0 ∈ A & (∀n)[n ∈ A =⇒n + 1 ∈ A]

)
=⇒N ⊆ A.

Formally we appeal to the Principle of Induction in order to prove that
all natural numbers have some property P (n), by showing separately that

P (0) and (∀n)[P (n) =⇒P (n + 1)].

From these propositions and the Induction Principle, it follows that the set
A = {n ∈ N | P (n)} contains all the numbers, that is (for all n)P (n).

The induction principle also justifies proofs by complete induction, in
which we infer that all the natural numbers have some property P (n) by
showing that for every n,

(∀i < n)P (i) =⇒P (n).

3

4 1. Primitive and µ-recursion

0 1 2 3 . . .

6

w0

w1

w2

w3

1

s

3
s

h
h

h

. . .

�
h

Figure 1. Recursive definition.

This is justified, because if we set

A = {n ∈ N | (∀i < n)P (i)},
then, obviously 0 ∈ A, since there are no numbers i < 0

and so the proposition

(∀i < 0)P (i)

is trivially true; and the required implication n ∈ A =⇒n + 1 ∈ A follows
immediately from the induction hypothesis and the equivalence

(∀i < n + 1)P (i) ⇐⇒ (∀i < n)P (i) and P (n).

The Induction Principle expresses our basic intuition that, if we start
from 0 and repeat indefinitely the successor operation, then we will reach
every natural number. The same intuition leads to the following funda-
mental result, which justifies recursive definitions on the set of natural
numbers:

1A.2. Basic Recursion Lemma. For all sets X, W and any given func-

tions g : X → W, h : W × N × X → W , there exists exactly one function

f : N × X → W such that

f(0, x) = g(x),
f(n + 1, x) = h(f(n, x), n, x).

(1)

In particular, without the parameter x, for every w0 ∈ W and every

function h : W × N → W , there exists exactly one function f : N → W
which satisfies the equations

f(0) = w0, f(n + 1) = h(f(n), n).(2)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 4

1A. Recursive definitions and inductive proofs 5

Figure 1 illustrates a recursive definition in the simplest case, where the
given function h : W → W does not depend on the recursion variable n
or on some parameter x, that is when the function f is defined by the
equations

f(0) = w0, f(n + 1) = h(f(n)).

Usually the Basic Recursion Lemma is proved from the Induction Prin-
ciple, which is why it is called a Lemma, cf. Problem x1A.1∗. But the
Induction Principle also follows from the Basic Recursion Lemma by Prob-
lem x1A.2∗, and so these two principles express in different ways the same,
characteristic property of the natural numbers.

1A.3. Recursive definitions. From the purely mathematical point of
view, the Basic Recursion Lemma 1A.2 is a classical example of an existence

and uniqueness theorem for the solution of a system of equations, (1), where
“the unknown” is a function. Every proof of existence and uniqueness of
an object with a specified property defines that object. The importance
of the Basic Recursion Lemma flows from the following three fundamental
properties of recursive definitions :

(I) Most of the functions that arise in number theory and in computer

science are defined—or can be defined—recursively from simpler functions.
In the next section 1B we will get an idea of the richness of the set of

“primitive recursive functions”.

(II) The recursive definition (1) produces a computable function f from

given computable functions g and h.
We will formulate this second principle rigorously and prove it in sec-

tion 2B, but it is intuitively quite obvious: if we have “algorithms” which
compute g and h, we can then compute any value f(n, x) setting succes-
sively

f(0, x) = g(x) = w0

f(1, x) = h(w0, 0, x) = w1

...

f(n − 1, x) = h(wn−2, n − 2, x) = wn−1

f(n, x) = h(wn−1, n − 1, x).

(III) The form of recursive definition (1) leads in a natural way to in-

ductive proofs of properties of the function f(n, x).

The connection

recursive definition – inductive proof

is one of the most fundamental in mathematics and theoretical computer
science and we will investigate it in depth. Here we confine ourselves to two

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 5

6 1. Primitive and µ-recursion

examples, starting with the classical proof of the commutativity of addition,
which uses the method of double induction. We write f(x, y) instead of x+y
in this example, and we prove the commutativity of f(x, y) using only its
recursive definition.

1A.4. Proposition. The function f(x, y) on N defined by the recursive

equations

f(0, y) = y

f(x + 1, y) = f(x, y) + 1

is commutative, that is, for all x, y

f(x, y) = f(y, x).

Proof. We show by induction,

(for all x ∈ N)(∀y)[f(x, y) = f(y, x)].(3)

Basis, x = 0, (∀y)[f(0, y) = f(y, 0)]. This is a proposition about all y
and we will prove it by induction, the Subsidiary Induction for the basis of
the “main” inductive proof of (3).

Subsidiary Basis, y = 0, f(0, 0) = f(0, 0), obviously.

Subsidiary Inductive Step. We accept the Subsidiary Induction Hypoth-

esis

f(0, y) = f(y, 0)(SIH)

and we derive from it

f(0, y + 1) = f(y + 1, 0)

by a simple computation:

f(y + 1, 0) = f(y, 0) + 1 (Definition)

= f(0, y) + 1 (SIH)

= y + 1 (Definition)

= f(0, y + 1) (Definition).

At this point we have completed the Subsidiary Induction and proved
the Basis of the main induction.

Inductive Step. We accept the Induction Hypothesis

(∀y)[f(x, y) = f(y, x)](IH)

and we show, with another Subsidiary Induction, that

(∀y)[f(x + 1, y) = f(y, x + 1)].

Subsidiary Basis, f(x + 1, 0) = f(0, x + 1). This follows from the proof
of the Basis, where we showed that for every y, f(y, 0) = f(0, y).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 6

1A. Recursive definitions and inductive proofs 7

Subsidiary Inductive step. We accept the Subsidiary Induction Hypothe-

sis

f(x + 1, y) = f(y, x + 1)(SIH)

and we verify
f(x + 1, y + 1) = f(y + 1, x + 1)

by the following computation:

f(x + 1, y + 1) = f(x, y + 1) + 1 (Definition)

= f(y + 1, x) + 1 (IH)

= (f(y, x) + 1) + 1 (Definition)

= (f(x, y) + 1) + 1 (IH)

= f(x + 1, y) + 1 (Definition)

= f(y, x + 1) + 1 (SIH)

= f(y + 1, x + 1) (Definition). a

1A.5. Remark. This method of proof is called double induction, because
the Basis and the Induction Step of the “main” induction are also proved
inductively. It is a feature of inductive proofs of propositions of the form

(∀x)(∀y)P (x, y)

like (3). The need for it becomes obvious if we try to prove directly the
special case

(∀x)[f(x, 17) = f(17, x)].

Caution: the Induction Principle can be used to prove propositions of
the form

(for all n ∈ N)P (n),(4)

and only propositions of this form. For example, if we want to prove
by induction some proposition of the form

(∀n)(∀m)Q(n, m),

we need to choose which P (n) we will use, e.g.,

P (n) ⇐⇒ Q(n, y) (for fixed, constant y),

P (n) ⇐⇒ Q(x, n) (for fixed, constant x),

P (n) ⇐⇒ (∀y)Q(n, y),

P (n) ⇐⇒ (∀x)Q(x, n),

or even some more complex proposition (∀n)P (n) for which we can prove
independently that

(∀n)P (n) =⇒ (∀x)(∀y)Q(x, y).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 7

8 1. Primitive and µ-recursion

In some cases, the most difficult part of an inductive proof is the choice of
some proposition of the form (4)—the induction loading device—which is
easy to show and implies the proposition we are interested in.

As a second example we consider a function less familiar than addition
but with equally interesting properties and many applications.

1A.6. The Ackermann function is defined by the so-called double re-

cursion

A(0, x) = x + 1
A(n + 1, 0) = A(n, 1)

A(n + 1, x + 1) = A(n, A(n + 1, x));
(5)

and for every n, the section An : N → N of the Ackermann is

An(x) = A(n, x).(6)

For example,

A0(x) = x + 1,

that is A0 is the successor function S on the natural numbers.

Definition (5) must be justified and its justification is interesting, because
it requires an appeal to the Basic Recursion Lemma for the definition of a
function f : N → W where W is a set substantially more complex than N.

1A.7. Lemma. The system of functional equations (5) has exactly one

solution, that is, it is satisfied by exactly one two-place function.

Proof. Let W be the set of all one-place functions on the natural num-
bers, that is

p ∈ W ⇐⇒ p is a function, p : N → N.

We define a function f : N → W by appealing to the Basic Recursion
Lemma, as follows:

f(0) = S,

that is the value f(0) is the successor function, S(x) = x + 1; and

f(n + 1) = h(f(n)),

where the value gp = h(p) of the function h : W → W is defined for every
p : N → N by the recursion

gp(0) = p(1), gp(x + 1) = p(gp(x)).

If we set
An = f(n),

then the functions An satisfy the following equations:

A0(x) = S(x) = x + 1, An+1(x) = h(An)(x),

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 8

1A. Recursive definitions and inductive proofs 9

so that

An+1(0) = h(An)(0) = An(1),

An+1(x + 1) = An(h(An)(x)) = An(An+1(x)).

Finally we set
A(n, x) = An(x)

and rewrite these equations,

A(0, x) = A0(x) = x + 1

A(n + 1, 0) = An+1(0) = An(1) = A(n, 1)

A(n + 1, x + 1) = An+1(x + 1) = An(An+1(x)) = A(n, A(n + 1, x)).

These are exactly the equations for which we wanted to show that they
have a solution.

The uniqueness of the solution is shown by double induction on n, or by
a careful application of the Basic Lemma, which guarantees the uniqueness
of the function f(n) = An, Problem x1A.7. a

The Induction Principle and the Basic Recursion Lemma are fundamen-
tal axioms for the natural numbers that cannot be proved, unless we have
some particular definition of the numbers in the context of a more general
theory, e.g., the theory of sets.

Problems for Section 1A

x1A.1∗. Prove the Basic Recursion Lemma 1A.2 from the Induction
Principle. Hint: To define some f : N × X → W which satisfies the given
equations, we set

Wn = {(w0, . . . , wn−1) | w0, . . . , wn−1 ∈ W} (n ∈ N),

P (n, x, w) ⇐⇒ w = (w0, . . . , wn) ∈ Wn+1

& w0 = g(x) & (∀i < n)[wi+1 = h(wi, i, x)]

and we show by induction the proposition

(∀n)(∃!w)P (n, x, w).

Now for any n and x, let w = w(n, x) = (w0(n, x), . . . , wn(n, x)) be the
unique sequence of length (n + 1) for which P (n, x, w) holds and set

f(n, x) = s ⇐⇒ s = wn(n, x).

x1A.2∗. Assume the Basic Recursion Lemma 1A.2 as an axiom and
prove the Induction Principle.

x1A.3. Prove that every non-empty set of natural numbers X ⊆ N has
a least element.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 9

10 1. Primitive and µ-recursion

x1A.4. Prove that for any pair of real numbers α ≥ 0, β > 0, there
exists exactly one natural number q, such that for some (real) r,

α = βq + r, 0 ≤ r < β.

It follows that r is also unique, since r = α− βq. The numbers q and r are
the quotient and the remainder of the division of α by β, and we denote
them by

quot(α, β) = q, rem(α, β) = r.

It is also convenient to set

quot(α, 0) = 0, rem(α, 0) = α,

so that these functions are defined for all α, β and always satisfy the equa-
tion α = β · quot(α, β) + rem(α, β).

x1A.5. Justify recursive definitions of the form

f(0, x) = g1(x),
f(1, x) = g2(x),

f(n + 2, x) = h(f(n, x), f(n + 1, x), n, x),
(7)

where g1, g2, h are given functions on the numbers.

x1A.6. The Fibonacci sequence is defined by the recursion

a0 = 0, a1 = 1, an+2 = an + an+1.(8)

(1) Compute the value a9.
(2) Prove that for every n,

an+2 ≥ λn, where λ =
1 +

√
5

2
.

The basic observation is that λ is one of the roots of the second degree
equation

x2 = x + 1.(9)

Prove also that if ρ = 1−
√

5
2 is the other root of (9), then, for every n

an =
λn − ρn

√
5

.

x1A.7. Prove that at most one function satisfies the system (5).

x1A.8. Compute the value A(3, 2).

x1A.9. For the Ackermann sections, show that

A1(x) = x + 2, A2(x) = 2x + 3.

x1A.10. Find a “closed” formula for A3(x), like those for A1 and A2 in
the preceding problem.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 10

1B. Primitive recursive functions 11

x1A.11. Prove that for every n and every x, An(x) ≥ 1.

x1A.12. Prove that every section An of the Ackermann function is
strictly increasing, that is

x < y =⇒An(x) < An(y).

Infer that for all n, x, An(x) ≥ x. Hint: Prove by double induction that
An(x) < An(x + 1).

x1A.13. Prove that for all n, m and x,

n < m =⇒An(x) < Am(x).

Hint: Prove by double induction that An(x) < An+1(x).

x1A.14. Prove that for all n and x,

An(An(x)) < An+2(x).

1B. Primitive recursive functions

1B.1. Definition. A set F of functions of several variables1 on the nat-
ural numbers is primitively closed if:

(1) The successor function S(x) = x + 1 belongs to F .

(2) For every n and q, the constant function of n variables

Cn
q (x1, . . . , xn) = q

belongs to F . If n = 0, then (by convention) C0
q = q, that is we identify a

function of “0 variables” with its (unique) value.

(3) For every n and i, 1 ≤ i ≤ n, the projection

Pn
i (x1, . . . , xn) = xi

belongs to F . Notice that P 1
1 is the identity function on N, P 1

1 (x) = x.

(4) Closure under composition. If the m-place g(u1, . . . , um) and
the m, n-place functions

h1(~x), . . . , hm(~x)

belong to F , with ~x = (x1, . . . , xn), then

f(~x) = g(h1(~x), . . . , hm(~x))(10)

1A function of several variables on the set M is any function

f : Mn
→ M

of one or more variables on M , and the arity of f is the number n of its variables. The
simultaneous study of all functions of several variables on a given set distinguishes logic
and computation theory from most other branches of mathematics where, typically, we
study separately the functions of one, or two, . . . , or n variables.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 11

12 1. Primitive and µ-recursion

also belongs to F .

(5) Closure under primitive recursion. If the n-place g and the
(n + 2)-place h belong to F , and if the (n + 1)-place f is defined by the
equations

{
f(0, ~x) = g(~x)

f(y + 1, ~x) = h(f(y, ~x), y, ~x),
(11)

then f also belongs to F . By convention, we include in this scheme the
case n = 0, where the scheme takes the form

{
f(0) = q (= C0

q)
f(y + 1) = h(f(y), y).

A function f is primitive recursive if it belongs to every primitively
closed set of functions. More generally, for any set Ψ of functions of several
variables, a function f is primitive recursive in Ψ if it belongs to every
primitively closed set which contains Ψ. We use the notations:

Rp = {f | f is primitive recursive},
Rp(Ψ) = {f | f is primitive recursive in Ψ},

so that

Rp = Rp(∅).
For example, addition

s(x, y) = x + y

is primitive recursive because it satisfies the equations

s(0, y) = P 1
1 (y) = y,

s(x + 1, y) = h(s(x, y), x, y) = s(x, y) + 1,
(12)

where the function h(w, x, y) = S(w) is primitive recursive because it is
defined by the composition

h(w, x, y) = S(P 3
1 (w, x, y)).(13)

With similar use of projections we can show that the set Rp(Ψ) is closed
under very general explicit definitions. For example, if

f(x, y) = h(x, g1(y, x + 1), g2(y, y)),

then f is primitive recursive in h, g1, g2, because

f(x, y) = h(P 2
1 (x, y), g∗1(x, y), g∗2(x, y)),(14)

where

S∗(x, y) = S(P 2
1 (x, y)) = x + 1(15)

g∗1(x, y) = g1(P
2
2 (x, y), S∗(x, y)) = g1(y, x + 1)(16)

g∗2(x, y) = g2(P
2
2 (x, y), P 2

2 (x, y))(17)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 12

1B. Primitive recursive functions 13

so that f is defined from the given functions by successive applications of
composition.

The following proposition is trivial but useful:

1B.2. Proposition. The set Rp(Ψ) of functions which are primitive

recursive in Ψ contains Ψ and is primitively closed.

Proof. If, e.g., f is defined by primitive recursion from g, h ∈ Rp(Ψ),
then, g, h ∈ F for every primitively closed F which contains Ψ; so, f ∈ F ,
for every primitively closed F which contains Ψ; so f ∈ Rp(Ψ). a

For another example, the functions

g(w, y) = w + y

h(w, x, y) = g(P 3
1 (w, x, y), P 3

3 (w, x, y))= w + y

are primitive recursive, and therefore, if we set

f(0, y) = 0 = C1
0 (y)

f(x + 1, y) = h(f(x, y), x, y) = f(x, y) + y,
(18)

then f(x, y) is also primitive recursive; but, obviously (by induction on x,
if it does not seem obvious!), f(x, y) = x · y, so multiplication too is a
primitive recursive function.

In the future we will sometimes apply Proposition 1B.2 tacitly, without
explicit mention.

1B.3. Proposition. Addition x+y, multiplication x·y and the following

functions are primitive recursive.

#1. Factorial:
x! = 1 · 2 · · ·x 0! = 1

(x + 1)! = x!(x + 1)

#2. Predecessor:
Pd(x) = if (x = 0) then 0 else x − 1 Pd(0) = 0

Pd(x + 1) = x

#3. Arithmetic subtraction:
x−· y = if (x < y) then 0 else x − y x−· 0 = x

x−· (y + 1) = Pd(x−· y)

#4. min(x, y) min(x, y) = x−· (x−· y)

#5. max(x, y) max(x, y) = (x + y)−· min(x, y)

#6. |x − y| |x − y| = (x−· y) + (y−· x)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 13

14 1. Primitive and µ-recursion

#7. xy
x0 = 1

xy+1 = xy · x

The proof of this and several more of the results in this section are easy,
and we will skip them or deal with them in the problems.

1B.4. Definition. The characteristic function of a relation P (~x) is
the function

χP (~x) =

{
1, if P (~x),

0, otherwise,
(19)

and the relation P (~x) is primitive recursive if χP (~x) is primitive re-

cursive. The same for sets: the characteristic function of A ⊆ N is the
function

χA(x) =

{
1, if x ∈ A,

0, otherwise,
(20)

and A is primitive recursive if χA is primitive recursive.

1B.5. Proposition (Definition by cases). If P (~x) is a primitive recur-

sive relation, g(~x) and h(~x) are primitive recursive functions and f(~x) is

defined from them by cases,

f(~x) =

{
g(~x), if P (~x),

h(~x), otherwise,

then f(~x) is also primitive recursive.

Proof. f(~x) = χP (~x)g(~x) + (1−· χP (~x))h(~x). a
By applying this Proposition repeatedly, we can show that the set of

primitive recursive functions is closed under definitions with n cases, for
every n ≥ 2.

1B.6. Proposition. (1) The following functions and relations are prim-

itive recursive:

#8. x = y χ=(x, y) = 1−· |x − y|

#9. x ≤ y, x < y χ≤(x, y) = 1−· (x−· y)

χ<(x, y) = χ≤(x + 1, y)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 14

1B. Primitive recursive functions 15

#10. rem(x, y) rem(0, y) = 0

rem(x + 1, y) =

x + 1, if y = 0,

rem(x, y) + 1,

otherwise, if rem(x, y) + 1 < y,

0, otherwise

#11. x | y (x divides y) χ|(x, y) = 1−· rem(y, x)

#12. quot(x, y) quot(0, y) = 0

quot(x + 1, y) =

0, if y = 0,

quot(x, y) + 1,

otherwise, if rem(x + 1, y) = 0,

quot(x, y), otherwise

(2) The set of primitive recursive relations is closed under the proposi-

tional operators ¬,∨, & , =⇒ , e.g., if

P (~x) ⇐⇒ Q(~x) & R(~x)

and Q, R are primitive recursive, then P is also primitive recursive.

(3) If the relation Q(~y) and the functions f1(~x), . . . , fm(~x) are primitive

recursive, then the relation

P (~x) ⇐⇒ Q(f1(~x), . . . , fm(~x))

is also primitive recursive.

(4) If g(i, ~x) is primitive recursive, then so are the functions

f(y, ~x) =
∑

i<yg(i, ~x), g(y, ~x) =
∏

i<yg(i, ~x),

with
∑

i<0g(i, ~x) = 0,
∏

i<0g(i, ~x) = 1.

(5) If P (i, ~x) is primitive recursive and

Q(z, ~x) ⇐⇒ (∃i ≤ z)P (i, ~x)

R(z, ~x) ⇐⇒ (∀i ≤ z)P (i, ~x),

then Q(z, ~x), R(z, ~x) are also primitive recursive.

For the proofs we refer again to the problems.

1B.7. Corolary. If the relation P (i, ~x) and the function f(~x) are prim-

itive recursive, then the relations

Q(~x) ⇐⇒ (∃i ≤ f(~x))P (i, ~x)

R(~x) ⇐⇒ (∀i ≤ f(~x))P (i, ~x),

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 15

16 1. Primitive and µ-recursion

are also primitive recursive, and the same with < in the place of ≤.

It follows that the primality relation

Prime(x) ⇐⇒ x is a prime number

is primitive recursive.

Proof in Problem x1B.10. a

1B.8. The bounded minimalization operator is defined by

(µi ≤ z)R(i, ~x) =

{
the least i ≤ z such that R(i, ~x), if (∃i ≤ z)R(i, ~x),

z + 1 otherwise.

1B.9. Proposition. For every primitive recursive relation R(i, ~x), the

function

f(z, ~x) = (µi ≤ z)R(i, ~x)

is primitive recursive. It follows that if g(~x) is also primitive recursive,

then the function

h(~x) = (µi ≤ g(~x))R(i, ~x) (= f(g(~x), ~x))

is primitive recursive.

Proof in Problem x1B.12. a

1B.10. Corolary. The function

pi = the i’th prime number

is primitive recursive.

Proof. The function pi is defined by primitive recursion

p0 = 2

pi+1 = (µt ≤ pi! + 1)[pi < t & Prime(t)],

because (easily, x1B.11) for every k, there exists a prime number p such
that k < p ≤ k! + 1. a

1B.11. Codings. A coding of a set A in a set C is any injection

c : A � C,

which (theoretically) allows us to “recover” any element x ∈ A from its
code c(x), for example, the function which assigns to every adult US cit-
izen their Social Security number. Coding is a basic technique of logic
and computability theory, characteristic of the subjects, and we will define
several codings of many sets, with various, useful properties.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 16

1B. Primitive recursive functions 17

1B.12. Sequence codings. Let N∗ be the set of all finite sequences

of natural numbers, so that Λ, (0), (1, 5), (2, 7, 3), . . . ∈ N∗, where Λ is the
empty sequence. A coding

〈 〉 : N∗ � N

of N∗ in N is primitive recursive, if for every sequence of natural numbers
(u0, . . . , un−1),

ui < 〈u0, . . . , un−1〉 (i < n);(21)

the relation

Seq(u) ⇐⇒ u = 〈u0, . . . , un−1〉 for some u0, . . . , un−1(22)

is primitive recursive; for every n, the n-place function

fn(u0, . . . , un−1) = 〈u0, . . . , un−1〉(23)

is primitive recursive; and there are primitive recursive functions which
satisfy the following:

lh(〈u0, . . . , un−1〉) = n

proj(〈u0, . . . , un−1〉, i) = (〈u0, . . . , un−1〉)i = ui (i < n)(24)

append(〈u0, . . . , un−1〉, y) = 〈u0, . . . , un−1, y〉.
It is also technically useful to require that

[¬Seq(u) ∨ i ≥ lh(u)] =⇒ lh(u) = (u)i = 0,

although the values lh(u), (u)i are of no importance when u is not a se-
quence code or i is greater than the length of the sequence coded by u. We
observe that with (21), these requirements imply that for all u,

u > 0 =⇒ (u)i < u.(25)

1B.13. Proposition. There exists a primitive recursive coding of N∗,
specifically the “classical” coding

〈u0, . . . , un−1〉 = pu0+1
0 · pu1+1

1 · · · pun−1+1
n−1(26)

with 〈Λ〉 = 1.

Proof in Problem x1B.15. a

The classical coding of N∗ is not “efficient”, and we will introduce in the
problems more realistic codings which are used in complexity studies. From
the point of view of computability, however, which is our main concern, all
primitive recursive codings of N∗ are equivalent, cf. Problem x1B.25.

From now on we fix a specific primitive recursive coding 〈 〉 : N∗ � N,
which need not be the classical one.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 17

18 1. Primitive and µ-recursion

1B.14. Proposition. There exist primitive recursive functions u � i (re-
striction) and u ∗ v (concatenation), such that

〈u0, . . . , un−1〉 ∗ 〈v0, . . . , vm−1〉 = 〈u0, . . . , un−1, v0, . . . , vm−1〉
〈u0, . . . , un−1〉 � i = 〈u0, . . . , ui−1〉 (i ≤ n).

Proof in Problem x1B.16. a
1B.15. Proposition (Mutual primitive recursion). Suppose the func-

tions g1, g2, h1 and h2 are primitive recursive and define f1 and f2 by the

system of equations

f1(0, ~x) = g1(~x)

f1(y + 1, ~x) = h1(f1(y, ~x), f2(y, ~x), y, ~x)

f2(0, ~x) = g2(~x)

f2(y + 1, ~x) = h2(f1(y, ~x), f2(y, ~x), y, ~x).

It follows that f1 and f2 are also primitive recursive.

Proof in Problem x1B.17. a
1B.16. Proposition (Complete primitive recursion). Suppose the

function h is primitive recursive and let

f(y, ~x) = h(〈f(0, ~x), . . . , f(y−· 1, ~x)〉, y, ~x),

so that f(0, ~x) = h(〈Λ〉, 0, ~x), f(1, ~x) = h(〈f(0, ~x)〉, 1, ~x), etc.. It follows

that f is also primitive recursive.

Proof. First we define by primitive recursion the function

g(0, ~x) = 〈Λ〉,
g(y + 1, ~x) = g(y, ~x) ∗ 〈h(g(y, ~x), y, ~x)〉,

and then we verify that the function

f(y, ~x) = (g(y + 1, ~x))y

satisfies the required equation. We finally show by complete induction on
y that only one function satisfies the given system of equations. a

Problems for Section 1B

1B.17. A primitive recursive derivation (or program) is any se-
quence of functions of several variables

E = (f0, f1, . . . , fn)

such that for every j ≤ n one of the following is true:

(1) fj is one of the basic primitive recursive functions S, Pn
i , Cn

q .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 18

1B. Primitive recursive functions 19

(2) fj is defined by composition (10), where g, h1, . . . , hm are basic primi-
tive recursive functions or in the sequence f0, . . . , fj−1, before the j’th place
in E.

(3) fj is defined by primitive recursion (11), where g and h are basic
primitive recursive functions or in the sequence f0, . . . , fj−1, before the
j’th place in E.

x1B.1. Prove that f : Nk → N is primitive recursive if and only if f = fn

for some primitive recursive derivation (f0, f1, . . . , fn).

x1B.2. Prove (directly, from the definitions) that if

f(x, y) = h(g1(y), g2(y, x), y)

and h, g1, g2 are primitive recursive, then f is also primitive recursive.

x1B.3. Prove that if g : N2 → N is primitive recursive, then the function

f(x, y) = g(y, x)

is also primitive recursive.

x1B.4. Prove that for every n ≥ 1, the n-place functions

minn(x1, . . . , xn) = the least of x1, . . . , xn

maxn(x1, . . . , xn) = the greatest of x1, . . . , xn

are primitive recursive.

x1B.5. Prove that the exponential function f(x, y) = xy (with 00 = 1)
is primitive recursive.

x1B.6. Prove that the binary relations x ≤ y, x < y are primitive
recursive.

x1B.7. Prove that the functions quot(m, n) and rem(m, n) are primitive
recursive.

x1B.8. Prove (4) of Proposition 1B.6.

x1B.9. Prove (5) of Proposition 1B.6.

x1B.10. Prove Corollary 1B.7.

x1B.11. Prove that for every n, there exists a prime number p such
that n < p ≤ n! + 1. (One of the corollaries is that there exist infinitely
many prime numbers, the so-called Euclid’s Theorem.) Hint: If n! + 1
isn’t prime, then some prime number p | (n! + 1).

x1B.12. Prove that if the binary relation R(x, y) and the function g(x)
are primitive recursive, then the function

f(x) = (µy ≤ g(x))R(x, y)

is also primitive recursive.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 19

20 1. Primitive and µ-recursion

The greatest common divisor of two numbers x, y ≥ 1 is, well, the greatest
number which divides both of them, when one common divisor exists:

gcd(x, y) =

0, if x = 0 or y = 0,
the greatest m such that

m | x and m | y, otherwise.
(27)

x1B.13. Prove that the function gcd(x, y) is primitive recursive.

x1B.14. Why can we not define the notion of “primitive recursive coding
of N∗” with the simple

1-1, primitive recursive function 〈 〉 : N∗ � N

instead of the complicated (and several) conditions on which we based the
definition?

x1B.15. Prove that the “classical coding” of N∗ in Proposition 1B.13 is
primitive recursive.

x1B.16. Prove that the following two functions (restriction and concate-

nation) are primitive recursive:

u�i =

{
〈u0, . . . , ui−1〉 if u = 〈u0, . . . , un−1〉 with i ≤ n,

0, otherwise,

u ∗ v =

〈u0, . . . , un−1, v0, . . . , vm−1〉, if u = 〈u0, . . . , un−1〉,
v = 〈v0, . . . , vm−1〉,

0, otherwise.

x1B.17. Prove Proposition 1B.15.

x1B.18 (Complete primitive recursion for relations). Prove that
if the relation H(w, y, ~x) is primitive recursive and P (y, ~x) satisfies the
equivalence

P (y, ~x) ⇐⇒ H(〈χP (0, ~x), . . . , χP (y−· 1, ~x)〉, y, ~x),

then P (y, ~x) is also primitive recursive.

x1B.19∗ (Nested recursion). Prove that for any three functions g(x),
h(w, x, y) and τ (x, y), there exists exactly one function f(x, y) which sat-
isfies the equations

f(0, y) = g(y), f(x + 1, y) = h(f(x, τ(x, y)), x, y);

and if the given functions are primitive recursive, then f(x, y) is also prim-
itive recursive.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 20

1C. µ-recursive partial functions 21

x1B.20. Define a primitive recursive injection g : N×N � N, such that

g(x, y) ≤ (x + y + 1)2.

More generally, show that for every n ≥ 2, there exists a primitive recursive
injection gn : Nn � N, such that

gn(x1, . . . , xn) ≤ Pn(x1, . . . , xn),(28)

where Pn(x1, . . . , xn) is a polynomial of degree n.

x1B.21. Prove that for every n ≥ 2, there is no one-to-one function
g : Nn → N which satisfies (28) with a polynomial of degree ≤ n − 1.

x1B.22. Prove that there is a primitive recursive coding of sequences,
such that for every n, and all x1, . . . , xn,

〈x1, . . . , xn〉 ≤ 2nPn(x1, . . . , xn),

where the polynomial Pn is of degree n.

x1B.23. Prove that for every coding 〈 〉 : N∗ � N of the sequences from
N,

max{〈x1, . . . , xn〉 | x1, . . . , xn ≤ k} ≥ 2n (k, n ≥ 2)

x1B.24∗. (1) Prove that every section An(x) of the Ackermann function
is primitive recursive.

(2) Prove that for every primitive recursive function f(x1, . . . , xn), there
exists some m such that

f(x1, . . . , xn) < Am(max(x1, . . . , xn)) (x1, . . . , xn ∈ N).(29)

(3) Prove that the Ackermann function A(n, x) is not primitive recursive.
Hint: Call a function f(~x) A-bounded if it satisfies (29) with some m, and
prove that the collection of all A-bounded functions is primitively closed.
Problems x1A.11 – x1A.14 provide the necessary Lemmas.

x1B.25. Prove that if the functions

〈 〉1, 〈 〉2 : N∗ � N

are primitive recursive codings, then there exists a primitive recursive func-
tion π : N → N, such that

π(〈~x〉1) = 〈~x〉2 (~x ∈ N∗).

1C. µ-recursive partial functions

A number x is a twin prime if it is prime and x + 2 is also prime; for
example, 5 is a twin prime but 7 is not. There exist exactly thirty five twin
primes smaller than 1000, the following, each coupled with the next prime
which follows it:

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 21

22 1. Primitive and µ-recursion

3:5 5:7 11:13 17:19 29:31

41:43 59:61 71:73 101:103 107:109

137:139 149:151 179:181 191:193 197:199

227:229 239:241 269:271 281:283 311:313

347:349 419:421 431:433 461:463 521:523

569:571 599:601 617:619 641:643 659:661

809:811 821:823 827:829 857:859 881:883

The conjecture that there exist infinitely many twin primes is a famous open
problem, and (as number theorists tell us) there is no realistic expectation
that it will be proved soon. Suppose that it is true and define the function

p t
i = the i-th twin prime number,

so that (by the table),

p t
0 = 3, p t

9 = 107, p t
34 = 881.

The function p t
i obviously satisfies the recursive equation

p t
0 = 3,

p t
i+1 = h(p t

i + 1),

where

h(w) = the least twin prime x ≥ w = (µy ≥ w)Primet(y),(30)

and the relation

Primet(x) ⇐⇒ x is a twin prime

is primitive recursive. This however does not imply that the function p t
i

is primitive recursive (as in the proof of the analogous Proposition 1B.10
for the function pi), because we cannot show that the function h(w) is
primitive recursive—and this because we don’t know some bound for the
next twin prime. On the other hand, the function h(w) can be computed
by an obvious dumb search, where we successively check the conditions

Primet(w + 1), Primet(w + 2), Primet(w + 3), . . . ,

until we find some w + 1 + i which is, indeed, a twin prime. For example,

h(6) = h(7) because ¬Primet(6)

= h(8) because ¬Primet(7)

= h(9) because ¬Primet(8)

= h(10) because ¬Primet(9)

= h(11) because ¬Primet(10)

= 11 because Primet(11).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 22

1C. µ-recursive partial functions 23

and then the function p t
i is computed by the primitive recursion which

defines it from h,2

p t
0 = 3, p t

1 = h(p t
0 + 1), . . . , p t

i = h(p t
i−1 + 1).

Despite its derogatory name, dumb search is perhaps the most basic
procedure in the construction of algorithms on natural numbers. It is ex-
pressed by the (unbounded) minimalization operator which is applied
to a relation like bounded minimalization in 1B.8:

(31) (µi ≥ y)R(i, ~x)

= the least i ≥ y (if there exists one) such that R(i, ~x),

and somewhat more simply for a dumb search which starts from 0,

µiR(i, ~x) = (µi ≥ 0)R(i, ~x).

Its application, however, leads naturally to the introduction of “partial
functions” which do not always deliver a value, and we give its precise
definition in this wider context.

1C.1. Definition. A partial function (from the input set A to the
output set or range B)

f : A ⇀ B (note the half-arrow)

is any function

f : A0 → B (A0 = Domain(f) ⊆ A)

from a subset A0 of A, its domain of convergence. We write

f(x)↓ ⇐⇒ x ∈ Domain(f) (f(x) converges)

f(x) ↑ ⇐⇒ x /∈ Domain(f) (f(x) diverges),

and occasionally, in definitions, the ungrammatical

f(x) = ↑ which means that f(x) ↑ .

For n-place partial functions f, g : Nn ⇀ N on the natural numbers, we
also write

f(~x) > 0 ⇐⇒ f(~x)↓ & f(~x) > 0,

f(~x) < g(~y) ⇐⇒ f(~x)↓ & g(~y)↓ & f(~x) < g(~y),

etc. The extreme case of a partial function is the totally undefined (empty)
function with

Domain(ε) = ∅, so that for all x, ε(x) ↑ .(32)

2We should note that the program which created the table of twin primes at the
beginning of this section is based on a much more efficient algorithm which uses the
“sieve of Eratosthenes”.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 23

24 1. Primitive and µ-recursion

On the other hand, every (ordinary, total) function f : A → B is a partial
function, with Domain(f) = A.

If f, g : A ⇀ B and x ∈ A, we write

f(x) = g(x) ⇐⇒
(
f(x) ↑ & g(x) ↑

)
∨ f(x) = g(x),

so that with the ungrammatical use of f(x) = ↑ above,

f = g ⇐⇒ (∀x)[f(x) = g(x)].

We also set

f v g ⇐⇒ (∀~x)[f(~x)↓ =⇒ f(~x) = g(~x)].(33)

The relation f v g is (easily, x1C.2) a partial ordering on the set

(A ⇀ B) = {f | f : A ⇀ B}
of all partial functions with input set A and range B, that is

f v f,
(
f v g & g v h

)
=⇒ f v h,

(
f v g & g v f

)
=⇒ f = g.

1C.2. Composition and primitive recursion. These operators are
interpreted for partial functions by the natural way that we compute them:
if, e.g., g, h : A ⇀ B and f : B2 ⇀ C, then for all x ∈ A, w ∈ C,

f(g(x), h(x)) = w ⇐⇒ (∃u, v ∈ B)[g(x) = u & h(x) = v & f(u, v) = w];

and if

f(0, ~x) = g(~x)

f(y + 1, ~x) = h(f(y, ~x), y, ~x)

and g, h are partial functions on N, then, for all y, ~x, w ∈ N,

f(y, ~x) = w ⇐⇒ (∃w0, . . . , wy ∈ N)(34)
(
w0 = g(~x)

& (∀i, 0 < i ≤ y)[wi = h(wi−· 1, i−· 1, ~x)]

& wy = w
)
.

It follows from this definition that

g(~x) ↑ =⇒ (∀y)[f(y, ~x) ↑],

because, for each y, the computation of the value f(y, ~x) ultimately depends
on the computation of f(0, ~x) = g(~x).

Equivalence (34) gives an explicit definition for the partial function f(y, ~x)
and is known as Dedekind’s analysis of recursion. Note that it uses the
quantifier (∃w0, . . . , wy ∈ N) on finite sequences of natural numbers.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 24

1C. µ-recursive partial functions 25

With these notions, we can extend the definition of the set Rp(Ψ) of Ψ-
primitive recursive functions to the case where Ψ contains partial functions.
We use this in 1C.4 below.

1C.3. Definition. The minimalization of the partial function g(i, ~x)
is the partial function

(35) f(y, ~x) = (µi ≥ y)[g(i, ~x) = 0]

= the least i ≥ y, such that

g(i, ~x) = 0 & (∀j ≥ y)[j < i=⇒ g(j, ~x)↓ & g(j, ~x 6= 0].

Equivalently:

(µi ≥ y)[g(i, ~x) = 0] = w

⇐⇒ g(w, ~x) = 0 & (∀j ≥ y)[j < w =⇒ g(j, ~x)↓ & g(j, ~x) 6= 0].

For example,

g(1) ↑ =⇒ (µi ≥ 1)[g(i) = 0] ↑,

even if g(2) = 0. We also observe that if g(i, ~x) is a total function and we
set

R(i, ~x) ⇐⇒ g(i, ~x) = 0,

then (µi ≥ y)[g(i, ~x) = 0] = (µi ≥ y)R(i, ~x) according to definition (31).

1C.4. Definition. A partial function f : Nn ⇀ N is µ-recursive in the
set of partial functions Ψ if f belongs to every set of partial functions which
contains Ψ and is primitively closed and closed under minimalization. In
symbols:

Rµ(Ψ) = {f | f is µ-recursive in Ψ}, Rµ = Rµ(∅).
A relation R(~x) or set A ⊆ N is µ-recursive if its characteristic function is
µ-recursive.

The set Rµ(Ψ) of partial functions which are µ-recursive in Ψ is closed
under primitive recursion by its definition, i.e.,

Rp(Ψ) ⊆ Rµ(Ψ).

We will show later that the converse inclusion does not hold, but this is not
obvious now. We can prove immediately, however, the closure of Rµ(Ψ)
under the branching operator, which is especially useful when we apply it
to partial functions:

1C.5. Definition. The branching of three, given partial functions c(~x),
g(~x), h(~x), is the partial function

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 25

26 1. Primitive and µ-recursion

(36) f(~x) = if (c(~x) = 0) then g(~x) else h(~x)

=

g(~x), if c(~x) = 0,

h(~x), if c(~x)↓ & c(~x) 6= 0,

↑, if c(~x) ↑,

with the convergence condition

f(~x)↓ ⇐⇒ [c(~x) = 0 & g(~x)↓] ∨ [c(~x)↓ & c(~x) > 0 & h(~x)↓].

Note that the convergence of branching requires the convergence of the test

c(~x) but does not require the convergence of both values g(~x) and h(~x): for
example, whether g(x)↓ or g(x) ↑,

if (0 = 0) then x else g(x) = x.

1C.6. Proposition. For every set of partial functions Ψ, the sets Rp(Ψ)
and Rµ(Ψ) are closed under branching.

Proof. For the given definition

f(~x) = if (c(~x) = 0) then g(~x) else h(~x),

the first temptation is to set, by primitive recursion,

f1(0, ~x) = g(~x),

f1(i + 1, ~x) = h(~x),

and try to show

f(~x) = f1(c(~x), ~x),(37)

so that if c, g, h ∈ Rp(Ψ), then f ∈ Rp(Ψ) ⊆ Rµ(Ψ). This does not work,
Problem x1C.5, and we set instead, successively,

ϕ0(0, ~x) = 0,
ϕ0(i + 1, ~x) = g(~x),

ϕ1(0, ~x) = 0,

ϕ1(i + 1, ~x) = h(~x),

f1(~x) = ϕ0(1−· c(~x), ~x) + ϕ1(c(~x), ~x))

and now the equation (37) follows easily, Problem x1C.5. a
1C.7. Recursive equations. The Ackermann function (1A.6) is not

primitive recursive, and it is not obvious (yet) whether it is µ-recursive.
Problem x1B.19∗ gives another interesting example of a function for which
it is not easy to show that it is primitive recursive, or µ-recursive for that
matter. These functions, however, are computable, because the recursive
equations which determine them yield algorithms for the computation of
their values, e.g., in Problems x1A.6 and x1A.8. The next Proposition gives
one more (somewhat peculiar) example of this kind.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 26

1C. µ-recursive partial functions 27

1C.8. Proposition. The minimalization

f(y, ~x) = (µi ≥ y)[g(i, ~x) = 0]

of a partial function g is the v-least solution of the recursive equation

p(y, ~x) = if (g(y, ~x) = 0) then y else p(y + 1, ~x),(38)

that is:

(1) The recursive equation (38) holds for all y, ~x if we set p := f .

(2) If some partial function p satisfies (38) for all y, ~x, then f v p.

Proof. (1) We have to show that for all y, ~x,

f(y, ~x) = if (g(y, ~x) = 0) then y else f(y + 1, ~x),(39)

and we consider the three cases,

g(y, ~x) ↑, g(y, ~x) = 0, g(y, ~x) > 0.

The truth of (39) is obvious in the first two of them. In the third case, if

(∀i ≥ y)[g(i, ~x) ↑ ∨g(i, ~x) > 0],

then, obviously,

f(y, ~x) ↑ and f(y + 1, ~x) ↑
so that we have equality again. Finally, if, for some w > y,

g(w, ~x) = 0 & (∀i ≥ y)[i < w =⇒ g(i, ~x) > 0],

then f(y, ~x) = f(y + 1, ~x) = w, and we have again equality.

(2) We need to show that if for all ~x, y,

p(y, ~x) = if (g(y, ~x) = 0) then y else p(y + 1, ~x),(40)

then, for every ~x and all y and w ≥ y,

f(y, ~x) = w =⇒ p(y, ~x) = w.

We use induction on the difference w − y.

At the Basis, w = y, and immediately, by the definition of f and (40),

f(y, ~x) = y = p(y, ~x).

At the Induction Step, w > y and g(y, ~x) > 0, so that

w = f(y, ~x) = f(y + 1, ~x) (by (39))

= p(y + 1, ~x) (ind. hyp.,

since w − (y + 1) = (w − y) − 1),

= p(y, ~x) (by (40)). a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 27

28 1. Primitive and µ-recursion

This example is especially important because it shows that the equa-
tion (38) which seems to define the value p(y, ~x) from the next p(y + 1, ~x)
(!) in fact expresses the basic dumb search procedure. For example, to
compute the value p(2, ~x) by this equation, we apply it repeatedly,

p(2, ~x) = p(3, ~x) = · · ·
until (perhaps) we find some m such that g(m,~x) = 0, in which case we
know that p(2, ~x) = m. The example shows that the relation between
recursion and computation which we pointed out in (II) of 1A.3 applies
much more widely than the classical case of primitive recursion. It is the
key idea for defining the fundamental class of (general) recursive partial

functions which we will take up in the next Chapter.

Problems for Section 1C

x1C.1. Prove that for all partial functions f, g : A ⇀ B,

f = g =⇒ (∀x ∈ A)[f(x)↓ ⇐⇒ g(x)↓](1)

and

f = g ⇐⇒ (∀x ∈ A, w ∈ B)[f(x) = w ⇐⇒ g(x) = w].(2)

x1C.2. Prove that for all partial functions f, g, h : A ⇀ B,

f v f, [f v g & g v h] =⇒ f v h, [f v g & g v f] =⇒ f = g.

x1C.3. Consider the definitions

g(x, y, z) = if (x = 0) then y else z,

f1(t) = g(t, h(t), t),

f2(t) = if (t = 0) then h(t) else t

where h(t) is some partial function. Is the equation

f1(t) = f2(t)

true for every t? (Give a proof or a counterexample.)

x1C.4. Prove that if the relation R(i, ~x) is µ-recursive, then the partial
function

f(y, ~x) = (µi ≥ y)R(i, ~x)

is also µ-recursive.

x1C.5. Explain why the first idea for the proof of 1C.6 does not work,
and give the details of the correct proof.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 28

1C. µ-recursive partial functions 29

x1C.6. (1) Prove that the partial function εn : Nn ⇀ N of n variables
with Domain(εn) = ∅ is µ-recursive.

(2) Suppose g(~x), h(~x) are µ-recursive partial functions and let

f(~x) =

{
g(~x) if h(~x)↓ ,

↑ otherwise.

This means that

Domain(f) = Domain(g) ∩ Domain(h),

and for x ∈ Domain(f), f(x) = g(x). Prove that f is also µ-recursive.

x1C.7. Prove that the classes Rp(Ψ) and Rµ(Ψ) are closed under defi-
nitions with k + 1 cases, of the form

f(~x =

g1(~x), if c1(~x) = 0,

g2(~x), if c1(~x) > 0 & c2(~x) = 0,

· · ·
gk(~x), if c1(~x) > 0, . . . , ck−1(~x) > 0, ck(~x) = 0,

gk+1(~x) if c1(~x) > 0, . . . , ck−1(~x) > 0, ck(~x) > 0.

x1C.8∗. (1) Prove that there exists exactly one partial function p(x, y)
which satisfies the equations

p(0, y) = y,

p(x + 1, 0) = 2x + 1,

p(x + 1, y + 1) = 3p(x, y) + p(y, x) + 2,

and compute the value p(3, 2) for this p.

(2) Prove that the unique solution of this system is primitive recursive
(or µ-recursive, if this is easier).

x1C.9. For partial functions g(~x), h(w, y, ~x), prove that the recursive
equation

p(y, ~x) = if (y = 0) then g(~x) else h(p(y−· 1, ~x), y−· 1, ~x)(41)

has exactly one solution, namely the partial function f which is defined by
the primitive recursion

f(0, ~x) = g(~x),

f(y + 1, ~x) = h(f(y, ~x), y, ~x)).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 29

30 1. Primitive and µ-recursion

x1C.10 (The Euclidean algorithm). Prove that the following recursive
equation has a unique solution, the function p(x, y) = gcd(x, y):

p(x, y) =

0, if x = 0 or y = 0,

p(y, x), otherwise, if x < y,

y, otherwise, if y | x,

p(y, rem(x, y)), otherwise.

(42)

x1C.11. Give examples of partial functions g(y, ~x) such that equation (38)
admits:

(1) The empty partial function ε as the only solution.
(2) Only one solution, which is a total function.
(3) Infinitely many solutions.

x1C.12∗. Prove that there is no partial function g(y, ~x) such that equa-
tion (38) has exactly two solutions.

x1C.13∗. (1) Prove that the recursive equation

p(x, y) = if (x = 0) then 1 else p(x−· 1, p(x, y))(∗)
has a least solution p, and give a formula for this solution.

(2) Prove that there exists only one total function f which satisfies the
recursive equation (∗), and this function is not the least solution.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 30

CHAPTER 2

GENERAL RECURSION

The first rigorous definition of (general) recursive partial functions on
the natural numbers was given by Gödel in 1934, following a suggestion of
Herbrand, and the basic results about recursive functions were proved by
Kleene in the 1930’s. We will develop a generalization to partial algebras

of a very simple and elegant version of the Gödel-Herbrand-Kleene defin-
ition. It is due to John McCarthy (1963) and it reveals more clearly the
relationship between recursion and computation.

This approach to recursion theory is based on ideas from logic and pro-
gramming, and in the first section of the chapter we will prepare the ground
by presenting (briefly) the required preliminaries.

2A. Partial algebras

Characteristic—and for us the main—example of a partial algebra is the
basic structure of arithmetic

N0 = (N, 0, 1, S,Pd),(43)

where S and Pd are the successor and the predecessor functions on the
natural numbers. In general:

2A.1. Definition. A (partial) algebra is a tuple

M = (M, 0, 1, f1, . . . , fK),

where M is a set, the universe of M; 0, 1 ∈ M and 0 6= 1; and for each
i = 1, . . . , K,

fi : Mni ⇀ M

is a partial function of arity ni. Here we allow ni = 0, in which case fi is a
0-place partial function on M , i.e., a constant (some member of M) or the
totally undefined partial function of 0 arguments.

An algebra is total if every fi is a total function.

31

32 2. General recursion

Expansions. In almost everything we do, we will only need algebras on
the natural numbers, including expansions of N0 of the form

(N0, f1, . . . , fm) = (N, 0, 1, S,Pd, f1, . . . , fm)

and the standard first order structure on N

N = (N, 0, 1, +, ·).(44)

Other basic examples of partial algebras are the structures

(Z, 0, 1, +,−, ·), (F, 0, 1, +,−, ·,÷),

where Z = {0, 1,−1, 2,−2, . . . } is the set of (positive and negative) integers,
and F is a field, e.g.,

F = Q = the set of rational numbers =
{x

y
| x, y ∈ Z, y 6= 0

}

or F = R = the set of real numbers.

Division r ÷ s is a partial function on a field (since it does not converge
when s = 0), and so fields are not total algebras.3

2A.2. The term language T(M): syntax. With every partial algebra
M we associate the formal language T = T(M) of terms, whose alphabet
comprises the following symbols:

• the individual variables: v0, v1, . . . ,

• the individual constants (members of M): x (x ∈ M)

• the function constants : f1, . . . , fK (arity(fi) = ni)

• the symbols for branching : if then else

• the punctuation symbols : , ()

• and the symbol for equality: =

From these symbols we single out the vocabulary of M

v = (f1, . . . , fK) (arity(fi) = ni)(45)

3In logic we study structures

M = (M, c1, . . . , cN , R1, . . . , RL, f1, . . . , fK),

where the primitives are distinguished elements of M , relations, and (total) functions on

M . The partial algebras that we are using here are seemingly more special, as we do not
allow distinguished elements or relations; but we can represent members of M by 0-place
functions and n-ary relations by their characteristic functions. So partial algebras are
in fact more general than the structures of first order logic, as we allow partial (not
necessarily total) functions f1, . . . , fK . Those who know logic should also notice that in
the definition of terms below, we allow branching.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 32

2A. Partial algebras 33

which provides notation for the “given” (primitive) partial functions of M,
while the remaining symbols are common to all partial algebras on M . The
vocabulary of N0 is the pair (S, Pd).

Words from a set Σ are finite sequences of elements (or symbols) of Σ,
for example the words

v17 (of length 1) 0=(0v3f2 Pd01x1x3if =else

from the alphabet of T. As in these examples, we will write words by simply
arranging the symbols in a row, without commas. The concatenation of
two words is denoted (literally) by the concatenation of their symbols, so
that for the two words we gave as examples, their concatenation is the word

0=(0v3f2Pd01x1x3if =else

We use the symbol ‘≡’ to denote the relation of word equality, so that

f2=(0f1 ≡ f2=(0f1 but f2=(0f2 6≡ f2=(1f2

The obvious reason for using “≡” for word equality is that ‘=’ is a symbol
(of the alphabet of T), so its use for the equality between words would
cause confusion.

We often use Greek letters to name symbols and words,

α ≡ α0α1 · · ·αm

The empty word is denoted by ‘Λ’, so that for every word α,

Λα ≡ αΛ ≡ α

The “syntactically correct” expressions of T—those which mean some-
thing—are separated into terms and equations. We define first the terms,
following the same idea that we used to define primitive recursive functions.

2A.3. Definition (Terms and subterms). A set T of words from the
alphabet of T(M) is closed under term formation if it satisfies the
following conditions:

(T1) T contains every x ∈ M , including 0 and 1.
(T2) T contains every individual variable vi.
(T3) If the words A1, . . . ,Ani

are in T , then the word

fi(A1, . . . , Ani
)

is also in T .
(T4) If the words A1, A2, A3 are in T , then the word

(if (A1 = 0) then A2 else A3)

is also in T .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 33

34 2. General recursion

A word E is a term if it belongs to every set T which is closed under
term formation, and we let

terms = terms(M) = the set of all terms of T(M).

A word A is a subterm of a term E if it is a term and a part of E, i.e.,

E ≡ σA τ

for suitable (possibly empty) words σ, τ . In particular, every term E is a
subterm of itself.

Notice that the empty word Λ is not a term: because the set T of all
non-empty words is (trivially) closed under term formation.

The definition of terms is often expressed informally by the “equivalence”

A :≡ x | vi | fi(A1, . . . , Ani
) | (if (A1 = 0) then A2 else A3)(46)

which we read as follows:

A word A is a term if it is a member of M , or an individual variable,
or of the form fi(A1, . . . , Ani

) where A1, . . . , Ani
are terms, or

of the form (if (A1 = 0) then A2 else A3) where A1, A2, A3 are
terms—and only if A satisfies one of these conditions.

2A.4. Pure and closed terms. A term A is closed if no individual
variable occurs in A, and pure if the only individual constants which (pos-
sibly) occur in A are 0 and 1. Examples in T(N0):

S(0) : closed, pure, S(13) : closed, not pure,

Pd(v1) : pure, not closed,

(if (v1 = 0) then 3 else 1) : neither closed nor pure

The recursive definition of terms justifies inductive proofs of properties
of them:

2A.5. Lemma (Induction on terms). Let Σ be a set of words in the al-

phabet of T(M) such that

A1, . . . , Ani
∈ Σ =⇒ fi(A1, . . . , Ani

) ∈ Σ,

A, B, C ∈ Σ =⇒ (if (A = 0) then B else C) ∈ Σ.

(1) If Σ contains all the individual constants and variables, then Σ con-

tains all the terms.

(2) If Σ contains all the individual constants, then Σ contains all the

closed terms.

(3) If Σ contains 0, 1 and all the individual variables, then Σ contains

all the pure terms.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 34

2A. Partial algebras 35

Proof. (1) is immediate: because the hypothesis says that Σ is closed
under term formation, and so it includes every term, by the definition.

We leave (2) and (3) for Problem x2A.2. a
How can we show that the word (S(1) is not a term? The rigorous proof

is based on part (1) of the next technical but important Lemma, where the
word α is a proper initial segment of the word β if

β ≡ αγ with β 6≡ Λ, γ 6≡ Λ

2A.6. Lemma (Unique readability of terms). (1) For every term A, the

number of occurrences of the left parenthesis ‘ (’ in A is equal to the number

of occurrences of the right parenthesis ‘)’ in A.

(2) No proper initial segment of a term is a term.

(3) The set of terms is closed under term formation, and if A ≡ α1 · · ·αm

is a term, then exactly one of the cases (T1) – (T4) applies with T the set

of terms.

Proof in Problem x2A.3. a
The word (S(1) is obviously not a term, since it has more left parentheses

than right ones.

Lemma 2A.6 also justifies recursive definitions of functions on the terms.

2A.7. Lemma (Recursion on terms). For each set W and given func-

tions Φ1, Φ
i
2 (i = 1, . . . , K), Φ3, there exists a unique function

Φ : terms → W

such that

for x ∈ M, Φ(x) = Φ1(x), Φ(vi) = Φ1(vi),

Φ(fi(A1, . . . , Ani
)) = Φi

2(Φ(A1), . . . , Φ(Ani
)),

Φ(if (A = 0) then B else C) = Φ3(Φ(A), Φ(B), Φ(C)).

Proof in Problem x2A.5. a
Similar results hold for the sets of closed and of pure terms, justifying
recursive definitions on them, Problem x2A.6.

2A.8. Definition (Equations). An equation of M is a word of the form

A = B

where A and B are terms of M.

Notice that the syntax of T(M) is completely determined by the set M
and the vocabulary v = (f1, . . . , fK) of M, that is, it does not depend on
the interpretations f1, . . . , fK of the function symbols in M. These are
used to define the semantics of T(M), as follows.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 35

36 2. General recursion

2A.9. The term language T(M): semantics. The value valM(A)
of a closed term A in the partial algebra M is defined recursively by
the following conditions by appealing to Lemma 2A.7 for closed terms,
cf. Problem x2A.6:

(DT1) valM(x) = x, for x ∈ M .
(DT2) If valM(Aj) = wj for j = 1, . . . , ni, then

valM(fi(A1, . . . , Ani
)) = fi(w1, . . . , wni

).
(DT3) If E ≡ (if (A = 0) then B else C), then

valM(E) =

{
valM(B) if valM(A) = 0,

valM(C) if valM(A)↓ & valM(A) 6= 0.

Notice that the definition can yield valM(E) ↑, since the primitives of
the algebra M are allowed to be partial functions: for example, if f1(1) ↑,
then valM(f1(1)) = f1(1) ↑.

2A.10. Simplified notation (misspellings). As is usual in logic, we ra-
rely put down “grammatically correct” terms and equations. In practice,
we use the ordinary mathematical symbols instead of their formal coun-
terparts, e.g., x, y, . . . or sometimes x, y, . . . for individual variables instead
of v1, v2, . . . , f, g, +, ·, p, . . . for function constants instead of f1, f2, . . . , etc.
We also omit or introduce more parentheses and “blank spaces” if this
facilitates readability and we use infix notation, writing for example

(x + y) · z instead of · (+(x, y), z)

The “grammatically correct” expression for (38) (with the suitable vocab-
ulary) is

p(v1, v2, . . . , vn+1)

= (if (f1(v1, v2, . . . , vn+1) = 0) then v1 else p(S(v1), v2, . . . , vn+1))

while its simplified rendering in T(N0, g, p) is

p(y, ~x) = if (g(y, ~x) = 0) then y else p(S(y), ~x).(47)

Definitely more readable.

2A.11. Substitution of constants. For each term A, each individual
variable x and each x ∈ M , we set

A{x :≡ x} ≡ the result of replacing x by x in the term A.

More generally, for any distinct individual variables ~x = x1, . . . , xm and any
~x = x1, . . . , xm ∈ M ,

A{~x :≡ ~x} ≡ A{x1 :≡ x1} · · · {xm :≡ xm}.(48)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 36

2A. Partial algebras 37

For example, in T(N0),

S(S(v)){x :≡ 17} ≡ S(S(17)).

2A.12. Term functions (generalized polynomials). If E is a term and
~x ≡ x1, . . . , xn is a list of distinct variables which includes all the variables
in E, we set for any ~x = (x1, . . . , xn) ∈ Mn,

fE(~x) = valM(E{~x :≡ ~x}) (~x ∈ An)

or, with lots of dots rather than vectors,

fE(x1, . . . , xn) = valM(E{x1 :≡ x1, . . . , xn :≡ xn}) (x1, . . . , xn ∈ M).

The partial function fE : Mn ⇀ M is the term function or generalized

polynomial defined in M by E and the list ~x.

For example, in simplified notation on N0,

for the term E ≡ if (x = 0) then SS(x) else Pd(z),

fE(x, y, z) = if (x = 0) then 2 else z −· 1;

and if F is a field and a0, . . . , an ∈ F , then

if E ≡ a0 + a1x + · · · + anxn, then fE(x) = a0 + a1x + · · · + anxn,

which is where the “generalized polynomial” name comes from.

A partial function f : Mn ⇀ M which is definable in this way by a term
E and a sequence of variables ~x is variously called term definable, explicit,
or a generalized polynomial of M.

2A.13. Model theoretic notation. For any two closed terms, we write

(49) M |= A = B ⇐⇒ valM(A) = valM(B)

⇐⇒
(
valM(A) ↑ & valM(B) ↑

)
∨(∃w ∈ M)

(
valM(A) = valM(B) = w

)
.

In particular, if B ≡ w is a constant,

M |= A = w ⇐⇒ valM(A) = w.

This notation (from logic) avoids the use of subscripts and is sometimes
easier to read than the valM() notation, especially in the second case, when
A is a complex term and w ∈ M .

This notation can also be extended to arbitrary terms A, B which need
not be closed: if the list of distinct variables ~x includes all the variables
that occur in A and B, we set

M |= A = B ⇐⇒ (∀~x)[fA(~x) = fB(~x)].(50)

For example,

N0 |= Pd(S(x)) = x

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 37

38 2. General recursion

is a basic identity of N0. (And Problem x2A.7 verifies that the choice of
the particular list ~x is irrelevant in this definition.)

Problems for Section 2A

2A.14. A term derivation in T(M) is any finite sequence

D = (A0, . . . , An)

of words such that for every j ≤ n one of the following is true:

(TD1) Aj is a constant x ∈ M .

(TD2) Aj is an individual variable vi.

(TD3) Aj ≡ fi(E1, . . . , Eni
), where fi is a function symbol with arity ni

and the words E1, . . . , Eni
occur in (A0, . . . , Aj−1), before the j’th place

in D.

(TD4) Aj ≡ (if (E1 = 0) then E2 else E3), where the words E0, E1, E2

occur in (A0, . . . , Aj−1), before the j’th place in D.

x2A.1. Prove that a word E is a term if and only if there is a term
derivation D = (A0, . . . , An) with E ≡ An.

x2A.2. Prove parts (2) and (3) of Lemma 2A.5.

x2A.3. Prove the Lemma of Unique Readability of Terms 2A.6.

x2A.4 (Unique readability for equations). Prove that if A1, B1, A2, B2

are terms of T(M) and

A1 = B1 ≡ A2 = B2

then A1 ≡ A2 and B1 ≡ B2.

x2A.5. Prove Lemma 2A.7.

x2A.6. State and prove Lemmas similar to 2A.7 which justify recursive
definitions on the closed and the pure terms.

x2A.7. Suppose all the individual variables which occur in a term A are
in the list ~x and y is a variable which does not occur in A. Prove that for
all ~x, y ∈ M ,

fA(~x) = fA(~x, y)

x2A.8. Prove that if M is total, then every generalized polynomial of
M is a total function.

x2A.9. Prove that for every generalized polynomial f(x1, . . . , xn) of N0,
there is a number M such that• Correction

1/20/15 f(x1, . . . , xn) ≤ max(x1, . . . , xn) + M (x1, . . . , xn ∈ N).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 38

2B. Recursion and computation 39

Infer that addition x + y is not a generalized polynomial of N0.

(Intentionally left blank so the paging agrees with the printed version.)

2B. Recursion and computation

We extend here the term language T(M) associated with a partial algebra
M so that we can give recursive definitions. Our main aim is to define and to
prove the basic properties of the fundamental class of (general) recursive
partial functions in M.

2B.1. The programming language R(M): syntax. The vocabulary
of R(M) extends that of T(M) by the addition of function or recursive
variables

pn
0 , pn

1 , . . . (n = 0, 1, . . . , arity(pn
i) = n),

infinitely many for every arity n = 0, 1,
From the syntactical point of view, the function variables are treated

exactly like the function constants f1, . . . , fK of T(M): so the terms of
R(M) are defined by the recursion

A :≡ x | vi | fi(A1, . . . , Ani
) | pn

i (A1, . . . , An)

| (if (A1 = 0) then A2 else A3)

and have all the properties that we have proved—unique readability, etc.
They are naturally interpreted in expansions of M: if, for example, all the
function variables in a term E are in the list ~p ≡ p1, . . . , pm, then E can
be evaluated in any expansion (M, p1, . . . , pm) which associates a partial
function pi of the appropriate arity with each function variable pi that
occurs in E.

A term of R(M) is explicit if no function variables occurs in it, i.e., if
it is a term of T(M). And as before, a term is pure if the only individual
constants that (may) occur in it are 0 or 1 and closed if no individual
variables occur in it.

A formal recursive equation is an expression

p(x1, . . . , xn) = A,

in the vocabulary (f1, . . . , fK , pn
0 , pn

1 , . . .) of R(M) where

• p is a recursive variable or arity n, i.e., p ≡ pn
j for some j;

• x1, . . . , xn are distinct individual variables; and

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 39

40 2. General recursion

• A is a pure term of R(M) in which no individual variables other than
x1, . . . , xn occur.

The equation is explicit if A is explicit.

For example,

p(x) = if (x = 0) then 1 else 0

is an explicit equation in every partial algebra;

p(x) = if (x = 0) then 0 else S(p(Pd(x)))

is a recursive (but not explicit) equation of N0; and

p(x) = S(y)

is not a recursive equation, because the variable y occurs on the right-hand
side but not on the left-hand side.

Finally, a recursive program of the partial algebra M is any system of
recursive equations

(e0) p0(~x0) = E0

...
(ek) pk(~xk) = Ek

(E)

where the function variables p0, . . . , pk are distinct and they are the only
function variables which occur in the terms E0, . . . , Ek. The equations of
E are called (recursive) definitions of the function variables p0, . . . , pk.

The basic idea of the semantics of R(M) is that each program E assigns
(and expresses an algorithm that computes) a partial function

pi : Mki ⇀ M (if arity(pi) = ki)

to each recursive variable pi defined by it, so that p0, . . . , pk satisfy E, i.e.,

(M, p0, . . . , pk) |= pi(~xi) = Ei{~xi :≡ ~xi} (i = 0, . . . , k)

for all tuples ~xi from M .
Before defining rigorously the correspondence

E 7→ (p0, . . . , pk)

we consider some examples—using “simplified notation”, i.e., without wor-
rying about using the correct fonts and spelling out all the terms correctly.

The definition

p(x, y) = S(y)(E1)

is by itself a program of N0, which defines (explicitly) the binary function
variable p. The semantics should obviously give

p(x, y) = valN0
(S(y)) = y + 1,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 40

2B. Recursion and computation 41

and this is what they will do.

The equation

p(y, ~x) = if (g(y, ~x) = 0) then y else p(S(y), x)(E2)

is a program of (N0, g) where g : Nn+1 ⇀ N, and there are examples of
functions g for which the equation (E2) can have many solutions, Prob-
lem x1C.11; for each g however, there exists a least solution of (E2) by
Proposition 1C.8, the partial function

p(y, ~x) = (µi ≥ y)[g(i, ~x) = 0],

and this is the solution p that the semantics of R(N0, g) will assign to the
symbol p.

Finally, we consider the following trivial example of a program, with the
single definition

p(x) = p(x).(E3)

Equation (E3) is satisfied by all partial functions; the semantics will yield
the empty partial function

p(x) = ε(x), i.e., for all x, p(x) ↑,

which is, again, the least solution of (E3), as in example (E2).

After these preliminaries, we proceed to the rigorous definition of the
semantics of R(M). The basic idea is to associate with each recursive
program E and each recursive variable pi of E a machine which computes
some partial function pi, and we must first make precise what we mean by
“machine”. We give the definition in two stages.

2B.2. Definition. A transition system is any triple

T = (S,→, T),

where:

(1) S is a non-empty set, the set of states of T .
(2) → is a binary relation, the transition relation on S.
(3) T ⊆ S is the set of terminal states of T , and they do not trigger any

transitions,

s ∈ T =⇒ (∀s′)[s 6→ s′].(51)

A state s which satisfies the right-hand side of (51) but is not terminal
is stuck (or inactive). So the states are classified into three categories,
terminal, stuck and active, that is those that have at least one “next”
state. The system T is deterministic, if every state s has at most one
successor state, that is

[s → s′ & s → s′′] =⇒ s′ = s′′.(52)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 41

42 2. General recursion

For an example, set

m →1 n ⇐⇒ m > n, m →2 n ⇐⇒ m = n + 1.(53)

The system (N,→1, {0}) is non-deterministic, while the system (N,→2, {0})
is deterministic.

2B.3. Computations. A partial computation of a transition system T
is any finite path (sequence)

Y = (s0 → s1 → · · · → sn)(54)

in the graph (S,→). A partial computation Y is terminal or convergent if
the last state sn is terminal and stuck or stalled if sn is stuck. An infinite

(divergent) computation is any infinite path

Y = (s0 → s1 → · · ·).

The length of a finite, partial computation as in (54) is n + 1.

The transition system T computes the partial function π : S ⇀ T on the
set of states if, for all s ∈ S and t ∈ T ,

π(s) = t ⇐⇒ (∃(s0, . . . , sn) ∈ C(T))[s0 = s & sn = t],(55)

where

C(T) = the set of all terminal computations of T .(56)

It follows that

π(s)↓ ⇐⇒ (∃(s0, . . . , sn) ∈ C(T))[s0 = s].

Non-deterministic transition systems need not compute any partial func-
tion on S, but every deterministic system computes exactly one π : S ⇀ T
which is defined by (55). More than that: if T is deterministic, then for
each state s there exists exactly one terminal, stuck or infinite complete

computation

comp(s) = compT (s) = (s → s1 → s2 → · · ·)(57)

which cannot be extended. It is defined by the recursion

s0 = s,

sn+1 =

{
the unique s′ such that sn → s′, if there is one such s′,

↑, otherwise.

In order to compute a partial function f : A ⇀ B with a transition
system T , we have to enrich T with some means of “inputting” elements
from A and “extracting values” in B.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 42

2B. Recursion and computation 43

A

S

T
B- -

*

q

input
s

output

s′′

s′

Figure 2. Abstract machine.

2B.4. Definition. An abstract or sequential machine with input

set A and output set (or range) B is any quintuple

M = T (input, output) = (S,→, T, input, output),

where T = (S,→, T) is a transition system and the following additional
conditions hold:

(4) input : A → S is the input function of M.
(5) output : T → B is the output function of M.

The machine T (input, output) computes the partial function f : A ⇀ B if
for all x ∈ A, w ∈ B,

(58) f(x) = w

⇐⇒ (∃(s0, . . . , sn) ∈ C(S,→, T))[s0 = input(x) & output(sn) = w].

A machine is deterministic if T is deterministic, and in this case it com-
putes the partial function f : A ⇀ B which is defined by (58). A non-
deterministic machine need not compute a partial function.

2B.5. Recursive machines. For each program E of a partial algebra
M we define a transition system T (E) = T (E,M) as follows:

(1) The states of T (E) are all words s of the form

α0 . . . αm−1 : β0 . . . βn−1

where the elements α0, . . . , αm1
, β0, . . . , βn−1 of s satisfy the following con-

ditions:

• each αi is a function symbol (constant or variable), or a closed term,
or the special symbol ?, and

• each βj is an individual constant, that is βj ∈ M .

Recall that a term A is closed if it does not contain individual variables, and
notice that in each state the special symbol ‘:’ has exactly one occurrence.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 43

44 2. General recursion

The states of T (E,M) are the same for all programs of the partial algebra
M and so we also call them states of M. For example, the word

p2
1 3 S(3) 1 if ? : 3 0 1

is a state of N0, as are the words

Pd 1 3 p2
1(S(2)) : : 0 23

or even

:

This is the simplest state of the recursive machine.

(2) The terminal states of T (E) are the words of the form

: w

that is those with no symbols on the left of ‘:’ and only one constant on
the right. All the machines based on T (E) will have a common output
function, the function which simply reads this constant,

output(: w) = w.

(3) The transition relation of T (E) is defined by the seven cases in the
Transition Table 1. This means s → s′ holds if it is a special case of some
line of the Table. Notice that the transitions (e-call) are the only ones which
“call” the primitives of M and so they depend on M, while the transitions
(i-call) are the only ones which depend on the specific program E.

The system T (E) is obviously deterministic.

For each n-place recursive variable p of E, the recursive machine
T (E, p) is derived from the transition system T (E) by the addition of
the input function

input(~x) ≡ p : ~x

and computes the partial function p = pE : Mn ⇀ M , where

pE(~x) = w ⇐⇒ p : ~x → s1 → · · · → : w.(59)

We also use the notation

M, E ` p(~x) = w ⇐⇒ pE(~x) = w(60)

which makes apparent the dependence of p on the partial algebra M. In
practice, when the specific program E and the partial algebra M are obvious
from the context, we will simply refer to the partial function p.

The main symbol of a program E is the function variable p0 defined
by the first equation of E, and E computes the partial function p0 in M.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 44

2B. Recursion and computation 45

(pass) α x : β → α : x β (x ∈ M)

(e-call), in general α fi : ~x β → α : fi(~x) β

(e-call), for N0 α S : x β → α : x + 1 β

α Pd : x β → α : x−· 1 β

(i-call) α pi : ~x β → α Ei{~xi :≡ ~x} : β

(comp) α h(A1, . . . , An) : β → α h A1 · · · An : β

(br) α (if (A = 0) then B else C) : β → α B C ? A : β

(br0) α B C ? : 0 β → α B : β

(br1) α B C ? : y β → α C : β (y 6= 0)

• The underlined words are those which change in the transition.
• ~x = x1, . . . , xn is an n-tuple of individual constants.
• In the external call (e-call), f = fi is a primitive partial function of M with

arity(fi) = ni = n.
• In the internal call (i-call), pi is an n-place recursive variable of the program

E which is defined by the equation pi(~x) = Ei.
• In the composition transition (comp) h is a function symbol (constant or

variable) with arity(h) = n.

Table 1. Transitions of the system T (E,M).

For example, if one of the equations of E in N0 is the explicit equation

p(x) = S(S(x)),

then, for every x, p(x) = x + 2 by the following computation:

p : x → S(S(x)) : → S S(x) : → S S x :

→ S S : x → S : x + 1 → : x + 2

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 45

46 2. General recursion

p : 2 3 (i-call)

if (2 = 0) then 3 else S(p(Pd(2), 3)) : (br)

3 S(p(Pd(2), 3)) ? 2 : (pass)

3 S(p(Pd(2), 3)) ? : 2 (br1)

S(p(Pd(2), 3)) : (comp)

S p(Pd(2), 3) : (comp)

S p Pd(2) 3 : (pass)

S p Pd(2) : 3 (comp)

S p Pd 2 : 3 (pass)

S p Pd : 2 3 (Pd1)

S p : 1 3 (i-call)

S if (1 = 0) then 3 else S(p(Pd(1), 3)) : (br)

S 3 S(p(Pd(1), 3)) ? 1 : (pass)

S 3 S(p(Pd(1), 3)) ? : 1 (br1)

S S(p(Pd(1), 3)) : (comp)

S S p(Pd(1), 3) : (comp)

S S p Pd(1) 3 : (pass)

S S p Pd(1) : 3 (comp)

S S p Pd 1 : 3 (pass)

S S p Pd : 1 3 (Pd1)

S S p : 0 3 (i-call)

S S if (0 = 0) then 3 else S(p(Pd(0), 3)) : (br)

S S 3 S(p(Pd(0), 3)) ? 0 : (pass)

S S 3 S(p(Pd(0), 3)) ? : 0 (br0)

S S 3 : (pass)

S S : 3 (S)

S : 4 (S)

: 5

Figure 3. The computation of 2 + 3 by the program
p(i, x) = if (i = 0) then x else S(p(Pd(i), x)).

For a more interesting example, we observe that addition is defined re-
cursively in N0 by the program with the single equation

p(i, x) = if (i = 0) then x else S(p(Pd(i), x)).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 46

2B. Recursion and computation 47

Figure 3 shows the computation of the value p(2, 3) = 5.

2B.6. M-recursive partial functions, relations and sets. An n-
place partial function f : Mn ⇀ M is recursive in the partial algebra M

(or M-recursive) if f = p for some program E of M and some recursive
variable p of E, i.e., if

f(~x) = w ⇐⇒ M, E ` p(~x) = w

with the notation of (60). Since the order in which we enumerate the equa-
tions of a program does not change the definition of the partial functions p,
a partial function f : Mn ⇀ M is M-recursive if and only if it is computed

by some program of M, i.e., f(~x) = p0(~x) where p0 is the main symbol of
E, Problem x2B.2. We set

R(M) = {f : Mn ⇀ M | f is M-recursive}.
A relation P (~x) on M is M-recursive if its characteristic function (19)

is M-recursive, and a set A ⊆ M is M-recursive if its characteristic func-
tion (20) is M-recursive.

For the algebra N0 and its expansions in which we are especially inter-
ested, we will write

R = R(N, 0, 1, S,Pd) = {f : Nn ⇀ N | f is N0-recursive},
and for every set Ψ of partial functions of several variables on N,

(61) R(Ψ) = {f : Nn ⇀ N | f is (N0, f1, . . . , fK)-recursive

for some f1, . . . , fK ∈ Ψ},
so that R = R(∅). A partial function on N is recursive if it is N0-recursive
and recursive in Ψ if it is (N0, Ψ)-recursive, and similarly for relations on
N and subsets of N.

Problems for Section 2B

x2B.1. Describe the partial computations of the transition systems (53)
and determine the partial functions that they compute.

x2B.2. Prove that a partial function f(~x) is M-recursive if and only if
it is computed by some recursive program of M.

x2B.3. For the following three recursive programs in N0,

p(x) = S(p(x)),(E1)

p(x) = p(q(x)), q(x) = x,(E2)

p(x, y) = p1(p(x, y), y), p1(x, y) = x.(E3)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 47

48 2. General recursion

(1) Which partial functions satisfy them, as systems of equations?

(2) Which partial functions do they compute, and how do their compu-
tations differ?

x2B.4∗. Prove that there exists a unary recursive relation R(x) which
is not primitive recursive.

x2B.5. Construct a recursive program of N0 which computes the Ack-
ermann function, 1A.6.

x2B.6. Construct a recursive program which computes the function
p(x, y) in Problem x1C.8∗.

x2B.7. Construct a recursive program E in the expansion (N0, g, h, τ)
of N0 which computes the partial function f defined from the functions
g, h, τ by nested recursion, Problem x1B.19∗.

x2B.8∗. Prove that the “equation”

f(x) =

{
0, if g(x) ↑,

g(x) + 1, otherwise.

“cannot be formalized in R”, but first explain what needs to be proved.

x2B.9. Prove or give a counterexample for each of the following two
propositions:

(1) For every partial algebra M and every x0 ∈ M , the constant, one-
place function f(x) = x0 is M-recursive.

(2) For every number x0 ∈ N, the constant, one-place function f(x) = x0

on the natural numbers is recursive.

2B.7. Definition. (1) A set X ⊆ M is closed under the primitives of a
partial algebra M or M-closed if 0, 1 ∈ X, and
(
x1, . . . , xni

∈ X and fi(x1, . . . , xni
) = w

)
=⇒w ∈ X, (i = 1, . . . , K).

(2) For each set A ⊆ M , set recursively

A
(0)

= A ∪ {0, 1},

A
(k+1)

= A
(k)∪{fi(~x) | fi(~x)↓ & ~x = x1, . . . , xni

∈ A
(k)

, i = 1, . . . , K}.

The union A =
⋃∞

k=0A
(k)

is the set generated by A in M.

x2B.10. Prove that for every partial algebra M and A ⊆ M , the set A
is the smallest M-closed subset of M which contains A, that is: A ⊆ A,
A is M-closed, and for every X ⊆ M , if A ⊆ X and X is M-closed, then
A ⊆ X.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 48

2C. Soundness and least solutions 49

x2B.11∗. Prove that if f : Mn ⇀ M is M-recursive, then

f(x1, . . . , xn)↓ =⇒ f(x1, . . . , xn) ∈ {x1, . . . , xn}.
Hint: Prove the stronger proposition, that if A ⊆ M and the partial
function f : Mn ⇀ M is M-recursive, then the set A generated by A is
closed under f , that is

(
x1, . . . , xn ∈ A & f(x1, . . . , xn) = w

)
=⇒w ∈ A.

2C. Soundness and least solutions

In the two, fundamental theorems of this section we give a structural
characterization of the partial functions computed by the transition systems
T (E,M) which imply the basic properties of the class of M-recursive partial
functions.

Key to the proofs is the following, simple

2C.1. Lemma. For every partial computation

α0 : β0 → α1 : β1 → · · · → αm : βm

in the system T (E,M) and any words α∗, β∗ such that

α∗ α0 : β0 β∗

is a state, the sequence

α∗ α0 : β0 β∗ → α∗ α1 : β1 β∗,→ · · · → α∗ αm : βm β∗

is also a partial computation of T (E,M).

It follows that if

α0 : β0 → α1 : β1 → · · ·
is a divergent computation and α∗ α0 : β0 β∗ is a state, then the sequence

α∗ α0 : β0 β∗ → α∗ α1 : β1 β∗ → · · ·
is also a divergent computation.

Proof is by induction on m ≥ 0, and it is trivial at the basis m = 0, by
the hypothesis. At the induction step, we assume that the sequence

α∗ α0 : β0 β∗ → α∗ α1 : β1 β∗ → · · · → α∗ αm : βm β∗

is a partial computation, we examine separately the seven cases which
justify the transition

αm : βm → αm+1 : βm+1

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 49

50 2. General recursion

in the given computation, and it is obvious that in each of these cases, the
same line from Table 1 also justifies the transition

α∗ αm : βm β∗ → α∗ αm+1 : βm+1 β∗

The second conclusion is obtained by applying the first to all the partial
computations

α0 : β0 → α1 : β1 → · · · → αm : βm (m ∈ N) a

2C.2. Theorem (Soundness of R(M)). For any recursive program E
of M = (M, 0, 1, f1, . . . , fK) with recursive variables p0, . . . , pk, let

M = (M, p0, . . . , pk) = (M, 0, 1, f1, . . . , fK , p0, . . . , pk).

It follows that for every closed term A in the vocabulary (f1, . . . , fK , p0, . . . , pk):

(1) If val
M

(A) ↑, then the computation compT (A :) of T (E,M) with

initial state A : is infinite or gets stuck.

(2) If val
M

(A) = w, then the computation compT (A :) of T (E,M) with

initial state A : converges with terminal state : w.

(3) The partial functions p0, . . . , pk satisfy the system E in the partial

algebra M.

In particular, every recursive program of M has solutions.

Proof. For (1) and (2) we use induction on the given, closed term A.
We consider cases:

(T1) If A ≡ x ∈ M , then valM(A) = x, and the computation

x : (pass)

: x

yields the correct value.

(T2) If A ≡ fi(A1, . . . , Ani
) for a primitive fi of M, then the computation

comp(A :) starts with the transition

fi(A1, . . . , Ani
) : (comp)

fi A1 . . . Ani
:

We consider three subcases for what happens after this:

(T2a) For some j, val
M

(Aj) ↑, and so val
M

(A) ↑. If j is the largest

number ≤ ni with this property, then by the choice of j and the induction
hypothesis, the computation comp(A :) starts with the steps

fi(A1, . . . , Ani
) : (comp)

fi A1 . . . Ani
: (ind. hyp.)

...

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 50

2C. Soundness and least solutions 51

fi A1 . . . Ani−1 : wni
(ind. hyp.)

...

fi A1 . . . Aj : wj+1 · · · wni

By the induction hypothesis again, the computation

comp(Aj :) = Aj : → α1 : β1 → · · ·
is infinite or gets stuck, since val

M
(Aj) ↑, and by Lemma 2C.1, the com-

putation

fi A1 . . . Aj−1 Aj : wj+1 · · · wni

→ fi A1 . . . Aj−1 α1 : β1 wj+1 · · · wni
→ · · ·

is also infinite or gets stuck, which implies that comp(A :) has the same
property.

(T2b) There are elements w1, . . . , wni
in M such that val

M
(Aj) = wj for

j = 1, . . . , ni, but fi(w1, . . . , wni
) ↑. In this case, by the induction hypoth-

esis and by appealing again to Lemma 2C.1, the computation comp(A :)
starts with the steps

fi(A1, . . . , Ani
) : (comp)

fi A1 . . . Ani
: (ind. hyp.)

...

fi A1 . . . Ani−1 : wni
(ind. hyp.)

...

fi : w1 w2 · · · wni

and here the computation stops (gets stuck) because fi(w1, . . . , wni
) ↑.

(T2c) val
M

(fi(A1, . . . , Ani
)) = w, so that there are elements w1, . . . , wni

in M with val
M

(Aj) = wj for j = 1, . . . , ni and fi(w1, . . . , wni
) = w. From

the induction hypothesis and by Lemma 2C.1 once more, the computation
comp(A :) is now as follows:

fi(A1, . . . , Ani
) : (comp)

fi A1 . . . Ani
: (ind. hyp.)

...

fi A1 . . . Ani−1 : wni
(ind. hyp.)

...

fi : w1 w2 · · · wni

: fi(w1, . . . , wni
)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 51

52 2. General recursion

which is what we needed to prove.

(T3) If A ≡ pi(A1, . . . , Ani
) for some n-place function variable pi of E,

then the computation comp(A :) starts with the transition

pi(A1, . . . , Ani
) : (comp)

pi A1 . . . Ani
:

We consider three subcases as in (T2):

(T3a) For some j, val
M

(Aj) ↑, so val
M

(A) ↑.

(T3b) There are elements w1, . . . , wn in M such that val
M

(Aj) = wj for
j = 1, . . . , n, but pi(w1, . . . , wn) ↑.

(T3c) val
M

(pi(A1, . . . , An)) = w, which means that there are w1, . . . , wn

in M such that val
M

(Aj) = wj for j = 1, . . . , n and pi(w1, . . . , wn) = w.

For case (T3a) the proof is exactly the same as for (T2a). For (T3b)
and (T3c), the proofs are slight variants of the ones for (T2b) and (T2c)
based on the definition of pi. For (T3c), for example, from the induction
hypothesis and by Lemma 2C.1, the computation comp(A :) is

pi(A1, . . . , An) : (comp)

pi A1 . . . An : (ind. hyp.)

...

pi A1 . . . An−1 : wn (ind. hyp.)

...

pi : w1 w2 · · · wn (definition of pi)

...

: pi(w1, . . . , wn)

which is what we needed to show.

(T4) A ≡ (if (A1 = 0) then A2 else A3). We leave this for Problem x2C.1.

(3) By the definition of the recursive machine,

pi(~x) = w ⇐⇒ there exists a terminal computation

Ei{~x :≡ ~x} : → s1 → · · · → : w,

because the computation of pi(~x) starts with the steps

pi : ~x (i-call)

Ei{~x :≡ ~x} :

Now (1) and (2) imply that

Ei{~x :≡ ~x} : → s1 → · · · → : w ⇐⇒ val
M

(Ei{~x :≡ ~x}) = w,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 52

2C. Soundness and least solutions 53

so that

pi(~x) = w ⇐⇒ val
M

(Ei{~x :≡ ~x}) = w

which is what we needed to show. a
2C.3. Corolary. The set of the M-recursive partial functions contains

the primitive partial functions f1, . . . , fK of M, the projections

Pn
i (x1, . . . , xn) = xi (i = 1, . . . , n)

and the constants C0(~x) = 0 and C1(~x) = 1, and it is closed under compo-

sition and branching.

Proof. For the given partial functions, we observe that for the program

p(x1, . . . , xni
) = fi(x1, . . . , xni

)(Efi
)

obviously, p(~xi) = f(~xi), since p satisfies Efi
. For the projections and the

constant functions 0 and 1 we also use the obvious programs with a single
equation,

p(~x) = xi, p(~x) = 0, p(~x) = 1.

For branching, the hypothesis provides programs Ec, Eg and Eh of M

and specific recursive variables c, g and h of these programs, and we have
to construct a new program E which defines some “fresh” variable p, so
that

pE(~x) = if (cEc
(~x) = 0) then gEg

(~x) else hEh
(~x),

where the subscripts suggest the programs which compute cEc
, gEg

and

hEh
. Using alphabetic variants (for the recursive variables) of Ec, Eg, Eh,

we can assume that these programs have no common function variables,
and we set

E = Ec + Eg + Eh + {p(~x) = if (c(~x) = 0) then g(~x) else h(~x)},
where by “+” we mean the collection of all definitions in the given pro-
grams. We note that E is a program, since every recursive variable in it is
defined exactly once. Moreover,

cE(~x) = cEc
(~x),

just because every computation

compEc
(c : ~x) = c : ~x → α1 : β1 → · · ·

of Ec is also a computation of E, and so (by the determinism of programs)
it is the only computation in E which starts with the state c : ~x, that is

compEc
(c : ~x) = compE(c : ~x);

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 53

54 2. General recursion

so cE = cEc
, and the same, of course, holds also for the symbols g and

h. Finally, by Theorem 2C.2, the function pE satisfies the equation which
defines it in E, and so

p(~x) = if (cE(~x) = 0) then gE(~x) else hE(~x)

= if (cEc
(~x) = 0) then gEg

(~x) else hEh
(~x).

The proof for composition is similar, Problem x2C.3. a
2C.4. Corolary. For each partial algebra M = (M, 0, 1, f1, . . . , fK)

and any g : Mn ⇀ M , f : Mm ⇀ M ,
(
g ∈ R(M) & f ∈ R(M, g)

)
=⇒ f ∈ R(M),

where (M, g) = (M, 0, 1, f1, . . . , fK , g) is the expansion of M by g.

Proof. Problem x2C.4. a
The next theorem gives a characterization of the canonical solutions of

a program E computed by the recursive machine:

2C.5. Theorem (Least Fixed Points). For any program E of a par-

tial algebra M with recursive variables p0, . . . , pk, the partial functions

p0, . . . , pk computed by T (E) are the v-least partial functions which satisfy

the equations of E.

Proof. The functions p0, . . . , pk satisfy the system E by Theorem 2C.2,
so it suffices to show that if p′0, . . . , p′k also satisfy the equations of E, then

pi(~x) = w =⇒ p′i(~x) = w (i = 0, . . . , k).

So we assume that the functions p′0, . . . , p′k satisfy the equations of E, and
we consider the two structures

M = (M, p0, . . . , pk), M
′ = (M, p′0, . . . , p′k).

By Theorem 2C.2, we know that for each closed term A in the vocabulary
(f1, . . . , fK , p0, . . . , pk), if val

M
(A) = w, then the computation comp(A :)

of T (E) is terminal with : w its last state. We will show by induction on
m, that for each A and every w,

if A : → α1 : β1 → · · ·αm−1 : βm−1 → : w, then valM′(A) = w.(62)

In the special case A ≡ pi(x1, . . . , xn), this yields

pi(~x) = w =⇒valM′(pi(~x)) = w =⇒ p′i(~x) = w,

which is what we need to show.

For the proof of (62) we examine the form of A, and the argument is
trivial (as in the proof of 2C.2) in all the cases except when

A ≡ pi(A1, . . . , An).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 54

2C. Soundness and least solutions 55

In this case the computation has the form

pi(A1, . . . , An) :

pi A1 · · · An :

...

pi A1 · · · An−1 : wn

...

pi : w1 · · · wn

Ei{~x :≡ ~w} :

...

: w

Now the induction hypothesis implies that

valM′(A1) = w1, . . . ,valM′(An) = wn,valM′(Ei{~x :≡ ~w}) = w

because the computations which correspond to these values have smaller
length. So

valM′(pi(A1, . . . , An)) = p′i(valM′(A1), . . . ,valM′(An))

= p′i(w1, . . . , wn)

= valM′(Ei{~x :≡ ~w}) = w,

where the last equation because by the hypothesis

M
′ |= pi(~x) = Ei. a

Problems for Section 2C

x2C.1. Give the missing argument for case (T4) in the proof of The-
orem 2C.2. Hint: It is very much like the argument for case (T2), only
simpler.

x2C.2∗. (1) Prove that for each program E in a total algebra M, and
each n-place recursive variable p if E, no computation of the form

p : x1, . . . , xn → s1 → · · · → sm.(*)

is stuck, cf. 2B.3.

(2) Prove that if M is a partial algebra, p is an n-place function variable
of some program E in M and the finite computation (*) is stuck, then its
last state is of the form

α fi : y1, . . . , yni
β

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 55

56 2. General recursion

where fi is one of the given partial functions of M, and fi(y1, . . . , yni
) ↑.

Hint: Use the method of proof of Theorem 2C.2.

x2C.3. Prove that the composition (10) of M-recursive partial functions
is M-recursive.

x2C.4. Prove Corollary 2C.4.

x2C.5. Prove that if P (~x) and Q(~x) are recursive relations on the partial
algebra M, then the relations

R1(~x) ⇐⇒ ¬P (~x)

R2(~x) ⇐⇒ P (~x) & Q(~x),

R3(~x) ⇐⇒ P (~x) ∨ Q(~x).

are also M-recursive.

x2C.6. Prove that the union A ∪ B, the intersection A ∩ B, and the
difference

A \ B = {x ∈ A | x /∈ B}
of two M-recursive sets are M-recursive sets.

Prove also that the singleton {0} is M-recursive in every partial algebra
M, while in some partial algebra, the singleton {1} is not recursive.

2C.6. Definition. For each f : M ⇀ M , the iteration f : N×M ⇀ M
of f is defined by the recursion

f0(x) = x, fn+1(x) = f(fn(x)).

x2C.7∗. Prove that if g, h : M ⇀ M are M-recursive partial functions,
then the function

f(x) = gm(x) where m = (µn ≥ 1)[hn(x) = 0].

is also M-recursive.

2D. Recursive partial functions on the natural numbers

Recall definition (61)

R(Ψ) = {f : Nn ⇀ N | f is (N0, f1, . . . , fK)-recursive

for some f1, . . . , fK ∈ Ψ}
of the set of partial functions which are recursive in a set Ψ of partial
functions of several variables on the natural numbers. We collect in one
theorem the basic properties of R(Ψ) which follow from the results in the
two previous sections. These also hold, of course, for the set

R = R(∅) = R(N0)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 56

2D. Recursive partial functions on the natural numbers 57

of the (absolutely) recursive, partial functions on N.

2D.1. Theorem. The set R(Ψ) is primitively closed and closed under

minimalization, so that

Rµ(Ψ) ⊆ R(Ψ).

In particular, every µ-recursive partial function is recursive.

Proof. The set R(Ψ) contains the projections, the constants 0 and
1 and the givens S(x) and Pd(x) since every R(N0, 0, 1, f1, . . . , fk) with
f1, . . . , fk ∈ Ψ has these properties by Corollary 2C.3.

We leave the primitive closure of R(Ψ) as a problem, x2D.1.

To show show that R(Ψ) is also closed under minimalization, suppose
g ∈ R(Ψ) and

f(y, ~x) = (µi ≥ y)[g(i, ~x) = 0].

By Proposition 1C.8, the function f is the least solution of the recursive
equation

f(y, ~x) = if (g(y, ~x) = 0) then y else f(y + 1, ~x).

This is a program by itself, so (by Theorem 2C.5), f is computed by this
program and f ∈ R(Ψ ∪ {g}); but if g ∈ R(Ψ), then R(Ψ ∪ {g}) = R(Ψ)
by Corollary 2C.4. a

Problems for Section 2D

x2D.1. Prove that if g(~x) and h(w, y, ~x) are recursive in Ψ and the
function f(y, ~x) is defined from them by primitive recursion (11), then
f(y, ~x) is also recursive in Ψ.

Leat

Nb = (N, 0, 1, Parity, iq2, em2, om2)(63)

where Parity(x) is 0 or 1 accordingly, if x is even or odd, and

iq2(x) = quot(x, 2), em2(x) = 2x, om2(x) = 2x + 1.

The primitives of Nb are most natural when we want to represent natural
numbers by their binary expansion,

x = x0 + x12 + x22
2 + · · · + xk2k (xi ≤ 1).

Recall also the “standard” structure N = (N, 0, 1, +, ·) defined in (44).

x2D.2. Prove that R(N0) = R(Nb) = R(N).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 57

58 2. General recursion

x2D.3∗. Prove that the only total solution of the equation (∗) in Prob-
lem x1C.13∗ is recursive, but the equation (∗) also has solutions which are
not recursive partial functions.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 58

CHAPTER 3

COMPUTABILITY AND UNSOLVABILITY

From the central results in this Chapter stem the most important applica-
tions of recursion theory on the natural numbers which we will develop in
the sequel. We will lay the necessary mathematical foundations for these
applications, and we will establish the relationship between “recursion” and
“computability” — the famous Church-Turing Thesis.

3A. Normal form and enumeration

The main result of this Section is the following,

3A.1. Normal Form and Enumeration Theorem [Kleene]. There

is a primitive recursive function U(y), and primitive recursive relations

Tn(e, x1, . . . , xn, y) (n ≥ 1) and functions Sm
n (e, z1, . . . , zm) (n, m ≥ 1)

with the following properties:

(1) An n-place partial function f(~x) on the natural numbers is recursive

if and only if there is some number e (a code of f) such that

f(~x) = U(µyTn(e, ~x, y)) (~x = x1, . . . , xn ∈ N).(64)

(2) (The Sm
n -Theorem). For all e, y, ~z = z1, . . . , zm and ~x = x1, . . . , xn,

U(µyTm+n(e, ~z, ~x, y)) = U(µyTn(Sm
n (e, ~z), ~x, y)).(65)

Moreover, the functions Sm
n (e, ~z) are one-to one.

From the normal form (64) it follows that every recursive partial func-
tion can be defined using primitive recursive functions and a single dumb
search, and in particular, every recursive partial function is µ-recursive. In
addition, if we set

ϕn
e (~x) = U(µyTn(e, ~x, y)),(66)

then equation (64) implies that, for each n, the sequence

ϕn
0 , ϕn

1 , . . . ,

59

60 3. Computability and unsolvability

enumerates all n-place recursive partial functions, in such a manner that
the (n + 1)-place partial function

ϕn(e, ~x) = ϕn
e (~x) = U(µyTn(e, ~x, y))

is recursive. The number e is called a code or Gödel number of the partial
function ϕn

e .

The basic idea for the proof is to code in N (as in 1B.11) the recursive
programs of N0 and the terminal computations of recursive machines, so
that the following two conditions hold:

(1) The basic computation relation

(67) Tn(e, x1, . . . , xn, y) ⇐⇒ e is the code of a recursive program E

and y is the code of a terminal computation of E

with input p0 : x1, . . . , xn

is primitive recursive.

(2) There is a primitive recursive function U(y), such that if y is the code
of a terminal computation Y , then

U(y) = the output value of Y.(68)

If we can do this, then (1) in Theorem 3A.1 follows immediately and its
meaning becomes clear. The significance of the more technical Part (2) will
be explained in the sequel.

In the manipulations with primitive recursive functions and relations that
we need to make, we will repeatedly use sequence codes defined in 1B.12.
To simplify some formulas, we set

(u)i,j = ((u)i)j , (u)i,j,k = ((u)i)j)k, etc.,

first(u) = (u)0, last(u) = (u)lh(u)−· 1,

so that when n > 0,

first(〈u0, . . . , un−1〉) = u0 = the first element of (u0, . . . , un−1),

last(〈u0, . . . , un−1〉) = un−1 = the last element of (u0, . . . , un−1).

For example

(〈〈0, 2〉, 〈1, 0〉〉)0,1 = 2, (〈〈0, 2〉, 〈1, 0〉〉)1,0 = 1.

We will also need some technical properties of sequence codes, including
the following:

3A.2. Lemma. For the classical coding (1B.13), put

(69) seg(u, i, j)

=

{
〈(u)i, (u)i+1, . . . , (u)j −· 1〉, if Seq(u) & 0 ≤ i < j ≤ lh(u),

0, otherwise.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 60

3A. Normal form and enumeration 61

The function seg(u, i, j) is primitive recursive,

seg(u, i, j) ≤ u,

and if i > 0 or j < lh(u), then seg(u, i, j) < u.

Proof in Problem x3A.1. a

The proof of Theorem 3A.1 requires a sequence of definitions and lemmas
which provide primitive recursive codings for the basic sets of objects of
the theory of the programming language R = R(N0). More specifically, we
will define successively injections

[]i : Ai � N

for each of six basic sets associated with recursive machines and their com-
putations, and we will prove that various decoding functions and relations

which extract information about the objects in these sets from their codes
are primitive recursive.

1. Symbols. For the individual variables, the numbers, the primitives
and the recursive function variables, we set first

[vi]1 = 〈0, 0, i〉, [n]1 = 〈0, 1, n〉, [S]1 = 〈1, 1, 0〉,
[Pd]1 = 〈1, 1, 1〉, [pn

i]1 = 〈1, n, 2 + i〉;
and for the remaining eight symbols

if then else , () = ?

that are used by the recursive machines for N0, we use the codes

〈2, 0〉, . . . , 〈2, 7〉,
i.e., [if]1 = 〈2, 0〉, [then]1 = 〈2, 1〉, . . . , [?]1 = 〈2, 7〉.

Notice that the code of a number n is much greater than n, e.g.,

[1]1 = 〈0, 1, 1〉 = 2 · 32 · 52 = 450.

Quite obviously, we are not concerned here with the efficiency of the coding.

2. Words. For every word

α ≡ α0α1 · · ·αn

from these symbols, we set

[α0α1 · · ·αn]2 = 〈[α0]1, [α1]1, . . . , [αn]1〉.
For example,

[S(v1)]2 = 〈[S]1, [(]1, [v1]1, [)]1〉 = 〈〈1, 1, 0〉, 〈2, 4〉, 〈0, 0, 1〉, 〈2, 5〉〉,
[p2

1(v1, 0)]2 = 〈[p2
1]1, [(]1, [v1]1, [,], [0]1, [)]1〉 = · · · .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 61

62 3. Computability and unsolvability

In particular, this definition assigns codes to the terms of R(N0), which
are among these words.

Remark. The number variables vi and the number constants n are
symbols, but they are also terms of length 1. So they have two different
codings, as symbols and as terms, and we must be careful not to confuse
them:

[vi]1 = 〈0, 0, i〉, [vi]2 = 〈〈0, 0, i〉〉
[n]1 = 〈0, 1, n〉, [n]2 = 〈〈0, 1, n〉〉.

For example, [0]1 = 〈0, 1, 0〉 = 2 · 32 · 5 = 90, while [0]2 = 〈90〉 = 291.

3. Recursive equations. A (formal) equation is determined by its two
sides, which are terms, and we set

[p(~v) = E]3 = 〈[p(~v)]2, [E]2〉.

4. Recursive programs. If E = (e0, . . . , ek) is a program, then each
ei is an equation. We set

[E]4 = 〈[e0]3, . . . , [ek]3〉.

5. States. The elements on the left-hand side of a state are either
closed terms or function symbols or the symbol ‘?’, while the elements on
its right-hand side are constants, i.e., numbers. We set:

[α0, . . . , αm−1 : β0, . . . , βn−1]5 = 〈〈[α0]
′, . . . , [αm−1]

′〉, 〈[β0]1, . . . , [βn−1]1〉〉,
where

[αi]
′ =

{
[αi]1, if αi is a function symbol or ‘?’,

[αi]2, otherwise, i.e., if αi is a closed term.

Again, we need to be careful, because the number constants are coded as
symbols on the right and as terms on the left-hand side; for example,

[2 : 2]5 = 〈〈〈〈0, 1, 2〉〉〉, 〈〈0, 1, 2〉〉〉 = some huge number.

We notice that when u is the code of a state α : β, then first(u) is the code
of the left-hand side α, and last(u) is the code of the right-hand side β.

To verify that the function α 7→ [α]5 is one-to-one on the set of states,
we note that no number is at the same time the code of a function symbol
or ‘?’ and also the code of a closed term; because the first symbol of each
closed term E is one of

S, Pd, n, pn
i , (

with code > 2, so that for every term E, first([E]2) > 2, while if u is the
code of a symbol, then first(u) ≤ 2.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 62

3A. Normal form and enumeration 63

6. Computations. For each sequence of states s = (s0, . . . , sk), we set

[s0, . . . , sk]6 = 〈[s0]5, . . . , [sk]5〉.
This codes all sequences of states, and in particular the terminal computa-
tions of the machine for any recursive program.

At this point definitions (67) and (68) have been made precise, and for
Part (1) of the theorem it suffices to show that the relation Tn(e, ~x, y) and
the function U(y) are primitive recursive.

The second task is easy by a careful reading of the definitions, which
shows that we can simply set

U(y) = last(y)1,0,2(70)

(Problem x3A.3).

The first task involves a substantial amount of computation. We will
show that Tn(e, ~x, y) is primitive recursive in a sequence of three lemmas
which introduce codings for several auxilliary sets and establish their basic
properties.

3A.3. Lemma. The following relations and functions are primitive re-

cursive:

IndVar(v) ⇐⇒ v is the code of some vi

⇐⇒ v = 〈0, 0, (v)2〉
IndConst(c) ⇐⇒ c is the code of a number

⇐⇒ c = 〈0, 1, (c)2〉
FunVar(f) ⇐⇒ f is the code of some pn

i

⇐⇒ f = 〈1, (f)1, (f)2〉 & (f)1 ≥ 1 & (f)2 ≥ 2

FunConst(f) ⇐⇒ f is the code of S or of Pd

⇐⇒ f = [S]1 ∨ f = [Pd]1

FunSymb(f) ⇐⇒ FunVar(f) ∨ FunConst(f)

arity(f) = the arity of the function symbol f

(if f is the code of a function symbol)

= (f)1

Proof is trivial. a

3A.4. Lemma. The relation

Term(u) ⇐⇒ u is the code of a term

is primitive recursive.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 63

64 3. Computability and unsolvability

Proof. By 2A.14, a term derivation is a sequence of words

D = (A0, . . . , An)

which satisfies certain conditions (TD1) – (TD4) that correspond to the
conditions in the definition of terms 2A.3. We code term derivations in the
obvious way, as sequences of words

[A0, . . . , An] = 〈[A0]2, . . . , [An]2〉,
and we check first that the relation

TermDer(d) ⇐⇒ d is the code of a term derivation

is primitive recursive. This is because we can verify whether d is a code of
a term derivation by examining its components (d)j , (d)j,i etc. and using
bounded quantifications. Looking at (TD1) – (TD4) in 2A.14, the precise
equivalence we need is

TermDer(d) ⇐⇒ Seq(d) & (∀j < lh(d))Seq((d)j)

& (∀j < lh(d))
(
R1(d, j) ∨ R2(d, j) ∨ R3(d, j) ∨ R4(d, j)

)

where

R1(d, j) ⇐⇒ Aj ≡ c for some constant c ∈ N

⇐⇒ (d)j = 〈(d)j,0〉 & IndConst((d)j,0),

R2(d, j) ⇐⇒ Aj ≡ vi for some individual variable vi

⇐⇒ (d)j = 〈(d)j,0〉 & IndVar((d)j,0)

R3(d, j) ⇐⇒ Aj ≡ fi(B1, . . . , Bni
) with B1, . . . , Bni

earlier in D

⇐⇒ FunSymb((d)j,0)) & (d)j,1 = [(]1 & (d)
j,lh((d)j)−· 1

= [)]1

& lh((d)j) = arity((d)j,0) + 3

& (∀i < arity((d)j,0))(∃k < j)[(d)j,i+2 = (d)k]

R4(d, j) ⇐⇒ Aj ≡ (if (B1 = 0) then B2 else B3)

with B1, B2.B3 earlier in D

⇐⇒ (a clause similar to that for R3, only simpler, Problem x3A.4)

From this and Problem x2A.1 it follows that

Term(u) ⇐⇒ (∃d)[TermDer(d) & u = (d)lh(d)−· 1].(71)

This, however, does not suffice to prove that Term(u) is primitive recursive:
we need to find a bound for d in this equivalence, and this comes from the
following, improved version of Problem x2A.1:

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 64

3A. Normal form and enumeration 65

Sublemma. A word E is a term if and only if there is a term derivation

D = (A1, . . . , An) with E ≡ An such that:

(1) every word Ai which occurs in D is a subterm of E.

(2) no word occurs twice in D,

i < j ≤ n =⇒Ai 6≡ Aj .

Proof of the Sublemma. The implication (⇐) does not need the extra
hypotheses (1) and (2): for any term derivation D = (A0, . . . , An) of E,
we simply check by induction on j ≤ n that each Aj is a term, and in
particular, E ≡ An is a term.

The implication (⇒) is proved by induction on terms. For example,
in the most complex case, if E ≡ f(E1, . . . , Ek) for a function symbol f,
the induction hypothesis gives us “nice” derivations D1, . . . , Dk of each of
the terms E1, . . . , Ek, and then lining these up and placing E at the end
produces a sequence

D = A1
0, . . . , E1, A

2
0, . . . , E2, . . . , Ak

0 , . . . , Ek, f(E1, . . . , Ek)

which is a term derivation of E. It clearly satisfies (1) in the Sublemma,
since every term which occurs in it is a subterm of some Ei, and hence a
subterm of E ≡ f(E1, . . . , Ek). Now, the point is that if we successively

delete from D every term Ai
j which occurs earlier in D, the resulting se-

quence is still a term derivation which ends with E and no word occurs
twice in it, as required. a (Sublemma)

Suppose now that D = (A0 . . . , An) is a term derivation of some term
E ≡ An which satisfies (1) and (2) of the Sublemma and [E]2 = u. If
m = lh(u) is the length of the term E, then obviously (and coarsely)
n + 1 ≤ m2; because each Ai is a piece of E and there are fewer than m2

choices of a point in E where it starts and another point when it ends.
Also, [Ai]2 ≤ u by Lemma 3A.2; so

[D] = [A0, . . . , An] ≤ um2

= ulh(u)2 ≤ u(u2)

and hence (71) can be rewritten in the form

Term(u) ⇐⇒ (∃d ≤ u(u2))[TermDer(d) & u = (d)lh(d)−· 1].

The function (u 7→ u(u2)) is primitive recursive, and so this equivalence
completes the proof that Term(u) is primitive recursive. a

3A.5. Lemma. The following relations and functions are primitive re-

cursive:

ClTerm(u) ⇐⇒ u is the code of a closed term

⇐⇒ Term(u) & (∀i < lh(u))¬IndVar((u)i)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 65

66 3. Computability and unsolvability

CompTerm(u) ⇐⇒ u is the code of a term pn
i (A1, . . . , An)

⇐⇒ Term(u) & FunVar(first(u))

SubTerm(u, v) ⇐⇒ v is the code of a subterm of the term with code u

⇐⇒ Term(u) & Term(v) & (∃i, j ≤ lh(u))[i < j & v = seg(u, i, j)]

PrTerm(u) ⇐⇒ u is the code of a term pn
i (v1, . . . , vn)

⇐⇒ CompTerm(u) & (∀v < u)[SubTerm(u, v) =⇒ IndVar(v)]

Eq(e) ⇐⇒ e is the code of a recursive equation

⇐⇒ e = 〈first(e), last(e)〉 & PrTerm(first(e)) & Term(last(e))

& (∀i < lh(last(e)))
(
IndVar((last(e))i)

=⇒ (∃j < lh(first(e)))[(last(e))i = (first(e))j]
)

Prog(e) ⇐⇒ e is the code of a program

⇐⇒ Seq(e) & lh(e) > 0 & (∀i < lh(e))[Eq((e)i)]

& (∀i < lh(e))(∀j < lh((e)i,1)

[FunVar((e)i,1,j) =⇒ (∃k < lh(e))[(e)i,1,j = (e)k,0,0]]

State(s) ⇐⇒ s is the code of a state

⇐⇒ s = 〈(s)0, (s)1〉

& (∀i < lh((s)0)
(
FunSymb((s)0,i) ∨ (s)0,i = [?]1 ∨ ClTerm((s)0,i)

)

& (∀j < lh((s)1)IndConst((s)1,j)

TermState(s) ⇐⇒ s is the code of a terminal state

⇐⇒ State(s) & lh((s)0) = 0 & lh((s)1) = 1

Rep(u, j, x) =df the result of replacing the variable

with code j = [vi] by the constant x in the term with code u

FullRep(u, v, w) =df the result of replacing

the variables with codes (v)0, . . . , last(v)

by the constants (w)0, . . . , last(w) in the term with code u

TrPrTerm(u) =df 〈[vi1]1, . . . , [vin
]1〉 (if u = [pn(vi1 , . . . , vin

)]2)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 66

3A. Normal form and enumeration 67

Transition(e, s, s′) ⇐⇒ Prog(e) & State(s) & State(s′)

& s → s′ in T (E) for e = [E]4

Comp(e, y) ⇐⇒ y is the code of a terminal computation

in T (E) for e = [E]4

⇐⇒ Prog(e) & Seq(y) & lh(y) > 1

& (∀i < lh(y)−· 1)Transition(e, (y)i, (y)i+1)

& TermState(last(y))

Tn(e, ~x, y) ⇐⇒ Prog(e) & Comp(e, y)

& first(first(y)) = 〈first(first(first(e)))〉
& last(first(y)) = [x1x2 · · ·xn]2

Proof. The primitive recursiveness of all the relations and functions
in this list except for Transition(e, s, s′) is quite simple, or at the least,
routine. The computation for Transition(e, s, s′) requires some work and
we leave it for a problem, x3A.5∗. a

The three Lemmas 3A.3 – 3A.5 together complete the proof of Part (1)
of Theorem 3A.1.

Proof of Part (2) of Theorem 3A.1. To prove the Sm
n -Theorem,

we must compute from the code e of any program E that computes the
partial function

g(y1, . . . , ym, x1, . . . , xn) = ϕe(~y, ~x)

and given numbers ~z = z1, . . . , zm, the code Sm
n (e, ~z) of some other program

E~z which computes the partial function

f~z(~x) = g(~z, ~x).

Suppose the first equation of E is

p0(v1, . . . , vm, vm+1, . . . , vm+n) = E0,

where we have assumed specific variables in it to simplify the computa-
tion (which would otherwise be even messier). So p0 is the main function
variable of E and

p0(~y, ~x) = g(~y, ~x).

Suppose q is a function variable of arity n which does not occur at all in
the program E, and consider the formal equation

q(vm+1, . . . , vm+n) = p0(Z1, . . . , Zm, vm+1, . . . , vm+n),(72)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 67

68 3. Computability and unsolvability

where each Zi ≡ Szi(0) is a closed, pure term which denotes the number
zi—the numeral of zi, as it is sometimes called. It is quite obvious that
the program

E~z ≡ (72) followed by E

computes F~z with main symbol q, and that we can compute its code prim-
itive recursively from the code of E, the number i such that q ≡ pn

i , and
the numbers ~z;

Sm
n (e, ~z)

= 〈[pn
i (vm+1, . . . , vm+n) = p0(Z1, . . . , Zm, vm+1, . . . , vm+n)]3〉 ∗ e.

So the problem of defining Sm
n (e, ~z) comes down to finding some number

i such that the function variable pn
i does not occur in E at all, and by (25),

we can just take i = e. Finally, we let

f∗(e) = [pn
e (vm+1, . . . , vm+n) = p0(Z1, . . . , Zm, vm+1, . . . , vm+n)]3,

we check (routinely) that f∗(e) is primitive recursive, and we set

Sm
n (e, ~z) =

{
〈f∗(e)〉 ∗ e, if Prog(e),

〈0, e, ~z〉 otherwise.

The definition by cases exploits the fact that no sequence of the form 〈0, e, ~z〉
is the code of a program, which insures that Sm

n (e, ~z) is one-to-one on all
inputs. a

The Sm
n -Theorem is a more-or-less obvious consequence of the fact that

our codings are so-to-speak “primitive recursive”, and the proof of it was
messy, precisely because it required us digging into the details of these
codings. It is a very useful result, as we will see, partly because we will be
able to avoid a great many coding computations by appealing to it.

We confine ourselves here to just three consequence of Theorem 64 which
illustrate some of its uses.

3A.6. Corolary. A partial function f : Nn ⇀ N is recursive if and

only if it is µ-recursive.

Proof. The µ-recursive partial functions are recursive by Corollary 2D.1,
and the Normal Form Theorem obviously implies that every recursive par-
tial function is µ-recursive. a

It should be emphasized that the normal form (64) rarely—if ever—
gives an efficient algorithm for the computation of a function, which in
most cases is specified easily (and more naturally) by general recursion.
The Ackermann function is a good example of this: its recursive definition
is very simple, while a direct proof that it is µ-recursive and the derivation
of a normal form for it are not quite that simple—try it.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 68

3A. Normal form and enumeration 69

The Normal Form Theorem is the main tool for establishing negative

results, that certain interesting relations are not recursive. The basic model
for such results is the following theorem of Turing:

3A.7. Corolary (Turing). The halting relation

H(e, x) ⇐⇒ ϕe(x)↓(73)

is not recursive.

Proof. Notice that directly from its definition,

H(e, x) ⇐⇒ (∃y)T1(e, x, y)

⇐⇒ Prog(e) & the recursive machine with code e

terminates on input x.

If it were a recursive relation, then the total function

f(x) =

{
ϕx(x) + 1, if H(x, x)

0, otherwise

would be recursive; but then, for some e and all x we would have • ϕe(x) = ϕx(x) +
1 need not be true
for all x, only for
those x’s for which
ϕx(x)↓ ; but ϕe(e)↓ ,
because ϕe(x) is to-
tal, which gives the
contradiction on the
next line.

f(x) = ϕe(x),

which is absurd for x = e. a
Our third Corollary is an application of the Sm

n -Theorem:

3A.8. Corolary. Primitive recursion is primitive recursive in the codes;

i.e., for each n, there exists a primitive recursive function u(e, m) = un(e, m)
such that if the partial function f is defined by the primitive recursion

f(0, ~x) = ϕn
e (~x)

f(y + 1, ~x) = ϕn+2
m (f(y, ~x), y, ~x),

then

f(y, ~x) = ϕn+1
u(e,m)(y, ~x).

Proof. The partial function

g(0, e, m, ~x) = ϕn(e, ~x)

g(y + 1, e, m, ~x) = ϕn+2(m, g(y, e, m, ~x), y, ~x)

is recursive, because R is closed under primitive recursion, so

h(e, m, y, ~x) = g(y, e, m, ~x),

is also recursive and so it has some code ĥ. It follows that

g(y, e, m, ~x) = h(e, m, y, ~x) = ϕn+3

ĥ
(e, m, y, ~x) = ϕn+1

S2
n+1

(̂h,e,m)
(y, ~x),

and we can set

u(e, m) = S2
n+1(ĥ, e, m). a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 69

70 3. Computability and unsolvability

Problems for Section 3A

x3A.1. Prove Lemma 3A.2.

x3A.2. Prove that every recursive partial function f(~x) has infinitely
many codes, i.e., there exist infinitely many numbers e such that f = ϕn

e .

x3A.3. Prove that if Tn(e, ~x, y) is defined by (67) and U(y) is defined
by (70), then (68) holds.

x3A.4. Give a precise definition of the relation R4(d, j) in the proof of
Lemma 3A.4.

x3A.5∗. Prove that the relation Transition(e, s, s′) is primitive recursive.
(This computation has many details and it is not feasible to record them
all. What is required in this Problem is to explain the architecture of the
proof, and to work out some of the more interesting cases.)

x3A.6. Prove that some primitive recursive function u(n) gives for each
n a code of the Ackermann section An(x).

x3A.7. Prove that the composition of recursive partial functions is prim-
itive recursive in the codes, in the following sense: for some primitive re-
cursive function u(z, e, m),

ϕn
u(z,e,m)(~x) = ϕ2

z(ϕ
n
e (~x), ϕn

m(~x)).

x3A.8∗. Prove that there is a recursive partial function f(x) which does
not have a total recursive extension, i.e., there is no total recursive function
g such that f v g.

3B. The Church-Turing Thesis

Our main aim in this section is to explain and (at least partly) justify
the following fundamental principle. It was formulated by the American
Alonzo Church and the British Alan Turing in 1936, independently and in
different forms.

3B.1. Church-Turing Thesis CT. A function f : Nn → N is com-

putable if and only if it is recursive.

The Church-Turing Thesis identifies our intuitive understanding of what
it means for a function f : Nn → N to be computable by some algorithm

with the precise claim that f is recursive. It is usually claimed for par-
tial functions f : Nn ⇀ N also, but most of its (many and important)
applications depend on the simpler formulation for total functions.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 70

3B. The Church-Turing Thesis 71

a b

f

E1 E2

c

E = E1 + E2

Figure 4. Area as integral.

The implication

f recursive =⇒ f computable

is the trivial direction of the Thesis, and it is generally considered obvious
“by definition”: today, if not in 1936, it is easy to view the recursive ma-
chines defined in 2B.5 as “ideal versions” of electronic computers, or even
as real computers with access to “unlimited memory”, and they certainly
compute the values of their least fixed points. The significance of the Thesis
lies in its essential direction,

f computable =⇒ f recursive

typically invoked in the contrapositive:

if f is not recursive, then no algorithm computes f.

This allows to prove rigorously that a specific function f is absolutely non-

computable—not computable by any algorithm—by verifying that f is not
recursive.

The Church-Turing Thesis cannot be proved rigorously, as it identifies the
intuitive notion of computability with the rigorous (mathematical) notion
of recursiveness. In other words, it cannot be a theorem, so that within
mathematics it has the status of a definition. To understand its meaning,
it is useful to examine the role that definitions play in mathematics—how

they are justified and what they are used for.

For a classical example, consider the area of a simple region E bounded
by the x-axis, the vertical lines x = a and x = b and the graph of a positive,
continuous function f . It is defined in calculus by an integral,

Area(E) =

∫ b

a

f(x)dx.(74)

This is not arbitrary, of course, or it would not be useful. The integral for-
mula (74) gives the correct value in important applications, e.g., it predicts

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 71

72 3. Computability and unsolvability

that the area of a circle with radius r is πr2, which can then verified by
measurements.

In other words, the first requirement for a mathematical definition of
some intuitive notion is that it agrees with the known examples, those which
make the notion interesting. For the Church-Turing Thesis, this comes
down to arguing that

if a known algorithm computes f : Nn → N, then f is recursive.(75)

This is not in dispute today: apart from the long list of (primitive) re-
cursive functions in section 1B and the strong closure properties of the
class of recursive partial functions that we have proved, there is also the
experience of more than seventy years of research which have yielded no
“counterexample”—no function which is considered (generally by the math-
ematical community) to be computable but which is not recursive.

Can we be sure that no counterexample of the Church-Turing Thesis will
be found in the future? Consider the classical solution of the corresponding
problem for the notion of area, which is based on the following three basic
intuitions for simple regions as in Figure 4:

(1) The area of a rectangle with sides α and β is the product αβ.
(2) If E1 ⊆ E, i.e., the simple region E1 is a part of another E, then

Area(E1) ≤ Area(E).
(3) If the simple region E is the union of two simple regions E1 and E2

as in Figure 4, then Area(E) = Area(E1) + Area(E2).

If we assume these as axioms, then equation (74) is a theorem: it can be
shown that it gives the only way to assign a real number Area(E) to every

simple region E so that (a) – (c) hold.4

Turing made an extensive analysis of what it means for a function to be
“computable” which led him to propose his version of CT. It was based on
the simple and obvious intuition5 that

computability = mechanical computability.(76)

4This is, in effect, the standard result that the Riemann integral
∫

b

a
f(x)dx exists for

every continuous function f .
5It may be a “simple” and “obvious” intuition today, when high school students are

regularly using computers and the words “computation” and “mechanical computation”
are viewed as synonyms. In 1936, however, electronic computers, programs and oper-

ating systems did not exist, and the mathematical tradition associated the notion of
“computable function” with mathematical algorithms typically expressed by recursive
definitions. The archetypical examples of computable functions were the numerical op-
erations computed by the so-called “school algorithms” (for multiplication and division
in the decimal system), and the greatest common divisor, computed by the Euclidean
algorithm x1C.10.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 72

3B. The Church-Turing Thesis 73

After that, Turing defined rigorously a specific class of abstract (and very
simple) machines which today bear his name, the Turing machines ; he
argued convincingly that the computations of any “constructible” machine

can be “simulated” by some Turing machine; and, finally, he conjectured
that for every function f ,

f is computable ⇐⇒ f is computable by a Turing machine.

To complete the story, Church had already proposed a little earlier the
claim that for every f ,

f is computable ⇐⇒ f is λ-definable,

where “λ-definable” means “computable by some term” of the formal lan-
guage of the λ-calculus which he had introduced. The equivalences

f is Turing computable ⇐⇒ f is λ-definable ⇐⇒ f is recursive

were proved almost immediately afterwards (by Turing and Kleene), and
they closed the circle which led to the formulation of the Church-Turing
Thesis in the form 3B.1.

Whether the analysis of “mechanical computability” given by Turing
constitutes a complete justification of the Church-Turing Thesis (just as
the analysis we outlined justifies the correctness of the definition of area
for simple regions) is debatable—and sometimes debated hotly. In any case,
we will consider it briefly in the next Section but we will not elaborate on it
here. We will show instead that the mechanical computability of a partial
function f implies its recursiveness if the machine that does the computing
satisfies some very weak “effectivity conditions” which are satisfied by all
ideal computers (as we understand these today) and by all “models of
computation” that have been introduced.

3B.2. A recursive coding of an abstract machine (as in 2B.4)

M = (S, T,→, input, output)

with input set Nn and output set N is any coding

c : S � N

of the states of M in the natural numbers such that the following functions,
relations and sets are recursive:

Sc = c[S] = {x | (∃s ∈ S)[c(s) = x]}
Tc = c[T] = {x | (∃s ∈ T)[c(s) = x]}

x →c x′ ⇐⇒ x, x′ ∈ Sc & c−1(x) → c−1(x′)

⇐⇒ (∃s, s′ ∈ S)[c(s) = x & c(s′) = x′ & s → s′]

inputc(~x) = c(input(~x)), outputc(x) =

{
output(c−1(x)), if x ∈ Tc,

0, otherwise.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 73

74 3. Computability and unsolvability

3B.3. Theorem. Every partial function computed by an abstract ma-

chine which admits a recursive coding is recursive.

Proof. The proof is a small part of the proof of the Normal Form Theo-
rem 3A.1, without the computations which are now given by the hypothesis.
We set

C(~x, y) ⇐⇒ y is the code of a computation on input ~x

⇐⇒ Seq(y) & (y)0 = inputc(~x)

& (∀i < lh(y))[i + 1 < lh(y) =⇒ (y)i →c (y)i+1]

& (y)lh(y)−· 1 ∈ Tc.

The relation C(~x, y) is recursive by the hypothesis and the closure prop-
erties of recursive relations, and if the given machine computes the partial
function f , then

f(~x) = outputc

((
µyC(~x, y)

)

lh(y)−· 1

)
,

so that f(~x) is recursive. a
The idea now is that if a machine M (with input set Nn and output set

N) can be “constructed” in some precise sense, then the states of M must
be finite objects, which can be coded simply in the natural numbers (as in
the proof of 3A.1), so that the basic relations are recursive, in other words,
the proposition that

every machine which can be built admits a recursive coding;

and the basic observation is that the Church-Turing Thesis follows rigor-
ously from this claim and Turing’s basic intuition (76).

3C. Symbolic computation and undecidability

Sometimes we appeal to the Church-Turing Thesis to avoid giving a
rigorous proof, i.e., we claim that some partial function is recursive by
giving an intuitive description of some algorithm which computes it. Such
“sinful” (lazy) appeals can certainly be avoided with some additional work.
The Church-Turing Thesis is used in an essential way in proofs of negative

results, non-computability of functions or undecidability of relations, usually
relations on the set of words from some finite alphabet.

3C.1. Undecidability. Let Σ = {a0, . . . , ar} be a finite (non-empty)
alphabet, and let Σ∗ the set of all words (finite sequences) from Σ, including
the empty word Λ. We set [ai] = i and code Σ∗ in N in the simplest way:

[s0 . . . sk−1] = 〈[s0], . . . , [sk−1]〉 (s0 . . . sk−1 ∈ Σ).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 74

3C. Symbolic computation and undecidability 75

An n-place relation (or “problem”) P on Σ∗ is decidable or solvable if there
exists a recursive function χ(x1, . . . , xn) such that

P (u1, . . . , un) ⇐⇒ χ([u1], . . . , [un]) = 1 (u1, . . . , un ∈ Σ∗),

otherwise P is undecidable or unsolvable.

The basic tool for undecidability proofs is a characterization of the de-
cidable relations on Σ∗ in terms of some model of symbolic computation

directly, i.e., without reference to codings. In Section 3D we will review
briefly the classical (and historically first) such model, the famous Turing
machines. Here we introduce a second classical example due to Post, who
also proved the first undecidability result in pure mathematics, outside of
mathematical logic and computability theory.

3C.2. A rewriting system (or semi-Thue system) is a structure

R = (Σ, σ0 → τ0, . . . , σk → τk) = ({a0, . . . , an}, σ0 → τ0, . . . , σk → τk),

where the alphabet Σ is a finite set and in the transition rules σi → τi the
sequences σi, τi are (possibly empty) words from Σ, i.e., members of Σ∗.
The system R defines the following basic transition relation on Σ∗:

α →R β ⇐⇒ (∃α1, α2, σ, τ ∈ Σ∗)[σ → τ & α = α1σα2 & β = α1τα2],

i.e., α →R β if β is derived from α by the replacement of some part σ of
α by some word τ , so that σ → τ is a rule. For example, in the rewriting
system

R = ({a, b}, a → aa, a → bb),

we have the basic rewritings

a →R aa →R aaa →R abba.

The (complete) transition relation of R is the “transitive closure” of
→R,

α →∗
R β ⇐⇒ α →R α1 →R · · · →R αn−1 →R β

⇐⇒ (∃α0, . . . , αn)[α0 = α

& (∀i < n)[αi →R αi+1 & αn = β],

so that in the example a →∗
R abba, but a 6→∗

R bbb (Problem x3C.1). The
word α is terminal in R if there is no β such that α →R β,

TR = {α | (∀β)[α 6→R β],

like any α ∈ {b}∗ in the example. Note that in these general rewriting
systems, we do not separate into “terminal“ and “stuck” words, i.e., we
call terminal all stuck words.

Finally, for S ⊆ Σ∗, the system R is deterministic on S, if

[α ∈ S & α →R β & α →R β′] =⇒β = β′ ∈ S,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 75

76 3. Computability and unsolvability

so that the example is not deterministic on the complete {a, b}∗, but it is
deterministic on {b}∗.

The recursive transition systems T (E,M) are, basically, rewriting sys-
tems, except that we distinguish “terminal” from “stuck” words and (more
significantly) the alphabet Σ is infinite, as we have to include all constants,
i.e., all natural numbers in the case M = N0 which concerns us. The next,
technical but basic result gets around this obstacle by setting

x = $11 · · · 1︸ ︷︷ ︸
x

$ (x ∈ N),(77)

i.e., coding numbers with strings of 1’s.

3C.3. Theorem. Every recursive, partial function f : Nn ⇀ N is com-

puted by a rewriting system R, in some (finite) set of symbols Σ which

contains the special symbols f, 1, $, : in the following sense:

f(x1, . . . , xn) = w ⇐⇒ f : x1x2 · · ·xn →∗
R : w.

Moreover, R is deterministic on the set

S = {α : β | the symbol ‘:’ does not occur in the words α, β}.(78)

We omit the proof which involves a good deal of “programming” in
rewriting systems.

3C.4. The word problem for semigroups. For each rewriting system

R = (Σ, σ0 → τ0, . . . , σk → τk),(79)

let ∼R be the smallest equivalence relation on Σ∗ such that

1. σi ∼R τi, for i ≤ k,
2. σ ∼R τ =⇒ασβ ∼R ατβ, for all α, β ∈ Σ∗,

and for every α ∈ Σ∗, let

[[α]] = {β ∈ Σ∗ | β ∼R α}
be the equivalence class of u. The set of the equivalence classes

[[R]] = {[[α]] | α ∈ Σ∗}
is the semigroup (generated by Σ and presented by R), and the relation ∼R

is called the word problem for this semigroup. The terms are, obviously,
from algebra and they can be justified, but we will not do this here.

3C.5. Theorem (Emil Post). There is a rewriting system R such that

the relation α →∗
R β is not decidable, and the word problem α ∼R β for the

semigroup [[R]] is unsolvable.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 76

3C. Symbolic computation and undecidability 77

Proof. Let Rf = (Σ, σ0 → τ0, . . . , σk → τk) be a rewriting system
which computes the recursive partial function

f(x) = 0 · µyT1(x, x, y)

by Theorem 3C.3, so that

f(x)↓ ⇐⇒ f : x →∗
R : 0;

it follows that the relation α →∗
R β is not decidable, because if it were,

then the domain of definition {x | f(x)↓} would be recursive, which it is
not, 3A.7.

To infer that the relation ∼R is not decidable either, we observe first that

α ∼R β ⇐⇒ (∃γ0, . . . , γn)[α = γ0 & γn = β

& (∀i < n)[γi = γi+1 ∨ γi →R γi+1 ∨ γi+1 →R γi]],

easily in the direction ⇒ by the definition of ∼R (since the relation on the
right is an equivalence relation), and by a trivial induction on n in the
direction ⇐. It follows that it is enough to show that (with S as in (78))

(80) (∀i < n)[γi = γi+1 ∨ γi →R γi+1 ∨ γi+1 →R γi]

& γ0 ∈ S & γn = : 0

=⇒ γ0 = : 0 ∨ γ0 →∗
R : 0,

which implies that for α ∈ S,

α ∼R : 0 ⇐⇒ α = : 0 ∨ α →∗
R : 0,

so that

f : x →∗
R 0 ⇐⇒ f : x ∼R 0

and excludes the decidability of ∼R as before. Finally, we show (80) by
induction on n and with trivial basis, since for n = 0 the condition (80)
says that w0 = : 0=⇒w0 = : 0. The induction step is also trivial if for
some i, wi = wi+1, or if, for every i < n, wi →R wi+1. On the other hand,
the state : 0 is terminal, so wi+1 →R wi cannot hold for every i, and so
there remains the case that for some largest i,

wi+1 →R wi,

and therefore, also,

wi+1 →R wi+2,

and from these two and the determinism of R on S it follows that wi = wi+2,
which with the induction hypothesis complete the proof, because we can
simply remove wi+1 from the given sequence. a

From the numerous mathematical problems which have been proved un-
solvable we mention here only two.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 77

78 3. Computability and unsolvability

3C.6. The word problem for groups. For every finite alphabet Σ =
{a0, . . . , an}, let

Σg = Σ ∪ {a−1
0 , . . . , a−1

n }
where a−1

0 , . . . , a−1
n are new symbols; and for every rewriting system

R = (Σg, σ0 → τ0), . . . , σk → τk))

in Σ∗
g, let 'R be the smallest equivalence relation on Σ∗

g such that

1. σi 'R τi, for i ≤ k,
2. aia

−1
i 'R a−1

i ai 'E Λ, where Λ the empty word,
3. σ 'R τ =⇒ασβ ∼R ατβ, for all α, β ∈ Σ∗,

and for every α ∈ Σ∗
g, let

[[α]]g = {β ∈ Σ∗
g | β 'R α}

the equivalence class of α. The set of the equivalence classes

[[R]]g = {[[α]]g | α ∈ Σ∗
g}

is the group generated by R, and the equivalence relation 'R is called the
word problem for this group. As for the semigroups, the terms obviously
originate from algebra and can be justified, but we will not do this here.

3C.7. Theorem (S. Novikov, W. Boone). There exists a rewriting sys-

tem R such that the word problem for the group [[R]]g is unsolvable.

This difficult result has important corollaries for group theory and alge-
braic topology.

3C.8. Theorem (Hilbert’s 10th Problem). The problem whether a

given Diophantine polynomial

P (x1, . . . , xn) =
∑

k1+···+kn≤d

ak1,... ,kn
xk1

1 · · ·xkn
n

in n variables with coefficients in Z = {. . . ,−1, 0, 1, . . . } has integer roots

is unsolvable.

This theorem was proved by Yuri Matijasevich in 1970 following a great
deal of work by Hilary Putnam, Julia Robinson and Martin Davis and 70
years after the question was asked. Perhaps more than any other result, it
helped establish recursion theory as a subject with significant applications
in pure mathematics.

Problems for Section 3C

x3C.1. For which words x1x2 · · ·xn does the relation a →∗
R x1x2 · · ·xn

hold, for the rewriting system R = ({a, b}, {a → aa, a → bb}?

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 78

3D. Turing machines 79

3D. Turing machines

We define here Turing machines and give a brief account (without proof)
of the main fact about them.

3D.1. Definition. A Turing machine is a triple M = (Σ, Si, T) where:

(1) Σ is a finite set of symbols, which includes the special blank symbol .
(2) Si is a non-empty, finite set, the set of internal states of M. We

assume that Σ ∩ Si = ∅.
(3) T is a finite set of quintuples of the form

Q
x x′ m−−−−→ Q′(81)

where Q and Q′ are internal states, x and x′ are symbols, and the
move m is 0, +1 or −1. This is the set of transitions or table of M.

A machine M is deterministic if for every internal state Q and every

symbol x, there is at most one transition Q
x x′ m−−−−→ Q′ in the table of M

which starts with (Q, x).
In the picture that Turing sketches, at each step of its computation the

machine is in a particular internal state Q and is “looking” at one “cell” of
an infinite (in both directions) “tape” with finitely many non-empty cells.
We picture this (complete) state of M by the doubly infinite word

α Q β ≡ · · ·α(n) · · ·α(0) Q β(0) · · ·β(n) · · ·
in the alphabet Σ ∪ Si, i.e., Q is an internal state and α(n), β(n) ∈ Σ
for every n. The visible symbol of α Q β is β(0), and the pair (Q, β(0))
determines completely how M will transform the state.

For example, if the internal state is Q and the tape is empty, then

the state is −∞ Q ∞ = . . . Q · · · and the visible symbol is .

Briefly, all the machine can do is to change internal state, change the
visible symbol and move no more than one position to the left or to the
right. The possibilities are determined by the entries in the table of M
and they are illustrated compactly in Table 2, in the second column with
Turing’s notation, and in the third as a transition system on the set of
states

{α, Q, β | α, β ∈ Σ∗, Q ∈ S};
this is a bit different, because we need to deal with the states

αQΛ ΛQβ ΛQΛ

where the empty word on the left represents −∞ and on the right ∞.
They can be described as follows, assuming that

the state is α Q β and x ≡ β(0).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 79

80 3. Computability and unsolvability

· · · t x y · · ·
↑ α, β ∈ Σ∗

Q

Q
x x′ +1−−−−−→ Q′ · · · t x′ y · · · αQxβ → αx′Q′β

↑ αQΛ → αx′Q′
Λ

Q′

Q
x x′ 0−−−−→ Q′ · · · t x′ y · · · αQxβ → αQ′x′β

↑ αQΛ → αQ′x′
Λ

Q′

Q
x x′ −1−−−−−→ Q′ · · · t x′ y · · · αyQxβ → αQ′yx′β

↑ αyQΛ → αQ′yx′
Λ

Q′
ΛQxβ → ΛQ′ x′β

Table 2. The transitions of a non-deterministic Turing machine.

(0) If there is no basic transition in the table which starts with Q and x,
then the complete situation is declared terminal and the computation
stops.

(1) If the table has a transition

Q
x x′ 0−−−−→ Q′

with move m = 0, then the machine “chooses” such a transition,
changes x to x′ and changes its internal state from Q to Q′, i.e.,

α Q xβ′ → α Q′ x′β′

(2) If the table has a transition

Q
x x′ +1−−−−−→ Q′

with move m = 1, then the machine “chooses” such a transition,
changes x to x′, changes its internal state from Q to Q′ and moves
one place to the right, i.e.,

α Q xβ′ → αx′ Q′ β′

(3) If the table has a transition

Q
x x′ −1−−−−−→ Q′

with move m = −1, then the machine “chooses” such a transition,
changes x to x′, changes its internal state from Q to Q′ and moves
one place to the left, i.e.,

α′y Q xβ′ → α′ Q′ yx′β′

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 80

3D. Turing machines 81

With this definition, a Turing machine is a transition system by Defini-
tion 2B.2 and the various notions associated with transition systems apply
to it: a computation of M is any (finite or infinite) sequence

s0, s1, . . . , sk, . . .

where each si is a complete state and si+1 is the result of an action of the
machine at si;

s →∗ s′ ⇐⇒ (∃ computation)[s, s1, . . . , sn−1, s
′];

and if M is deterministic, then there is exactly one (terminal or infinite)

computation which starts with any complete state Q
x x′ m−−−−→ Q′. (We do

not distinguish between stuck and terminal complete states in this version
of Turings’s definition.)

To compute a (partial) function f : Nn ⇀ N with a Turing machine we
need an input and and output function, and the most usual choice for these
are

input(~x) = ∞ START 11 · · · 1︸ ︷︷ ︸
x1+1

 11 · · · 1︸ ︷︷ ︸
x2+1

 · · · 11 · · · 1︸ ︷︷ ︸
xn+1

 ∞

output(∞ END 11 · · · 1︸ ︷︷ ︸
w+1

 β = w,

where START and END are specified internal states.

3D.2. Theorem. Every recursive partial function f : Nn ⇀ N can be

computed by a deterministic Turing machine.

This basic result is proved by showing that the class of Turing computable
partial functions is primitively closed and also closed under minimalization,
so that it contains all recursive partial functions. It is a long and rather
tedious exercise in “Turing machine programming” and we will skip it.

The converse is an easy consequence of Theorem 3B.3, so

3D.3. Theorem. A partial function f : Nn ⇀ N is (deterministically or
non-deterministically) Turing-computable if and only if it is recursive.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 81

CHAPTER 4

RECURSIVELY ENUMERABLE SETS

Recall that a relation R(~x) on the natural numbers is recursive if its
characteristic function is recursive, and a set A ⊆ N is recursive if its
membership relation

RA(x) ⇐⇒ x ∈ A

is recursive. We will study here the basic mathematical properties of the
recursive (partial) functions, relations and sets, but also the semirecursive

relations and the recursively enumerable sets, the simplest non-computable
mathematical objects. The basic tools we will use are the robust closure
of the class of recursive partial functions R (2C.3, 2C.4, 2D.1), the Nor-
mal Form and Enumeration Theorem 3A.1 and the 2nd Recursion Theo-
rem 4D.1.

In appealing to Theorem 3A.1, we will often simplify the notation by
omitting the superscript

ϕe(~x) = ϕn
e (~x) = U(µyTn(e, ~x, y))

(which can be read off the input ~x = x1, . . . , xn) and using in some cases
Kleene’s alternative notation,

{e}(~x) = ϕn
e (~x) = U(µyTn(e, ~x, y)).(82)

This is “typographically” convenient (fewer super- and sub- scripts), but
also helps understand better some of the proofs, as it places “on the same
level” the program e and the data ~x. Finally, we will also use the notation

We = {x | ϕe(x)↓}(83)

for the domain of convergence of the recursive partial function with code e.

4A. Semirecursive relations

To facilitate the formulation of definitions and results in the sequel, we
list here and name the most basic operations on relations.

83

84 4. Recursively enumerable sets

P (~x) ⇐⇒ ¬Q(~x) (negation)(¬)

P (~x) ⇐⇒ Q(~x) & R(~x) (conjunction)(&)

P (~x) ⇐⇒ Q(~x) ∨ R(~x) (disjunction)(∨)

P (~x) ⇐⇒ Q(~x) =⇒R(~x) (implication)(⇒)

P (~x) ⇐⇒ (∃y)Q(~x, y) (existential quantification)(∃)

P (z, ~x) ⇐⇒ (∃i ≤ z)Q(~x, i) (bounded ex. quant.)(∃≤)

P (~x) ⇐⇒ (∀y)Q(~x, y) (universal quantification)(∀)

P (z, ~x) ⇐⇒ (∀i ≤ z)Q(~x, i) (bounded univ. quant.)(∀≤)

P (~x) ⇐⇒ Q(f1(~x), . . . , fm(~x)) (substitution)(84)

For example, we have already shown that the set of primitive recursive
relations is closed under all these operators (with primitive recursive fi(~x))
except for the (unbounded) quantifiers ∃, ∀, under which it is not closed
by Theorem 3A.7. We have also shown (mostly in problems) the closure
properties of the recursive relations:

4A.1. Proposition. The set of recursive relations is closed under the

propositional operators ¬, & ,∨,⇒, the bounded quantifiers ∃≤, ∀≤ and

substitution of (total) recursive functions, but it is not closed under the

quantifiers ∃, ∀.
4A.2. Definition. (1) A relation P (~x) is semirecursive if for some

recursive partial function f(~x),

P (~x) ⇐⇒ f(~x)↓ .

(2) A relation P (~x) is Σ0
1 if for some recursive relation Q(~x, y)

P (~x) ⇐⇒ (∃y)Q(~x, y).

4A.3. Proposition. The following are equivalent, for any relation P (~x):
(1) P (~x) is semirecursive.

(2) P (~x) is Σ0
1.

(3) P (~x) satisfies an equivalence

P (~x) ⇐⇒ (∃y)Q(~x, y)

with some primitive recursive Q(~x, y).

Proof. (1) =⇒ (3) by the normal form theorem; (3) =⇒ (2) trivially;
and (2) =⇒ (1) setting

f(~x) = µyQ(~x, y),

so that

(∃y)Q(~x, y) ⇐⇒ f(~x)↓ . a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 84

4A. Semirecursive relations 85

We have already seen the classical, simplest example of a relation which
is semirecursive but not recursive, the halting relation H(e, x) in Corol-
lary 3A.7.

4A.4. Proposition (Kleene’s Theorem). A relation P (~x) is recursive if

and only if both P (~x) and its negation ¬P (~x) are both semirecursive.

Proof. If P (~x) is recursive, then

Q(~x, y) ⇐⇒ P (~x), R(~x, y) ⇐⇒ ¬P (~x)

are also recursive and (trivially, by vacuous quantification)

P (~x) ⇐⇒ (∃y)Q(~x, y)

¬P (~x) ⇐⇒ (∃y)R(~x, y).

For the other direction, if

P (~x) ⇐⇒ (∃y)Q(~x, y)

¬P (~x) ⇐⇒ (∃y)R(~x, y)

with recursive relations Q and R, then the function

f(~x) = µy[R(~x, y) ∨ Q(~x, y)]

is recursive, total, and

P (~x) ⇐⇒ Q(~x, f(~x)). a

4A.5. Proposition. The set of semirecursive relations is closed under

recursive substitutions, under the “positive” propositional operators &,∨,

under the bounded quantifiers ∃≤, ∀≤, and under the existential quantifier

∃; it is not closed under negation ¬ or under the universal quantifier ∀.
Proof. Closure under recursive substitutions is obvious, and the fol-

lowing transformations show the remaining, positive claims of the proposi-
tion:

(∃y)Q(~x, y) ∨ (∃y)R(~x, y) ⇐⇒ (∃u)[Q(~x, u) ∨ R(~x, u)]

(∃y)Q(~x, y) & (∃y)R(~x, y) ⇐⇒ (∃u)[Q(~x, (u)0) & R(~x, (u)1)]

(∃z)(∃y)Q(~x, y, z) ⇐⇒ (∃u)R(~x, (u)0, (u)1)

(∃i ≤ z)(∃y)Q(~x, y, i) ⇐⇒ (∃u)[(u)0 ≤ z & Q(~x, (u)1, (u)0)

(∀i ≤ z)(∃y)Q(~x, y, i) ⇐⇒ (∃u)(∀i ≤ z)Q(~x, (u)i, i).

On the other hand, the set of semirecursive relations is not closed under
negation or the universal quantifier, since otherwise the basic halting rela-
tion

H(e, x) ⇐⇒ (∃y)T1(e, x, y)

would have a semirecursive negation and so it would be recursive by 4A.4,
which it is not. a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 85

86 4. Recursively enumerable sets

The graph of a partial function f(~x) is the relation

Gf (~x, w) ⇐⇒ f(~x) = w,(85)

and the next, simple proposition gives in many cases the easiest proofs of
recursiveness for partial functions:

4A.6. Proposition (Graph Lemma). A partial function f(~x) is re-

cursive if and only if its graph Gf (~x, w) is a semirecursive relation.

Proof. If f(~x) is recursive with code f̂ , then

Gf (~x, w) ⇐⇒ (∃y)[Tn(f̂ , ~x, y) & U(y) = w],

so that Gf (~x, w) is semirecursive; and if

f(~x) = w ⇐⇒ (∃u)R(~x, w, u)

with some recursive R(~x, w, u), then

f(~x) =
(
µuR(~x, (u)0, (u)1)

)

0
,

so that f(~x) is recursive. a
The last result in this section simplifies significantly many constructions.

4A.7. Proposition (Σ0
1-Selection Lemma). For every semirecursive

relation R(~x, w), there is a recursive partial function f(~x) such that for

all ~x,

(∃w)R(~x, w) ⇐⇒ f(~x)↓
(∃w)R(~x, w) =⇒ R(~x, f(~x)).

Proof. By the hypothesis, there exists a recursive relation P (~x, w, y)
such that

R(~x, w) ⇐⇒ (∃y)P (~x, w, y),(∗∗)

and the conclusion of the Lemma follows easily if we set

f(~x) =
(
µuP (~x, (u)0, (u)1)

)

0
. a

It is suggestive and sometimes convenient to use the notation

f(~x) = (νw)R(~x, w)(86)

for the partial function f(~x) where ν is read as some; but it is important
to remember that f(~x) is not uniquely determined by the semirecursive
relation R(~x), it needs a representation of R(~x) as in (∗∗) for its definition.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 86

4B. Recursively enumerable sets 87

Problems for Section 4A

x4A.1. Prove that the partial function

f(e, u) = 〈ϕe((u)0), . . . , ϕe((u)lh(u)−· 1)〉
is recursive.

x4A.2. Let R(~x, w) be a semirecursive relation such that for every ~x
there exist at least two numbers w1 6= w2 such that R(~x, w1) and R(~x, w2).
Prove that there exist two, total recursive functions f(~x), g(~x) such that
for all ~x,

R(~x, f(~x)) & R(~x, g(~x)) & f(~x) 6= g(~x).

x4A.3∗. Let R(~x, w) be a semirecursive relation such that for every ~x,
there exists at least one w such that R(~x, w).

(1) Prove that there exists a total recursive function f(n, ~x), such that

R(~x, w) ⇐⇒ (∃n)[w = f(n, ~x)].(87)

(2) Prove that if, in addition, for every ~x, there exist infinitely many
w such that R(~x, w), then there exists a total, recursive f(n, ~x) which
satisfies (87) and is “1-1 in n”, i.e., for all ~x, m, n,

m 6= n =⇒ f(m,~x) 6= f(n, ~x).

4B. Recursively enumerable sets

4B.1. Definition. A set A ⊆ N is recursively enumerable (r.e.), if
A = ∅ or some recursive total function f : N → N enumerates A,

A = f [N] = {f(0), f(1), . . . }.(88)

4B.2. Proposition. (1) The following are equivalent for any A ⊆ N:

(a) A is r.e.

(b) The relation x ∈ A is semirecursive, so that

A = Domain(g) = {x | g(x)↓}
for some recursive partial function g.

(c) A is finite, or there is a recursive injection f : N � N which enumer-

ates A, A = f [N].

(2) The sequence

W0, W1, . . .

enumerates the r.e. sets, so that the relation x ∈ We is semirecursive.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 87

88 4. Recursively enumerable sets

(3) A set A ⊆ N is recursive if and only if it is finite or there exists a

(strictly) increasing, recursive function which enumerates A,

A = {f(0) < f(1) < f(2) < · · · }.
Proof. For (3), first, we recall (as in x1A.12) that a function f : N → N

is strictly increasing if

f(n) < f(n + 1) (n ∈ N),

which implies immediately (by induction) that

n ≤ f(n);

it follows that if A is enumerated by an increasing, recursive f , then

x ∈ A ⇐⇒ (∃n ≤ x)[x = f(n)],

and A is recursive. For the other direction, if A is recursive and infinite,
then the function

f(0) = (µx)[x ∈ A]

f(n + 1) = (µx)[x > f(n) & x ∈ A]

is recursive, increasing and enumerates A.

(1) The implication (a) =⇒ (b) is trivial for A = ∅, and if A = f [N], then

x ∈ A ⇐⇒ (∃i)[x = f(i)].

The converse (b) =⇒ (a) is also trivial for A = ∅, and if x0 ∈ A and

x ∈ A ⇐⇒ (∃y)R(x, y),

then A is enumerated by the recursive total function

f(u) =

{
x0, if ¬R((u)0, (u)1),

(u)0, if R((u)0, (u)1).

Finally, the implication (c) =⇒ (a) is trivial, as is (a) =⇒ (c) for finite A.

It remains to show that if A is infinite and

A = {f(0), f(1), . . . }
for some recursive function f , then A is also enumerated by some one-to-
one recursive function. The basic idea is to “delete the repetitions” from
the enumeration by f , something that obviously leads to a total, one-to-one
recursive enumeration of A. For the rigorous proof of this proposition, let

B = {n | (∀i < n)[f(i) 6= f(n)]}
be the recursive set of the positions where new members of A are enumer-
ated by f ; then B = g[N] for some increasing g(n) by part (3), and A is
enumerated by the composition h(n) = f(g(n)), which is the composition
of two injections and hence injective.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 88

4B. Recursively enumerable sets 89

5 8 5 1 3 8 5 23 . . .� � �

Figure 5. Deletion of repetitions.

Part (2) follows by the characterization (b) of (1). a
4B.3. Corolary. Every recursive set is r.e., but there exist r.e. sets

which are not recursive, e.g.,

H ′ = {x | H((x)0, (x)1)}.(89)

Proof. If H ′ were recursive then the halting relation (73) would also
be recursive, since

H(e, x) ⇐⇒ 〈e, x〉 ∈ H ′. a
The class of r.e. sets has a very rich structure and it has been studied

intensely. Here we will confine ourselves to (very few) basic results, which
give an idea of its properties.

4B.4. Definition. A reduction of a set A to B, is any (total) recursive
function f which satisfies the equivalence

x ∈ A ⇐⇒ f(x) ∈ B.(90)

For any two sets A, B ⊆ N, we set:

A ≤m B ⇐⇒ there exists a reduction of A to B,

A ≤1 B ⇐⇒ there exists a one-to-one reduction of A to B,

A ≡ B ⇐⇒ there exists a reduction of A to B which is a permutation,

where f : N�→N is a permutation if it is a bijection, one-to-one and onto
N. Obviously,

A ≡ B =⇒A ≤1 B =⇒A ≤m B.

4B.5. Proposition. For all sets A, B, C,

A ≤m A and [A ≤m B & B ≤m C] =⇒A ≤m C,

and the same holds for the stronger reductions ≤1 and ≡; moreover, the

relation of recursive isomorphism ≡ is symmetric,

A ≡ B ⇐⇒ B ≡ A.

Proof. For the transitivity of these relations, we notice that if, by the
hypothesis

x ∈ A ⇐⇒ g(x) ∈ B and y ∈ B ⇐⇒ h(y) ∈ C,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 89

90 4. Recursively enumerable sets

for given recursive functions, then

x ∈ A ⇐⇒ h(g(x)) ∈ C,

so that the composition f(x) = h(g(x)) reduces A to C. a
4B.6. Definition. A set B is r.e. complete if it is r.e. and each r.e. A

is reducible to B by a recursive injection, A ≤1 B.

For example, the set H ′ that we defined in (89) is complete, because each
r.e. set is of the form We for some e, and

x ∈ We ⇐⇒ ϕe(x)↓ ⇐⇒ 〈e, x〉 ∈ H ′.

A little simpler is Post’s “diagonal” set

K = {x | (∃y)T1(x, x, y)} = {x | ϕx(x)↓},(91)

whose completeness is not quite immediate:

4B.7. Proposition. The set K is r.e. complete.

Proof. For any r.e. set

A = {x | g(x)↓}
(with recursive g(x)), set

h(x, y) = g(x)

and choose some code ĥ of h, so that for any y,

x ∈ A ⇐⇒ h(x, y)↓
⇐⇒ {ĥ}(x, y)↓
⇐⇒ {S1

1(ĥ, x)}(y)↓ .

This equivalence holds for every y, so in particular it holds for y = S1
1(ĥ, x)

and gives

x ∈ A ⇐⇒ {S1
1(ĥ, x)}(S1

1(ĥ, x))↓
⇐⇒ S1

1(ĥ, x) ∈ K,

which reduces A to K by the injection f(x) = S1
1(ĥ, x). a

The next, basic theorem shows in part that up to recursive isomorphism
there exists only one r.e. complete set. It is, however, much stronger than
this: it holds for all sets A, B, not only for recursively enumerable sets—and
this is what makes the proof not so simple.

4B.8. Theorem (Myhill’s Theorem). For any two sets A, B,

A ≤1 B & B ≤1 A =⇒A ≡ B.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 90

4B. Recursively enumerable sets 91

Proof. The argument is a constructive version of the classical Schröder-
Bernstein Theorem about sets, and it is based on two lemmas about non-
empty sequences of pairs

W = (x0, y0), (x1, y1), . . . , (xn, yn).(92)

A sequence W of this form is injective if

i 6= j =⇒ [xi 6= xj & yi 6= yj] (i, j ≤ n),

and good (as an approximation to an isomorphism) for A and B if it is
injective and in addition

xi ∈ A ⇐⇒ yi ∈ B (i ≤ n).

For any sequence of pairs W as in (92), we set

X = {x0, x1, . . . , xn}, Y = {y0, y1, . . . , yn}.
Lemma X. If A ≤1 B, then for every injective sequence (92) and each

x /∈ X, we can find some y /∈ Y such that the extension

W ′ = (x0, y0), (x1, y1), . . . , (xn, yn), (x, y)(93)

is injective, and if W is good, then W ′ is also good.

Prof of Lemma X. The hypothesis gives us a recursive one-to-one
function f : N � N such that

x ∈ A ⇐⇒ f(x) ∈ B.

We define by recursion

z0 = f(x)

zi+1 =

{
zi if zi /∈ Y,

f(xj) otherwise, if zi = yj ,

and we verify two basic properties of the sequence z0, z1,

(1) If W is injective, then

zi ∈ Y =⇒ z0, z1, . . . , zi are all distinct and {z0, . . . , zi} ⊆ f [X ∪ {x}].
Proof is by induction on i, and it is obvious at the basis since z0 = f(x).

At the induction step, we assume that zi+1 ∈ Y . This implies that zi ∈ Y ;
because if zi /∈ Y , then zi+1 = zi by the definition, which contradicts the
assumption that zi+1 ∈ Y . So the induction hypothesis assures us that
z0, z1, . . . , zi are all distinct and lie in f [X ∪ {x}]. It suffices to prove
that zi+1 is not in {z0, . . . , zi}. Notice that zi+1 6= z0, since z0 = f(x),
zi+1 = f(xj) for some j, x /∈ X and f is an injection. So it suffices to
derive a contradiction from the assumption that

zi+1 = zk+1 for some k < i,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 91

92 4. Recursively enumerable sets

and the definition gives us that

zi+1 = f(xj) where yj = zi and zk+1 = f(xs) where zk = ys.

Using this and the hypotheses that f and W are injective, we have

zi+1 = zk+1 =⇒ (f(xj) = f(xs)) =⇒ (xj = xs) =⇒ (yj = ys) =⇒ zi = zk;

and this contradicts the induction hypothesis.

Now (1) implies that for some j < n + 2, zj /∈ Y (since Y has n + 1
members), and the first claim in the Lemma holds if we set y = zj for the
least such j.

(2) If W is good, then for each i, x ∈ A ⇐⇒ zi ∈ B.

Proof. For i = 0, x ∈ A ⇐⇒ f(x) = z0 ∈ B, by the hypothesis on f .
Inductively, if zi /∈ Y with i > 0, then

x ∈ A ⇐⇒ zi+1 = zi ∈ B

by the induction hypothesis, and if zi ∈ Y , then

x ∈ A ⇐⇒ zi = yj ∈ B (for some j, by the induction hypothesis)

⇐⇒ xj ∈ A (because the given sequence is good)

⇐⇒ f(xj) = zi+1 ∈ B.

This completes the proof of the Lemma a
The symmetric Lemma Y gives us for each injective sequence W and

each y /∈ Y some x /∈ X such that the extension W ′ = W, (x, y) is injective
and also good, if W is good. The construction of the required recursive per-
mutation proceeds by successive application of these two Lemmas starting
with the good sequence

W0 = 〈0, f(0)〉, X0 = {0}, Y0 = {f(0)}.
Odd step 2n + 1. Let y = min(N \ Y2n) and extend W2n by applying

Lemma Y, so that y ∈ Y2n+1.
Even step 2n+2. Let x = min(N\X2n+1) and extend W2n+1 by applying

Lemma X so that x ∈ X2n+2.
In the end, the union

⋃
n Wn is the graph of a permutation h : N�→N

which reduces A to B,

x ∈ A ⇐⇒ h(x) ∈ B.

The recursiveness of h follows from the construction and completes the
proof that A ≡ B. a

4B.9. Proofs of undecidability. If A ≤m B, and B is recursive, then
A is also recursive; it follows that if A ≤m B and A is not recursive, then
B is not recursive either. Together with the completeness of K, this simple
proposition is the first, basic tool for the proof of non-recursiveness of sets

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 92

4B. Recursively enumerable sets 93

and relations: because if we show that A ≤m B with some A which is not
recursive (e.g., K), then it follows that B is not recursive.

4B.10. Proposition (Example). The set

A = {e | We 6= ∅}
is r.e. but not recursive.

Proof. The set A is r.e. because the relation

e ∈ A ⇐⇒ (∃x)[x ∈ We]

is Σ0
1. To show that K ≤1 A, we set

g(e, x) = µyT1(e, e, y)

so that the value g(e, x) is independent of x,

g(e, x) =

{
µyT1(e, e, y), if (∃y)T1(e, e, y),

↑, otherwise,

and, for every x,
e ∈ K ⇐⇒ g(e, x)↓ ,

so that
e ∈ K ⇐⇒ (∃x)g(e, x)↓ ;

it follows that if ĝ is a code of g(x, y), then

e ∈ K ⇐⇒ (∃x)[{ĝ}(e, x)↓]

⇐⇒ (∃x)[{S1
1(ĝ, e)}(x)↓]

⇐⇒ W
S1

1
(̂g,e)

6= ∅
⇐⇒ S1

1(ĝ, e) ∈ A,

so K ≤1 A and A is not recursive. a
We notice that with this construction,

e ∈ K ⇐⇒ W
S1

1
(̂g,e)

= N

⇐⇒ W
S1

1
(̂g,e)

has at least 2 members

so that the sets

B = {e | We = N}, C = {e | We has at least 2 members}
are not recursive either.

4B.11. A recursive separation of two sets A and B is any recursive
set C such that A ⊆ C and B ∩ C = ∅.

If A ∩ B 6= ∅, then, obviously, there is no separation of A from B, and
if A is recursive and A ∩ B = ∅, then, obviously again, A separates itself
from B.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 93

94 4. Recursively enumerable sets

4B.12. Proposition (Kleene). There exist r.e. sets K0 and K1 such

that K0 ∩ K1 = ∅ and there is no recursive separation of K0 from K1.

Proof. We set

K0 = {e | (∃y)[T1((e)0, e, y) & (∀z ≤ y)¬T1((e)1, e, z)]},
K1 = {e | (∃z)[T1((e)1, e, z) & (∀y < z)¬T1((e)0, e, y)]},

and we show first that K0∩K1 = ∅ by contradiction: because if e ∈ K0∩K1

and

y∗ = µy[T1((e)0, e, y) & (∀z ≤ y)¬T1((e)1, e, z)]

z∗ = µz[T1((e)1, e, z) & (∀y < z)¬T1((e)0, e, y)],

then, by the definitions,

y∗ < z∗ =⇒ T1((e)0, e, y
∗) & (∀y < z∗)¬T1((e)0, e, y)

=⇒ T1((e)0, e, y
∗) & ¬T1((e)0, e, y

∗),

and the opposite hypothesis z∗ ≤ y∗ also gives a contradiction by a similar
argument.

To show that K1 and K2 are recursively inseparable, again by contradic-
tion, suppose We, Wm r.e. sets such that

K0 ⊆ We, K1 ⊆ Wm, We ∩ Wm = ∅, We ∪ Wm = N,

and let t = 〈m, e〉; we compute:

t ∈ We =⇒ (∃z)T1(e, 〈m, e〉, z) & (∀y)¬T1(m, 〈m, e〉, y)

because We ∩ Wm = ∅
=⇒ (∃z)[T1(e, 〈m, e〉, z) & (∀y < z)¬T1(m, 〈m, e〉, y)]

=⇒ 〈m, e〉 ∈ K1 by the definition

=⇒ 〈m, e〉 ∈ Wm because K1 ⊆ Wm,

so t ∈ We∩Wm which is absurd. It follows that t ∈ Wm, since We∪Wm = N,
but the symmetric computation derives again from this that t ∈ Wm ∩We,
which is absurd. a

4B.13. Turing reducibility. A set A is Turing reducible to a set B if
its characteristic function χA is recursive in the characteristic function χB
of B, in symbols

A ≤T B ⇐⇒ χA ∈ R(N0, χB).(94)

Quite obviously,

A ≤m B =⇒A ≤T B,

so Turing reducibility is weaker than the reducibilities we have been study-
ing. It is also the most natural: A ≤T B means that that some algorithm

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 94

4B. Recursively enumerable sets 95

with access to all the values of χB can decide whether x ∈ A or not. The

corresponding equivalence relation

A ≡T B ⇐⇒ A ≤T B & B ≤T A.

is the most natural notion of “recursive equivalence” for sets. This is triv-
ially a reflexive and transitive relation, Problem x4B.12. Its equivalence
classes are the Turing degrees (of unsolvability)

degT (A) = {B | B ≡T A},
and the preordering ≤T induces on them the partial ordering

a ≤T b ⇐⇒ (∃A ∈ a, B ∈ b)[A ≤T B]

⇐⇒ (∀A ∈ a, B ∈ b)[A ≤T B].

We also set

0 = deg(∅) (= deg(A) for every recursive A), 0′ = deg(K),

where K is the canonical, complete recursively enumerable set (91).

The partial ordering ≤T on the set D of Turing degrees has been and still
is one of the most extensively studied objects of recursion theory since it
was introduced by Emil Post in 1944. We will not study it in these notes,
but it is worth stating three of the most basic results about it.

4B.14. Theorem. (1) For every set A ⊆ N there exists some B with

higher degree of unsolvability, deg(A) <T deg(B).

(2) (Kleene-Post). There exist sets A, B ⊆ N which are incomparable

with respect to ≤T , i.e., A 6≤T B and B 6≤T A.

(3) (Friedberg-Muchnik). There exist r.e. sets A, B ⊆ N which are in-

comparable with respect to ≤T , i.e., A 6≤T B and B 6≤T A, therefore also

0 <T deg(A) <T 0′

and the same for B.

The improvement (3) of (2) is stated separately because it was an open
problem (“Post’s Problem”) from 1944 until its solution in 1956. The
priority method by which it was finally solved is still used extensively and
is one of the basic methods of proof in computability theory.

Problems for Section 4B

x4B.1. Prove that there is a recursive, partial function f(e), such that

We 6= ∅=⇒ [f(e)↓ & f(e) ∈ We].

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 95

96 4. Recursively enumerable sets

x4B.2. For each of the following propositions decide whether it is true
for arbitrary, recursively enumerable sets A and B. Prove your positive
answers and give counterexamples for the negative ones.

(1) A ∩ B is r.e.
(2) A ∪ B is r.e.
(3) A \ B = {x ∈ A | x /∈ B} is r.e.

x4B.3. Prove that every infinite r.e. set has an infinite, recursive subset.

x4B.4. Are the following claims true or false? Give proofs or counterex-
amples.

(1) There is a (total) recursive function u1(e, m) such that for all e, m,

Wu(e,m) = We ∪ Wm.

(2) There is a (total) recursive function u2(e, m) such that for all e, m,

Wu(e,m) = We ∩ Wm.

(3) There is a (total) recursive function u3(e, m) such that for all e, m,

Wu(e,m) = We \ Wm.

x4B.5. Does there exist a total, recursive function f(e, m) such that for
all e, m,

Wf(e,m) = {x + y | x ∈ We and y ∈ Wm}?
You must prove your answer.

x4B.6. Let f : N → N be a (total) recursive function, A ⊆ N and let

f [A] = {f(x) | x ∈ A}
f−1[A] = {x | f(x) ∈ A}

be the image and the inverse image of A by f . For each one of the following
claims decide whether it is true or not, prove your positive answers and give
counterexamples for the negative ones.

(1) If A is r.e., is f [A] also r.e.?
(2) If A is r.e., is f−1[A] also r.e.?
(3) If A is recursive, is f [A] also recursive?
(4) If A is recursive, is f−1[A] also recursive?

x4B.7∗. The closure A of a set A ⊆ N under a partial function f : N ⇀ N

is the smallest set B such that B ⊇ A and B is closed for f , i.e.,

[x ∈ B & f(x)↓] =⇒ f(x) ∈ B.

(1) Prove that if A is r.e. and f(x) is recursive, then the closure A of A
under f is also r.e.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 96

4B. Recursively enumerable sets 97

(2) Prove that there exists a primitive recursive function u(e, m), such
that for all e and m, the set Wu(e,m) is the closure W e of We under the
recursive partial function ϕm with code m.

x4B.8. Prove that the set

K0 = {e | (∃y)[T1((e)0, e, y) & (∀z ≤ y)¬T1((e)1, e, z)]}

is r.e.-complete.

x4B.9. (The reduction property for the class of r.e. sets). Prove that
if A and B are r.e., then there exist r.e. sets A1, B1, such that

A1 ⊆ A, B1 ⊆ B, A1 ∪ B1 = A ∪ B, A1 ∩ B1 = ∅.

C

D

A

B

A1 = (A \ B) ∪ C, B1 = (B \ A) ∪ D

x4B.10 (The separation property for the class of r.e. complements).
Prove that if A and B are complements of some r.e. sets Ac and Bc and
A ∩ B = ∅, then there exists a recursive C which separates A from B, i.e.,

A ⊆ C, C ∩ B = ∅.

Hint. Apply the preceding Problem to the complements Ac and Bc.

x4B.11. One of the two following propositions is true while the other is
not. Give a proof of the true one and a counterexample of the one which
is not true.

(1) If A ⊆ B and A, Bc are r.e., then there exists a recursive set C such
that A ⊆ C ⊆ B.

(2) If A ⊆ B and Ac, B are r.e., then there exists a recursive set C such
that A ⊆ C ⊆ B.

x4B.12. Prove that A ≤T B & B ≤T C =⇒A ≤T C.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 97

98 4. Recursively enumerable sets

4C. Productive, creative and simple sets

Up until now, the only r.e., non-recursive sets that we have met are r.e.
complete, and the question arises whether every r.e. set is either recursive
or r.e. complete. The question was asked by Emil Post in his 1944 paper
which introduced Turing reducibility, and it was his main motivation for
posing Post’s Problem, whether there exist Turing-incomparable r.e. sets.
He could not prove Part (3) of Theorem 4B.14 which solves this problem,
but he was able to show that there are r.e. sets which are neither recursive
nor r.e. complete using the stronger reducibility A ≤1 B. We present here
his constructions, which have applications beyond solving the basic problem
for which they were introduced.

4C.1. Definition. A function p : N � N is a productive function
for a set B if it is recursive, one-to-one and

We ⊆ B =⇒ p(e) ∈ B \ We;

and B is productive if it has a productive function.

A set A is creative if it is r.e. and its complement

Ac = {x ∈ N | x /∈ A}
is productive.

4C.2. Proposition. The set K is creative, with productive function for

Kc the identity p(e) = e.

Proof. We must show that

We ⊆ Kc =⇒ e ∈ Kc \ We,

i.e.,

(∀t)[t ∈ We =⇒ t /∈ K] =⇒ [e /∈ K & e /∈ We].

The hypothesis of the implication is

(∀t)[{e}(t)↓ =⇒{t}(t) ↑]

and the conclusion is simply

{e}(e) ↑,

because

e /∈ K ⇐⇒ e /∈ We ⇐⇒ {e}(e) ↑;

and the hypothesis implies the conclusion, because if {e}(e)↓ , then setting
t = e in the hypothesis we have {e}(e) ↑, which is absurd. a

4C.3. Corolary. Every r.e. complete set is creative.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 98

4C. Productive, creative and simple sets 99

We leave the proof for Problem, x4C.1.

The converse of this corollary also holds and gives a “structural” char-
acterization of r.e. completeness, but its proof is not so simple and we
will put it off until the next section. In the remainder of this section, we
will construct non-recursive r.e. sets which are not creative, and hence not
complete.

4C.4. Proposition. Every productive set B has an infinite, r.e. subset.

Proof. The idea is to define a function f : N → N by the recursion

f(0) = e0, where We0
= ∅

f(x + 1) = some code of Wf(x) ∪ {p(f(x))}
where p(e) is the given productive function for B. If we achieve this, then
by an easy induction we can check that for every x,

Wf(x) (Wf(x+1) ⊆ B,

so that the set

A = Wf(0) ∪ Wf(1) ∪ . . . = {y | (∃x)[y ∈ Wf(x)}
is an r.e., infinite subset of B. For the computation of the required h(w, x)
such that

f(x + 1) = h(f(x), x),

we set first

R(e, y, x) ⇐⇒ x ∈ We ∨ x = y.

This is a semirecursive relation, and so for some ĝ,

x ∈ We ∪ {y} ⇐⇒ {ĝ}(e, y, x)↓
⇐⇒ {S2

1(ĝ, e, y)}(x)↓ ,

which means that if we set

u(e, y) = S2
1(ĝ, e, y),

then

Wu(e,y) = We ∪ {y}.
Finally we define

h(w, x) = u(w, p(w)),

and in the definition of f , we put

f(x + 1) = h(f(x), x) = u(f(x), p(f(x))).

It follows that

Wf(x+1) = Wf(x) ∪ {p(f(x))}
as the proof required. a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 99

100 4. Recursively enumerable sets

4C.5. Definition. A set A is simple, if it is r.e. and its complement
Ac is infinite and does not have an infinite, r.e. subset, i.e.,

We ∩ A = ∅=⇒ We is finite.

4C.6. Theorem (Emil Post). There exists a simple set.

Proof. The relation

R(x, y) ⇐⇒ y ∈ Wx & y > 2x

is semirecursive, so by the Σ0
1-Selection Lemma 4A.7 there exists a recur-

sive, partial function f(x) such that

(∃y)[y ∈ Wx & y > 2x] ⇐⇒ f(x)↓
⇐⇒ f(x)↓ & f(x) ∈ Wx & f(x) > 2x.

The required set is the image of f ,

(95) A = {f(x) | f(x)↓} = {y | (∃x)[f(x) = y]}
= {y | (∃x)[f(x) = y & 2x < y]},

where the last equation follows from the definition of the relation R(x, y).

(1) The set A is semirecursive by its definition, because the graph of f(x)
is Σ0

1.

(2) The complement Ac is infinite, because

y ∈ A & y ≤ 2z =⇒ (∃x)[y = f(x) & 2x < y ≤ 2z]

=⇒ (∃x)[y = f(x) & x < z],

which implies that at most z from the 2z + 1 numbers ≤ 2z belong to A;
it follows that some y ≥ z belongs to the complement Ac, and since this
holds for every z, Ac is infinite.

(3) For each infinite We, We ∩ A 6= ∅, because

We infinite =⇒ (∃y)[y ∈ We & y > 2e]

=⇒ f(e)↓ & f(e) ∈ We

=⇒ f(e) ∈ We ∩ A. a

4C.7. Corolary. Simple sets are neither recursive nor r.e. complete;

so there exists an r.e., non-recursive set which is not r.e. complete.

Proof. A simple set A cannot be recursive, because then its infinite
complement would be r.e. without intersecting A; and it cannot be r.e.
complete, because it is not creative by Proposition 4C.4. a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 100

4D. The 2nd Recursion Theorem 101

Problems for Section 4C

x4C.1. Prove that if A is creative, B is r.e. and A ≤1 B, then B is also
creative.

x4C.2. Prove that if A is simple and B is r.e., infinite, then the inter-
section A ∩ B is infinite.

x4C.3∗. Prove that if A and B are simple sets, then their intersection
A ∩ B is also simple.

x4C.4. For the next two claims, decide whether they are true or not,
and justify your answer by a proof or a counterexample:

(1) For every infinite r.e. set A, there is a total, recursive function f ,
such that for every x,

f(x) > x and f(x) ∈ A.

(2) For every r.e. set B with infinite complement, there is a total recursive
function g, such that for every x,

g(x) > x and g(x) /∈ B.

x4C.5∗. (1) Prove that if A is simple, f(x) is total, recursive and one-
to-one and the inverse image f−1[A] has infinite complement, then the set
f−1[A] is simple.

(2) Prove that if we omit any one of the hypotheses total, one-to-one,
infinite complement of f−1[A], then the conclusion of Part (1) does not
necessarily hold.

4D. The 2nd Recursion Theorem

In this section we will prove a misleadingly simple theorem of Kleene
which has surprisingly strong and unexpected consequences. We will use it
here for just one, important application, another theorem of Myhill which
identifies the r.e., complete and the creative sets, but we will also find it
very useful later in Chapter 6.

4D.1. The 2nd Recursion Theorem. For every recursive, partial func-

tion f(z, ~x), there exists a number z∗ such that for all ~x,

ϕz∗(~x) = {z∗}(~x) = f(z∗, ~x).(96)

In fact, there is a primitive recursive function h(e) (which depends only
on the length n of the list ~x = x1, . . . , xn) such that if f = ϕe, then (96)
holds with z∗ = h(e), i.e., for all e, ~x),

ϕh(e)(~x) = ϕe(h(e), ~x).(97)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 101

102 4. Recursively enumerable sets

The theorem gives immediately some simple propositions which show
that the coding of recursive partial functions has many unexpected (and
somehow peculiar) properties.

4D.2. Proposition (Examples). There exist natural numbers z1 – z4

such that

ϕz1
(x) = z1, ϕz2

(x) = z2 + x, Wz3
= {z3}, Wz4

= {0, . . . , z4}.
Proof. For z1, we apply the 2nd Recursion Theorem to the function

f(z, x) = z

and we set z1 = z∗; it follows that

ϕz1
(x) = f(z1, x) = z1.

The rest of the proofs are similar and equally simple. a
Proof of the 2nd Recursion Theorem. Let

g(z, ~x) = f(S1
n(z, z), ~x).

This is a recursive partial function, and so the Normal Form Theorem
supplies us with a code c of it, so that

{S1
n(c, z)}(~x) = {c}(z, ~x) = g(z, ~x) = f(S1

n(z, z), ~x).

The conclusion of the 2nd Recursion Theorem follows from this equation if
we set

z∗ = S1
n(c, c).

For the stronger version (97), choose d so that

ϕd(e, z, ~x) = ϕe(S
1
n(z, z), ~x).

By the Sm
n -Theorem,

c = S1
n+1(d, e)

is a code of ϕe(S
1
n(z, z), ~x), and the required function is:

h(e) = S1
n(c, c) = S1

n(S1
n+1(d, e), S1

n+1(d, e)). a
As a much more significant example of the strength of the 2nd Recursion

Theorem, we show the converse of Corollary 4C.3, i.e., that every creative
set is r.e. complete (and something more).

4D.3. Theorem (Myhill). The following are equivalent for any r.e. set A:

(1) There exists a recursive partial function p(e) such that

We ∩ A = ∅=⇒
(
p(e)↓ & p(e) ∈ Ac \ We

)
.

(2) There exists a total recursive function q(e) such that

We ∩ A = ∅=⇒ q(e) ∈ Ac \ We.(98)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 102

4D. The 2nd Recursion Theorem 103

(3) A is creative, i.e., (98) holds with a one-to-one recursive q(e).

(4) A is r.e. complete.

In particular, an r.e. set A is complete if and only if it is creative.

Proof. (1) ⇒ (2). For the given, recursive partial function p(e), there
exists by the 2nd Recursion Theorem a number z such that

{S1
1(z, e)}(t) = ϕz(e, t) =

{
ϕe(t), if p(S1

1(z, e))↓ ,

↑, otherwise.

We set q(e) = p(S1
1(z, e)) for this z and we notice that q(e) is a total

function, because

q(e) = p(S1
1(z, e)) ↑ =⇒ WS1

1
(z,e) = ∅ (by the definition)

=⇒ p(S1
1(z, e))↓ .

Moreover, since q(e)↓ , WS1
1
(z,e) = We by its definition, so

We ∩ A = ∅=⇒ q(e) = p(S1
1(z, e)) ∈ Ac \ WS1

1
(z,e) = Ac \ We

which is what we wanted to prove.

(2) ⇒ (3) This implication does not need the 2nd Recursion Theorem
and could have been given in Section 4C.

For the given function q(e) which satisfies (98), we first notice that there
exists a recursive partial function h(e) such that

Wh(e) = We ∪ {q(e)};
and then we set, recursively,

g(0, e) = e

g(i + 1, e) = h(g(i, e)),

so that (easily, by induction on i)

Wg(i+1,e) = We ∪ {q(g(0, e)), q(g(1, e)), . . . , q(g(i, e))}.
It follows that for i > 0,

(99) We ∩ A = ∅
=⇒ q(g(i, e)) ∈ Ac \ (We ∪ {q(g(0, e)), q(g(1, e)), . . . , q(g(i − 1, e))}),

and, more specifically,

We ∩ A = ∅=⇒ (∀j < i)[q(g(i, e)) 6= q(g(j, e))].(100)

Finally, we set

f(0) = q(0),

and for the (recursive) definition of f(e + 1), we first compute successively
the values q(g(0, e + 1)), . . . , q(g(e + 1, e + 1)) and we consider two cases.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 103

104 4. Recursively enumerable sets

Case 1. If these values are all distinct, then one of them is different from
f(0), . . . , f(e), and we set

j = (µi ≤ (e + 1))(∀y ≤ e)[q(g(i, e + 1)) 6= f(y)]

f(e + 1) = q(g(j, e + 1)).

Case 2. There exist i, j ≤ e + 1, i 6= j, such that

q(g(i, e + 1)) = q(g(j, e + 1)).

In this case we set

f(e + 1) = max{f(0), . . . , f(e)} + 1.

It is obvious from the definition that f(e) is recursive and one-to-one,
and that it is a productive function for Ac follows immediately from (100)
and (99).

(3) ⇒ (4). If q(e) is a productive function for Ac and B is any r.e. set,
then by the 2nd Recursion Theorem there exists a number z such that

ϕz(x, t) =

{
1, if x ∈ B & t = q(S1

1(z, x)),

↑, otherwise;

the function f(x) = q(S1
1(z, x)) is one-to-one, as a composition of injections,

and reduces B to A, as follows.

If x ∈ B, then WS1
1
(z,x) = {q(S1

1(z, x)} = {f(x)}, and

f(x) /∈ A =⇒ WS1
1
(z,x) ∩ A = ∅

=⇒ q(S1
1(z, x)) ∈ Ac \ WS1

1
(z,x)

=⇒ f(x) ∈ Ac \ {f(x)},
which is absurd; so f(x) ∈ A. On the other hand, if x /∈ B, then WS1

1
(z,x) =

∅ ⊆ Ac, so f(x) = q(S1
1(z, x)) ∈ Ac.

Finally, (4) ⇒ (1) by Corollary 4C.3. a

Problems for Section 4D

x4D.1. Prove that for some z, Wz = {z, z + 1, . . . } = {x | x ≥ z}.
x4D.2. Prove that for some z, ϕz(t) = t · z.

x4D.3∗. Are they true or not—and you must prove your answers:

(1) There is a recursive, partial function f(e), such that for every e,

if We is infinite, then f(e)↓ & f(e) ∈ We & f(e) > e.(∗)
(2) There exists a total recursive function f(e) which satisfies (∗).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 104

4D. The 2nd Recursion Theorem 105

x4D.4. Prove that for every recursive total function f(z), either there
exists some z such that f(z) is odd, and for all x,

ϕz(x) = f(z + x),

or there exists some w such that f(w) is even, and for all x,

ϕw(x) = f(2w + x + 1).

x4D.5. Determine whether it is true or false and prove your answer: for
every recursive total function f(z), there exists some z such that

Wf(z) = Wz.

x4D.6. Determine whether it is true or false and prove your answer: for
every recursive total function f(z), there exists a z such that

ϕf(z)(t) = ϕz(t) (t ∈ N).

x4D.7. (1) Prove that for every recursive total function f(x), there ex-
ists some number z such that

Wz = {f(z)}.
(2) Prove that there exists some number z such that

ϕz(z)↓ and Wz = {ϕz(z)}.
x4D.8∗. Let g(e) be a recursive, partial function such that for all e,

if We = N, then g(e)↓ ;

prove that there exist numbers m and k, such that

Wm = {0, 1, . . . , k} and g(m)↓ .

Hint: Apply the 2nd Recursion Theorem to the partial function

f(m, x) =

{
1, if (∀y ≤ x)¬T1(ĝ, m, y),

↑, otherwise,

where g(e) = {ĝ}(e).
x4D.9∗. Let g(e) be a recursive partial function such that for all e,

if We = ∅, then g(e)↓ ;

Prove that there is some m such that Wm = {m} and g(m)↓ .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 105

CHAPTER 5

RECURSION AND DEFINABILITY

In this chapter we will study those relations on the natural numbers which
can be “constructed” starting with the recursive relations and applying
repeatedly the non-effective operations of first-order logic, the quantifiers
∃ and ∀. Basic corollaries of this study are the classical theorems of Tarski,
Gödel and Church in Section 5D, but there are many others, in logic, set
theory and even mathematical analysis.

5A. The arithmetical hierarchy

A semirecursive relation R(~x) satisfies an equivalence

R(~x) ⇐⇒ (∃y)Q(~x, y)

with some recursive Q(~x, y). To verify whether R(~x) holds for a particular
~x we need, in principle, to check all the decidable propositions

Q(~x, 0), Q(~x, 1) . . . ,

so we can say that the “distance in complexity” of R(~x) from the recursive
Q(~x, y) is just one existential quantifier. The next definition makes precise
this intuitive notion of “distance from decidability” for relations on N. It
is the main tool for the classification of complex, undecidable relations.

5A.1. The arithmetical classes. The classes of relations Σ0
k, Π0

k, ∆0
k

are defined by the following recursion on k ≥ 1:

Σ0
1 : the semirecursive relations

Π0
k = ¬Σ0

k : the negations (complements) of relations in Σ0
k

Σ0
k+1 = ∃Π0

k : the relations which satisfy an equivalence of the form

P (~x) ⇐⇒ (∃y)Q(~x, y) with some Q(~x, y) is Π0
k

∆0
k = Σ0

k ∩ Π0
k : the relations which are both Σ0

k and Π0
k.

A set A ⊆ N is in one of these classes Γ if its membership relation x ∈ A
belongs to Γ.

107

108 5. Recursion and definability

Suppose, for example that Q(x, y) is a recursive relation and put

R(x) ⇐⇒ Q(x, y) is true for infinitely many y′s;

It follows that R(x) is Π0
2, since

R(x) ⇐⇒ (∀t)(∃y)[R(x, y) & y > t].

5A.2. Canonical forms. The arithmetical classes Σ0
k, Π0

k are easily
characterized by the following “canonical forms”, i.e., P (~x) belongs to one
of these classes Γ if and only if it is equivalent with a relation in the canon-
ical form for Γ with some recursive relation Q:

Σ0
1 : (∃y)Q(~x, y)

Π0
1 : (∀y)Q(~x, y)

Σ0
2 : (∃y1)(∀y2)Q(~x, y1, y2)

Π0
2 : (∀y1)(∃y2)Q(~x, y1, y2)

Σ0
3 : (∃y1)(∀y2)(∃y3)Q(~x, y1, y2, y3)

...

For example, if the relation P (~x) is Π0
2, then, by the definitions,

P (~x) ⇐⇒ ¬P1(~x) with P1 ∈ Σ0
2,

⇐⇒ ¬(∃y1)P2(~x, y1) with P2 ∈ Π0
1,

⇐⇒ ¬(∃y1)¬P3(~x, y1) with P3 ∈ Σ0
1,

⇐⇒ ¬(∃y1)¬(∃y2)Q(~x, y1, y2) with Q recursive,

⇐⇒ (∀y1)(∃y2)Q(~x, y1, y2)

A full proof of this for every Σ0
k, Π0

k can be given easily by induction on k.

5A.3. Theorem. (1) For every k ≥ 1, the classes Σ0
k, Π0

k and ∆0
k are

closed under recursive substitutions and under the operators &, ∨, ∃≤ and

∀≤. Moreover, for every k ≥ 1:

• The class ∆0
k is closed under negation ¬.

• The class Σ0
k is closed under the existential quantifier ∃.

• The class Π0
k is closed under the universal quantifier ∀.

(2) For every k ≥ 1,

Σ0
k ⊆ ∆0

k+1,(101)

and so the arithmetical classes satisfy the following diagram of inclusions :

Σ0
1 Σ0

2 Σ0
3

⊆ ⊆ ⊆ ⊆ ⊆ ⊆
∆0

1 ∆0
2 ∆0

3 · · ·
⊆ ⊆ ⊆ ⊆ ⊆ ⊆

Π0
1 Π0

2 Π0
3

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 108

5A. The arithmetical hierarchy 109

Proof. First we show the closure of all arithmetical classes under re-
cursive substitutions, by induction on k. This fact is known for k = 1 by
Proposition 4A.5, and inductively (for the case Σ0

k+1) we compute:

P (~x) ⇐⇒ R(f1(~x), . . . , fn(~x))

⇐⇒ (∃y)Q(f1(~x), . . . , fn(~x), y), with Q ∈ Π0
k, by the definition

⇐⇒ (∃y)Q′(~x, y) with Q′ ∈ Π0
k by the induction hypothesis.

The rest of Part (1) is easily checked, by induction on k and applications
of the transformations in the proof of Proposition 4A.5.

Part (2) is also proved by induction on k, where, at the basis, if

P (~x) ⇐⇒ (∃y)Q(~x, y)

with a recursive Q, then P is certainly Σ0
2, since every recursive relation is

Π0
1. It is also Π0

2, since, obviously,

P (~x) ⇐⇒ (∀z)(∃y)Q(~x, y)

and the relation
Q1(~x, z, y) ⇐⇒ Q(~x, y)

is recursive. The proof at the induction step is exactly the same, and the
inclusions in the diagram follow easily from (101). a

More interesting is the following theorem which justifies the name “hier-
archy” for the classes Σ0

k, Π0
k:

5A.4. The Arithmetical Hierarchy Theorem. For all n, k ≥ 1:

(1) (Enumeration for Σ0
k) There is an (n + 1)-place relation Sk,n(e, ~x)

in the class Σ0
k which enumerates the n-place, Σ0

k relations: i.e., an n-ary

relation P (~x) is Σ0
k if and only if for some e,

P (~x) ⇐⇒ Sk,n(e, ~x).

(2) (Enumeration for Π0
k) There is an (n + 1)-place relation Pk,n(e, ~x)

in the class Π0
k which enumerates the n-place, Π0

k relations: i.e., an n-ary

relation P (~x) is Π0
k if and only if for some e,

P (~x) ⇐⇒ Pk,n(e, ~x).

(3) (Hierarchy) The inclusions in the diagram of Proposition 5A.3 are

all strict, i.e.,

Σ0
1 Σ0

2 Σ0
3

((((((

∆0
1 ∆0

2 ∆0
3 · · ·

((((((

Π0
1 Π0

2 Π0
3

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 109

110 5. Recursion and definability

Proof. For (1) and (2) we set recursively

S1,n(e, ~x) ⇐⇒ (∃y)Tn(e, ~x, y), Pk,n(e, ~x) ⇐⇒ ¬Sk,n(e, ~x)

Sk+1,n(e, ~x) ⇐⇒ (∃y)Pk,n+1(e, ~x, y),

and the proofs are easy, by induction on k. For (3), we observe that the
diagonal relation

Dk(x) ⇐⇒ Sk,1(x, x)

is Σ0
k but cannot be Π0

k; because if it were, then for some e we would have,

¬Sk,1(x, x) ⇐⇒ Sk,1(e, x)

which is absurd for x = e. It follows that for each k, there exist relations
which are Σ0

k but not Π0
k, and from this follows easily the strictness of all

inclusions in the diagram. a
5A.5. A (complete) classification of a relation P (~x) in the arithmetical

hierarchy is the determination of the “least” arithmetical class to which
P (~x) belongs, i.e., the proof of a proposition of the form

P ∈ Σ0
k \ Π0

k or P ∈ Π0
k \ Σ0

k or P ∈ ∆0
k+1 \ (Σ0

k ∪ Π0
k)

for some k. For example, in 4B.10 we showed that

{e | We 6= ∅} ∈ Σ0
1 \ Π0

1.

The complete classification of a relation is in some cases very difficult, so
we often settle for the computation of some “upper bound”, namely some
k such that P ∈ Σ0

k or P ∈ Π0
k. The basic method for the computation

of some “lower” bound, when this is feasible, is the proof that the given
relation is complete in some class Σ0

k or Π0
k as in the next result.

5A.6. Proposition. (1) The set F = {e | ϕe is total} is in Π0
2 \ Σ0

2.

(2) The set Fin = {e | We is finite} is in Σ0
2 \ Π0

2.

Proof. (1) The upper bound is obvious, since

e ∈ F ⇐⇒ (∀x)(∃y)T1(e, x, y).

To show by contradiction that F is not Σ0
2, we consider any relation P (x)

in Π0
2. By the definition, there is a recursive Q(x, u, v) such that

P (x) ⇐⇒ (∀u)(∃v)Q(x, u, v.)

Set

f(x, u) = µv Q(x, u, v).

If f̂ is a code of the (recursive, partial) f(x, u, v), then

P (x) ⇐⇒ (∀u)[f(x, u)↓]

⇐⇒ (∀u)[{f̂}(x, u)↓

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 110

5A. The arithmetical hierarchy 111

⇐⇒ (∀u)[{S1
1(f̂ , x)}(u)↓]

⇐⇒ S1
1(f̂ , x) ∈ F ;

it follows that if F were Σ0
2, then every Π0

2 relation would be Σ0
2, which

contradicts Part (3) of the Hierarchy Theorem 5A.4.

(2) The upper bound is again obvious,

e ∈ Fin ⇐⇒ (∃k)(∀x)[x ∈ We =⇒x ≤ k].

For the lower bound, let P (x) be any Σ0
2 relation, so that

P (x) ⇐⇒ (∃u)(∀v)Q(x, u, v)

with some recursive Q. We set

g(x, u) = µy (∀i ≤ u)¬Q(x, i, (y)i),

so that if ĝ is a code of g, then

(∃u)(∀v)Q(x, u, v) ⇐⇒ {u | g(x, u)↓} is finite

⇐⇒ {u | {ĝ}(x, u)↓} is finite

⇐⇒ {u | {S1
1(ĝ, x)}(u)↓} is finite

⇐⇒ S1
1(ĝ, x) ∈ Fin.

This implies that Fin is not Π0
2, because if it were, then every Σ0

2 relation
would be Π0

2, which it is not. a
The upper bound computations in this proof were trivial, and indeed

they are usually very easy. When they are not completely obvious, their
derivation involves applying the closure properties of Theorem 5A.3 and, in
some cases, a good choice for the definition of the relation we are classifying.
For example, in classifying Fin, we used without comment the equivalence

We is finite ⇐⇒ We is bounded;

we might have chosen to start with the more direct

We is finite ⇐⇒ (∃y, n)[We = {(y)0, . . . , (y)n}]

which is true enough but does not lead easily to the conclusion that Fin is
Σ0

2 (check it out).

Another trick which often helps, especially in the derivation of lower
bounds, is to work with Π0

k rather than Σ0
k: i.e., to prove that P (~x) is

Σ0
k-complete by showing that ¬P (~x) is Π0

k-complete. This, in fact, gives
an easier argument for (2) of the Proposition (check it out).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 111

112 5. Recursion and definability

Problems for Section 5A

x5A.1. Classify in the arithmetical hierarchy the set

A = {e | We ⊆ {0, 1}}.

x5A.2. Classify in the arithmetical hierarchy the set

B = {e | We is finite and non-empty}.

x5A.3. Classify in the arithmetical hierarchy the set

C = {x | there exist infinitely many twin primes ≥ x},
where y is a twin prime number if both y and y + 2 are prime.

x5A.4. Classify in the arithmetical hierarchy the relation

Q(e, m) ⇐⇒ ϕe v ϕm

⇐⇒ (∀x)
(
ϕe(x)↓ =⇒ [ϕm(x)↓ & ϕe(x) = ϕm(x)]

)
.

x5A.5. Classify in the arithmetical hierarchy the set

A = {e | We has at least e members}.

x5A.6. Classify in the arithmetical hierarchy the set of codes of bounded
recursive partial functions,

B = {e | for some w and all x, ϕe(x)↓ =⇒ϕe(x) ≤ w}.

x5A.7. Let A be any recursive set such that A (N; classify in the
arithmetical hierarchy the set

B = {e | We ⊆ A}.

x5A.8. (1) Prove that the relation

C(e) ⇐⇒ We is r.e. complete

is arithmetical, and place this relation in some Σ0
k or Π0

k for as small a k
as you can. (Do not try to show that your classification is complete.)

(2) Do the same for the relation

D(e) ⇐⇒ We is creative.

x5A.9. Prove that the graph

Gf (~x, w) ⇐⇒ f(~x) = w

of a total function f(~x) is Σ0
k if and only if it is ∆0

k.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 112

5B. A bit of logic 113

x5A.10∗. A total function f(~x) is limit recursive if there exists a recur-
sive, total function g(m,~x) such that

f(~x) = limm→∞ g(m,~x),

where the limit of a sequence of natural numbers is defined as usually,

limm→∞ am = w ⇐⇒ (∃k)(∀m ≥ k)[am = w].

Prove that a total f(~x) is limit recursive if and only if the graph Gf of
f(~x) is ∆0

2.

5B. A bit of logic

We outline here briefly the few facts that we need about first order or
elementary definability on total algebras

M = (M, 0, 1, f1, . . . , fK) = (M, ~f),

which we will call (first-order) structures. The restriction to structures
simplifies things considerably, and in any case, our main interest is the
classical structure of arithmetic

N = (N, 0, 1, +, ·),(102)

The basic definitions extend naturally those in Section 2A.

5B.1. The first-order language FOL(M): syntax. FOL(M) is (essen-
tially) an expansion of the language T = T(M) in 2A, but we put down the
definitions in full.

The alphabet of FOL(M) comprises the following symbols:

• individual variables: v0, v1, . . .

• individual constants : x(x ∈ M)), including 0, 1

• function constants : f1, . . . , fK (arity(fi) = ni)

• the punctuation symbols : , ()

• the symbol of equality: =

• and the symbols of first-order logic: ¬ & ∨ → ∃ ∀
FOL(M) differs inessentially from T(M) in that it does not have notation
for branching—which makes its terms a bit simpler— but substantially
because it has notation for the quantifiers ∀ and ∃.

Terms. As for T(M), these are defined by the recursion

A :≡ x | vi | fi(A1, . . . , Ani
)(103)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 113

114 5. Recursion and definability

And as in 2A.10 for T(M), we will rarely, if ever spell out terms correctly.
In FOL(N), for example, we will write

x + y for +(v1, v2),

and x(y + z)2 for ·(v3, ·(+(v1, v2), +(v1, v2))),

or sometimes

x y for · (v11, v1)

when it is important to make it clear that x and y are formal variables, v11

and v1 in this example.

Formulas. The prime formulas of FOL(M) are the words of the form

A1 = A2

where A1 and A2 are terms. The formulas are defined recursively, starting
with the prime formulas and using the operators of logic, so that every
formula which is not prime is in one of the forms

¬(α1) (α1) & (α2) (α1) ∨ (α2) (α1) → (α2) ∃vi(α1) ∀vi(α1)

where α1, α2 are formulas of smaller length. In compact form:

(104) α :≡ A1 = A2

| ¬(α1) | (α1) & (α2) | (α1) ∨ (α2) | (α1) → (α2)

| ∃vi(α1) | ∀vi(α1)

We will also use simplified forms for formulas, writing for example

(∀x)(∀y)[x + y = y + x] for ∀v1(∀v2(+(v1, v2) = +(v2, v1)))(∗)
A formula α is pure if no constants from M occur in it except (perhaps)

0, 1.

The terms and formulas of FOL(M) satisfy unique readability lemmas
like Lemma 2A.6 for T. These are quite routine to formulate and prove
(by induction) and we will not take them up in detail. They are, however,
important, as they allow us to prove properties of terms and formulas by

induction and to define operations on them by recursion, as we did for the
terms of T(M) by appealing to Lemma 2A.7.

We will define precisely the semantics of FOL(M) below, but intuitively, a
formula α means what its natural translation into (mathematical) English
says: the formula in (∗), for example, is read

“for all x and all y, x + y = y + x”,

and it expresses in FOL(N) the commutative law for addition. However,
the quantifiers ∃ and ∀ bring to the language some new phenomena that
do not show up in the simpler T(M). It is useful to look at some examples
before we go into the formal definitions.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 114

5B. A bit of logic 115

Consider the following four formulas in the language of arithmetic and
their meaning in the structure N:

α ≡ x y = y, β ≡ (∀x)[x y = y], γ ≡ (∀x)(∀y)[x y = y], δ ≡ γ ∨ x = 0.

Whether α is true or not evidently depends on what the variables x, y are
set to: if x := x and y := y, then, clearly,

x y = y is true ⇐⇒ xy = y ⇐⇒ y = 0 or x = 1.

The truth value of the second formula β is independent of what x stands
for: if y := y, then

(∀x)[x y = y] is true ⇐⇒ for all x, xy = y ⇐⇒ y = 0.

The third formula γ does not depend on the values of x and y:

(∀x)(∀y)[x y = y] is true ⇐⇒ for all x and y, xy = y ⇐⇒ ff,

i.e., γ is plain false. The fourth one is more interesting; if x := x, then

(∀x)(∀y)[x y = y] ∨ x = 0 is true ⇐⇒ ff or x = 0 ⇐⇒ x = 0.

The interesting bit is that although the variable x has three occurrences in
this formula, the first two “don’t count”, and we can replace x by any z 6≡ y

in them without changing the formula’s meaning,

(∀x)(∀y)[x y = y] ∨ x = 0 is true ⇐⇒ (∀z)(∀y)[z y = y] ∨ x = 0 is true.

The value of x comes into play in its third occurrence and determines
the truth value of the formula. We say that “x is bound in its first two
occurrences but free in its third”, by the following precise definition of
these notions:

5B.2. Free and bound occurrences of variables. The free occurren-
ces of variables in formulas are defined by recursion as follows.

(F1) FO(A = B) = all the occurrences of variables in A = B.
(F2) FO(¬(α)) = FO(α), FO((α) & (β)) = FO(α) ∪ FO(β), and similarly

for the other connectives.
(F3) FO(∀vi(α)) = FO(∃vi(α)) = FO(α) \ {vi}, meaning that we remove

from the free occurrences of variables in α all occurrences of vi.

In particular, the first occurrence of vi in ∃vi(α) is not free.

An occurrence of a variable which is not free in a formula α is bound in
α. The free variables of α are the variables which have at least one free
occurrence in α and, intuitively, the truth of falsity of α depends only on
the values assigned to them.

A term or formula is closed if it has no free variables; and a closed
formula is a sentence.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 115

116 5. Recursion and definability

5B.3. The free substitution operation. For any formula α, individ-
ual variable v and x ∈ M , we set

(105) α{v :≡ x} = the result of replacing v by x

in all the free occurrences of v in α.

For example,
(
∀u[u+v = u]

)
{v :≡ 12} ≡ ∀u[u+12 = u], and the restriction

to replacing only into free occurrences of variables is needed because, in this

example,
(
∀u[u+ v = u]

)
{u :≡ 12} ≡ (∀12[12+ v = 12]

)
which is evidently

meaningless.

5B.4. The first-order language FOL = FOL(M): semantics. We now
extend to the sentences of FOL(M) the denotation function valM(A) de-
fined on closed terms in 2A.9. The denotation of a sentence is a truth value

tt or ff, and here it is really easier to use model theoretic notation: we will
define the satisfaction or truth relation

M |= α ⇐⇒ M satisfies α ⇐⇒ α is true in M

and then set

valM(α) =

{
tt, if M |= α,

ff, otherwise.

The definition is by recursion on the sentence α:

M |= A = B ⇐⇒ valM(A) = valM(B)

M |= ¬(α1) ⇐⇒ M 6|= α1 (⇐⇒ it is not the case that M |= α1)

M |= (α1) & (α2) ⇐⇒ M |= α1 and M |= α2

M |= (α1) ∨ (α2) ⇐⇒ M |= α1 or M |= α2

M |= (α1) → (α2) ⇐⇒ M 6|= α1 or M |= α2

M |= ∃vi(α1) ⇐⇒ for some x ∈ M, M |= α1{v :≡ x}
M |= ∀vi(α1) ⇐⇒ for every x ∈ M,M |= α1{v :≡ x}.

These famous conditions are due to Tarski, who was criticized for “claim-
ing the obvious” since all they do is to explain how to read the formal
expressions of FOL in English. Indeed, this is all they do—and it is what
they should do; but they are very useful, nonetheless, because they allow
us to make precise and prove rigorously by induction many properties of
formulas which are not easy to formulate precisely or check easily from their
translation into English. One of the most basic of these is the following:

5B.5. Elementary relations and functions. Suppose M is a struc-
ture; α is a pure formula, i.e., no constants from M occur in α except
perhaps 0, 1; ~x ≡ x1, . . . , xn is a list of distinct variables which includes all

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 116

5B. A bit of logic 117

the free variables of α; and R(x1, . . . , xn) is an n-ary relation on M . We
say that α defines R in M with respect to ~x, if

R(~x) ⇐⇒ M |= α{x1 :≡ x1, . . . , xn :≡ xn} (~x ∈ Mn).(106)

A relation R(~x) is first-order definable in M or elementary in M or
just M-elementary if it is defined by a pure formula with respect to some
list of distinct variables; and a function f : Mn → M is elementary if its
graph (85) is an elementary relation.

Problems for Section 5B

x5B.1. For each occurrence of a variable in the following formulas, de-
termine whether it is free or bound:

α ≡ f1(v1, 0) = f2(v2), β ≡ ∃v1(f1(v1, 0) = f2(v2))

γ ≡ (f1(v1, 0) = f2(v2)) & (∃v1(f1(v1, 0) = f2(v2))), δ :≡ ∀v2(γ),

x5B.2 (Renaming of variables). Let M be any structure and suppose
that α defines R(~x) in M with respect to the list of distinct variable
x1, . . . , xn, i.e., (106) holds. Let y1, . . . , yn be any list of distinct variables
which do not occur (free or bound) in α, and let

β :≡ α{x1 :≡ y1, . . . , xn :≡ yn}

be the result of replacing every xi by yi in α. Prove that β defines R(~x) in
M with respect to y1, . . . , yn, i.e.,

R(~x) ⇐⇒ M, {y1 := x1, . . . , yn := xn} |= β, (~x ∈ Mn).(107)

Infer that if P (~x) and Q(~x) are both first-order definable in a structure
M, then there exist pure formulas α and β and a list z1, . . . , zn of distinct
variables such that α defines P (~x) in M with respect to z1, . . . , zn and β
defines Q(~x), also with respect to z1, . . . , zn. Hint: Use induction on α.

This simple fact is very useful in proving the closure properties of the
class of relations which are elementary in a structure M. For example:

x5B.3. (1) Prove that if P (~x) and Q(~x) are both elementary in M, then
so is their conjunction

R(~x) ⇐⇒ P (~x) & Q(~x).

(2) Prove that if P (~x, y) is elementary in M, then so is

R(~x) ⇐⇒ (∃y)P (~x, y).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 117

118 5. Recursion and definability

5C. Arithmetical relations and functions

The study of first-order definability in arbitrary structures is one of the
main aims of model theory and a tremendous amount of work has gone—
and is going—into it. Here we are concerned only with the elementary
relations in the standard structure N of arithmetic, and our first aim is
to show that they coincide with the arithmetical relations on N, those
which occur in the arithmetical hierarchy defined in Section 5A.

5C.1. Theorem. The class A of elementary relations in N is the small-

est class of relations on N with the following properties :

(1) The relations

x = y, x = 0, x = 1, x + y = z, x · y = z

are in A.

(2) A is closed under substitutions of projections Pn
i (~x) and under the

logical operators, ¬, & , ∨, →, ∃, ∀.
It follows that the inequality relation

x ≤ y ⇐⇒ (∃z)[x + z = y]

is elementary in N, and that the class of N-elementary relations is closed

under N-elementary substitutions, since

P (f1(~x), . . . , fm(~x))

⇐⇒ (∃w1) · · · (∃wm)[f1(~x) = w1 & · · · & fm(~x) = wm & P (w1, . . . , wm)].

Outline of proof. Let B be any collection of relations on N which
satisfies (1) and (2) and prove by induction on the formulas that if α defines
R(~x) with respect to some x1, . . . , xn, then R(~x) is in B. The argument
requires repeated appeals to Problem x5B.2 but is quite easy. It proves that
every relation which is elementary in N belongs to every class of relations
B which satisfies (1) and (2). For the converse, it is enough to prove that
A satisfies (1) and (2), and this is also easy, by (essentially) the same
argument. a

This simple theorem seems to suggest that the language of arithmetic
cannot deal with exponentiation, which would make it a very poor language
indeed. In fact 2x is N-elementary, as are all primitive recursive functions
and relations. We need the following standard result from number theory
to prove this.

5C.2. The Chinese Remainder Theorem. Suppose that d0, . . . , dt are

relatively prime numbers, i.e., no two of them have a common factor other

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 118

5C. Arithmetical relations and functions 119

than 1, and w0 < d0, . . . , wt < dt. Then there exists some number a such

that

w0 = rem(a, d0), . . . , wt = rem(a, dt).

Proof. Consider the set D of all (t + 1)-tuples bounded by the given
numbers d0, . . . , dt,

D = {(w0, . . . , wt) | w0 < d0, . . . , wt < dt}.
This has |D| = d0d1 · · · dt members. Let

A = {a | a < |D|}
which also has d0d1 · · · dt members, and define the function f : A → D by

f(a) = (rem(a, d0), rem(a, d1), . . . , rem(a, dt)).

Notice that f is one-to-one, because if f(a) = f(b) with a < b < |D|,
then b− a is divisible by each of d0, . . . , dt and hence by their product |D|
by Problem x5C.2; so |D| ≤ b − a, which is absurd since a < b < |D|. We
now apply the Pigeonhole Principle: since A and D are equinumerous and
f : A � D is an injection, it must be a surjection, and hence whatever the
tuple (w0, . . . , wt), there is an a < d such that

π(a) = (rem(a, d0), rem(a, d1), . . . , rem(a, dt)) = (w0, . . . , wt). a

5C.3. Lemma (Gödel’s β-function). The function

β(a, b, i) = rem(a, 1 + (i + 1)b)

is N-elementary, and for every sequence of numbers w0, . . . , wy, there exist

natural numbers a and b, such that

wi = β(a, b, i) (i = 0, . . . , y).

Proof. The function β(a, b, i) is elementary in N because

β(a, b, i) = w ⇐⇒ (∃c)
(
a = (1 + (i + 1)b)c + w & w < 1 + (i + 1)b

)
.

For the second claim, let

d = max(w0, . . . , wy, y) + 1

b = d !

zi = 1 + (i + 1)b = 1 + (i + 1)d ! (i = 0, . . . , y).

Note that the numbers z0, z1, . . . , zy are relatively prime, i.e., there is no
prime number dividing any two of them; because if p is prime and a common
divisor of zi and zj with i < j ≤ y, then:

1. p > d, otherwise p|d !, and this is absurd, since p|1 + (i + 1)d !, and
2. p divides the difference (j − i)d !, so p|(j − i) or p|d !,

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 119

120 5. Recursion and definability

and this is also absurd, since j−i ≤ y < d < p and p does not divide d !, as in
1. Finally, by the Chinese Remainder Theorem, since w0 < z0, . . . , wy < zy,
there exists some a such that

w0 = rem(a, z0) = β(a, b, 0), . . . , wy = rem(a, zy) = β(a, b, y). a

5C.4. Theorem. (1) Every primitive recursive function is elementary

in N.

(2) A relation is elementary in N if and only if it is arithmetical, i.e., it

occurs in Σ0
k for some k. In symbols:

A =
⋃

k Σ0
k =

⋃
k Π0

k.

Proof. (1) It suffices to show that the functions S, Cn
q and Pn

i are
N-elementary, and that the set of N-elementary functions is closed under
composition and primitive recursion, and from these only the last is not
trivial.

If the function f(y, ~x) is defined by the primitive recursion

f(0, ~x) = g(~x)

f(y + 1, ~x) = h(f(y, ~x), y, ~x),

then, by Dedekind’s analysis of recursion (34),

f(y, ~x) = w ⇐⇒ (∃w0, . . . , wy)[g(~x) = w0 & w = wy

& (∀i < y)[h(wi, i, ~x) = wi+1]];

this is obvious, with wi = f(i, ~x) for the direction (⇒), and by induction
on i ≤ y for the direction (⇐). It follows, by the Lemma, that

f(y, ~x) = w ⇐⇒ (∃a)(∃b)[g(~x) = β(a, b, 0) & w = β(a, b, y)

(∀i < y)[h(β(a, b, i), i, ~x) = β(a, b, i + 1)]]

which implies immediately, by the closure properties of A, that the graph
of f(y, ~x) is in A.

(2) The inclusion Σ0
k ⊆ A is simple, by induction on k, and the inverse

inclusion A ⊆ ⋃
k Σ0

k follows from the characterization 5C.1. a

Problems for Section 5C

x5C.1 (Exponentiation is not polynomial). Prove that the exponential
2x is not defined by a term in N: i.e., there is no term A of the language
of arithmetic with just one variable x such that for every x ∈ N,

valN(A{x :≡ x}) = 2x.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 120

5D. The theorems of Tarski, Gödel and Church 121

x5C.2. Prove that it d1, . . . , dn are relatively prime and each of them
divides a number d, then their product d1d2 · · · dn divides d. Hint: There
are many ways to prove this basic fact. Perhaps the simplest way to see
it is to appeal to the Fundamental Theorem of arithmetic: Every number

w > 1 can be expressed uniquely as a product w = q1 · · · qm of a sequence

of primes which is non-decreasing, q1 ≤ · · · ≤ qm.

5D. The theorems of Tarski, Gödel and Church

To prove these basic results, we will use once more the method of coding

(or arithmetization), characteristic of the subject.

5D.1. Coding of pure formulas. With each symbol c of the first-order
language of arithmetic FOL = FOL(N) (other than constants > 1), we as-
sociate a natural number [c] by the simple enumeration,

0 1 + · = ¬ & ∨ → ∃ ∀ () , v0 v1 . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

so that [∃] = 9, [v0] = 14, etc.; and we code words from this alphabet as
usual, using sequence codes,

[s0s1 · · · sn] = 〈[s0], [s1], . . . , [sn]〉
e.g.,

[∃v2(0 = v2)] = 〈[∃], [v2], [(], [0], [=], [v2], [)]〉.
By the methods of Chapter 3, it is not difficult to show that the basic meta-

mathematical, syntactical relations of the language are primitive recursive
in the codes. These include

Formula(a) ⇐⇒ a is the code of a (pure) formula

Free(a, i) ⇐⇒ a is the code of a formula α

and vi occurs free in α

Sentence(f) ⇐⇒ a is the code of a sentence,

etc. Finally we set

(108) Truth = Truth(N)

= {a | a is the code of a pure sentence which is true in N}.
This is the set of natural numbers which codifies all (first-order) arith-
metical truths: every interesting proposition of number theory can be
expressed by a pure sentence of FOL(N), and so it is true exactly when its
code is in Truth.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 121

122 5. Recursion and definability

5D.2. Lemma. Every arithmetical relation R(~x) is 1-1 reducible to the

set Truth, i.e., there exists a (one-to-one) recursive function f(~x) such that

R(~x) ⇐⇒ f(~x) ∈ Truth.(109)

Proof. For each natural number x we define the term ∆(x) by the
recursion,

∆(0) ≡ 0, ∆(x + 1) ≡ (∆(x)) + (1),

so that the numeral ∆(x) is closed and denotes (in N) the number x,

val(∆(x)) = x.

It follows (easily, by the Tarski conditions) that for every formula α with
free variables in the list x1, . . . , xn,

N |= α{x1 :≡ x1, . . . , xn :≡ xn}
⇐⇒ N |= (∃x1) · · · (∃xn)[x1 = ∆(x1) & · · · & xn = ∆(xn) & α]

⇐⇒ [(∃x1) · · · (∃xn)[x1 = ∆(x1) & · · · & xn = ∆(xn) & α]] ∈ Truth;

and so, if the formula α defines the relation R(~x) as in (106), then (109)
holds with the function

f(~x) = [(∃x1) · · · (∃xn)[x1 = ∆(x1) & · · · & xn = ∆(xn) & α]]

which is easily recursive and one-to-one. a

5D.3. Tarski’s Theorem. The set Truth is not arithmetical, and in

particular, it is not recursive.

Proof. If Truth were arithmetical, then it would be Σ0
k, for some k,

and so, by the Lemma, every arithmetical relation would be Σ0
k, which

contradicts the Hierarchy Theorem 5A.4 (3). a
It is hard to overemphasize the foundational significance of Tarski’s The-

orem. Combined with the Church-Turing Thesis, it says in part that there

is no algorithm which can decide whether an arbitrary sentence of arith-

metic is true or false—even if we just want to know the truth value, i.e.,
we do not ask for an algorithm which produces justifications for the true
sentences.

Mathematicians, however, are very much interested in justifications, i.e.,
proofs. Gödel’s celebrated First Incompleteness Theorem deals with this
aspect of the foundations of arithmetic and places some severe restrictions
on proof systems for arithmetic, what we might call attempts to axiomatize

the theory of numbers. We cannot do it full justice here, since we have not
studied the relevant material from logic; but we can formulate and prove
an abstract result which captures its essential content.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 122

5D. The theorems of Tarski, Gödel and Church 123

5D.4. Proof systems. A proof system for arithmetic is any set P of
finite sequences (α0, . . . , αn) of pure FOL(N)-formulas such that the last
formula αn is a sentence. The proofs of P are its members, and we write

`P α ⇐⇒ there exists a proof (α0, . . . , αn) ∈ P with αn ≡ α.

If `P α, we say that α is a theorem of P.

In studies of formal, axiomatic number theory, we consider specific proof
systems which attempt to capture our intuitions about logic and arith-
metic. Typically we call a sequence (α0, . . . , αn) a formal proof if each
αi is either an axiom of logic or an axiom of arithmetic, or it follows by
some logical or arithmetical rule of inference from formulas αj1 , . . . , αjl

with j1, . . . , jl < i listed earlier in the proof than αi. Different choices of
axioms and rules of inference lead to different proof systems that express
different intuitions, but always have some claim that the proofs that are
accepted provide justifications for the theorems.

This preliminary notion allows for very silly proof systems, of course,
e.g., the set of all sequences of formulas which end with a sentence, or the
set of all sequences of length 1 whose only member is a true sentence α, etc.
There are, however, two obvious and reasonable conditions we can impose
on a proof system P which make it worth considering.

(1) Soundness: For every pure sentence α,

if `P α, then N |= α,

so that P proves only true sentences.

(2) Decidability for proofs: The relation

ProofP(y) ⇐⇒ (∃α0, . . . , αn ∈ P)[y = 〈[α0], . . . , [αn]〉]
is recursive.

The second condition expresses (by the Church-Turing Thesis) the basic
practice of mathematics, that Somebody’s claim that he has proved some
theorem (the existence of infinitely many twin primes, for example), can
be “checked”—there is a generally accepted effective method which decides
whether Somebody’s ramblings constitutes a rigorous proof of his claim or
not, according to the axioms and the rules of logic that we have accepted.

All specific proof systems which are seriously studied are decidable for
proofs and sound—or, at the least, are hoped to be sound by their inventors.

There is a third property which we would want a good proof system P
to have:

(3) Completeness: For every pure sentence α,

either `P α or `P ¬α.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 123

124 5. Recursion and definability

A proof system for arithmetic which would be sound, decidable for proofs
and complete, would “codify” in some specific way some basic principles of
logic and arithmetic which suffice to solve all problems of number theory.
There were many serious attempts in the first third of the 20th century to
find such a system, but they all failed—and they could not have succeeded:

5D.5. Gödel’s 1st Incompleteness Theorem. There is no proof sys-

tem for arithmetic which is sound, decidable for proofs and complete.

Proof. If P has all three properties, then for each pure sentence α

`P α =⇒N |= α

because the system is sound, and

N |= α =⇒ N 6|= ¬α

=⇒ 6`P ¬α (by soundness)

=⇒ `P α (by completeness).

It follows that

Truth = {[α] |`P α}
= {e | Sentence(e) & (∃y)[ProofP(y) & e = last(y)]},

and so the set Truth is Σ0
1, by the hypothesis of decidability for proofs for

P. This contradicts Tarski’s Theorem 5D.3. a
Whether the Church-Turing Thesis is true or not does not come up in

the specific applications of the 1st Incompleteness Theorem, because in
practice, the axiomatic systems that have been studied are all decidable
for proofs. It is hard to imagine a useful axiomatization of number theory
where we could not tell whether an alleged proof is indeed acceptable.

To formulate the last basic result of this section, consider the first-order
language FOL(M) for an arbitrary structure M = (M, 0, 1, f1, . . . , fK). A
pure sentence α of FOL(M) can be interpreted in every structure

M
′ = M, 0′, 1′, f ′

1, . . . , f ′
K)

of the same vocabulary v = (f1, . . . , fK) and for such sentences we set

|= α ⇐⇒ for every algebra M
′ with v(M′) = v(M), M

′ |= α.

These are the valid pure sentences of FOL(M), those which are true
in every structure, independently of the universe M or the interpretations
f1, . . . , fK of the constant symbols. They include trivial sentences like

α ∨ ¬α,

and one might guess that they are all trivial, but this is not true.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 124

5D. The theorems of Tarski, Gödel and Church 125

By the classical Completeness Theorem of Gödel,

|= α ⇐⇒ α is a theorem of classical, first-order logic,

and the decidability for proofs of classical logic implies that for every vo-

cabulary (f1, . . . , fK), the set of (codes of) valid pure sentences of FOL(M)
is semirecursive. On the other hand:

5D.6. Church’s Theorem. For some structure M, the problem whether

a pure sentence α of FOL(M) is valid is unsolvable.

Outline of proof. Let

E = (f0, f1, . . . , fK)

be any primitive recursive program according to definition 1B.17. It is not
difficult to construct a first order sentence

αE = α0 & · · · & αK

using formal symbols 0, 1, S, Pd, f0, . . . , fK which “expresses formally” the
definitions in E; if, e.g., the projection symbol P3

2 occurs in E, then the
sentence

(∀v1)(∀v2)(∀v3)[P
3
2(v1, v2.v3) = v2]

is one of the αi’s, and if f is defined in E by the primitive recursion

f(0) = 5

f(y + 1) = h(f(y), y),

then the sentence

f(0) = ∆(5) & (∀v1)[f(S(v1)) = h(f(v1), v1)]

is also one of the αi’s. With this definition, it follows without great difficulty
that for each function fi defined in E and all ~x = x1, . . . , xn, w ∈ N,

fi(~x) = w ⇐⇒ |= αE → fi(∆(x1), . . . , ∆(xn)) = ∆(w).

Finally, we apply this Lemma to the case that fK is the characteristic func-
tion of the relation T1(x, x, y) and we show quite easily that the decidability
of the validity relation leads to a contradiction. a

This is (essentially) Church’s proof, but the result was also independently
proved by Turing. It hence since been extended to several specific vocab-
ularies, including that of arithmetic: i.e., the set of all pure, valid FOL(N)
sentences is undecidable.

The decision problem for provability in first order logic was a big open
question at the time (1936), heavily promoted by none other than David
Hilbert and generally referred to in German as the Entscheidungsproblem.
Its solution did much to popularize the Church-Turing Thesis and the then
emerging theory of computability among mathematicians.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 125

CHAPTER 6

RECURSIVE FUNCTIONALS AND EFFECTIVE

OPERATIONS

In this chapter we will study generalized programs, “non-deterministic” and
with “external” function variables, and we will explore their applications,
especially in the theory of “computable functionals”. Most of the results we
will prove hold for all partial algebras, but the most interesting phenomena
manifest themselves fully in the classical algebra N0 = (N, 0, 1, S,Pd) and
its expansions.

6A. Recursive functionals

6A.1. Definition. A generalized recursive program of N0 is any
system of recursive equations

(e0) p0(~x0) = E0 = E0[~x0, p0, . . . , pk, q1, . . . , ql]
...

(ek) pk(~xk) = Ek = Ek[~xk, p0, . . . , pk, q1, . . . , ql]

(E)

where the function variables p0, . . . , pk, q1, . . . , ql are distinct, as in the
basic definition in section 2B, but E supplies definitions only for the in-
ternal (bound) variables p0, . . . , pk while it also allows the occurrence of
external (free) variables q1, . . . , ql in the pure terms E1, . . . , Ek, as the
notation Ei[~xip0, . . . , pk, q1, . . . , ql] suggests. A program of this kind is
interpreted naturally in arbitrary expansions

(N0, q1, . . . , ql) = (N, 0, 1, S,Pd, q1, . . . , ql)

of N0, i.e., if we consider the variables q1, . . . , ql as constants which name
given partial functions q1, . . . , ql, just as f1, . . . , fK name the given partial
functions f1, . . . , fK of a partial algebra. With the notation of (60), we set

(110) αE(~x, q1, . . . , ql) = w

⇐⇒ (N0, q1, . . . , ql), E ` p0(~x) = w with q1 := q1, . . . , ql := ql

⇐⇒ E, ~q := ~q ` p0(~x) = w.

127

128 6. Recursive functionals and effective operations

More generally, for each internal variable p of E,

(111) E,~q := ~q ` p(~x) = w

⇐⇒ (N0, q1, . . . , ql), E ` p(~x) = w with q1 := q1, . . . , ql := ql.

The notation here omits the reference to the algebra N0 since this is the
only algebra which we will use in this chapter. It shows explicitly the
assignment q1 := q1, . . . , ql := ql to the external variables: this is useful,
as we will often interpret the same program with different–all possible—
assignments to its external variables.

The programs we studied in Chapter 2 (without external function vari-
ables) are now called autonomous.

6A.2. Functionals. The partial function α(~x, ~q) in (110) is an example
of a functional in N, i.e., of a partial function which accepts as input values
natural numbers and partial functions of several variables, and (when it
converges) yields a value in N. Some simple, additional examples:

α1(~x) = f(~x) (where f : Nn ⇀ N),

α2(p, r) = p(0) (p : N ⇀ N, q : N2 ⇀ N),

evaln(~x, p) = p(~x) (p : Nn ⇀ N).

The first of these makes clear that it is not necessary for a functional to
have partial function arguments, i.e., every partial function is a functional ;
and α2 is an example with no natural number arguments, only partial
functions. Note also that for every partial function r, with S(x) = x + 1
and ε the “empty” partial function,

α2(S, r) = S(0) = 1, α2(ε, r) = ε(0) = ↑ .

The call or evaluation functionals evaln(~x, p) are perhaps the simplest
non-trivial functionals. Some of their values are

eval1(x, S) = S(x) = x + 1, eval3(x, y, z, P 3
2) = P 3

2 (x, y, z) = y.

6A.3. Definition. A functional α(~x, ~q) is recursive, if it is computed
by some recursive program E with external variables q1, . . . , ql, i.e., α = αE

in (110), or, equivalently,

α(~x, ~q) = w ⇐⇒ E,~q := ~q ` p(~x) = w

for some internal variable p of E. We set

R = the class of recursive functionals on N,

extending our earlier use of this notation.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 128

6A. Recursive functionals 129

6A.4. Lemma. (1) The class R of recursive functionals includes all re-

cursive partial functions and the call functionals evaln. It is closed under

substitution into its number arguments

α(~x, ~p) = β(γ1(~x, ~p), . . . , γm(~x, ~p), ~p),

branching

α(~x, ~p) = if (β1(~x, ~p) = 0) then β2(~x, ~p) else β3(~x, ~p),

and minimalization

α(y, ~x, ~p) = (µi ≥ y)[β(i, ~x, ~p) = 0].

(2) The class R is closed under explicit definitions of the form

α(x1, . . . , xn, p1, . . . , pm) = β(xa1
, . . . , xak

, pb1 , . . . , pbl
),(112)

where a1, . . . , ak, b1, . . . , bl are sequences from the index sets 1, . . . , n and

1, . . . , m respectively.

Proof. The functional evaln(~x, q) is computed by the program

p(~x) = q(~x).

The proofs of the other parts of (1) are exactly those of 2C.3 and 2D.1.

Part (2) justifies the addition of new variables and the identification of
others, e.g., definitions of the form

α(x, z, y, p, q, r) = β(y, x, y, y, p, r, r, p)

and its proof is easy, Problem x6A.1. a
By this Lemma and the methods of Chapter 2, we can easily show the

recursiveness of many simple functionals by simple computations. For ex-
ample, if β(y, x, q) is recursive, then

α(x, y, p, q) = if (β(y, y, q) = 0) then y + 1 else p(2y, x)(113)

is also recursive by the following detailed proof: we first set

α1(x, y, p, q) = β(y, y, q) (explicit)

α2(x, y, p, q) = S(y) = y + 1 (explicit)

β1(x, y, p) = 2y (explicit)

β2(x, y, p) = P 1
1 (x) = x (explicit)

β3(x, y, p) = eval2(β1(x, y, p), β2(x, y, p), p) = p(2y, x) (substitution)

α3(x, y, p, q) = β3(x, y, p) = p(2y, x) (explicit),

and then by branching,

α(x, y, p, q) = if (α1(x, y, p, q) = 0) then α2(x, y, p, q) else α3(x, y, p, q).

In many cases, however, the easiest way to prove that some functional is
recursive is to write some program which computes it.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 129

130 6. Recursive functionals and effective operations

Problems for Section 6A

x6A.1. Prove part (2) of Lemma 6A.4.

x6A.2. Write a program which computes the functional

α(x, p) = µi [p(x + i) = 0].

6B. Non-deterministic recursion

In the definition 2B.4 of abstract machines we allowed non-deterministic
transition relations, so that the arguments for the Church-Turing Thesis
in section 3B are as broadly applicable as possible. We have not studied
non-deterministic recursive programs up until now, but they have their
uses.

6B.1. Definition. A non-deterministic recursive program is any
system of definitions

(e0) p0(~x0) = E0

...
(ek) pk(~xk) = Ek

(E)

as in Definition 6A.1, where we now allow more than one definition for the
internal function variables. We use the same notation for such, generalized
programs, their internal and external variables are defined as before, and
their states, computations and terminal computations are defined just as
for the deterministic programs in section 2B, only we now allow many
computations on the same input. It is characteristic of these programs
that they do not necessarily determine a partial function p for each internal
variable p.

Every program can be viewed as non-deterministic since the definition
does not require many definitions for some variable, it only allows them.

6B.2. Some examples. The program with two equations

p(x) = 0, p(x) = 1(E1)

does not compute a partial function: what would p(0) be?

On the other hand, the program

p(x) = x,
p(x) = x + 1,

η(y) = 0,
θ(x) = η(p(x)).

(E2)

computes the constant function θ(x) = 0, even though it assigns no partial
function p to the variable p. For each x, E2 has two computations of the
value θ(x) with the computations illustrated in Figure 6.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 130

6B. Non-deterministic recursion 131

η : x

?

η : x + 1

?
: 0 : 0

?

-

?

?

θ : x

η p : x

Figure 6. The computations of E2.

Even more interesting is the program

η(x) = x,
η(x) = S(η(x)),

p(x) = 0,
θ(x) = p(η(x))

(E3)

for which again θ(x) = 0, but now there are infinitely many computations
on each input as follows:

?

p S S η : x
?

-

: 0

?

?

?

p S η : xp : x

p : x + 2: 0

p : x + 1

?

-

?

?

θ : x

p η : x

- · · ·

?
: 0

Finally, consider the following example of a non-deterministic program
with one external variable (q):

p0(x) = θ(η(x)),
η(x) = q(0),

η(x) = q(1),
θ(x) = 0.

(E4)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 131

132 6. Recursive functionals and effective operations

If we assume that the computational semantics for non-deterministic pro-
grams with external function variables are basically the same as for deter-
ministic ones, we would expect that E4 computes the functional

α∨(x, q) =

{
0, if q(0)↓ ∨ q(1)↓ ,

↑, otherwise.
(114)

After these preliminaries, we give the precise computational semantics
for non-deterministic recursive programs:

6B.3. Non-deterministically recursive functionals. A partial func-
tion f(~x) is non-deterministically recursive if there exists a non-deterministic
program E without external variables and some recursive variable p of E,
such that for all ~x,

f(~x) = w ⇐⇒ N0, E ` p(~x) = w(115)

⇐⇒ there exists a terminal computation of E

with input p : ~x and terminal state : w.

In other words, E computes f(~x) if, for every ~x:

(1) There exists at least one terminal computation with input p : ~x and
terminal state : f(~x); and

(2) every terminal computation of E on input p : ~x has terminal state
: f(~x).

It is important to notice that the definition allows divergent computations
(of “infinite length”) as in E3 above, which are simply disregarded.

The definition extends easily to functionals: in the simple case with just
one variable over partial functions, a functional α(~x, q) is non-deterministi-

cally recursive if there is a non-deterministic program E with one external
variable q and some internal variable p, so that for all ~x, p, w,

α(~x, q) = w ⇐⇒ E, q := q ` p(~x) = w.

We set

Rnd = the set of non-deterministically recursive functionals.

6B.4. Lemma. A partial function f(~x) is recursive if and only if it is

non-deterministically recursive.

Proof. The coding of symbols, programs, states, computations, and
generally of the whole theory of recursive programs in Section 3A is trivially
extended to non-deterministic programs with just one difference in the
details: in the definition of the relation Prog(e) we simply omit the last
condition which forbids multiple definitions of the same function variable.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 132

6B. Non-deterministic recursion 133

This allows the existence of many computations on the same input, i.e., it
is possible that there exist y1, y2 such that

y1 6= y2 & Tn(e, ~x, y1) & Tn(e, ~x, y2),

but the basic result does not change: if (115) holds for some f and some
program E without external variables and with code e, then

f(~x) = w ⇐⇒ (∃y)[Tn(e, ~x, y) & U(y) = w],

so that the graph of f(~x) is Σ0
1 and f(~x) is recursive. a

For functionals, however, non-deterministic recursion is a proper exten-
sion of deterministic recursion, in fact the functional α∨(x, q) in (114) is not
deterministically recursive. It is easy to see this directly, by considering the
computations of any deterministic program which might compute α∨(x, q).
But it is better to take a more general approach which helps clarify the
notions.

6B.5. Definition. A functional α(~x, p) is:

• monotone if for all partial functions p, q, and all ~x, w,
(
α(~x, p) = w & p v q

)
=⇒α(~x, q) = w;

• continuous if for every p and all ~x, w,

α(~x, p) = w =⇒ (∃r)
(
r v p & α(~x, r) = w & r is finite

)
,

where a partial function is finite if it has a finite domain of conver-
gence; and

• deterministic if for every p and all ~x, w,

α(~x, p) = w =⇒ (∃!r v p)
(
α(~x, r) = w

& (∀r′ v r)[α(~x, r′)↓ =⇒ r′ = r]
)
.

The definitions are similar for functionals α(~x, ~p) with more variables, only
messier to put down.

For example, the functional

α(p) =

{
0, if p(0)↓ ,

1, otherwise,

is not monotone; the functional

β(p) =

{
0, if p is total

↑, otherwise

is not continuous; and the functional (114) is not deterministic, Problem
x6B.2.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 133

134 6. Recursive functionals and effective operations

6B.6. Theorem. (1) Every non-deterministically recursive functional is

monotone and continuous.

(2) Every (deterministically) recursive functional is deterministic.

It follows that there exist non-deterministically recursive functionals which

are not recursive, e.g., α∨(x, q) in (114).

Proof. (1) For the monotonicity, we assume, that for some (possibly
non-deterministic) program E with main symbol p0 and an external vari-
able q

α(~x, q) = w ⇐⇒ E, q := q ` p0(~x) = w,

that some computation

p0 : ~x → α1 : β1 → · · · → αn : βn →: w(116)

of E with the assignment q := q yields the value α(~x, q) = w, and that
q v r; and we observe that the same sequence of states is a computation
of E for the assignment q := r, because the transitions

α∗ q : ~y β∗ → α∗ : q(~y) β∗

which call q are not stuck (otherwise the computation would stop), so
q(~y)↓ , and therefore r(~y) = q(~y), so the same transition also holds for the
computation with the assignment q := r.

In the same way, the computation (116) for the assignment q := q is also
a computation for the assignment q := r, where r(~y) converges only for
the (finitely many) values of q which are called in (116), and so α(~x, q) is
continuous.

(2) If the program E is deterministic, then exactly one computation (116)
computes the value p0(~x) = w for the assignment q := q, and the (finite)
partial function r in the proof of continuity is the least r v q partial func-
tion such that α(~x, r)↓ , otherwise the computation (116) would terminate
“earlier”. a

For the functionals in the class Rnd there exists a simple and useful
normal form which uses the following coding.

6B.7. Coding of finite functions and sets. For every z ∈ N, we set

d(z, i) =

{
(z)i −· 1, if i < lh(z) & (z)i > 0,

↑, otherwise,

dz(i) = d(z, i),

Dz = {i | dz(i)↓}.
The partial function d(z, i) is recursive; the sequence

d0, d1, . . .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 134

6B. Non-deterministic recursion 135

enumerates all finite, partial functions of one variable; and the sequence

D0, D1, . . .

enumerates all finite sets so that

i ∈ Dz ⇐⇒ i < lh(z) & (z)i > 0.

In particular, the relation i ∈ Dz is primitive recursive.

6B.8. Normal Form Theorem for Rnd. A functional α(~x, p) is non-

deterministically recursive, if and only if there exists a recursive relation

R(~x, w, z, y) such that

α(~x, p) = w ⇐⇒ (∃z)[dz v p & (∃y)R(~x, w, z, y)].(117)

Proof. For the (⇒) direction with ~x = (x1, . . . , xn), set

T ∗
n(e, ~x, z, i, y) ⇐⇒ e is the code of some (possibly non-deterministic)

recursive program E and only p1
i is external in E

and y is the code of a terminal computation of E

on input pn
0 : ~x for the assignment p1

i := dz.

This relation is primitive recursive by the methods of 3A, and, easily, if E
is such that

α(~x, p) = w ⇐⇒ E, p1
i := p ` pn

0 (~x) = w,

then

α(~x, p) = w ⇐⇒ (∃z)[dz v p & (∃y)[T ∗
n(e, ~x, z, i, y) & U(y) = w]].

For the other direction, we assume that the functional α(~x, p) satisfies
the equivalence (117), we set

h(z, ~x) =
(
µyR(~x, (y)0, z, (y)1)

)

0
,

and we observe that the functional

β(z, ~x, p) = if (∀i < lh(z))[dz(i)↓ =⇒ p(i) = dz(i)] then h(z, ~x) else ↑
is recursive, by the closure properties of the recursive functionals 6A.4. Let
E be a (deterministic) program which computes the functional β(z, ~x, p)
with main symbol p0, so that

β(z, ~x, p) = w ⇐⇒ E, p0 := p ` p0(z, ~x) = w.

Let E′ be the non-deterministic program constructed by adding to E the
following equations, with new variables:

η(t) = 0

η(t) = S(η(t))

θ(~x) = p0(η(0), ~x).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 135

136 6. Recursive functionals and effective operations

The terminal computations of E′ starting with θ : ~x are of the form

θ : ~x

p η : 0 ~x

...

p : z ~x

...

: w

and since, from the moment that the value z is computed on, the transitions
which we added to E are not activated anymore, it follows that

w = θ(~x) = β(z, ~x, p),

so that by the definitions,

dz v p & (∃y)R(~x, w, z, y),(118)

i.e., α(~x, p) = w. On the other hand, if α(~x, p) = w, then there exists a z
such that (118) holds, and with the transitions of η(t) in E′, there exists a
computation of E′ which reaches the point

p0 : z ~x.

For example, if z = 2, the computation successively reaches the states

θ : ~x

p0 η : 0 ~x

p0 S η : 0 ~x

p0 S S η : 0 ~x

p0 S S : 0 ~x

p0 S : 1 ~x

p0 : 2 ~x.

From this point on, the computation continues with the transitions of E
and finally yields the correct value

p0(z, ~x) = β(z, ~x, p) = α(~x, p). a

Problems for Section 6B

x6B.1. Determine which of the following two functionals are recursive
or non-deterministically recursive and prove your answer:

α(p) = if (∃x)[p(x) = 1] then 1 else ↑
β(p) = if (∃x)[p(x) = 1 & (∀i < x)p(i) = 0] then 1 else ↑

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 136

6B. Non-deterministic recursion 137

x6B.2. Prove by counterexamples that none of the conditions in defini-
tion 6B.5 follows from the other two.

x6B.3. Prove that for for any two sets A, B,

A ≤T B ⇐⇒ there is some α(x, p) ∈ Rnd such that χA(x) = α(x, χB).

Hint: Appeal to the Normal Form Theorem 6B.8.

6B.9. Definition (Many-valued non-deterministic recursion). The
non-deterministic program

p(x) = 0, p(x) = 1,

computes no partial function, because, obviously, for every x it has two
computations

p : x →∗ : 0 p : x →∗ : 1,

and so it does not determine a specific value p(x). It is, however, natural to
consider as the value p(x) computed by E the set {0, 1} of the two values
0 and 1, and the next definition makes this notion rigorous.

For each function variable p in a given non-deterministic recursive pro-
gram E (without external variables), we set

p̃(~x) = {w |w ∈ N & there exists a computation p : ~x → · · · → : w of E

or w =↑ and there exists a divergent computation of E

p : ~x → α1 : β1 → · · · }.
For example, the “value” of the program

p(x) = 0, p(x) = 1, p(x) = p(x)

is p̃(x) = {0, 1,↑}.
x6B.4. Give examples of non-deterministic programs with main symbol

p for which:

(1) p̃(x) = N ∪ {↑}.
(2) p̃(x) = {0, 1, . . . , x}.

x6B.5. Let E+ be a program which computes addition with main func-
tion symbol +, and letE the non-deterministic extension of E+ by the
definitions

p(x) = 1, p(x) = p(x) + p(x).

What is the set p̃(0);

x6B.6. Let E2 be a program which computes the function 2x and let E
be the non-deterministic extension of E2 by the definitions

p(x) = 1, p(x) = 2p(x).

What is the set p̃(0);

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 137

138 6. Recursive functionals and effective operations

x6B.7∗. Prove that if for some non-deterministic program E with main
symbol p the set p̃(x) is infinite, then ↑∈ p̃(x), i.e., there exists some di-
vergent computation of E starting with the state p : x. Hint: The proof
requires an application of König’s Lemma.

6C. The 1st Recursion Theorem

The result in this section complements the 2nd Recursion Theorem. It
is especially important for the foundations of recursion theory.

6C.1. Lemma. For each non-deterministically recursive functional α(~x, ~p),
the partial function

f(~x, e1, . . . , el) = α(~x, ϕe1
, . . . , ϕel

)

is recursive.

Proof. For the case with only one function variable, where the notation
is simpler, we have from the Normal Form Theorem 6B.8 an equivalence

α(~x, p) = w ⇐⇒ ∃z)[dz v p & (∃y)R(~x, w, z, y)],

where R(~x, w, z, y) is a recursive. So

f(~x, e) = w ⇐⇒ (∃z)[dz v ϕe & (∃y)R(~x, w, z, y)]

⇐⇒ (∃z)[(∀i < lh(z)[dz(i)↓ =⇒ϕe(i) = dz(i)]

& (∃y)R(~x, w, z, y)],

and f(~x, e) is recursive because its graph is Σ0
1. a

6C.2. The 1st Recursion Theorem. For every monotone and contin-

uous functional α(x1, . . . , xn, p) where p is an n-place function variable,

there exists a least solution p of the recursive equation

p(~x) = α(~x, p),

which is characterized by the conditions

(1) for all ~x, p(~x) = α(~x, p), and

(2) for every q : Nn ⇀ N,

if (∀~x, w)[α(~x, q) = w =⇒ q(~x) = w], then p v q.

Furthermore, if α(~x, p) is non-deterministically recursive, then p is re-

cursive.

Proof. We first observe that the uniqueness of a partial function p
which satisfies (1) and (2) of the theorem is trivial; because if p has these
two properties and p′ the corresponding

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 138

6C. The 1st Recursion Theorem 139

(1)′ p′(~x) = α(~x, p′),
(2)′ for every q : N ⇀ N,

(∀~x, w)[α(~x, q) = w =⇒ q(~x) = w] =⇒ p′ v q,

then p v p′ by (1)′ and (2) with q = p′, and p′ v p by (1) and (2)′

with q = p. So it remains to show the existence of a partial function p
which satisfies (1) and (2) and its recursiveness, in the case that α(~x, p) is
non-deterministically recursive.

We set

p0(~x) =↑ (so p is the totally undefined partial function),

and, recursively,
pn+1(~x) = α(~x, pn).

Lemma. p0 v p1 v p2 v · · · ,
so that for some partial function p : N ⇀ N,

p(~x) = w ⇐⇒ (∃n)[pn(~x) = w].(119)

Proof. We show by induction on n that pn v pn+1. The basis, p0 v p1

is obvious, because p0 v q, for every q. For the induction step:

pn+1(~x) = w =⇒ α(~x, pn) = w by the definition

=⇒ α(~x, pn+1) = w

by the induction hypothesis pn v pn+1

and the monotonicity of α(~x, p)

=⇒ pn+2(~x) = w by the definition. a (Lemma)

Proof of (1). We need to show that for all ~x and w,

p(~x) = w ⇐⇒ α(~x, p) = w,

and we will verify separately the two implications.

For p(~x) = w =⇒α(~x, p) = w first, we compute:

p(~x) = w =⇒ (∃n)[pn+1(~x) = w] (by the definition)

=⇒ (∃n)[α(~x, pn)) = w] (by the definition)

=⇒ α(~x, p) = w (monotonicity of α(p)).

For the converse direction, assume that α(~x, p) = w. By the continuity of
α(~x, p), it follows that there exists some finite, partial, function p∗ v p,
with domain of convergence

{~x0, . . . , ~xk−1} = {~x | p∗(~x)↓},
such that

α(~x, p∗) = w.(120)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 139

140 6. Recursive functionals and effective operations

By the definition of p, for every i < k, there exists some ni, such that

p∗(~xi) = p(~xi) = pni(~xi) (i < k),

and if n = max{n0, . . . , nk−1} + 1, then

p∗(~xi) = pn(~xi) (i < k),

i.e., p∗ v pn. The monotonicity of α(~x, p) now implies that

α(~x, p∗) = w =⇒α(~x, pn) = w =⇒ pn+1(~x) = w

which with (120) completes the proof of (1).

Proof of (2). Suppose that for some q : N ⇀ N

(∀~x, w)[α(~x, q) = w =⇒ q(~x) = w].

The required p v q follows from

pn v q (n ∈ N)

which obviously holds for n = 0. Inductively,

pn+1(~x) = w =⇒ α(~x, pn) = w by the definition

=⇒ α(~x, q) = w by the induction hypothesis

and the monotonicity of α

=⇒ q(~x) = w by the hypothesis for q.

Finally, if α(~x, p) is non-deterministically recursive, then the partial func-
tion

f(e, ~x) = α(~x, ϕe)

is recursive by Lemma 6C.1, so that for some number f̂ ,

{S1
1(f̂ , e)}(~x) = {f̂}(e, ~x) = α(~x, ϕe).

It follows that if e0 is some code of the empty partial function p0(~x) = ↑
and we set, recursively,

g(0) = e0, g(n + 1) = S1
1(f̂ , g(n)),

then, for every n, g(n) is a code of pn; so

p(~x) = w ⇐⇒ (∃n)[{g(n)}(~x) = w],

and p is recursive, since its graph is Σ0
1. a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 140

6D. Effective operations 141

6D. Effective operations

In this and the next section we consider functionals α(~x, ~p) where the
variables p1, . . . , pm range over recursive (not arbitrary) partial functions,
so that α can “call” its variables by their codes, i.e., “by name” in the termi-
nology of programming languages. It is customary to call these functionals
“operations”.

6D.1. Definition. An operation (on the recursive partial functions)
is any partial function

α : Nn × Pk1
× · · · × Pr

km
⇀ N,

where Pr
k is the set of all recursive partial functions of k variables,

Pr
k = {ϕk

e | e ∈ N};
and the operation α is effective if the partial function

f(~x, e1, . . . , em) = α(~x, ϕe1
, . . . , ϕem

)(121)

is recursive.

We notice that the partial function f which computes the operation α
satisfies the following invariance property:

ϕe1
= ϕz1

, . . . , ϕem
= ϕzm

=⇒ f(~x, e1, . . . , em) = f(~x, z1, . . . , zm);(122)

and (obviously) every recursive partial function f which satisfies (122) com-
putes the operation

α(~x, ϕe1
, . . . , ϕem

) = f(~x, e1, . . . , em).

The basic theorem of this section is that the effective operations (essen-
tially) coincide with the non-deterministically recursive functionals, and
one direction of this fact follows immediately from 6C.1. The key for the
converse direction is the following

6D.2. Lemma. Every effective operation is monotone and continuous.

Proof. We consider only operations α : Pr
1 ⇀ N, the proof of the general

case being only notationally more complex.

For the proof of monotonicity, let p v q, where

p = ϕe and q = ϕm,

and let f̂ a code of a partial function which computes α, i.e., for every z,

α(ϕz) = {f̂}(z).(123)

We also assume that
α(ϕe) = w,

and we need to show α(ϕm) = w.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 141

142 6. Recursive functionals and effective operations

The relation

R(z, x, v) ⇐⇒ ϕe(x) = v or
(
{f̂}(z) = w & ϕm(x) = v

)

is semirecursive; the hypothesis ϕe v ϕm implies that

R(z, x, v) =⇒ϕm(x) = v;

so R(z, x, v) is the graph of some partial, recursive function g(z, x); and
then the 2nd Recursion Theorem implies that ϕz∗(x) = g(z∗, x) for some
number z∗, so that

ϕz∗(x) = v ⇐⇒ ϕe(x) = v or
(
{f̂}(z∗) = w & ϕm(x) = v

)
.(124)

We now observe the following:

(1a) α(ϕz∗) = {f̂}(z∗) = w. Because if this is not true, then ϕz∗ = ϕe

by (124) and so α(ϕz∗) = α(ϕe) = w.

(1b) ϕz∗ = ϕm, directly from the hypothesis ϕe v ϕm and (1a).

It follows that α(ϕm) = α(ϕz∗) = w.

The construction for the proof of continuity is a slight variation of the one
we used for monotonicity. First we find from the 2nd Recursion Theorem
some z∗ such that

(125) ϕz∗(x) = v

⇐⇒ (∀u ≤ x)¬[T1(f̂ , z∗, u) & U(u) = w] & ϕe(x) = v,

and we observe:

(2a) α(ϕz∗) = w. Because in the opposite case,

(∀u)¬[T1(f̂ , z∗, u) & U(u) = w],

so for every x,

(∀u ≤ x)¬[T1(f̂ , z∗, u) & U(u) = w],

and so, by (125), ϕz∗ = ϕe and α(ϕz∗) = α(ϕe) = w.

(2b) ϕz∗ v ϕe, directly from (125).

(2c) The partial function ϕz∗ is finite, as it converges only if

x < (µu)[T1(f̂ , z∗, u) & U(u) = w].(126) a

6D.3. The Myhill-Shepherdson Theorem. An operation α is effec-

tive if and only if it is the restriction to the recursive partial functions of

some non-deterministically recursive functional, i.e., if for some β ∈ Rnd,

α(~x, ϕe1
, . . . , ϕem

) = β(~x, ϕe1
, . . . , ϕem

).

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 142

6D. Effective operations 143

Proof. One direction has been proved in Lemma 6C.1. For the other,
we consider only operations α(p) with one, one-place variable. By the
Normal Form Theorem 6B.8, it suffices to define a semirecursive relation
R(x, w), such that

α(p) = w ⇐⇒ (∃x)[dx v p & R(x, w)].(127)

If d̂ is a code of the partial function d(z, i) which enumerates all finite,
partial functions, then

dz(i) = {d̂}(z, i) = {S1
1(d̂, z)}(i),

and so, if the partial, recursive function f(e) computes α(p), then the
relation

R(z, w) ⇐⇒ α(dz) = w ⇐⇒ f(S1
1(d̂, z)) = w

is semirecursive, and (127) follows with this R(z, w) by Lemma 6D.2. a
6D.4. Corolary (Rice-Shapiro). A recursive partial function f(e) sat-

isfies

We = Wm =⇒ f(e) = f(m),

if and only if there is a semirecursive relation R(x, w) such that

f(e) = w ⇐⇒ (∃x)[Dx ⊆ We & R(x, w)],

where the enumeration D0, D1, . . . of the finite sets has been defined in 6B.7.

We leave the proof for Problem x6D.6.

Problems for Section 6D

x6D.1. Let f(z) be a recursive partial function such that

[f(e)↓ & We = Wm] =⇒ f(m)↓ ;

show that for every e,

f(e)↓ =⇒ there exists a finite Wz, such that Wz ⊆ We and f(z)↓ .

x6D.2. Let f(e) be a recursive partial function such that f(e) ≤ 5 for
every code e of a total, one-place function ϕe. Is it true or false that there

must be some m such that ϕm is not total, but f(m) ↓ and f(m) ≤ 5?.
Prove your answer.

x6D.3. Let f(e) be a recursive partial function such that

We = ∅=⇒ f(e)↓ .

(1) Prove that for some We 6= ∅, f(e)↓ .

(2) Prove that for every m, there exists some e such that

We = Wm and f(e)↓ .

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 143

144 6. Recursive functionals and effective operations

x6D.4. Prove that for every effective operation α(x, p), the recursive
equation

p(x) = α(x, p)

has a recursive (partial) solution.

x6D.5. Prove that for every effective operation α(x, p), the recursive
equation

p(x) = α(x, p)

has a least solution, which is recursive.

x6D.6. Prove the Rice-Shapiro Theorem 6D.4.

x6D.7 (Rice’s theorem). Prove that if a total function f(e) satisfies
the invariance property

We = Wm =⇒ f(e) = f(m),

then f(e) is constant.

x6D.8∗. (1) Prove that there exists a recursive partial function f(e) such
that for every e,

f(e)↓ ⇐⇒ (∃x)[ϕe(x)↓],(128)

(∃x)[ϕe(x)↓] =⇒ ϕe(f(e))↓ .(129)

(2) Prove that there is no partial recursive function f(e) which satisfies
the conditions (128), (129), and in addition

ϕe = ϕm =⇒ f(e) = f(m).(130)

6E. Kreisel-Lacombe-Shoenfield and Friedberg

The basic message of 6D.3 is that there is no way to use a program
P (or a code of it) which computes a recursive partial function p in the
computation of properties of p other than the obvious: in the process of
the computation we can use P to compute any value p(u) of p we need. The
corresponding problem for effective operations on total recursive functions

is more difficult and has a more interesting answer.

For each k = 1, 2, . . . , let Fr
k be the set of all recursive (total) functions

of k variables,

Fr
k = {ϕk

e | (∀~x)(∃y)Tk(e, ~x, y)}.
In particular, Fr

1 is the set of all recursive sequences of natural numbers.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 144

6E. Kreisel-Lacombe-Shoenfield and Friedberg 145

6E.1. Definition. An operation (on the total recursive functions) is
any partial function

α : Nn × Fr
k1

× · · · × Fr
km

⇀ N;

and the operation α is computable if there exists some recursive partial
function f(~x, e1, . . . , em) such that

ϕe1
, . . . , ϕem

∈ Fr =⇒α(~x, ϕe1
, . . . , ϕem

) = f(~x, e1, . . . , em),(131)

where Fr =
⋃

k Fr
k.

Here the partial function f which computes the operation α satisfies the
invariance property :

(132) ϕe1
= ϕz1

, . . . , ϕem
= ϕzm

∈ Fr

=⇒ f(~x, e1, . . . , em) = f(~x, z1, . . . , zm)

which is significantly weaker than the corresponding property (122) for
operations on the recursive partial functions. For example, the partial
function

f(e) =

{
1, if (∀i ≤ e)[ϕe(i) = 0],

↑, otherwise

satisfies (131) and computes (rather unnaturally) the operation

α(p) = 1

on Fr
1). It does not satisfy (122) and does not compute any operation on

the space Pr.

There are two obvious questions, for the simpler case of operations α :
Fr

1 :⇀ N:

6E.2. Question 1. Can we find, for each effective operation α : Fr
1 ⇀ N,

some recursive, partial function which computes it according to (131) and

which also satisfies the strong invariance property (122)?

Equivalently, as we will see:

6E.3. Question 2. Does there exist a recursive (or non-deterministically

recursive) functional α∗ : P1 ⇀ N such that

X ∈ Fr
1 =⇒α(X) = α∗(X)?

The basic content of the Kreisel-Lacombe-Shoenfield Theorem and of
Friedberg’s counterexample which we will show in this section is that the
answer is positive in both of these questions for effective total operations

α : Fr
1 → N, for which

X ∈ Fr
1 =⇒α(X)↓ ,

but (in general) negative for operations which diverge for some values of
their variables.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 145

146 6. Recursive functionals and effective operations

6E.4. Lemma. Let α(X) be an effective operation on the space Fr
1 and

f(e) a recursive partial function which computes it,

ϕe ∈ Fr
1 =⇒α(ϕe) = f(e),

and let X = ϕe ∈ Fr
1 be a recursive sequence such that

α(X) = f(e) = w ∈ N.

It follows that for every k ∈ N, there exists a sequence Xk : N → N such

that:

(1) t ≤ k =⇒Xk(t) = X(t).
(2) α(Xk) = α(X) = w.

(3) Xk is eventually zero, i.e., for some l and all t > l, Xk(t) = 0.

Proof. By the 2nd Recursion Theorem 4D.1, for every k, there exists
a code z = z(k) of a recursive partial function, such that

ϕz(t) =

{
ϕe(t), if t ≤ k or (∀u ≤ t)¬[T1(f̂ , z, u) & U(u) = w],

0, otherwise,
(133)

where f̂ is a code of f , i.e., f(e) = ϕ
f̂
(e). We set

Xk(t) = ϕz(t)

and we verify successively the required properties.

(1) ϕz(t) is a total, recursive function and, for every t ≤ k, ϕz(t) = ϕe(t),
directly from (133).

(2) (∃u)[T1(f̂ , z, u) & U(u) = w], i.e., α(ϕz) = f(e) = w. If not, then

(∀u)¬[T1(f̂ , z, u) & U(u) = w];

from this it follows that, for every t, (∀u ≤ t)¬[T1(f̂ , z, u) & U(u) = w];
so ϕz = ϕe, by (133), and f(z) = f(e) = w, by the hypothesis that f is
Fr

1-invariant.

(3) For every t > (µu)[T1(f̂ , z, u) & U(u) = w], ϕz(t) = 0, directly
from (133). a

The Lemma asserts that the eventually zero (and hence recursive) se-
quences occur “densely” in every set

Vw = {X ∈ Fr
1 | α(X) = w} (w ∈ N),

i.e., for every X ∈ Vw, there exist eventually zero sequences in Vw which
“agree” with X on arbitrarily long, initial segments. The eventually zero
sequences are coded simply, by the (basically) same coding which we used
for finite, partial functions:

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 146

6E. Kreisel-Lacombe-Shoenfield and Friedberg 147

6E.5. Coding of eventually zero functions. Let

c(x, i) =

{
(x)i, if i < lh(x),

0, otherwise,

cx(i) = c(x, i).

It follows that the function c(x, i) is recursive and the sequence

c0, c1, . . .

enumerates all eventually zero sequences, so that

cx(i) 6= 0 =⇒ i < lh(x).

Also, there exists a primitive recursive function

ι(x) = S1
1(ĉ, x) (where ϕ

ĉ
(x, t) = c(x, t)),(134)

such that

cx(t) = c(x, t) = ϕι(x)(t).

6E.6. Theorem (Continuity of effective operations on Fr
1). For each ef-

fective operation α : Fr
1 ⇀ N and every X ∈ Fr

1, if α(X)↓ , then there exists

some k ∈ N, such that for every Y ∈ Fr
1,(

α(Y)↓ & (∀t ≤ k)[Y (t) = X(t)]
)

=⇒α(Y) = α(X).

In particular, if α is total, so that, for every Y ∈ Fr
1, α(Y)↓ , the conclusion

takes the simpler form

(∀t ≤ k)[Y (t) = X(t)] =⇒α(Y) = α(X).

Proof. Let f(e) be a recursive, partial function which computes α(X),
so that

ϕe = ϕm ∈ Fr
1 =⇒ f(e) = f(m).

The idea of the construction is to find some z such that

ϕz(t) =

{
X(t), if in ≤ t “steps” f(z) does not converge,

cx(t), otherwise

where the eventually zero cx is chosen (compatibly with the first case, if it
exists) so that

α(cx)↓ & α(cx) 6= α(X).

If we achieve this, then we will have f(z) = α(X), with an argument which
is by now familiar, and from this we will conclude that if

k = the “number of steps” in which f(z) converges,

then there is no x such that

α(cx)↓ & α(cx) 6= α(X) & (∀t ≤ k)[cx(t) = X(t)];

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 147

148 6. Recursive functionals and effective operations

from which, with Lemma 6E.4, we will conclude further that there is no

recursive sequence Y such that

(∀t ≤ k)[Y (t) = X(t)] & α(Y)↓ & α(Y) 6= α(X),

which is what we needed to prove. In detail:
By the 2nd Recursion Theorem, for every e, there is a code z, such that

(135) ϕz(t) =

ϕe(t), if f(e)↓ & (∀u ≤ t)¬[T1(f̂ , z, u) & U(u) = f(e)],

cg(z,e)(t), if f(e)↓ & (∃u ≤ t)[T1(f̂ , z, u) & U(u) = f(e)],

↑, otherwise, i.e., if f(e) ↑,

where
comp(f̂ , z) = µyT1(f̂ , z, y)

is the length of the computation of f(z) (if f(z)↓) and

(136) g(z, e) = (νx)[f(z)↓ & f(ι(x))↓ & f(z) 6= f(ι(x))

& (∀t ≤ comp(f̂ , z))[cx(t) = ϕe(t)]].

Here ι(x) is from (134), so that ϕι(x) = cx and by the Σ0
1-Selection Lemma 4A.7,

g(z, e) converges exactly if there exists some x such that

f(z)↓ & f(ι(x))↓ & f(z) 6= f(ι(x)) & (∀t ≤ comp(f̂ , z))[cx(t) = ϕe(t)],

and, when it converges, it chooses some x = g(z, e) with these properties.

We now suppose that X = ϕe ∈ Fr
1 and α(X) = f(e)↓ .

(1) f(z) ↓ and f(z) = f(e); otherwise ϕz = ϕe ∈ Fr
1 and f(z) = f(e),

which is absurd. We set

k = comp(f̂ , z).(137)

(2) There is no eventually zero function cx, such that

α(cx)↓ & f(ι(x)) = α(cx) 6= f(e) & (∀t ≤ comp(f̂ , z))[cx(t) = ϕe(t)].

Because if such a function existed, then g(z, e)↓ and cg(z,e) has this prop-
erty, so that, by the construction, ϕz = cg(z,e) and

f(z) = f(ι(g(z, e))) = α(cg(z,e)) 6= f(e),

which contradicts (1).

(3) For every Y ∈ Fr
1,

[α(Y)↓ & (∀t ≤ k)[Y (t) = X(t)]] =⇒α(Y) = α(X).

This follows now from Lemma 6E.4: because if α(Y) = v 6= f(e), then
there exists some eventually zero cx which agrees with Y (and, therefore,
and with X) for t ≤ k, and for which α(cx) = v 6= f(e), and that contradicts
(2). a

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 148

6E. Kreisel-Lacombe-Shoenfield and Friedberg 149

This theorem is the basic discovery and it is called “the Kreisel-Lacombe-
Shoenfield Theorem”, or it is attributed to the Russian mathematician
Čeitin who proved it independently. The name, however, is more appropri-
ate for the next stronger result:

6E.7. Theorem (Kreisel-Lacombe-Shoenfield, Čeitin). For every effec-

tive operation α : Fr
1 ⇀ N on the total recursive functions, there is a

recursive functional α∗ : P1 ⇀ N, such that
(
X ∈ Fr

1 & α(X)↓
)

=⇒α(X) = α∗(X).(138)

In particular, if α : Fr
1 → N is total, then

X ∈ Fr
1 =⇒α(X) = α∗(X),

and the questions 6E.2 and 6E.3 have positive answers for total effective
operations.

Proof. Let f̂ be a code of some recursive, partial function which com-
putes α, i.e.,

ϕe ∈ Fr
1 =⇒α(ϕe) = f(e) = ϕ

f̂
(e).

The crucial observation is that the proof of the Continuity Theorem 6E.6
is constructive, and specifically that the number k in (137) is the value of
a recursive, partial function σ(e), which converges when e is a code of a
recursive sequence ϕe such that α(ϕe) = f(e)↓ . The partial function g(z, e)
is recursive indeed, as a function of two variables, with the definition (136);
by the version (97) of the 2nd Recursion Theorem with parameter, there
exists some primitive recursive h(e) such that (135) holds if we set

z = h(e);

and, finally, the number k that we need is computed by

k = σ(e) = comp(f̂ , h(e)).(139)

We now reexamine the proof of 6E.6, to see what it gives us without the

hypothesis that ϕe is total :

Lemma. For every e, with z = h(e), if

f(e)↓ & f(e) = f(z) & (∀t ≤ σ(e))ϕe(t)↓ ,

then, for every X,
(
X ∈ Fr

1 & α(X)↓ & (∀t ≤ σ(e))X(t) = ϕe(t)
)

=⇒α(X) = f(e).

Proof. Towards a contradiction, we assume the hypothesis for e and that
for some X ∈ Fr

1,

α(X)↓ & (∀t ≤ σ(e))[X(t) = ϕe(t) & α(X) 6= f(e)].

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 149

150 6. Recursive functionals and effective operations

By lemma 6E.4 now, there exists some eventually zero cx such that

α(cx) = α(X) 6= f(e) & (∀t ≤ σ(e))cx(t) = ϕe(t);

and by the definition of g(e, z) and (135), cg(e,z) has this property and
ϕz = cg(e,z) ∈ Fr

1; so f(z) = f(g(e, z)) 6= f(e), which contradicts the
hypothesis.

The set

A = {e | f(e)↓ & f(e) = f(h(e)) & (∀t ≤ σ(e))ϕe(t)↓},
of all numbers e which satisfy the hypothesis of the Lemma is semirecursive,
so there is a (primitive) recursive relation R(e, u) such that

e ∈ A ⇐⇒ (∃u)R(e, u).

The functional

γ(p) = (µy)[(∀t ≤ y)p(t)↓ & R((y)0, (y)1)]

is (easily) recursive. It follows that

β(p) = f((γ(p))0),

is also recursive, and it is not difficult, by the Lemma, to show now that

[X ∈ Fr
1 & α(X)↓] =⇒α(X) = β(X),

which is what we needed to show. a
The rather careful formulation of the Theorem is necessary, because of

the following counterexample:

6E.8. Theorem (Friedberg). There exists an effective (partial) opera-

tion α : Fr
1 ⇀ N such that:

(1) α(X0) = 1, where, X0(t) = 0, for every t.
(2) For every k, there exists some Xk ∈ Fr

1 such that

(∀t ≤ k)Xk(t) = 0 and α(Xk) ↑ .

It follows that the operation α is not the restriction to Fr
1 of any non-

deterministically recursive functional.

Proof. The second claim follows from (1) and (2), because, if α were the
restriction to Fr

1 of some (non-deterministically) recursive β, then β(X0) =
1; so the computation of the recursive machine which computes the value
β(X0) terminates and, until it terminates, it calls finitely many values of
X0; and if k is the maximum number for which the computation used the
value X0(k), then, obviously, the computation will terminate and will give
the value 1 for every X such that (∀t ≤ k)X(t) = 0.

To construct α and prove the first proposition, we set:

e ∈ A ⇐⇒ (∀t ≤ e)[ϕe(t) = 0],(140)

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 150

6E. Kreisel-Lacombe-Shoenfield and Friedberg 151

(141) e ∈ B ⇐⇒ (∃m ∈ A)(∃k)(∀t ≤ k)
(
ϕe(t) = ϕm(t) = 0

& ϕe(k + 1) = ϕm(k + 1)↓ & ϕe(k + 1) 6= 0
)
,

f(e) = if (e ∈ A ∪ B) then 1 else ↑ .(142)

Lemma. The partial function f is recursive and Fr
1-invariant, i.e.,

ϕe = ϕm ∈ Fr
1 =⇒ f(e) = f(m).

Proof. Suppose ϕe = ϕm ∈ Fr
1, and f(e) = 1. We need to show that

f(m) = 1.

Case 1. ϕe = ϕm = X0. In this case m ∈ A, so f(m) = 1.

Case 2. ϕe = ϕm 6= X0 and e ∈ A. Now (141) holds with m = e, k = e
and m in place of e, so m ∈ B and f(m) = 1.

Case 3. ϕe = ϕm 6= X0 and e ∈ B. In this case there must exist
“witnesses” m ∈ A and k which satisfy (141) and verify that e ∈ B; the
same witnesses satisfy (141) with m in place of e, so that m ∈ B and
f(m) = 1. a (Lemma)

The effective operation α : Fr
1 ⇀ N computed by f obviously has property

(1) in the Theorem. To show (2), for any k, we set

C = {e ∈ A | e ≤ k & (∀t ≤ k)ϕe(t) = 0 & ϕe(k + 1)↓ & ϕe(k + 1) 6= 0}.
The set C is finite, and (if k is sufficiently large) non-empty, say

C = {e1, . . . , en};
We set

Xk(t) =

{
0, if t ≤ k or t > k + 1,

max{ϕe1
(k + 1), . . . , ϕen

(k + 1)} + 1, if t = k + 1,

so that, certainly, (∀t ≤ k)[Xk(t) = 0], and it is enough to get a contradic-
tion from the hypothesis that there exists some e such that

ϕe = Xk & e ∈ A ∪ B.

Case 1. ϕe = Xk and e ∈ A. By the definition of A,

e ∈ A =⇒ (∀t ≤ e)[ϕe(t) = 0]

=⇒ e ≤ k since ϕe(k + 1) = Xk(k + 1) 6= 0

=⇒ e ∈ C

and the last is absurd, because Xk(k + 1) 6= ϕe(k + 1) for every e ∈ C.

Case 2. ϕe = Xk and e ∈ B. There exist now witnesses m ∈ A and
k′ verifying that e ∈ B, and k′ = k + 1, since (∀t ≤ k)[Xk(t) = 0] and
Xk(k + 1) 6= 0. Also, m ∈ C, since m ∈ A and ϕm(k + 1) 6= 0. But these

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 151

152 6. Recursive functionals and effective operations

lead to a contradiction as in the first case, since Xk(k + 1) 6= ϕm(k + 1),
for every m ∈ A. a

Problems for Section 6E

x6E.1. Let f(e) be a recursive partial function such that

(∀x)[ϕe(x) = 0] =⇒ f(e) = 3;

show that for every k, there exists some m, such that

(1) (∀x)[ϕm(x)↓].
(2) (∀x ≤ k)[ϕm(x) = 0].
(3) (∃x)[ϕm(x) 6= 0].
(4) f(m) = 3.

x6E.2. Is the following proposition true or not: Let f(e) be a recursive
partial function such that

(∀x)[ϕe(x) = 0] =⇒ f(e) ↓;
for every k, there exists some m, such that

(1) (∀x)[ϕm(x) ↓].
(2) (∀x ≤ k)[ϕm(x) = 0].
(3) (∃x)[ϕm(x) 6= 0].
(4) f(m) ↓.

Prove your answer.

Recursion and computation, by Yiannis N. Moschovakis

English Version 1.2.

January 27, 2019, 10:03. 152

