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One way to interpret the Completeness Theorem is that it identifies
logical truth with provable or justified truth: if a τ -sentence χ is true
under all interpretations of the constants, relation symbols and function
symbols of τ in every universe of discourse, then χ is formally provable in
LPCI(τ). In this handout we will prove in outline the celebrated theorems
of Tarski and (especially) Gödel which prohibit this sort of reduction
for arithmetical truth: in a sense which we will make precise (and
plausible), there is no useful reduction of arithmetical truth to provability
in some theory.
These results are quite general, but we will keep the discussion concrete

by concentrating on the (fixed for the sequel) vocabulary

τ
PA

= (0, S,+, ·)

of Peano arithmetic (PA) and the fixed standard model

N = (N, 0, S,+, ·)

of it. The proofs depend on the method of arithmetization (or Gödel
numbering) which assigns number codes to the symbols, terms, formulas
and proofs of PA and most any other interesting τ

PA
-theory T : we can then

interpret the formulas of LPCI(τ
PA
) as making (indirectly) claims about

T , and a judicious choice of self-referential such claims will yield the
theorems.
We have put in §1 a version of what is sometimes called Gödel’s long

computation, the technical facts we need about these codings. These are
most easily proved by appealing repeatedly to Theorem 3J.1 of LPCI.
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2 3. THE THEOREMS OF TARSKI AND GÖDEL

§1. Arithmetization. Using standard, set-theoretic notation, we let

N<ω = the set of all finite sequences of natural numbers.

Instead of the cumbersome tuple-coding of N<ω in terms of the β-function,
we will use the following, now standard coding of tuples of numbers:

1.1. Theorem (Sequence coding). For each n ≥ 1, let

fn(x0, . . . , xn−1) = px0+1
0 px1+1

1 · · · pxn−1+1
n−1 .

(1) Each fn : Nn → N is arithmetical and one-to-one.

(2) The mapping ⟨ ⟩ : N<ω → N defined by

⟨∅⟩ = 1, ⟨x0, . . . , xn−1⟩ = fn(x0, . . . , xn−1)

is one-to-one.

(3) The unary relation

Seq(u) ⇐⇒ u = 1 ∨ (∃n, x0, . . . , xn−1)[u = fn(x0, . . . , xn−1)]

is arithmetical.

(4) There is a unary arithmetical function lh(u) such that

lh(1) = 0, lh(⟨x0, . . . , xn−1⟩) = n.

(5) There is binary, arithmetical function proj(u, i) such that

if u = ⟨x0, . . . , xn−1⟩ and i < n, then proj(u, i) = xi.

Proof is easy, and we will leave it for the problems. ⊣

We call ⟨x0, . . . , xn−1⟩ the code of the finite sequence (x0, . . . , xn−1).
Notice that 0 is not a code, 1 codes the empty sequence, and the relation
Seq(u) of “being a code” is arithmetical by (3). The function lh(u) gives
us the length of the sequence (coded by) u, if u codes a sequence, and
proj(u, i) gives us the i’th term of that sequence, if i < lh(u). To simplify
notation, we will write

(u)i = proj(u, i), (u)i,j = ((u)i)j , . . .

rather than proj(u, i), proj(proj(u, i), j) . . . .

1.2. Lemma (Concatenation). There is a binary arithmetical function
u ∗ v such that

(1) if u or v are not both sequence codes, then u ∗ v = 0; and
(2) for any two finite sequences (x0, . . . , xn−1), (y0, . . . , ym−1),

⟨x0, . . . , xn−1⟩ ∗ ⟨y0, . . . , ym−1⟩ = ⟨x0, . . . , xn−1, y0, . . . , ym−1⟩.

In particular, if Seq(u), then u ∗ 1 = 1 ∗ u = u.

Proof is easy, cf. Problem x3.3. ⊣
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The concatenation operation u ∗ v is easily associative (Problem x3.3)

(u ∗ v) ∗ w = u ∗ (v ∗ w),(1-1)

and so we will write u ∗ v ∗ w, u ∗ v ∗ w ∗ z, etc., without indicating any
specific grouping.

1.3. Definition (The coding of LPCI(τ
PA
)). We assign numbers to the

symbols of LPCI(τ
PA
) by enumerating them as follows:

¬ ∧ ∨ → ∀ ∃ = ( ) , 0 S + · v0 v1 v2 · · ·
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

so that sc(¬) = 0, sc(∧) = 1, . . . , sc(·) = 13 and sc(vi) = 14 + i.
Using these symbol codes, we can assign codes to strings of symbols by

using the coding of sequences above:

#(a0a2 . . . an−1) = ⟨sc(a0), . . . , sc(an−1)⟩;

this defines codes for the terms and formulas of LPCI(τ
PA
), since they are

sequences of symbols.
Finally, we can use the string codes to assign codes to sequences of

strings by the same method:

@(α0, . . . , αn−1) = ⟨#(α0), . . . ,#(αn−1)⟩.

These codings allow the easy extraction of information about the coded
object from its code. For example, if a = #(a0a2 . . . an−1), then lh(a) is
the length of the string α coded by a, (a)i is the code sc(ai) of the i’th
symbol in α for i < lh(a), etc. They are also immense: for example, for
the simplest formula with a variable,

#(v0 = 0) = ⟨sc(v0), sc(=), sc(0)⟩ = 21537511

This is not important for what we will do with them.

1.4. Lemma. The following relations and functions are arithmetical:

Zero(s) ⇐⇒ s is the code of 0

⇐⇒ s = sc(0)

Variable(v) ⇐⇒ v is the code of a variable

⇐⇒ v ≥ 14

String(s) ⇐⇒ s is the code of a string of symbols

⇐⇒ Seq(s)

SeqStrings(y) ⇐⇒ y is a code of a sequence of strings

⇐⇒ Seq(y) ∧ (∀i < lh(y))[String((y)i)]

Proof is trivial using Theorem 3J.1 of LPCI. ⊣
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1.5. Definition (Derivations of syntactic objects). A term derivation
is a finite sequence (α0, . . . , αn) of strings of symbols such that for each
i, one of the following conditions hold:

1. αi ≡ 0
2. αi is a variable
3. There is a number j < i such that αi ≡ S(αj).
4. There are numbers j, k < i such that αi ≡ +(αi, αk).
5. There are numbers j, k < i such that αi ≡ ·(αi, αk).

A formula derivation is a finite sequence (ϕ0, . . . , ϕn) of strings of sym-
bols such that for each i, one of the following conditions hold:

1. ϕi ≡ s = t, where s and t are terms.
2. There is a number j < i such that ϕi ≡ (¬ϕj).
3. There are numbers j, k < i such that ϕi ≡ (ϕj ∧ ϕk).
4. There are numbers j, k < i such that ϕi ≡ (ϕj ∨ ϕk).
5. There are numbers j, k < i such that ϕi ≡ (ϕj → ϕk).
6. There is a number j < i and a variable vk such that ϕi ≡ ∀vkϕj .
7. There is a number j < i and a variable vk such that ϕi ≡ ∃vkϕj .

1.6. Lemma. (1) A string t is a term if and only if it occurs in a term
derivation; i.e., if there is a term derivation (α0, . . . , αn) such that for
some i ≤ n, t ≡ αi.

(2) A string ϕ is a formula if and only if it occurs in a formula deriva-
tion.

Proof. Both of these are easy, using structural induction for the direc-
tion (=⇒ ) and induction on the length n of the given sequence of strings
for the direction (⇐=). ⊣

1.7. Lemma. The following relations are arithmetical:

TermDer(y) ⇐⇒ y is the code of a term derivation

Term(t) ⇐⇒ t is the code of a term

⇐⇒ (∃y)[TermDer(y) ∧ (∃i < lh(y))[t = (y)i]].

FormulaDer(y) ⇐⇒ y is the code of a formula derivation

Formula(f) ⇐⇒ f is the code of a formula

⇐⇒ (∃y)[FormulaDer(y) ∧ (∃i < lh(y))[f = (y)i]]

BoundOcc(f, i, j) ⇐⇒ f is the code of a formula ϕ

and vi occurs bound in position j in ϕ

Bound(f, i) ⇐⇒ f is the code of a formula ϕ

and vi occurs bound in ϕ

⇐⇒ (∃j)BoundOcc(f, i, j)
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FreeOcc(f, i, j) ⇐⇒ f is the code of a formula ϕ

and vi occurs free in position j in ϕ

Free(f, i) ⇐⇒ f is the code of a formula ϕ

and vi occurs free in ϕ

⇐⇒ (∃j)FreeOcc(f, i, j)

Sentence(c) ⇐⇒ c is the code of a sentence

⇐⇒ Formula(c) ∧ (∀i)¬Free(c, i).

Proof. The key fact is Lemma 1.6 and for most of the claims in the
Lemma we have included the proof. We outline the necessary computation
for the coding of terms. Set first:

UnDer(a, b) ⇐⇒ for some strings α and β,

b = #(β) and a = #(S(β))

⇐⇒ Seq(b) ∧ a = ⟨sc(S), sc(()⟩ ∗ b ∗ ⟨sc())⟩
BinDer(a, b, c) ⇐⇒ for some strings α, β, γ, b = #(β), c = #(γ)

and α ≡ +(β, γ) or α ≡ ·(β, γ)
⇐⇒ Seq(b) ∧ Seq(c)

∧ [a = ⟨sc(+)⟩ ∗ b ∗ ⟨sc(, )⟩ ∗ c ∗ ⟨sc())⟩
∨a = ⟨sc(·)⟩ ∗ b ∗ ⟨sc(, )⟩ ∗ c ∗ ⟨sc())⟩]

These relations are clearly arithmetical, and directly from the definition:

TermDer(y) ⇐⇒ Seq(y) ∧ (∀i < lh(y))Seq((y)i)

∧(∀i < lh(y))
(
[lh((y)i) = 1 ∧ Zero((y)i,0)]

∨[lh((y)i) = 1 ∧Variable((y)i,0)]

∨(∃j < i)UnDer((y)i, (y)j)

∨(∃j, k < i)BinDer((y)i, (y)j , (y)k)
)

This completes the proof that Term(t) is arithmetical, and the argument
is similar for Formula(f).

For the relation BoundOcc(f, i, j), we use the fact that vi occurs bound
in the position j of the formula ϕ if ϕ ≡ αψβ where α or β may be
empty, but ψ is a formula which starts with either ∃vi or ∀vi, and the
j’th position in ϕ occurs in ψ. So

BoundOcc(f, i, j) ⇐⇒ Formula(f) ∧ (f)j = sc(vi)

∧ (∃a, c, b)
[
f = a ∗ c ∗ b ∧ Seq(a) ∧ Seq(b) ∧ Formula(c)

∧ [lh(a) < j < lh(a ∗ c)]

∧ [(c)0 = sc(∃) ∨ (c)0 = sc(∀)] ∧ (c)1 = sc(vi)
]
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6 3. THE THEOREMS OF TARSKI AND GÖDEL

The remaining parts of the Lemma are simple, cf. Problem x3.6. ⊣
Recall the function ∆(n) which associates with each natural number n

the simplest, closed term which names n in the language of LPCI(τ
PA
) (its

numeral). It is defined by the simple recursion

∆(0) ≡ 0, ∆(n+ 1) ≡ S(∆(n)),(1-2)

1.8. Lemma. The function δ(n) = #(∆(n)) is arithmetical.

Proof. We define δ(n) by a primitive recursion which is modeled after
the recursive definition of the terms ∆(n):

δ(0) = #(0) = ⟨sc(0)⟩,
δ(S(n)) = ⟨sc(S), sc(()⟩ ∗ δ(n) ∗ ⟨sc())⟩. ⊣

§2. The theorems. We start with a better way of representing arith-
metical relations, which utilizes the fact that every number is named by
a numeral:

2.1. Lemma. A unary relation R(n) is arithmetical if and only if there
exists a formula ϕ in which v0 does not occur bound and no variable other
than v0 occurs free, such that for every n,

R(n) ⇐⇒ N |= ∃v0(ϕ ∧ v0 = ∆(n)).(2-3)

Proof. If ϕ is any formula and π is any assignment, then for every n,

N, π{v0 := n} |= ϕ ⇐⇒ N, π |= ∃v0(ϕ ∧ v0 = ∆(n)).(2-4)

This is easily seen using the Tarski conditions, Theorem 3F.1 of LPCI as
follows.

Suppose first that N, π{v0 := n} |= ϕ. To show that

N, π |= ∃v0(ϕ ∧ v0 = ∆(n)),

we must find some number m such that

N, π{v0 := m} |= ϕ ∧ v0 = ∆(n);(2-5)

and m = n clearly does it, since N, π{v0 := n} |= v0 = ∆(n).
Conversely, if N, π |= ∃v0(ϕ ∧ v0 = ∆(n)), then there is some m such

that (2-5) holds, and this can only be n, since we cannot have

N, π{v0 := m} |= v0 = ∆(n)

unless m = n. Thus (2-5) holds with m = n, which is the left-hand-side
of (2-4).

Now, a unary relation R(n) is arithmetical if and only if there is a
formula ϕ with at most one free variable v such that (for any π),

R(n) ⇐⇒ N, π{v := n} |= ϕ.
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By alphabetic changes of variables, we may assume that v ≡ v0 and that
v0 does not occur bound in ϕ, and then the Lemma follows from (2-4).⊣
The main tool for the proofs of the Tarski and Gödel theorems is the

following, simple result:

2.2. Lemma. There is an arithmetical function D(f, n) such that for
every formula ϕ and every number n,

D(#(ϕ), n) = #(∃v0(ϕ ∧ v0 = ∆(n))).(2-6)

Proof. This is seen by a direct, explicit definition:

D(f, n) = #
(
∃v0

)
∗ f ∗#(∧v0 =) ∗ δ(n) ∗ ⟨sc())⟩. ⊣

2.3. Definition. For any τ
PA
-theory T , we let

#(T ) = {#(χ) | χ ∈ T},

and we call T arithmetical if #(T ) is an arithmetical set. We also set

Truth(N) = #(Th(N))

= {c | c is the code of a τ
PA
- sentence χ such that N |= χ}.

It is customary to refer loosely to Truth(N) as “the truth set of arith-
metic”, basically identifying the set of sentences Th(N) with the set
Truth(N) of their codes; either way, this is the set of arithmetical truths.

2.4. Theorem (Tarski’s Theorem). The set Truth(N) of arithmetical
truths is not arithmetical.

Proof. Suppose towards a contradiction that Truth(N) is arithmetical,
and let

R(e) ⇐⇒ D(e, e) /∈ Truth(N).

Now R(e) is arithmetical, and so by Lemma 2.1, there is a formula ϕ in
which only v0 occurs free, v0 does not occur bound, and

R(e) ⇐⇒ N |= ∃v0(ϕ ∧ v0 = ∆(e)).(2-7)

Let e = #(ϕ). Now e is the code of a formula, and so by Lemma 2.2,

D(e, e) = #(∃v0(ϕ ∧ v0 = ∆(e))).

By the definition of R(e) then,

R(e) ⇐⇒ D(e, e) /∈ Truth(N) ⇐⇒ N ̸|= ∃v0(ϕ ∧ v0 = ∆(e));

while by (2-7),

R(e) ⇐⇒ N |= ∃v0(ϕ ∧ v0 = ∆(e)),

so that R(e) ⇐⇒ ¬R(e), which is absurd. ⊣
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2.5. Definition. For any τ
PA
-theory T , let

ProofT (y, c) ⇐⇒ c is a code of a sentence χ

and y is the code of a proof of χ from T

⇐⇒ c is a code of a sentence χ

and there is a deduction ϕ0, . . . , ϕn, χ from T

with code y = ⟨#(ϕ0), . . . ,#(ϕn), c⟩.
This is the proof relation of the theory T .

2.6. Lemma. (1) Peano arithmetic PA is arithmetical.

(2) If T is an arithmetical theory, then its proof relation ProofT (y, c)
is arithmetical.

Proof. (1) is rather tedious but easy and (2) is proved by the same sort
of computation we used in the proofs that the two relations TermDer(y)
and FormulaDer(y) are arithmetical. We leave them both for problems.⊣
A τ

PA
-theory T is sound for N if all its theorems are true in N, i.e.,

T ⊢ χ=⇒N |= χ;

it is complete for N if it proves every τ
PA
-sentence which is true in N, i.e.,

N |= χ=⇒T ⊢ χ.

2.7. Theorem (Gödel’s First Incompleteness Theorem). No arithmeti-
cal theory in the language of PA can be both sound and complete for N;
and in particular, PA is not complete.

We will give two proofs of this theorem, one by contradiction and one
constructive.

First proof. If T is sound and complete for N, then

T ⊢ χ ⇐⇒ N |= χ.

Thus the set of theorems T coincides with the set of sentences which are
true in N and its code set

T = {#(χ) | χ is a sentence and T ⊢ χ} = Th(N)

which is not arithmetical by Tarski’s Theorem. But if T is arithmetical,
then T is also arithmetical since

c ∈ T ⇐⇒ (∃y)ProofT (y, c). ⊣

Second proof. We assume that T is a sound, arithmetical τ
PA
-theory,

and we will construct a sentence γT (the Gödel sentence of T ) which is
true but not a theorem of T , i.e.,

N |= γT but T ̸⊢ γT .(2-8)
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Let

P (e) ⇐⇒ ¬(∃y)Proof(y,D(e, e))(2-9)

so that P (e) is an arithmetical relation and by Lemma 2.1, there is a
formula ϕ with just v0 free such that for every number e,

P (e) ⇐⇒ N |= ∃v0(ϕ ∧ v0 = ∆(e)).(2-10)

Let e = #(ϕ) and set

γT :≡ ∃v0(ϕ ∧ v0 = ∆(e)) so that #(γT ) = D(e, e).(2-11)

By (2-9),

P (e) ⇐⇒ T ̸⊢ γT ;

and by (2-10),

P (e) ⇐⇒ N |= γT ,

so that we have the equivalence

N |= γT ⇐⇒ T ̸⊢ γT ,(2-12)

and its contrapositive

N ̸|= γT ⇐⇒ T ⊢ γT .(2-13)

We now infer that T ̸⊢ γT : because if T ⊢ γT , thenN |= γT by soundness,

contradicting (2-13). Hence, by (2-12), N |= γT , and the two framed

propositions together give (2-8). ⊣
Notice that carefully read and “translated” into mathematical English,

the Gödel sentence γT claims its own unprovability from T .

§3. Problems.

x3.1. Prove (3) Theorem 1.1, that the relation

Seq(u) ⇐⇒ u = 1 ∨ (∃n, x0, . . . , xn−1)[u = fn(x0, . . . , xn−1)]

is arithmetical.

x3.2. Prove (5) of Theorem 1.1, that there is a binary, arithmetical
function proj(u, i) such that

if u = ⟨x0, . . . , xn−1⟩ and i < n, then proj(u, i) = xi.

x3.3. Prove Lemma 1.2, that the concatenation function on N<ω is
arithmetical in the codes and also that it is associative, (1-1).

x3.4. Prove (1) of Lemma 1.6.
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x3.5. Determine the free and bound occurrences of variables in the
following (misspelled) formula of LPCI(≤):

ϕ ≡ ∀y(x ≤ y) ∧ ∀x∃y(x ≤ y ∧ ¬(y ≤ x))

Which are the free variables of ϕ and which are its bound variables?

x3.6. Prove the claims about Formula(f) and Sentence(c) in Lemma 1.7.

x3.7. Outline a proof of Part (1) of Lemma 2.6.

x3.8. Outline a proof of Part (2) of Lemma 2.6.
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