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§1. Examples of structures. The Lower Predicate (or First Order)
Calculus is interpreted in mathematical structures like the following.

1A. Graphs. A graph (for these notes) is a pair

G = (G,E)

where G ̸= ∅ is a non-empty set (the nodes or vertices) and E ⊆ G2 is a
binary relation on G, (the edges) such that for all nodes x, ¬E(x, x); G is
symmetric or unordered if

E(x, y)=⇒E(y, x).

A path in a symmetric graph G = (G,E) is a sequence of nodes

(x0, x1, . . . , xn)

such that there is an edge joining each xi with xi+1, i.e.,

E(x0, x1), E(x1, x2), . . . , E(xn−1, xn);

a path joins its first vertex x0 with its last xn.

The distance between two distinct nodes x, y in a symmetric graph G is
the length (number of edges, n above) of the shortest path joining them,
if some path joins them,

d(x, y) = min{n | there exists a path (x0, . . . , xn) with x0 = x, xn = y}.
By convention, d(x, x) = 0 and if no path joins x to y we set d(x, y) = ∞.

A symmetric graph is connected if any two points in it are joined by a
path.

1B. Partial and linear orderings. A partial ordering or partially
ordered set or poset is a pair

P = (P,≤),

where P is a non-empty set and ≤ is a binary relation on P satisfying the
following conditions:

(a) For all x ∈ P , x ≤ x (reflexivity).
(b) For all x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z (transitivity).
(c) For all x, y ∈ P , if x ≤ y and y ≤ x, then x = y (antisymmetry).
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 3

A total or linear ordering is a partial ordering in which every two elements
are comparable, i.e., such that

(d) For all x, y ∈ P , either x ≤ y or y ≤ x.

1C. Fields. A field is a tuple

K = (K, 0, 1,+, ·)

where K is a set, 0, 1 ∈ K, + and · are binary operations on K and the
following field axioms are true.
(1) (K, 0,+) is a commutative group, i.e.,

(a) For all x, x+ 0 = x.
(b) For all x, y, z, x+ (y + z) = (x+ y) + z.
(c) For all x, y, x+ y = y + x.
(d) For every x, there exists some y such that x+ y = 0.

(2) 1 ̸= 0 and for all x, x · 0 = 0, x · 1 = x.

(3) The structure (K \ {0}, 1, ·) is a commutative group, and in partic-
ular

x, y ̸= 0=⇒x · y ̸= 0.

Together with (2), this means that for all x, y in K,

x · y = 0 ⇐⇒ x = 0 or y = 0.

(4) The distributive law : For all x, y, z, x · (y + z) = x · y + x · z.
We will also use the following notations for the standard number fields

of the rational, the real and the complex numbers:

Q = (Q, 0, 1,+, ·), R = (R, 0, 1,+, ·), C = (C, 0, 1,+, ·).

1D. The natural numbers. The structure of arithmetic or the nat-
ural numbers is the tuple

N = (N, 0, S,+, ·)

where N = {0, 1, 2, . . . } is the set of (non-negative) integers and S, +, ·
are the operations of successor, addition and multiplication on N. The
structure N has the following characteristic properties:
(1) The successor function S is an injection, i.e.,

S(x) = S(y)=⇒x = y,

and 0 is not a successor, i.e., for all x, S(x) ̸= 0.
(2) Induction Principle: for every set of numbers X ⊆ N, if 0 ∈ X and

for every x, x ∈ X =⇒S(x) ∈ X, then X = N.
(3) For all x, y, x+ 0 = x and x+ S(y) = S(x+ y).
(4) For all x, y, x · 0 = 0 and x · S(y) = x · y + x.

These properties (or sometimes just the first two of them) are called the
Peano Axioms for the natural numbers.
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4 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

Some of the most significant applications of logic that we will prove are
about N, the natural domain of interpretation of the theory of numbers.

§2. Syntax of LPCI. The name LPCI abbreviates Lower Predicate Cal-
culus with Identity. It is actually a family of languages LPCI(τ), one for
each vocabulary or signature τ , where the signature provides names for
the distinguished elements, relations and functions of the structures we
want to talk about.
LPCI is also known as First Order Logic with Identity, or Elementary

Logic with Identity.

2A. Vocabularies. A vocabulary or signature is a quadruple

τ = (Const,Rel,Funct, arity),

such that the sets of (individual) constant symbols Const, relation symbols
Rel, and function symbols Funct are disjoint and

arity : Rel ∪ Funct → {1, 2, . . . }.

A relation or function symbol P is n-ary if arity(P ) = n.
Most often we will assume that τ is finite, i.e., the sets Const, Rel

and Funct are finite, but it is useful to allow the possibility that they are
infinite; and we should also keep in mind that any one—or all—of these
sets may be empty.
We often specify signatures and languages by enumerating their sym-

bols, when they are finitely many and their arities are clear from the
context: for example,

- LPCI(E) is the language of graphs (with E binary);

- LPCI(≤) is the language of posets;

- LPCI(0, 1,+, ·) is the language of fields:

and more importantly for what we will do,

- LPCI(0, S,+, ·) is the language of arithmetic.

2B. Terms and formulas. The alphabet of LPCI(τ) comprises the
symbols in the vocabulary τ and the following, additional symbols which
are common to all these languages:

(a) The logical symbols ¬ ∧ ∨ → ∀ ∃ =
(b) The punctuation symbols ( ) ,
(c) The (individual) variables: v0, v1, v2, . . .

The new logical symbols ∀ and ∃ are the quantifiers and they are read
“for all” and “there exists”.
As with PL, words are finite strings of symbols and lh(α) is the length

of the word α; we use ≡ to denote identity of strings,

α ≡ β ⇐⇒df α and β are the same string;
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 5

and we set
α ⊑ β ⇐⇒df α is an initial segment of β,

so that e.g., ∀v0 ⊑ ∀v0R(v0). The concatenation of two strings αβ is the
string produced by putting them together, with α first, so that α ⊑ αβ.

Terms are defined by the recursion:

(a) Each variable vi is a term.
(b) Each constant symbol is a term.
(c) If t1, . . . , tn are terms and f is an n-ary function symbol, then

f(t1, . . . , tn) is a term.
(d) No string is a term except by virtue of (a) – (c).

As with the definition of PL-formulas, we abbreviate this by

t :≡ v | c | f(t1, . . . , tn)(2-1)

and we interpret it rigorously as in Definition 1A.1 of Part 1.

LPCI-Formulas are defined by the recursion:

(a) If s, t are terms, then s = t is a formula.
(b) If t1, . . . , tn are terms and R is an n-ary relation symbol, then

R(t1, . . . , tn) is a formula.
(c) If ϕ, ψ are formulas and v is a variable, then the following strings are

formulas:

(¬ϕ) (ϕ ∧ ψ) (ϕ ∨ ψ) (ϕ→ ψ) ∀vϕ ∃vϕ
(d) No string is a formula except by virtue of (a) – (c).

In abbreviated form:

ϕ :≡ t1 = t2 | R(t1, . . . , tn)
| (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | ∀vϕ | ∃vϕ

Terms and formulas are collectively called (well formed) expressions.

2B.1. Proposition (Unique readability for terms). Each term t satis-
fies exactly one of the following three conditions.

(a) t ≡ v for a uniquely determined variable v.
(b) t ≡ c for a uniquely determined constant c.
(c) t ≡ f(t1, . . . , tn) for a uniquely determined function symbol f and

uniquely determined terms t1, . . . , tn.

2B.2. Proposition (Unique readability for formulas). Each formula χ
satisfies exactly one of the following conditions.

(a) χ ≡ s = t for uniquely determined terms s, t.
(b) χ ≡ R(t1, . . . , tn) for a uniquely determined relation symbol R and

uniquely determined terms t1, . . . , tn.
(c) χ ≡ (¬ϕ) for a uniquely determined formula ϕ.
(d) χ ≡ (ϕ ∧ ψ) for uniquely determined formulas ϕ, ψ.
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6 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

(e) χ ≡ (ϕ ∨ ψ) for uniquely determined formulas ϕ, ψ.
(f) χ ≡ (ϕ→ ψ) for uniquely determined formulas ϕ, ψ.
(g) χ ≡ ∃vϕ for a uniquely determined variable v and a uniquely deter-

mined formula ϕ.
(h) χ ≡ ∀vϕ for a uniquely determined variable v and a uniquely deter-

mined formula ϕ.

A formula is prime if it satisfies (a) or (b) in this lemma and quantifier-
free if no quantifier occurs in it.

These Parsing Lemmas are proved very much like Theorem 1A.3 of
Part 1 and they allow us to give definitions by (structural) recursion on
terms and formulas.

2B.3. Abbreviations and misspellings. As in the propositional cal-
culus, we will almost never spell formulas correctly: we will use infix
notation for terms, e.g.,

s+ t for + (s, t)

in arithmetic, introduce and use abbreviations, use (meta)variables (names)
x, y, z, u, v, . . . , for the formal variables of the language, skip (or add)
parentheses, replace parentheses by brackets or other punctuation marks,
and (in general) be satisfied with giving “instructions” for writing out
a term or a formula rather than exhibiting the actual formal expression.
For example, the following formula in the language of arithmetic says that
there are infinitely many prime numbers:

(∀x)(∃y)
[
x ≤ y ∧ (∀u)(∀v)[(y = u · v) → (u = 1 ∨ v = 1)

]
where we have used the abbreviations

x ≤ y :≡ (∃z)[x+ z = y] 1 :≡ S(0)

The correctly spelled formula which corresponds to this is quite long (and
unreadable).
Two useful logical abbreviations are for the “iff”

(ϕ↔ ψ) :≡ ((ϕ→ ψ) ∧ (ψ → ϕ))

and the quantifier “there exists exactly one x such that ϕ”

(∃!x)ϕ :≡ (∃z)(∀x)[ϕ↔ x = z],(2-2)

where z ̸≡ x. (Think this through.)

2C. Free and bound occurrences of variables. Every occurrence
of a variable in a term is free.

The free occurrences of variables in formulas are defined by structural
recursion on formulas, as follows.

(a) FO(s = t) = FO(s) ∪ FO(t).
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(b) FO((¬ϕ)) = FO(ϕ), FO((ϕ ∧ ψ)) = FO(ϕ) ∪ FO(ψ), and similarly
FO((ϕ ∨ ψ)) = FO((ϕ→ ψ)) = FO(ϕ) ∪ FO(ψ).

(c) FO(∀vϕ) = FO(∃vϕ) = FO(ϕ) \ {v}, meaning that we remove from
the free occurrences of variables in ϕ all the occurrences of the vari-
able v.

An occurrence of a variable which is not free in an expression α is bound.

For example, the free occurrences of variables are underlined in the for-
mula (∃v2P (v2, v1, v2)∧R(v2)). Notice that in this example, the variable
v2 has (three) bound occurrences and one free one.

To understand the significance of this distinction between free and
bound occurrences of variables, consider the expression∫ a

0
x2dx(∗)

we use in Calculus. There are two variables which occur in it, ‘x’ (twice)
and ‘a’ (once). Now,∫ a

0
x2dx =

∫ a

0
y2dy

(
=
a3

3

)
,

i.e., the value of the integral does not change if we replace x by y in the
formula for it; while, if a ̸= b, then∫ a

0
x2dx =

a3

3
̸= b3

3
=

∫ b

0
x2dx.

On the account that we are giving, this is because the occurrences of x
are bound in the formula (∗) for the integral, while that of a is free.
The free variables of an expression α are the variables which have at

least one free occurrence in α; the bound variables of α are those which
have at least one bound occurrence in α; and α is closed if it has no free
variables.
A closed formula is called a sentence.

2D. Substitutions. For each expression α, each variable v and each
term t, the expression α{v :≡ t} is the result of replacing all free occur-
rences of v in α by the term t. The simultaneous substitution

α{v1 :≡ t1, . . . , vn :≡ tn}
is defined similarly: we replace simultaneously all the free occurrences of
each vi in α by ti. If α is an expression, then α{v1 :≡ t1, . . . , vn :≡ tn} is
also an expression, and of the same kind—term or formula. Note that by
Problem x2.6, in general

α{v1 :≡ t1}{v2 :≡ t2} ̸≡ α{v1 :≡ t1, v2 :≡ t2}.
A term ti is free for vi in a substitution if no occurrence of a variable

in ti is bound in the result of the substitution. We will only perform
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free substitutions of this kind, sometimes without explicitly stating the
hypotheses.

2E. Extended terms and formulas. If α is a term or formula and
v1, . . . , vn is a list of distinct variables which includes all the free variables
of α, we set

α(v1, . . . , vn) :≡ (α, (v1, . . . , vn)).

So α(v1, . . . , vn) is a pair of an expression and a sequence of variables.
This is a very useful device: for example, if α(v1, . . . , vn) is an extended

expression and t1, . . . , tn a sequence of terms free for v1, . . . , vn in α, we
can then set

α(t1, . . . , tn) :≡ α{v1 :≡ t1, . . . , vn :≡ tn}
exhibiting the result of the free substitution operation in a useful way.

2F. Lower predicate calculus without identity, LPC. We will also
work with the smaller language LPC, which is obtained by removing the
symbol = and the clauses involving it in the definitions. There are no for-
mulas in LPC(τ), unless the signature τ has at least one relation symbol.
In stating theorems about LPC we will tacitly assume that the signature
has at least one relation symbol, so we have formulas.

§3. Semantics of LPCI. As we have already mentioned, we will in-
terpret the terms and formulas of LPCI(τ) in structures of signature τ ,
defined as follows:

3A. Structures. A structure of signature

τ = (Const,Rel,Funct, arity)

(or τ -structure) is a pair A = (A, I), where A is a non-empty set and
the interpretation I assigns

(a) a member I(c) = cA of A to each constant symbol c;
(b) an n-ary relation I(R) = RA ⊆ An to each n-ary relation symbol,

and

(c) an n-ary function I(f) = fA : An → A to each function symbol f of
arity n.

The set A is the universe of the structure A and the constants, relations
and functions which interpret the symbols of the signature in A are its
primitives. We often use the succinct notation

A = (A, {cA}c∈Const, {RA}R∈Rel, {fA}f∈Funct)(3-1)

and if τ has only finitely many symbols, we denote A as a tuple of its
universe and its primitives as in the examples of Section 1,

G = (G,E), K = (K, 0, 1,+, ·), N = (N, 0, S,+, ·).
We use the notation in (3-1) in the next, basic definition.
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3B. Isomorphisms. An isomorphism

σ : A↣→B

between two τ -structures A,B is a bijection σ : A↣→B such that:

(a) For each constant symbol c, σ(cA) = cB.
(b) For each n-ary relation symbol R and all x1, . . . , xn ∈ A,

RA(x1, . . . , xn) ⇐⇒ RB(σ(x1, ), . . . , σ(xn)).

(c) For each n-ary function symbol f and all x1, . . . , xn ∈ A,

σ(fA(x1, . . . , xn)) = fB(σ(x1), . . . , σ(xn)).

An isomorphism σ : A↣→A of a structure with itself is called an auto-
morphism of A.

Two structures of the same signature are isomorphic if there is an iso-
morphism from one to the other,

A ∼= B ⇐⇒ there exists an isomorphism σ : A↣→B.(3-2)

3C. Reducts and expansions. If σ and τ are vocabularies and each
symbol of σ is a symbol (of the same kind and with the same arity) in τ ,
we say that σ is a reduct of τ and τ is an expansion of σ and we write
σ ⊆ τ . For example, (0, 1, ·) ⊆ (0, 1,+, ·).
Suppose σ ⊆ τ , A = (A, I) is a σ-structure and B = (B, J) is a τ -

structure. We call A a reduct of B and B an expansion of A if A = B
and for all symbols C ∈ σ, I(C) = J(C). If B is a given τ -structure
and σ ⊆ τ , we define the reduct of B to σ by deleting from B the objects
assigned to the symbols not in σ, formally B↾σ = (B, J ↾σ); for example,

R↾(0,+) = (R, 0,+)

is the additive group of real numbers.
Conversely, if τ ⊆ σ, we can define expansions of B by assigning inter-

pretations to the symbols in σ which are not in τ . The notation for this is

(B,K) =df the expansion of B by K.

For example, the ordered real field

Ro = (R,≤) = (R, 0, 1,+, ·,≤)

is the expansion of the real field R by the ordering relation and

(N, exp) = (N, 0, S,+, ·, exp)

is the expansion of the structure of arithmetic by the exponential function,
exp(t, x) = xt.
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10 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

3D. Substructures and extensions. Suppose A = (A, I), B = (B, J)
are τ -structures. We call A a substructure of B and write A ⊆ B if the
following conditions hold.

(a) A ⊆ B.
(b) For every constant symbol c of τ , cB = cA ∈ A.
(c) For every n-ary relation symbol R and all x1 . . . , xn ∈ A,

RB(x1 . . . , xn) ⇐⇒ RA(x1 . . . , xn).

(d) For every n-ary function symbol f and all x1 . . . , xn ∈ A,

fB(x1 . . . , xn) = fA(x1 . . . , xn) ∈ A.

For example, Q ⊆ R, i.e., the field of rational numbers is a substructure
of the field of real numbers.

The difference between reducts and substructures is important.

3E. Denotations of terms and formulas. An assignment into a
structure A is any association of objects in A with the variables, i.e., any
function π : Variables → A.
The value or denotation of a term for an assignment π in a structure A

is defined by structural recursion on the terms as follows:

(a) value(v, π) =df π(v),
(b) value(c, π) =df c

A,
(c) value(f(t1, . . . , tn), π) =df f

A(value(t1, π), . . . , value(tn, π)).

In the same way, we define the truth value or denotation (1 or 0) of a
formula for an assignment π in a structure A by the following structural
recursion:

(a) value(s = t, π) =df

{
1, if value(s, π) = value(t, π),

0, otherwise.

(b) value(R(t1, . . . , tn), π) =df

{
1, if RA(value(t1, π), . . . , value(tn, π)),
0, otherwise.

(c) value(¬ϕ, π) =df 1− value(ϕ, π) =

{
0, if value(ϕ, π) = 1,

1, otherwise.

(d) value(ϕ ∧ ψ, π) = min(value(ϕ, π), value(ψ, π)). For ∨ we take the
maximum and for implication we use

value(ϕ→ ψ, π) =df value(¬(ϕ) ∨ ψ).

(e) value(∃v(ϕ), π) =df max{value(ϕ, ρ) | for all v′ ̸≡ v, ρ(v′) = π(v′)}.
(f) value(∀v(ϕ), π) =df min{value(ϕ, ρ) | for all v′ ̸≡ v, ρ(v′) = π(v′)}.
When we need to exhibit the dependence of denotations on A we write

valueA(α, π) = value(α, π).
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 11

3F. Satisfaction and the Tarski conditions. For a given τ -structure
A, an assignment π into A and a τ -formula ϕ, we put

(3-3) A, π |= ϕ ⇐⇒df value
A(ϕ, π) = 1

⇐⇒ the assignment π satisfies the formula ϕ in the structure A.

This ternary satisfaction relation on structures, assignments and formulas
is the most fundamental notion of the semantics of LPCI. To formulate
its characteristic properties we need the following notion:

Updates. For a variable v and any x ∈ A, the update π{v := x} is
the assignment which agrees with π on all variables except v to which it
assigns x,

π{v := x}(vi) =

{
x, if vi ≡ v,

π(vi), otherwise;

more generally, for a sequence v⃗ ≡ v1, . . . , vn of distinct variables and a
corresponding sequence x⃗ = x1, . . . , xn of elements of A, the simultaneous
update

π{v⃗ := x⃗} = π{v1 := x1, . . . , vn := xn}

is defined by

π{v⃗ := x⃗}(vi) =

{
xi, if vi ≡ vi for some i = 1, . . . , n,

π(vi), otherwise.

3F.1. Theorem (The Tarski conditions). For every τ -structure A, eve-
ry assignment π into A, and all formulas ϕ, ψ:

A, π |= s = t ⇐⇒ valueA(t, π) = valueA(s, π)

A, π |= ¬ϕ ⇐⇒ A, π ̸|= ϕ

A, π |= ϕ ∧ ψ ⇐⇒ A, π |= ϕ and A, π |= ψ

A, π |= ϕ ∨ ψ ⇐⇒ A, π |= ϕ or A, π |= ψ

A, π |= ϕ→ ψ ⇐⇒ either A, π ̸|= ϕ or A, π |= ψ

A, π |= ∃vϕ ⇐⇒ there exists an x ∈ A such that A, π{v := x} |= ϕ

A, π |= ∀vϕ ⇐⇒ for all x ∈ A,A, π{v := x} |= ϕ

Proof is by structural induction on formulas, cf. Problem x2.10. ⊣

3G. Compositionality. Denotations of terms and formulas are de-
fined in such a way that the value of an expression is a function of the
values of its subexpressions. This is generally referred to as the Composi-
tionality Principle for denotations, and it is the key to their mathematical
analysis. The next theorem gives two, different precise versions of it.
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12 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

3G.1. Theorem. (1) If the σ-structure A is a reduct of the τ -structure
B where σ ⊆ τ and ϕ is a formula of LPCI(σ), then for every expression
α and every assignment π,

valueA(α, π) = valueB(α, π).

(2) If π, ρ are two assignments into the same structure A and for every
variable v which occurs free in an expression α, π(v) = ρ(v), then

valueA(α, π) = valueA(α, ρ).

Proof of both claims is by structural induction on α. ⊣

In particular, if χ is a sentence, then value(A, χ, π) is independent of
the assignment π and we set

A |= χ ⇐⇒df for some assignment π,A, π |= χ(3-4)

⇐⇒ for every assignment π,A, π |= χ

⇐⇒df χ is true in A.

3H. Denotations of extended expressions. If t(v⃗) is an extended
term by Definition 2E (so that the variables which occur in t are all
included in the list v⃗ = (v1, . . . , vn)) and x⃗ = (x1, . . . , xn) is an arbitrary
n-tuple in A, we set

tA[x⃗] =df value
A(t, π{v⃗ := x⃗}) (for any assignment π);

and if χ(v1, . . . , vn) is an extended formula and x⃗ = (x1, . . . , xn) is an
arbitrary n-tuple in A, we set

χA[x⃗] ⇐⇒df A, π{v⃗ := x⃗} |= χ,

noticing that by the definition of updates and Theorem 3G.1, these func-
tions and relations on A do not depend on which π we use to define them.

3I. First-order expressibility. A proposition Φ of ordinary (math-
ematical) English about a τ -structure A is expressed (or formalized) by a
sentence ϕ of LPCI(τ) if Φ and ϕ “mean” the same thing, for example,

(∀x)[x+ 0 = x] means “every number added to 0 yields itself”.

It is clear that we cannot make this “expressing” precise unless we first
define meaning rigorously for both natural language and LPCI. On the
other hand, we have a good, intuitive understanding of this notion of
“expressibility” which is important for applications: roughly speaking, ϕ
expresses Φ if we can construct the first from the second by straightfor-
ward translation, more-or-less word for word, “and”, “but” and “also”
going to ∧, “all”, “each” and “any” going to ∀, etc. For example, “every
number is either odd or even” is formalized in the language of arithmetic
by something like

(∀x)[ϕ(x) ∨ ψ(x)],
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 13

where ϕ(x) and ψ(x) can be constructed to express the properties of being
odd or even.
The trick to dealing with this vague notion of “formalization” is to use

instead the following, related notion which is rigorous and robust.

3J. Elementary relations and functions. A relation R ⊆ An on
the universe of a structure A is first-order definable or elementary on A,
if there is an extended formula χ(v1, . . . , vn) such that

R(x⃗) ⇐⇒ χA[x⃗];

and a function g : An → A on the universe of a structure A is first-order
definable or elementary on A if its graph

Gg(x⃗, w) ⇐⇒ g(x⃗) = w

is elementary on A, i.e., if there is an extended formula χ(v⃗, u) such that

g(x⃗) = w ⇐⇒ χA[x⃗, w].

3J.1. Theorem. The collection E(A) of A-elementary functions and
relations on the universe of a structure

A = (A, {cA}c∈Const, {RA}R∈Rel, {fA}f∈Funct)

has the following properties:

(1) Each primitive relation RA and the (binary) identity relation x = y
on A are A-elementary.

(2) For each constant symbol c and each n, the n-ary constant function

g(x⃗) = cA

is A-elementary; each primitive function fA is A-elementary; and every
projection function

Pn
i (x1, . . . , xn) = xi (1 ≤ i ≤ n)

is A-elementary.

(3) E(A) is closed under substitutions of A-elementary functions: i.e.,
if h(u1, . . . , um) is an m-ary A-elementary function and g1(x⃗), . . . , gm(x⃗)
are n-ary, A-elementary, then the function

f(x⃗) = h(g1(x⃗), . . . , gm(x⃗))

is A-elementary; and if P (u1, . . . , um) is an m-ary A-elementary relation,
then the n-ary relation

Q(x⃗) ⇐⇒ P (g1(x⃗), . . . , gm(x⃗))

is A-elementary.
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14 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

(4) E(A) is closed under the propositional operations: i.e., if P1(x⃗)
and P2(x⃗) are A-elementary, n-ary relations, then so are the following
relations:

Q1(x⃗) ⇐⇒ ¬P1(x⃗),

Q2(x⃗) ⇐⇒ P1(x⃗) ∧ P2(x⃗),

Q3(x⃗) ⇐⇒ P1(x⃗) ∨ P2(x⃗),

Q4(x⃗) ⇐⇒ P1(x⃗) → P2(x⃗).

(5) E(A) is closed under quantification on A, i.e., if P (x⃗, y) is A-
elementary, then so are the relations

Q1(x⃗) ⇐⇒ (∃y)P (x⃗, y),
Q2(x⃗) ⇐⇒ (∀y)P (x⃗, y).

Moreover: E(A) is the smallest collection of functions and relations (of
all arities) on A which satisfies (1) – (5).

Proof. To show that E(A) has these properties, we need to construct
lots of formulas and appeal repeatedly to the definition of A-elementary
functions and relations; this is tedious, but not difficult.
For the second (“moreover”) claim, we first make it precise by replacing

E(A) by F throughout (1) – (5), and (temporarily) calling a class F of
functions and relations good if it satisfies all these conditions—so what
has already been shown is that E(A) is good. The additional claim is
that every good F contains all A-elementary functions and relations, and
it is verified by structural induction on the extended formula χ(v⃗) which
defines a given, A-elementary relation—after showing, easily, that the
graph of every function defined by a term is in F . ⊣
The theorem suggests that E(A) is a very rich class of relations and

functions. As it turns out, this is true for “complex” structures like N
but not true for “simple” structures, like the usual ordering (Q,≤) on the
rational numbers, and understanding this phenomenon is an important
problem in Model Theory, one of the main parts of our subject. We
will consider it briefly, mostly by examples, in the next two sections, and
then again in Part 3 of these class notes.

§4. Arithmetical relations and functions. The elementary rela-
tions and functions of the standard structure N of arithmetic are called
arithmetical.
Is the exponential function

exp(t, x) = xt (x, t ∈ N)
arithmetical? Not obviously—but it is, as a corollary of a basic result
about definition by recursion in N which we will prove in this section and
which has many important applications.
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 15

We will need to appeal to several simple but not trivial facts from num-
ber theory and we will outline proofs for most of these, but it is not
surprizing that we need them: the key Theorem 4A.1 below is an impor-
tant, basic fact about the natural numbers and so its truth ultimately
depends on what the natural numbers are.

4A. Primitive recursion. A function f : N → N is defined by prim-
itive recursion from w0 ∈ N and h : N2 → N if it satisfies the following
two equations, for all t ∈ N:

f(0) = w0, f(t+ 1) = h(f(t), t).(4-1)

In greater generality, a function f : Nn+1 → N is defined by primitive
recursion from g : Nn → N and h : Nn+2 → N if it satisfies the following
two equations, for all t ∈ N, x ∈ Nn:

f(0, x) = g(x), f(t+ 1, x) = h(f(t, x), t, x).(4-2)

For example, if we set

f(0, x) = x, f(t+ 1, x) = S(f(t, x)) (t, x ∈ N),

then (easily, by induction on t)

f(t, x) = t+ x,

and so addition is defined by primitive recursion from the two, simpler
functions

g(x) = x, h(w, t, x) = S(w),

i.e., (essentially) the identity and the successor. Similarly, if we set

f(0, x) = 0, f(t+ 1, x) = f(t, x) + x,

then, easily, f(t, x) = t · x, and so multiplication is defined by primitive
recursion from the functions

g(x) = 0, h(w, t, x) = w + x,

i.e., essentially the constant 0 and addition. More significantly (for our
purposes here),

exp(0, x) = x0 = 1, exp(t+ 1, x) = xt+1 = xt · x = exp(t, x) · x,

so that exponentiation is defined by primitive recursion from the functions

g(x) = 1, h(w, t, x) = w · x,

i.e., (essentially) the constant 1 and multiplication. (This definition of
exponentiation gives 00 = 1, which is not a useful convention in calculus
but does not introduce any problems in number theory.)
The main result in this section is the following theorem which, in par-

ticular, implies that the exponential function is arithmetical.
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16 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

4A.1. Theorem. If f : Nn+1 → N is defined by the primitive recur-
sion (4-2) above and g, h are arithmetical, then so is f .

To prove it, we must reduce the recursive definition of f into an explicit
one, and this is done using Dedekind’s analysis of recursion:

4A.2. Proposition (Dedekind). If f : Nn+1 is defined by the primitive
recursion in (4-2), then for all t ∈ N, x ∈ Nn, w ∈ N,

(4-3) f(t, x) = w ⇐⇒ there exists a sequence (w0, . . . , wt) such that(
w0 = g(x) ∧ (∀s < t)[ws+1 = h(ws, s, x)] ∧ w = wt

)
.

Proof. If f(t, x) = w, set ws = f(s, x) for s ≤ t, and verify easily that
the sequence (w0, . . . , wt) satisfies the conditions on the right. For the
converse, suppose that (w0, . . . , wt) satisfies the conditions on the right
and prove by (finite) induction on s ≤ t that ws = f(s, x). ⊣
We can view the equivalence (4-3) as a theorem about recursive defi-

nitions which have already been justified in some other way; or we can
see it as a definition of a function f which satisfies the recursive equa-
tions (4-2) and so justifies recursive definitions—which is how Dedekind
saw it. He used it to prove that the Peano axioms characterize N up
to isomorphism, Problem x2.18∗. In any case, it reduces proving Theo-
rem 4A.1 to justifying quantification over finite sequences within the class
of arithmetical relations, and we will do this by an arithmetical coding
of finite sequences.
The key number-theoretic fact that we need to prove Theorem 4A.1

using Dedekind’s analysis is the following classical result. We outline
a proof of it using Problems x2.19 and x2.20, which can be assumed as
given “black boxes” or derived very easily from the Fundamental Theorem
of Arithmetic, that every number greater than 1 can be written uniquely
(except for order) as a product of primes.

4A.3. Theorem (The Chinese Remainder Theorem). If d0, . . . , dt are
relatively prime numbers (i.e., no two of them have a common factor > 1)
and w0 < d0, . . . , wt < dt, then there exists a number a such that

w0 = rem(a, d0), . . . , wt = rem(a, dt).

Proof. Consider the set D of all (t+ 1)-tuples bounded by the given
numbers d0, . . . , dt,

D = {(w0, . . . , wt) | w0 < d0, . . . , wt < dt},
which has |D| = d0d1 · · · dt members, and let

A = {a | a < |D|}
which is equinumerous with D. Define the function π : A→ D by

π(a) = (rem(a, d0), rem(a, d1), . . . , rem(a, dt)).
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 17

Now π is injective (one-to-one), because if π(a) = π(b) with a < b < |D|,
then b− a is divisible by each of d0, . . . , dt and hence by their product D
by Problem x2.20; so d ≤ b−a, which is absurd since a < b < |D|. We now
apply the Pigeonhole Principle: since A and D are equinumerous and
π : A ↣ D is an injection, it must be a surjection, and hence whatever
(w0, . . . , wt) may be, there is an a < d such that

π(a) = (rem(a, d0), rem(a, d1), . . . , rem(a, dt)) = (w0, . . . , wt). ⊣

The idea now is to code an arbitrary tuple (w0, . . . , wt) by a pair of
numbers (d, a), where d can be used to produce uniformly t+1 relatively
prime numbers d0, . . . , dt and then a comes from the Chinese Remainder
Theorem.

4A.4. Lemma (Gödel’s β-function). Set

β(a, d, i) = rem(a, 1 + (i+ 1)d).

This is an arithmetical function, and for every tuple of numbers w0, . . . , wt

there exist numbers a and d such that

β(a, d, 0) = w0, . . . , β(a, d, t) = wt.

Proof. The β-function is arithmetical because it is defined by substi-
tutions from addition, multiplication and the remainder function, which
is arithmetical since (by convention for the case y = 0),

rem(x, y) = r ⇐⇒
[
y = 0 ∧ r = 0

]
∨
[
y ̸= 0 ∧ (∃q)[x = yq + r ∧ r < y

]
.

To find the required a, d which code the tuple (w0, . . . , wt), set

s = max(t+ 1, w0, . . . , wt), d = s!

and verify that the t+ 1 numbers

d0 = 1 + (0 + 1)d, d1 = 1 + (1 + 1)d, . . . , dt = 1 + (t+ 1)d

are relatively prime. (If a prime p divides 1+(1+i)s! and also 1+(1+j)s!
with i < j, then it must divide their difference (j− i)s!, and hence it must
divide one of (j − i) or s!; in either case, it divides s!, since (j − i) ≤ s,
and then it must divide 1, since it is assumed to divide 1+(1+ i)s!, which
is absurd.) It is also immediate that wi < d = s!, by the definition of s,
and so the Chinese Remainder Theorem supplies some a such that

(w0, . . . , wt) = (rem(a, d0), . . . , dt) = (β(a, d, 0), . . . , β(a, d, t))

as required. ⊣
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18 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

Proof of Theorem 4A.1. By the Dedekind analysis of recursion (4-3)
and using the β-function to code tuples, we have

f(t, x⃗) = w ⇐⇒ (∃a)(∃d)
[
β(a, d, 0) = g(x⃗)

∧ (∀s < t)[β(a, d, s+ 1) = h(β(a, d, s), s, x⃗)] ∧ β(a, d, t) = w
]

Thus the graph of f is arithmetical, by the closure properties of the
arithmetical functions and relations in Theorem 3J.1. ⊣
There is no single, standard definition of rich structure, but the follow-

ing notion covers the most important examples:

4B. Structures with tuple coding. A copy of N in a structure A
is a structure N′ = (N′, 0′, S′,+′, ·′) such that:

1. N′ is isomorphic with the structure of arithmetic N.
2. N′ ⊆ A.
3. The set N′, the object 0′ and the functions S′,+′ and ·′ are all A-

elementary.

A structure A admits tuple coding if it has a copy of N and there is a
number k and an A-elementary function γ : Ak+1 → A with the following
property: for every tuple w0, . . . , wt ∈ A, there is some a⃗ ∈ Ak such that

γ(⃗a, 0) = w0, γ(⃗a, 1) = w1, . . . , γ(⃗a, t) = wt,

where 0, 1, . . . , t are the “A-numbers” 0, 1, . . . , t (i.e., the copies of these
numbers into A by the given isomorphism of N with N′).
In this definition, γ plays the role of the β-function in N, and we have

allowed for the possibility that triples (k = 3), or quadruples (k = 4),
etc., are needed to code tuples of arbitrary length in A using γ. We might
have also allowed the natural numbers to be coded by pairs of elements of
A or tweak the definition in various other ways, but this version captures
all the examples we will discuss here. The key result is:

4B.1. Proposition. Suppose A admits coding of tuples,

g : An → A, h : An+2 → A

are A-elementary, f : An+1 → A, and for t ∈ N ′, y /∈ N ′,

f(0, x⃗) = g(x⃗), f(t+ 1, x⃗) = h(f(t, x⃗), t, x⃗)), f(y, x⃗) = y;(4-4)

it follows that f is A-elementary.

This is proved by a simple adjustment of the proof of Theorem 4A.1
and it can be used to show that structures which admit tuple coding have
a rich class of elementary functions and relations.

4B.2. Example (The integers). The ring of (rational) integers

Z = (Z, 0, 1,+, ·) (Z = {. . . ,−2,−1, 0, 1, 2, . . . })(4-5)
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2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI 19

admits tuple coding.
To see this, we use the fact that N ⊆ Z, and it is a Z-elementary set

because of Lagrange’s Theorem, by which every natural number is the sum
of four squares:

x ∈ N ⇐⇒ (∃u, v, s, t)[x = u2 + v2 + s2 + t2] (x ∈ Z).

We can then use the β-function (with some tweaking) to code tuples of
integers.

4B.3. Example (The fractions). The field of rational numbers (frac-
tions)

Q = (Q, 0, 1,+, ·)

admits tuple coding.
This is a classical theorem of Julia Robinson which depends on a non-

trivial, Q-elementary definition of N within Q. (Robinson’s Theorem
depends on some results from number theory which are considerably more
difficult than Lagrange’s Theorem.)

4B.4. Example (The real numbers, with Z). The structure of analy-
sis

(R,Z) = (R, 0, 1,Z,+, ·)

admits tuple coding.

This requires some work and it is not a luxury that we have included
the integers as a distinguished subset: the field of real numbers

R = (R, 0, 1,+, ·)

does not admit tuple coding. We will discuss this very interesting, classical
structure in the next section.

§5. Quantifier elimination. At the other end of the class of struc-
tures which admit tuple coding are some important structures in which
the elementary functions and relations are all quite trivial. We will de-
scribe some of these and isolate the property of quantifier eliminability
which makes them “simple”—much as tuple coding makes the structures
in the preceding section complex.

5A. Techniques for simplifying formulas. We start with some
simple logical equivalences which we will be using, and to simplify no-
tation, we set for arbitrary formulas ϕ, ψ and any structure A:

ϕ ≍A ψ ⇐⇒df A |= ϕ↔ ψ,

ϕ ≍ ψ ⇐⇒df |= ϕ↔ ψ ( ⇐⇒ for all A, ϕ ≍A ψ).
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5A.1. Proposition (Basic logical equivalences).

(1) The distributive laws:

ϕ ∧ (ψ ∨ χ) ≍ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
ϕ ∨ (ψ ∧ χ) ≍ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

(2) De Morgan’s laws:

¬(ϕ ∧ ψ) ≍ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≍ ¬ϕ ∧ ¬ψ

(3) Double negation, implication and the universal quantifier:

¬¬ϕ ≍ ϕ, ϕ→ ψ ≍ ¬ϕ ∨ ψ, ∀xϕ ≍ ¬(∃x)¬ϕ
(4) Renaming of bound variables: if y is a variable which does not

occur in ϕ and ϕ{x :≡ y} is the result of replacing x by y in all its free
occurrences, then

∃xϕ ≍ ∃yϕ{x :≡ y}
∀xϕ ≍ ∀yϕ{x :≡ y}

(5) Distribution law for ∃ over ∨:
∃x(ϕ1 ∨ · · · ∨ ϕn) ≍ ∃xϕ1 ∨ · · · ∨ ∃xϕn

(6) Pulling the quantifiers to the front: if x does not occur free in ψ,
then

∃xϕ ∧ ψ ≍ ∃x(ϕ ∧ ψ)
∃xϕ ∨ ψ ≍ ∃x(ϕ ∨ ψ)
∀xϕ ∧ ψ ≍ ∀x(ϕ ∧ ψ)
∀xϕ ∨ ψ ≍ ∀x(ϕ ∨ ψ)

Proof is easy and we leave it for the Problems. ⊣
5A.2. Corollary (Prenex normal forms). Every formula χ is (effec-

tively) logically equivalent to a formula

χ∗ ≡ Q1x1 · · ·Qnxnψ,(5-1)

where Q1, . . . , Qn are quantifiers, ψ is quantifier-free and every variable
which occurs free on χ∗ also occurs free in χ.

Notation for truth and falsity. For the constructions in this section,
it is useful to enrich the language LPCI(τ) with propositional constants
tt,ff for truth and falsity. We may think of these as abbreviations,

tt :≡ ∃x(x = x), ff :≡ ∀x(x ̸= x),

considered (by convention) as prime formulas.

A literal is either a prime formula R(t1, . . . , tn), s = t, tt, ff, or the
negation of a prime formula.
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5A.3. Proposition (Disjunctive normal form). Every quantifier-free for-
mula χ is (effectively) logically equivalent to a disjunction of conjunctions
of literals which has no more variables than χ: i.e., for suitable n, ni, and
literals ℓij (i = 1, . . . , n, j = 1, . . . , ni) whose variables all occur in χ,

χ ≍ χ∗ ≡ ϕ1 ∨ · · · ∨ ϕn, where for i = 1, . . . , n, ϕi ≍ ℓi1 ∧ · · · ∧ ℓini .

By the definition in the proposition, x = y∨¬(z = z) is not a disjunctive
normal form of x = y (if all three variables are distinct), even though

x = y ≍ x = y ∨ ¬(z = z)

Proof. We use Proposition 5A.1 to show that the class F of formulas
for which we can effectively compute a logically equivalent disjunctive
normal form contains the literals, because

ℓ ≍ ℓ ∨ ff

and is closed under disjunction, conjunction and negation. (The messiest
part is the argument that F is closed under conjunction ϕ ∧ ψ, which we
do by induction on the number of disjuncts in ψ.) ⊣
5B. Proving quantifier eliminability. A quantifier-free normal form

for a formula χ in a structure A, is any quantifier-free formula χ∗ whose
variables are among the free variables of χ and such that

χ ≍A χ
∗.

A structure A admits elimination of quantifiers, if every formula χ has
a quantifier-free normal form in A; and it admits effective elimination of
quantifiers, if there is an effective procedure which will compute for each
χ a quantifier-free normal form for χ in A.

Decidable structures. To understand part of the importance of this
notion, suppose the vocabulary τ is purely relational, i.e., it has no con-
stant or function symbols. Now the only quantifier-free sentences are tt
and ff; and so if a τ -structure A admits effective quantifier elimination,
then we can effectively decide for each sentence χ whether it is logically
equivalent in A to tt or ff—in other words, we have a decision procedure
for truth in A.

More generally, suppose τ may have constants and function symbols and
A admits effective quantifier elimination: if we have a decision procedure
for quantifier-free sentences (with no variables), then we have a decision
procedure for truth in A. The hypothesis is, in fact, satisfied in most
examples of structures which admit quantifier elimination.

5B.1. Lemma (Quantifier elimination test). If every formula of the
form

χ ≡ ∃x[χ1 ∧ · · · ∧ χn] (where χ1, . . . , χn are literals)
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is effectively equivalent in a structure A to a quantifier-free formula whose
variables are all among the free variables of χ, then A admits effective
quantifier elimination.

Proof. It is enough by (3) of Proposition 5A.1 to eliminate quantifiers
for formulas which don’t have any implications or universal quantifiers.
Thus, if F is the class of all such formulas which (effectively) have quanti-
fier free forms in A, then it is enough to show that it contains all literals,
which it clearly does; that it is closed under ¬,∧ and ∨, which it clearly
is; and that it is closed under existential quantification. For the latter, if

χ ≡ ∃xϕ

with ϕ quantifier-free, we bring ϕ to disjunctive normal form, so that

χ ≍ ∃x[ϕ1 ∨ · · · ∨ ϕn] ≍ ∃xϕ1 ∨ · · · ∨ ∃xϕn

where each ϕi is a conjunction of literals and then we use the hypothesis
of the Lemma. ⊣

5B.2. Proposition. For each infinite set A, the structure A = (A) in
the language with empty vocabulary admits effective quantifier elimina-
tion.

Proof. By the test 5B.1, it is enough to eliminate quantifiers from
every formula of the form

χ ≍ ∃x
[
(x = z1 ∧ · · · ∧ x = zk) ∧ (u1 = v1 ∧ · · ·ul = vl)

∧ (x ̸= w1 ∧ · · · ∧ x ̸= wm) ∧ (s1 ̸= t1 ∧ · · · ∧ to ̸= so)
]

where we have grouped the variable equations and inequations accord-
ing to whether x occurs in them or not; i.e., x is none of the variables
ui, vi, si, ti. We can also assume that x is none of the variables zi, because
the equation x = x can simply be deleted; and it is none of the variables
wi, since if x ̸= x is one of the conjuncts, then χ ≍ ff.

Case 1, k = 0, i.e., there is no equation of the form x = z in the matrix
of χ. In this case

χ ≍ (u1 = v1 ∧ · · ·ul = vl) ∧ (s1 ̸= t1 ∧ · · · ∧ tm ̸= sm).

This is because if π is any assignment which satisfies

(u1 = v1 ∧ · · ·ul = vl) ∧ (s1 ̸= t1 ∧ · · · ∧ tm ̸= sm)

and t is any element in the (infinite) setA which is distinct from π(w1), . . . ,
π(wm), then π{x := t} satisfies the matrix of χ.
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Case 2, k > 0, so there is an equation x = zi in the matrix of χ. In this
case,

χ ≍ (x = z1 ∧ · · · ∧ x = zk){x :≡ zi} ∧ (u1 = v1 ∧ · · ·ul = vl)

∧ (x ̸= w1 ∧ · · · ∧ x ̸= wm){x :≡ zi} ∧ (s1 ̸= t1 ∧ · · · ∧ tm ̸= sm)]

since every assignment which satisfies χ must assign to x the same value
that it assigns to zi. ⊣
This proposition is about a structure of no interest whatsoever, but the

method of proof is typical of many quantifier elimination proofs.

5B.3. Definition (Dense linear orderings). A linear ordering L = (L,≤)
is dense in itself if for every x, y ∈ L such that x < y, there is a z such
that x < z < y.

Standard examples are the usual orderings (Q,≤) and (R,≤) on the
rational and the real numbers. They also have no least or greatest element,
so they are covered by the next result.

5B.4. Theorem. If L = (L,≤) is a dense linear ordering without least
or greatest element, then L admits effective quantifier elimination.

Outline or proof. It is convenient to introduce a new symbol < for
strict inequality, so that

(5-2) ff ≍L x < x, tt ≍L x = x, x ≤ y ≍L x = y ∨ x < y,

x < y ≍L x ≤ y ∧ x ̸= y.

We can use the equivalences in the first line to eliminate the truth values
and the symbol ≤, so that every formula is logically equivalent in L to
one in which only the symbols = and < occur. In particular, the literals
which occur in disjunctive normal forms of quantifier free formulas are all
in one of the forms

x = y, x ̸= y, x < y, ¬(x < y)

We now replace all the negated literals by quantifier free formulas which
have no negation, using the equivalences

(5-3) x ̸= y ≍L x < y ∨ y < x, ¬(x ≤ y) ≍L y < x,

¬(x < y) ≍L x = y ∨ y < x

and then we apply repeatedly the Distributive Laws in Proposition 5A.1
(which do not introduce negations) to construct a disjunctive normal form
with only positive literals x = y and x < y. This means that in applying
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the basic test Lemma 5B.1, we need consider only formulas of the form

χ ≡ ∃x
[
(x = z1 ∧ · · · ∧ x = zk)

∧ (x < u1 ∧ · · · ∧ x < ul) ∧ (v1 < x ∧ · · · ∧ vm < x)

∧ (s1 < s′1 ∧ · · · ∧ sn < s′n) ∧ (t1 = t′1 ∧ · · · ∧ to = t′o)
]

If some ui ≡ x or some vj ≡ x, then χ ≍L ff, so we may assume that
these variables are all distinct from x.

Case 1, k > 0, so that some equation x = zi is present in the matrix.
Now χ is equivalent to the quantifier-free formula which is constructed by
replacing x by zi in the matrix.

Case 2, k = l = m = 0, so that x does not occur in the matrix of χ.
We simply delete the quantifier.

Case 3, k = l = 0 but m > 0. In this case

χ ≍L (s1 < s′1 ∧ · · · ∧ sn < s′n) ∧ (t1 = t′1 ∧ · · · ∧ to = t′o)]

because whatever values are assigned to v1, . . . , vm by an assignment,
some greater value can be assigned to x since L has no largest element.

Case 4, k = m = 0 but l > 0. This case is symmetric to Case 3, and
we handle it using the fact that L has no least element.

Case 5, k = 0 butm > 0, l > 0. Since L is dense in itself, the restrictions
on x in the matrix will be satisfied by some x exactly when

max{v1, . . . , vm} < min{u1, . . . , ul},
and we can say this formally by a big conjunction: i.e.,

χ ≍L
∧∧

1≤i≤l,1≤j≤m(vj < ui)

∧ (s1 < s′1 ∧ · · · ∧ sn < s′n) ∧ (t1 = t′1 ∧ · · · ∧ to = t′o)

This completes the verification of the test, Lemma 5B.1 for dense linear
orderings with no first and last element, and so these structures admit
effective quantifier elimination. ⊣
5C. Additional examples. We list some of the most interesting ex-

amples of structures which admit effective quantifier elimination without
proofs—which can be found in many standard textbooks in logic.

5C.1. Example (Successor arithmetic). The reduct (N, 0, S) ofN with-
out addition or multiplication admits effective quantifier elimination, as
does the somewhat richer structure (N, 0, S,<).

5C.2. Example (Presburger arithmetic). The reduct (N, 0, S,+) of N
does not quite admit quantifier elimination, but something quite close to
it does. For each m ≥ 2, let

x ≡m y ⇐⇒ m divides y − x (x is congruent to y mod m),
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and consider (for this one time) the expansion of (N, 0, S,+) by these
infinitely many relations,

NP = (N, 0, S,+, {≡m}m∈N,m≥2).

This structure admits effective quantifier elimination and there is a triv-
ial decision procedure for quantifier free sentences, which involve only
numerals and congruence assertions about them; and so it is a decidable
structure, and then the structure (N, 0, S,+) of additive arithmetic is also
decidable, since it is a reduct of NP .
This is a famous, non-trivial theorem of Presburger.
Note that the expansion of the language by these congruence relations

is quite similar to the expansion with tt and ff which we have already as-
sumed, because we need it. The congruence relations are simply definable
in additive arithmetic, one-at-a-time:

x ≡m y :≡ (∃z)
[
(x+ z + z + · · ·+ z︸ ︷︷ ︸

m times

= y) ∨ (y + z + z + · · ·+ z︸ ︷︷ ︸
m times

= x)
]
.

The quantifier elimination in Presburger’s structure NP yields for each
χ a quantifier-free formula in which these new, prime formulas x ≡m y
occur, for various values of m; we can then replace all of them with their
definition, which gives us a formula χ∗ which is ≍NP

with χ and in which
existential quantifiers occur only in the “literals”. This is exactly the sort
of “extended quantifier-free” formulas that we will get if we replace tt and
ff by their definitions after the quantifier elimination procedure has been
completed.

5C.3. Example (The complex numbers). The field of complex num-
bers

C = (C, 0, 1,+, ·)
admits effective quantifier elimination, and so it is decidable, since the
quantifier-free sentences in the language involve only trivial equalities
and inequalities about numerals.

5C.4. Example (The ordered field of real numbers). The structure

Ro = (R, 0, 1,+, ·,≤)

admits effective quantifier elimination, and so it is decidable, as above.
This is a famous, deep theorem of Tarski, especially important because

it establishes the decidability of classical (ancient) Euclidean plane and
space geometry: it is easy to see that if we use Cartesian coordinates, we
can translate all the propositions studied in Euclidean geometry into sen-
tences in the language of Ro, and then decide them by Tarski’s algorithm.
Contrast this result with Example 4B.4: if we just add a name for the
set of integers Z to the language, we get a structure which admits tuple
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coding, in whose language we can express all the propositions of classical
analysis—including calculus.

§6. Theories and elementary classes. Up until now we have been
studying the interpretation of single sentences of LPCI(τ) on a single τ -
structure; next we consider classes of structures and investigate how sets
of sentences can be used to define their elementary properties.

6A. Logical consequence. A theory in a language LPCI(τ) is any
(possibly infinite) set of sentences T of LPCI(τ). The members of T are
its axioms.
A τ -structure A is a model of T if every sentence of T is true in A: we

write

A |= T ⇐⇒df for all ϕ ∈ T, A |= ϕ,(6-1)

and we collect all the models of T into a class of structures,

Mod(T ) =df {A | A |= T}.(6-2)

A property Φ of τ -structures is elementary if there is a τ -theory T such
that

A has property Φ ⇐⇒ A |= T,(6-3)

and Φ is basic elementary if (6-3) holds with a finite T—or, equivalently
if for some sentence χ,

A has property Φ ⇐⇒ A |= χ (with χ ≡
∧∧
T ).(6-4)

We will also “identify” a property of structures with its extension and
write synonymously

A has property Φ ⇐⇒ A ∈ Φ;

and then elementary and basic elementary classes of structures are char-
acterized by the conditions

A ∈ Φ ⇐⇒ for every ϕ ∈ T ,A |= ϕ (elementary class)

A ∈ Φ ⇐⇒ A |= χ (basic elementary class)

In the opposite direction, the theory of a τ -structure A is the set of all
LPCI(τ)-sentences that it satisfies,

Th(A) =df {χ | χ is a sentence and A |= χ};(6-5)

and two τ -structures are elementarily equivalent if they satisfy the
same sentences,

A ≈ B ⇐⇒df Th(A) = Th(B).(6-6)

It is easy to check that isomorphic structures are elementarily equivalent

A ∼= B=⇒A ≈ B,
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cf. Problem x2.33∗. We will see that the converse fails quite spectacularly,
even when A is the structure of arithmetic N, cf. Section 7E.
Finally, we define the fundamental relation of logical consequence

between a theory and a sentence,

T |= χ ⇐⇒ for every A, if A |= T, then A |= χ;(6-7)

and a τ -sentence χ is valid if it is a logical consequence of the empty
theory,

χ is valid ⇐⇒ |= χ ⇐⇒ for every τ -structure A,A |= χ.(6-8)

6B. Some basic theories. We collect here for easy reference the def-
initions of a few important theories.

6B.1. Symmetric graphs. The theory SG of symmetric graphs is
formulated in the language LPCI(E) with just one, binary relation symbol
E and two axioms,

∀x¬E(x, x), ∀x∀y[E(x, y) ↔ E(y, x)].

The symmetric graphs then are exactly the models of SG.

6B.2. Partial orders. The theories of partial and linear orderings are
also formulated in the language with vocabulary just one, binary relation
symbol, this time ≤ :

PO=df

{
∀x(x ≤ x), ∀x∀y[(x ≤ y ∧ y ≤ x) → x = y],

∀x∀y∀z[(x ≤ y ∧ y ≤ z) → x ≤ z]
}

LO=df PO ∪
{
∀x∀y[x ≤ y ∨ y ≤ x]

}
DLO=df LO ∪

{
∀x∀y[x < y → ∃z(x < z ∧ z < y)],

∀x∃y[x < y], ∀y∃x[x < y]
}

This last DLO is the theory of linear orderings which are dense in them-
selves and have no least or greatest element, e.g., (Q,≤), cf. Theorem 5B.4.

6B.3. Fields. The theory Fields comprises the formal expressions of the
axioms for a field listed in Definition 1C, in the language LPCI(0, 1,+, ·).
For each number n ≥ 1 define the term n · 1 by the recursion

1 · 1 :≡ 1, (n+ 1) · 1 :≡ (n · 1) + (1),

so that e.g., 3 · 1 ≡ ((1) + (1)) + (1). (Make sure you understand here
what is a term of LPCI(0, 1,+, ·), what is an ordinary number, and which
+ is meant in the various places.)
For each prime number p, the finite set of sentences

Fieldsp =df Fields ∪
{
¬(2 · 1 = 0), . . . ,¬((p− 1) · 1 = 0), p · 1 = 0

}
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is the theory of fields of characteristic p. The theory of fields of charac-
teristic 0 is defined by

Fields0 =df Fields ∪
{
¬(2 · 1 = 0), ¬(3 · 1 = 0), . . .

}
.

The simplest example of a field of characteristic p is the finite structure

Fp = ({0, 1, . . . , p− 1}, 0, 1,+, ·)
with the usual operations on it executed modulo p, but it takes some (al-
gebra) work to show that this is a field. There are many other fields of
characteristic p, both finite and infinite. The number fields Q, R and C
have characteristic 0.

For each prime p ∈ N, Fieldsp is a finite theory while Fields0 is infinite.

To simplify the definitions of theories we often use the universal closures
of formulas, i.e., the sentences

∀⃗ϕ ≡df ∀v0∀v1 . . . ∀vnϕ
where n is least so that all the free variables of ϕ are among v0, . . . , vn.

6B.4. Peano Arithmetic, PA. The axioms of Peano arithmetic are
the natural LPCI-formalizations of the Peano axioms for N listed in sec-
tion 1D, i.e., the universal closures of the following formulas in the lan-
guage LPCI(0, S,+, ·):
1. ¬[S(x) = 0].
2. S(x) = S(y) → x = y.
3. x+ 0 = x, x+ S(y) = S(x+ y).
4. x · 0 = 0, x · (Sy) = x · y + x.
5. For every formula ϕ(x, y⃗),[

ϕ(0, y⃗) ∧ (∀x)[ϕ(x, y⃗) → ϕ(S(x), y⃗)]
]
→ (∀x)ϕ(x, y⃗).

The last is the Elementary Axiom Scheme of Induction which ap-
proximates in LPCI the intended meaning of the full Axiom of Induction
in Definition 1D. It has infinitely many instances, one for each formula
ϕ(x, y⃗), and so PA is an infinite theory.

6B.5. The (Raphael) Robinson system Q. This is a weak, finite
theory of natural numbers in the language of arithmetic, which replaces
the Induction Scheme by the single claim that every non-zero number is a
successor. Its axioms are the universal closures of the following formulas:

1. ¬[S(x) = 0].
2. S(x) = S(y) → x = y.
3. x+ 0 = x, x+ (S(y) = S(x+ y).
4. x · 0 = 0, x · (Sy) = x · y + x.
5. x = 0 ∨ (∃y)[x = S(y)].
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It is clear that N is a model of Q, but Q is a weak theory, and so it is
quite easy to construct many peculiar models of it.

6C. Quantifier elimination for theories. A theory T in the lan-
guage LPCI(τ) admits elimination of quantifiers, if for every τ -formula χ,
there is a quantifier-free formula χ∗ (whose variables are all among the
free variables of χ) such that

T |= χ↔ χ∗.

As with structures, we assume here that the language is expanded by the
prime, propositional constants tt and ff which may occur in χ∗.
Notice that a structure A admits (effective) quantifier elimination ex-

actly when its theory Th(A) admits (effective) quantifier elimination.

6C.1. Theorem. The theory DLO of dense linear orderings without
first or last element admits effective quantifier elimination, and so it is
decidable.

Proof follows immediately from the proof of Theorem 5B.4, which
produces the same quantifier-free form L-equivalent to a given χ, inde-
pendently of the specific L, just so long as L |= DLO.
The second claim simply means that we can decide for any given sen-

tence χ whether or not DLO |= χ. It is true because the quantifier elimi-
nation procedure yields either tt or ff as L-equivalent to χ, independently
of the specific L. ⊣

§7. Formal deduction. The (Hilbert style) proof system for LPCI is
the natural extension to LPCI of the system of axioms and rules for the
propositional calculus. In the notation we will use here:

• t stands for an arbitrary term of LPCI(τ), for a fixed τ ;
• ϕ, ψ, χ stand for arbitrary formulas of LPCI(τ); and
• ϕ(v, u⃗) stands for an extended formula, so that all the free variables
of ϕ are in the list v, u⃗.

Some of the axioms and rules have a condition, the most significant being
the hypothesis that

t is free for v in ϕ(v, u⃗);

it means that

no occurrence of a variable in t is bound in the formula ϕ(t, u⃗).

7A. The Hilbert axiomatic system. The axiom schemes and rules
for LPCI(τ) are listed in Diagram 1. They are naturally divided into four
groups, the first three of which ((A) – (C)) specify LPC(τ), the lower
predicate calculus without identity.
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(A) Propositional axiom schemes, same as in PL.

(1) ϕ→ (ψ → ϕ)
(2) (ϕ→ ψ) → ((ϕ→ (ψ → χ)) → (ϕ→ χ))
(3) (ϕ→ ψ) → ((ϕ→ ¬ψ) → ¬ϕ)
(4) ¬¬ϕ→ ϕ
(5) ϕ→ (ψ → (ϕ ∧ ψ))
(6a) (ϕ ∧ ψ) → ϕ (6b) (ϕ ∧ ψ) → ψ
(7a) ϕ→ (ϕ ∨ ψ) (7b) ψ → (ϕ ∨ ψ)
(8) (ϕ→ χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))

(B) Predicate axiom schemes.

(9) ∀vϕ(v, u⃗) → ϕ(t, u⃗) (t free for v in ϕ(v, u⃗))
(10) ∀v(ϕ→ ψ) → (ϕ→ ∀vψ) (v not free in ϕ)
(11) ϕ(t, u⃗) → ∃vϕ(v, u⃗) (t free for v in ϕ(v, u⃗))

(C) Rules of inference.

(12) From ϕ and ϕ→ ψ, infer ψ. (Modus Ponens)
(13) From ϕ, infer ∀vϕ. (Generalization)
(14) From ϕ→ ψ, infer ∃vϕ→ ψ, provided v is not free in ψ.

(Exists Elimination)

(D) Identity axioms.

(15) v = v v = v′ → v′ = v v = v′ → (v′ = v′′ → (v = v′′))
(16) (v1 = w1 ∧ . . . vn = wn) → (R(v1, . . . , vn) → R(w1, . . . , wn))

(R n-ary relation symbol)
(17) (v1 = w1 ∧ . . . vn = wn) → (f(v1, . . . , vn) = f(w1, . . . , wn))

(f n-ary function symbol)

Diagram 1. The Hilbert system for LPCI

A deduction in LPCI from a theory T is any sequence of formulas

ϕ0, ϕ1, . . . , ϕn,

where each ϕi is either an axiom, or a sentence in T , or the same as some
ϕj for some j < i, or follows from previously listed formulas by one of the
rules of inference. We set

T ⊢ ϕ ⇐⇒df there exists a deduction ϕ0, . . . , ϕn from T with ϕ ≡ ϕn.

If T = ∅ we just write ⊢ ϕ. A proof is a deduction from the empty
theory.

A deduction is propositional if it only uses the propositional axioms in
group (A) and the Modus Ponens inference rule (12). (The formulas in a
propositional deduction may have the identity symbol “=” and quantifiers
in them.)
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If T is a theory, χ is a sentence and T ⊢ χ, we call χ a proof theo-
retic consequence or just a (formal) theorem of T . A propositional
theorem of T is any formula ϕ for which there is a propositional deduc-
tion from T ; these are easy to recognize, because they are substitution
instances of propositional tautologies, cf. Problem x2.41.

The proof theoretic consequences of the empty theory are the theorems
of LPCI(τ).

7B. The Soundness Theorem for LPCI. We now turn to the first
of the two basic facts which relate the syntax and the semantics of LPCI:

7B.1. Theorem. Every theorem of a theory T is a logical consequence
of T , i.e., for every sentence χ,

if T ⊢ χ, then T |= χ.(7-1)

This is a technical result whose proof can be omitted in a first introduc-
tion to logic, but it is worth including here for two reasons: it illustrates
some of the methods of proof used in Proof Theory, one of the basic
parts of our subject, and it explains the meaning of—and the reasons for
including—the restrictions in the predicate axiom schemes and inference
rules of LPCI.

7B.2. Lemma (Soundness of the axioms). If χ is any instance of the
axiom schemes (1) – (11) and (15) – (17) of LPCI(τ) and A is any τ -

structure, then A satisfies the universal closure of χ, A |= ∀⃗χ.

Proof. First we verify easily, directly from the definitions and the
Compositionality Theorem 3G.1 that

A |= ∀⃗χ ⇐⇒ for every assignment π,A, π |= χ;(7-2)

and then we prove by direct computation that if χ is an instance of one
of the axiom schemes (1) – (11), (15) – (17), then A, π |= χ, for every
assignment π. The argument is trivial for the propositional and identity
axioms (1) – (8) and (15) – (17). For the somewhat more complex (9) –
(11) it is convenient to prove first two sublemmas.

Sublemma 1. For every term α, variable v, term t and assignment π,

valueA(α{v :≡ t}, π) = valueA(α, π{v := valueA(t, π)}).(∗)

Proof . We fix A, t and π and prove (∗) by induction on the term α.
If v does not occur in α then the two sides of (∗) are identical; and in

the basis case, if α ≡ v, then

valueA(v{v :≡ t}, π) = valueA(t, π) = valueA(v, π{v := valueA(t, π)}.
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For the inductive step we compute, using the definition of valueA(s, π):

valueA(f(s1, . . . , sn){v :≡ t}, π)

= valueA(f(s1{v :≡ t}, . . . , sn{v :≡ t}), π)

= fA(valueA(s1{v :≡ t}, π), . . . , valueA(sn{v :≡ t}, π))

= fA(valueA(s1, π{v : valueA(t, π)}), . . . , valueA(sn, π{v : valueA(t, π)})

= valueA(f(s1, . . . , sn), π{v : valueA(t, π)}),

where the induction hypothesis is used to infer the fourth from the third
line. ⊣ (Sublemma 1)

Sublemma 2. For every formula ϕ, variable v, term t which is free for
v in ϕ and assignment π,

A, π |= ϕ{v :≡ t} ⇐⇒ A, π{v := valueA(t, π)} |= ϕ.(∗∗)

Proof . We fix again A and t and we prove that (∗∗) holds for every
assignment π by induction on the formulas ϕ .
The argument is very easy for prime formulas, e.g.,

A, π |= (s1 = s2){v :≡ t}

⇐⇒ valueA(s1{v :≡ t}, π) = valueA(s2, {v :≡ t}, π)

⇐⇒ valueA(s1, π{v := valueA(t, π)}) = valueA(s2, π{v := valueA(t, π)})

⇐⇒ A, π{v := valueA(t, π)}) |= s1 = s2,

where Sublemma 1 is used to infer the third from the second line.
The argument is also routine in the induction step when ϕ is a propo-

sitional combination of smaller formulas.
Suppose then that ϕ ≡ ∃uψ; now (∗∗) is trivial if v does not occur in

ψ, so we assume it does, and then the hypothesis that t is free for v in ϕ
guarantees that u does not occur in t. With these assumptions then and
the induction hypothesis, we compute:

A, π |= ∃uψ{v ≡ t} ⇐⇒ for some x,A, π{u := x} |= ψ{v :≡ t}

⇐⇒ for some x,A, π{u := x}{v := valueA(t, π{u := x} |= ψ

(by the induction hypothesis on the assignment π{u := x})

⇐⇒ for some x,A, π{u := x}{v := valueA(t, π) |= ψ

(because valueA(t, π{u := x}) = valueA(t, π) since u does not occur in t)

⇐⇒ for some x,A, π{v := valueA(t, π){u := x} |= ψ

⇐⇒ A, π{v := valueA(t, π) |= ∃uψ.

The argument for ϕ ≡ ∀uψ is similar. ⊣ (Sublemma 2)
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We now return to the proof of the Lemma for Axiom Schemes (9) – (11)

Axiom (9): If t is free for v in ϕ, then A, π |= ∀vϕ → ϕ{v :≡ t}. It is
enough to prove that

if A, π |= ∀vϕ, then π |= ϕ{v :≡ t},

and for this we compute:

A, π |= ∀vϕ=⇒ for every x,A, π{v := x}ϕ

=⇒A, π{v := valueA(t, π)} |= ϕ=⇒A, π |= ϕ{v :≡ t},

the last inference by Sublemma 2.
Axiom (10): If v does not occur free in ϕ, then

A, π |= ∀v(ϕ→ ψ) → (ϕ→ ∀vψ)

It is enough to show that if an assignment π satisfies ∀v(ϕ → ψ) (in A),
then it also satisfies (ϕ→ ∀vψ); i.e., if π satisfies ∀v(ϕ→ ψ) and ϕ, then
it satisfies ∀vψ. The hypothesis means that for every x ∈ A,

A, π{v := x} |= ϕ→ ψ;

the restriction that v does not occur in ϕ means that

A, π |= ϕ ⇐⇒ A, π{v := x} |= ϕ,

by (2) of the Compositionality Theorem 3G.1; and so the assumption that
A, π |= ϕ implies that

A, π{v := x} |= ψ.

So we have shown that for every x ∈ A, A, π{v := x} |= ψ, which means
exactly that A, π |= ∀vψ.
We skip the argument for Axiom (11) which is very similar to that for

Axiom (9). ⊣
More interesting than these straight verifications of the axiom schemes

are the counterexamples which show that the restrictions in (9) – (11) are
necessary.

7B.3. Axiom scheme (9)

∀vϕ(v, u⃗) → ϕ(t, u⃗) (t free for v in ϕ(v, u⃗))

is not valid in every structure without the restriction. A counterexample
is the instance in the language of arithmetic

∀v∃y[y = S(v)] → ∃y[y = S(t)]

which with t :≡ y becomes

∀v∃y[y = S(v)] → ∃y[y = S(y)],

which is clearly false in N.
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Axiom scheme (11)

ϕ(t, u⃗) → ∃vϕ(v, u⃗) (t free for v in ϕ(v, u⃗))

is not valid without the restriction. A counterexample which uses just
the identity symbol is ϕ(v, u⃗) ≡ ∀s[s = v]. Now the instance of (11) is

∀s[s = t]) → ∃v∀s[s = v];

and if we substitute (the forbidden) t :≡ s, we get

∀s[s = s] → ∃v∀s[s = v],

which is clearly false in every structure which has more than one element.

We leave (10) for Problem x2.38.

Proof of the Soundness Theorem 7B.1. It is enough to show that
if ϕ0, . . . , ϕn is a deduction from T , then for every structure A |= T and
every assignment π,

A, π |= ϕi (i = 0, . . . , n)

and we do this by (complete) induction on i ≤ n. The conclusion is true
when ϕi is an axiom by Lemma 7B.2 and it is also trivial if ϕ occurs earlier
in the deduction or is inferred from formulas earlier in the deduction by
Modus Ponens. Thus it is enough to consider only the case when ϕ is
inferred from a formula preceding it in the proof by one of the predicate
rules of inference (13) or (14).

(13), Generalization. By the induction hypothesis, for every assignment
ρ, we know that A, ρ |= ϕ, and we must show that for every assignment
π, A, π |= ∀vϕ, i.e.,

for every x ∈ A, A, π{v := x} |= ϕ;

but this follows immediately by applying the induction hypothesis to ρ =
π{v := x}.
(14) Exists Elimination. By the induction hypothesis, for every assign-

ment ρ, we know that

A, ρ |= ϕ→ ψ,

and we must show that for every π,

A, π |= ∃vϕ→ ψ.

If A, π ̸|= ∃vϕ, then we are done, by the definition of satisfaction for
material implication.
If A, π |= ∃vϕ, then there is some x ∈ A such that A, π{v := x} |= ϕ; the

induction hypothesis applied to ρ = π{v := x} gives A, π{v := x} |= ψ;
and since v does not occur free in ψ (by the condition on the rule) and
π agrees with π{v := x} on all other variables, we have the required
A, π |= ψ by (2) of the Compositionality Theorem 3G.1. ⊣
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7C. The Completeness Theorem for LPCI. There are actually two
versions of the converse of (7-1), both of them useful, and neither of them
as plausible as the Soundness Theorem 7B.1 without some work. We give
(almost) full proofs of both, starting with some preliminary facts.

7C.1. Lemma (Constant Substitution Lemma). Suppose T is a the-
ory, the variable v does not occur bound in the sequence of formulas

ϕ0, . . . , ϕn

of LPCI(τ), and c is a fresh constant, i.e., a constant which does not occur
in T or in any ϕi; then

ϕ0, . . . , ϕn is a deduction from T

⇐⇒ ϕ0{v :≡ c}, . . . , ϕn{v :≡ c} is a deduction from T .

Proof is easy, by taking cases on the justification which allows the
insertion of each ϕi and the corresponding ϕi{v :≡ c} in these deductions.
The relevant observation (for the direction =⇒ of the equivalence) is that
v cannot be the “active variable” in any application of Generalization or
Exists Elimination, because if it were, it would occur bound in some
formula of the given deduction. ⊣

7C.2. Lemma (The Deduction Theorem). For every theory T , every
sentence χ and every formula ϕ,

if T, χ ⊢ ϕ, then T ⊢ χ→ ϕ.

Proof. We follow the architecture of the proof of the Deduction The-
orem for the Propositional Calculus, and there are only two additional
cases to consider, when χn is derived from some earlier formula in the
given deduction (from T, χ) by one of the predicate rules of inference.

(13) Generalization. Now χn ≡ ∀vψ, and the induction hypothesis gives
us a deduction from T of χ→ ψ; we follow this proof by the formulas

∀v(χ→ ψ) (13), ∀v(χ→ ψ) → (χ→ ∀vψ) (10),
χ→ ∀vψ (Modus Ponens)

where ∀v(χ → ψ) → (χ → ∀vψ) is an instance of Axiom (10), justified
because v does not occur free in χ (which is a sentence).

(14) Exists Elimination. Now χn ≡ (∃vϕ→ ψ) and it is inferred in the
given deduction from T, χ by applying (14) to ϕ→ ψ, so that v does not
occur free in ψ. The induction hypothesis gives us a proof from T of

χ→ (ϕ→ ψ),
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and we follow this with the following sequence of formulas to complete a
deduction of χ→ (∃vϕ→ ψ) from T :

. . . ϕ→ (χ→ ψ) (Prop. steps)

∃vϕ→ (χ→ ψ) (14)

. . . χ→ (∃vϕ→ ψ) (Prop. steps),

where the application of (14) is justified because v does not occur in
χ→ ψ, by the hypothesis and the assumption that χ is a sentence. ⊣

7C.3. Lemma (Alphabetic change of bound variables). If the variable
w is free for v in ϕ, then

⊢ ∃vϕ↔ ∃wϕ{v :≡ w}
⊢ ∀vϕ↔ ∀wϕ{v :≡ w}

Proof. It is enough to show that

⊢ ∃wϕ{v :≡ w} → ∃vϕ,
since the rest follows by symmetry, the equivalence of ∀ with ¬∃¬ and
propositional logic. Here is a deduction of it:

. . . ϕ{v :≡ w} → ϕ{v :≡ w} (Propositional),

ϕ{v :≡ w} → ∃vϕ (with t :≡ w in Axiom (11)),

∃wϕ{v :≡ w} → ∃vϕ (Rule (14)) ⊣

7C.4. Lemma (The natural introduction rules for LPCI). If T is a set
of sentences, the indicated substitutions are free, and the indicated restric-
tions are obeyed, then the following hold:

(→) If T, χ ⊢ ϕ, then T ⊢ χ→ ϕ. Restriction: χ is a sentence.
(∧) If T ⊢ ϕ and T ⊢ ψ, then T ⊢ ϕ ∧ ψ.
(∨) If T ⊢ ϕ or T ⊢ ψ, then T ⊢ ϕ ∨ ψ.
(¬) If T, χ ⊢ ψ and T, χ ⊢ ¬ψ, then T ⊢ ¬χ. Restriction: χ a sentence.
(∀) If T ⊢ ϕ, then T ⊢ ∀vϕ.
(∃) If T ⊢ ϕ{v :≡ t}, then T ⊢ ∃vϕ.

7C.5. Lemma (The natural elimination rules for LPCI). If T is a set
of sentences, the indicated substitutions are free, and the indicated restric-
tions are obeyed, then the following hold:

(→) If T ⊢ ϕ and T ⊢ ϕ→ ψ, then T ⊢ ψ.
(∧) If T ⊢ ϕ ∧ ψ, then T ⊢ ϕ and T ⊢ ψ.
(∨) If T, ϕ ⊢ χ and T, ψ ⊢ χ, then T, ϕ ∨ ψ ⊢ χ

Restriction: ϕ, ψ are sentences.
(¬) If T ⊢ ¬¬ϕ, then T ⊢ ϕ.
(∀) If T ⊢ ∀vϕ, then T ⊢ ϕ{v :≡ t}
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(∃) If T, ϕ{v :≡ c} ⊢ χ, then T, ∃vϕ ⊢ χ
Restriction: ∃vϕ is a sentence and c is a constant which does not occur
in T or in χ.

Proof. We verify only the last rule of (∃)-elimination whose proof is
the fussiest.
By appealing to the Deduction Theorem and Modus Ponens, it is enough

to show that

if T ⊢ ϕ{v :≡ c} → χ, then T ⊢ ∃vϕ→ χ.

So suppose we are given a deduction from T

ψ0, . . . , ψn, ϕ{v :≡ c} → χ

in which the constant c may occur, but also the variable v may occur in
some ψi—which is what causes some complexity in the argument. Choose
a variable w which does not occur in any of the formulas in this deduction
and notice that the sequence

ψ0{c :≡ w}, . . . , ψn{c :≡ w}, ϕ{v :≡ w} → χ(7-3)

is also a deduction from T , where each ψi{c :≡ w} is naturally defined by
replacing every occurrence of c in ψi by the fresh variable w; this follows
by the Constant Substitution Lemma 7C.1, since, obviously,

ψi{c :≡ w}{w :≡ c} ≡ ψi,

ϕ{v :≡ w}{w :≡ c} ≡ ϕ{v :≡ c} and c does not occur in χ. We now
append to the deduction (7-3) the formula

∃wϕ{v :≡ w} → χ by Rule (14)

to get T ⊢ ∃wϕ{v :≡ w} → χ, which implies T ⊢ ∃vϕ→ χ by Lemma 7C.3
and propositional steps. ⊣

7C.6. Proposition. If T ⊢ ϕ and T ⊢ ¬ϕ, then for every sentence χ,
T ⊢ χ, so that, in particular, T ⊢ ff.

Proof. For any sentence χ, by the hypothesis,

T,¬χ ⊢ ϕ, T,¬χ ⊢ ¬ϕ;
hence T ⊢ ¬¬χ by (¬)-introduction, hence T ⊢ χ, by (¬)-elimination. ⊣
At this point we can state the first—and most natural—version of the

Completeness Theorem.

7C.7. Theorem (Gödel’s Completeness Theorem, I). If τ is finite, then
every logical consequence of a τ -theory T is a theorem of T , i.e., for every
sentence χ,

if T |= χ, then T ⊢ χ.

The proof will take up the rest of this section and we will need to
introduce some new notions and prove various facts about them.
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7C.8. Definition. A theory T is consistent if it does not prove a
contradiction, equivalently if T ̸⊢ ff; it is inconsistent in the opposite
case, i.e., if T ⊢ ff.

One of the basic properties of consistency is that it is finitely based :

7C.9. Lemma. A theory T is consistent if and only if every finite sub-
set T0 ⊆ T of it is consistent.

Proof is simple and we leave it for Problem x2.42. ⊣

At the same time, if T has a model, then it is consistent, since it cannot
be that A |= χ for every χ. This observation suggests a different version
of the converse to Theorem 7B.1:

7C.10. Theorem (Gödel’s Completeness Theorem, II). If τ is finite,
then every consistent τ -theory T has a model.

Proof of CT I from CT II. Suppose T |= χ but (towards a contra-
diction), T ̸⊢ χ. Now T∪{¬χ} is consistent, since the opposite assumption
gives T,¬χ ⊢ χ and then (easily) T ⊢ χ. By the assumed version II of the
Completeness Theorem, this implies that T ∪ {¬χ} has a model A; but
then A |= T and A ̸|= χ, which contradicts the hypothesis. ⊣
It is equally easy to prove CT II assuming CT I, cf. Problem x2.43,

so both versions of the Completeness Theorem express the same, basic
mathematical fact.

We now start on the proof of Theorem 7C.10 with a few properties of
consistent theories.

7C.11. Lemma. Suppose T is a consistent theory in LPCI(τ).

(1) For every sentence χ, either T ∪ {χ} is consistent, or T ∪ {¬χ} is
consistent.

(2) If ∃vϕ is a sentence, T ∪ {∃vϕ} is consistent and c is a constant
which does not occur in T or in ∃vϕ, then T ∪ {ϕ{v :≡ c}} is consistent.

Proof. (1) If both T ∪ {χ} and T ∪ {¬χ} are inconsistent, then for
any sentence ϕ,

T, χ ⊢ ϕ and T,¬χ ⊢ ϕ,
and so by (∨)-elimination T, χ ∨ ¬χ ⊢ ϕ; but ⊢ χ ∨ ¬χ (propositionally),
and so T ⊢ ϕ. Thus T proves every sentence ϕ and it is inconsistent,
contrary to hypothesis.

(2) If T ∪ {ϕ{v :≡ c}} is inconsistent, then T, ϕ{v :≡ c} ⊢ ψ for every
sentence ψ; but then, by (∃)-elimination, T, ∃vϕ ⊢ ψ, and so T ∪{∃vϕ} is
inconsistent, contrary to hypothesis. ⊣

7C.12. Definition. A theory T in LPCI(τ) is complete if for each
sentence θ of LPCI(τ), either T ⊢ θ or T ⊢ ¬θ.
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The standard example of a complete theory is the theory Th(A) of a
structure, since for every sentence θ, either A |= θ or A |= ¬θ.

7C.13. Definition. A theory H is a Henkin set in LPCI(τ) if it sat-
isfies the following conditions:

(H1) H is consistent.
(H2) For every sentence χ, either χ ∈ H or ¬χ ∈ H, so that in particular,

H is complete.
(H3) If ∃vϕ ∈ H, then there is a constant c such that ϕ{v :≡ c} ∈ H.

The constant c in the last condition is called a Henkin witness for the
existential sentence ∃vϕ, so briefly:

a Henkin set is a consistent, strongly complete τ -theory which
has Henkin witnesses.

7C.14. Lemma (Properties of Henkin sets). Fix a Henkin set H.

(1) H is deductively closed, i.e., for every sentence χ,

if H ⊢ χ, then χ ∈ H.

(2) For all sentences ϕ, ψ,∃vϕ,∀vϕ:

¬ϕ ∈ H ⇐⇒ ϕ /∈ H

ϕ ∧ ψ ∈ H ⇐⇒ ϕ ∈ H and ψ ∈ H

ϕ ∨ ψ ∈ H ⇐⇒ ϕ ∈ H or ψ ∈ H

ϕ→ ψ ∈ H ⇐⇒ ϕ /∈ H or ψ ∈ H

∃vϕ ∈ H ⇐⇒ there is some c such that ϕ{v :≡ c} ∈ H

∀vϕ ∈ H ⇐⇒ for all c, ϕ{v :≡ c} ∈ H

Proof. (1) Suppose H ⊢ χ but χ /∈ H; then ¬χ ∈ H by (H2), and so
H ⊢ ¬χ, which makes H inconsistent contradicting property (H1).

(2) We consider just two of these equivalences.

If ϕ ∧ ψ ∈ H, then ϕ, ψ ∈ H by the deductive completeness of H, since
ϕ∧ψ ⊢ ϕ and ϕ∧ψ ⊢ ψ; and for the converse of this, we use the fact that
ϕ, ψ ⊢ ϕ ∧ ψ, so that if ϕ, ψ ∈ H, then H ⊢ ϕ ∧ ψ and so ϕ ∧ ψ ∈ H.

If ∃vϕ ∈ H, then ϕ{v :≡ c} ∈ H for some c, by the key property
(H3). The converse holds because ϕ{v :≡ c} ⊢ ∃vϕ and H is deductively
complete. ⊣
This lemma suggests that every Henkin set is Th(A) for some structure

A, and so to construct a model of some consistent theory T we should
aim to construct a Henkin set which extends T . There are but two, small
subtleties that we need to deal with to turn this idea into a proof.

The Completeness Theorem 7C.10 will follow from the following two,
crucial lemmas, which have independent interest:
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7C.15. Lemma A. Suppose τ is a finite vocabulary.

Every consistent τ -theory T is contained in a Henkin set H ⊇ T of
LPCI(τ∗), where the vocabulary τ∗ is an expansion of τ by an infinite
sequence of fresh constants (d0, d1, . . . ), so that

(7-4) if τ = (Const,Rel,Funct, arity),

then τ∗ = (Const ∪ {d0, d1, . . . },Rel,Funct, arity).

7C.16. Lemma B. If H is a Henkin set in LPCI(τ∗) (as in Lemma
A), then there is a LPCI(τ∗)-structure

A∗ = (A, {c}c∈Const, {d̄i}i∈N, {R}R∈Rel, {f}f∈Funct),

such that for every LPCI(τ∗)-sentence χ,

A∗ |= χ ⇐⇒ χ ∈ H.

In particular, A∗ is a model of H.

Assuming these two lemmas:

Proof of Theorem 7C.10. Suppose T is a consistent LPCI(τ)-theory,
H is a Henkin extension of it in LPCI(τ∗) by Lemma 7C.15, and A∗ is a
model of H by Lemma 7C.16: now the reduct

A = (A, {c}c∈Const, {R}R∈Rel, {f}f∈Funct)

is a model of T by (1) of the Compositionality Theorem 3G.1. ⊣
We should mention that the restriction to finite τ in these lemmas is

not necessary: in fact they hold for arbitrary τ . But all the interesting
applications are to τ -theories with finite τ ; and if τ is infinite, then the
construction of the (necessarily infinite) τ∗ and the proof that LPCI(τ∗)
has the necessary properties requires some non-trivial results from set
theory which are not relevant to the task at hand.

Proof of Lemma A, 7C.15. We assume the hypotheses and the no-
tation of Lemma A.

Sublemma 1. There is a sequence of LPCI(τ∗) sentences

χ0, χ1, . . .

which contains all the LPCI(τ∗) sentences, such that for each n, the con-
stant dn does not occur in any of the first n sentences χ0, . . . , χn−1.

Proof. For each n = 0, 1, . . . , let

Sn = the set of all sentences of LPCI(τ∗) of length ≤ 5 + n

whose variables are in {v0, . . . , vn}, and in which

only d0, . . . , dn−1 of the fresh constants may occur.
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The choice of 5 in this definition insures that S0 is not empty, since

∃v0v0 = v0, ∀v0 = v0 ∈ S0.

At the same time, easily:

1. Each Sn is finite.
2. Sn ⊆ Sn+1, for each n.
3. d0 does not occur in any sentence in S0, and for n > 0, dn does not

occur in any sentence of Sn−1.

We now enumerate in some standard way all these finite sets,

Sn = (χn
0 , . . . , χ

n
kn),

and conclude that the required enumeration of all the LPCI(τ∗)- sentences
is the “concatenation” of all these enumerations,

χ0
0, . . . , χ

0
k0 , χ

1
0, . . . , χ

1
k1 , . . . . ⊣ (Sublemma 1)

Sublemma 2. There exists a sequence

ϕ0, ϕ1, . . . ,(7-5)

of LPCI(τ∗)-sentences with the following properties:

1. For each n, ϕ2n ≡ χn or ϕ2n ≡ ¬χn.
2. For each n, if ϕ2n ≡ ∃vψ(v) for some variable v and formula ψ(v),

then ϕ2n+1 ≡ ψ(dn), otherwise ϕ2n+1 ≡ ϕ2n.
3. For each n, the set T ∪ {ϕ0, . . . , ϕ2n+1} is consistent.

Proof. The sentences ϕ2n, ϕ2n+1 are defined by recursion on n, using
Lemma 7C.11—and their definition is basically determined by the condi-
tions they are required to satisfy. ⊣ (Sublemma 2)

It is now easy to verify that the range H = {ϕ0, ϕ1, . . . , } of the se-
quence of sentences in (7-5) constructed in the proof of Sublemma 2 is a
Henkin set.
To see that it includes T , suppose χ ∈ T . Now χ ≡ χn for some n, and

so either ϕ2n ≡ χ or ϕ2n ≡ ¬χ; but T ∪{ϕ0, . . . , ϕ2n+1} is consistent, and
so it cannot contain both χ and ¬χ—so it must be that ϕ2n ≡ χ. ⊣
Proof of Lemma B, 7C.16. Let H be the Henkin set guaranteed by

Lemma A, and let

C = Const ∪ {d0, d1, . . . , }

be the set of the constants in τ∗, including all the fresh constants we
added to the vocabulary τ . Lemma 7C.14 suggests that we can construct
a model C of H on the universe C, by setting for e1, . . . , en, e ∈ C,

RC(e1, . . . , en) ⇐⇒ R(e1, . . . , en) ∈ H,

fC(e1, . . . , en) = e ⇐⇒ f(e1, . . . , en) = e ∈ H,
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and this almost works, except that it gives “multiple valued” interpreta-
tions of the constants: it may well be that c = c′ ∈ H for two distinct
constants in τ∗. To deal with this, we need to “identify” constants which
H thinks are equal, as follows. We set:

a ∼ b ⇐⇒ (a = b) ∈ H (a, b ∈ C).

Sublemma 1. The relation ∼ is an equivalence relation on the set C of
constants, i.e., for all a, b, c ∈ C:

a ∼ a, a ∼ b=⇒ b ∼ a, [a ∼ b & b ∼ c] =⇒ a ∼ c

Proof is immediate from the axioms of equality, which are satisfied
by H, since it is deductively closed. For example, (a = a) ∈ H for every
constant a, simply because ⊢ a = a. ⊣ (Sublemma 1)

The same kind of argument gives the next two facts we need:

Sublemma 2. For every n-ary relation symbol R and for all constants
a1, . . . , an, b1, . . . , bn ∈ C,

a1 ∼ b1, . . . an ∼ bn=⇒ [R(a1, . . . , an) ∈ H ⇐⇒ R(b1, . . . , bn) ∈ H].

Sublemma 3. For every n-ary function symbol f and all constants
a1, . . . , an ∈ C, there is a constant u ∈ C such that

(f(a1, . . . , an) = u) ∈ H;

and for all constants a1, . . . , an, u, b1, . . . , bn, v ∈ C,

a1 ∼ b1, . . . an ∼ bn, u ∼ v

=⇒ (f(a1, . . . , an) = u) ∈ H ⇐⇒ (f(b1, . . . , bn) = v) ∈ H.

We now let C̃ be the set of equivalence classes of this equivalence rela-
tion on C and choose a set A ⊆ C of representatives for them: this means
that we define a function a 7→ a on C to itself such that

a ∼ b ⇐⇒ a = b.

This set A is the universe of the structure A∗ that we want to construct.
On it we interpret each constant c by c, and for the relation and function
symbols as set

R(a1, . . . , an) ⇐⇒ R(a1, . . . , an) ∈ H,

f(a1, . . . , an) = e ⇐⇒ (f(a1, . . . , an) = e) ∈ H.

The Sublemmas insure that these are good definitions; and then Lemma
7C.14 implies easily that for this structure A and all χ in LPCI(τ∗),

A |= χ ⇐⇒ χ ∈ H,

so that, in particular, A is a model of H. ⊣
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7D. The Compactness and Skolem-Löwenheim Theorems. We
end the section with two important corollaries of the Completeness The-
orem which are formulated entirely in semantic terms, i.e., without refer-
ence to the proof theory of LPCI.

7D.1. Theorem (The Compactness Theorem). If every finite subset of
a theory T in a finite vocabulary has a model, then T has a model.

7D.2. Theorem (The Weak Skolem-Löwenheim Theorem). If a theory
T in a finite vocabulary has a model, then it has a model A = (A, . . . )
whose universe is countable, i.e., A = {a0, a1, . . . , } is the range of a
sequence.

We will leave the (easy now) proofs of these basic results and some
of their consequences for the problems, except for the following, very
interesting application of compactness:

7E. Non-standard models. Let n 7→ ∆(n) be the function from
natural numbers to terms of the language of arithmetic defined by the
recursion,

∆(0) :≡ 0, ∆(n+ 1) :≡ S(∆(n)),(7-6)

so that ∆(1) ≡ S(0), ∆(2) ≡ S(S(0)), etc. These numerals are the
standard (unary) names of numbers in the language of arithmetic.

Let τ(c) = (0, c, S,+, ·) be the expansion of the vocabulary of arithmetic
by a new constant c and let

T (c) = Th(N) ∪ {c ̸= ∆(0), c ̸= ∆(1), . . . }.(7-7)

It is easy to check that T (c) is consistent (Problem x2.46), and so by
Theorem 7C.10 it has a model

A = (A, 0, c, S,+, ·).

This model satisfies all the true sentences in the language of arithmetic,
since Th(N) ⊆ T (c), and so its reduct

N∗ = (A, 0, S,+, ·)(7-8)

to the language of arithmetic satisfies all the sentences which are true
in N. But N∗ is not isomorphic with N: because if π : N↣→A were an
isomorphism, then (easily)

π(n) = ∆(n)A,

and the interpretations of the numerals do not exhaust the universe A
since A |= c ̸= ∆(n) for every n.
In short, N∗ is a structure which is elementarily equivalent (as on

page 26) with N but not isomorphic with N: it is a non-standard model
of true arithmetic and it has a very interesting structure.

Math. 114L, Spring 2021, Y. N. Moschovakis

Lower Predicate Calculus with identity August 19, 2022, 19:07, 43



44 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

§8. Problems.

x2.1. Give rigorous definitions of the LPCI(τ) terms and formulas.

x2.2. Determine the free and bound occurrences of variables in the
following (misspelled) formula of LPCI(≤):

ϕ ≡ ∀y(x ≤ y) ∧ ∀x∃y(x ≤ y ∧ ¬(y ≤ x))

Which are the free variables of ϕ and which are its bound variables?

x2.3. Consider the following two sentences in the language of posets:

ϕ ≡ ∃v1∃v2∀v2[v1 ≤ v2], ψ ≡ ∃v1∀v2∃v2[v1 ≤ v2].

What do they mean, and do they have the same truth value in every
poset?

x2.4. In the language (≤) of posets first abbreviate

x < y :≡ x ≤ y ∧ ¬(x = y)

and consider the following sentence χ which says that “(P,≤) has a min-
imal element”,

χ ≡ (∃x)(∀y)(y ̸< x).

Write out the correctly spelled form of χ (with formal variables v0, v1,
the correct spelling for prime formulas and all the parentheses).

x2.5. Write out the correctly spelled form of (∃!x)ϕ in (2-2).

x2.6. Give an example of a term α, variables v1, v2 and terms t1, t2
such that α{v1 :≡ t1}{v2 :≡ t2} ̸≡ α{v1 :≡ t1, v2 :≡ t2}.

x2.7. Prove that the function σ(x) = x+1 is an automorphism of the
usual linear ordering (Q,≤) on the rational numbers.

x2.8. Prove that for every structure A, the identity σ(x) = x on A
is an automorphism—the trivial one. Prove also that the structure N of
arithmetic has no other automorphisms—it is rigid.

x2.9. With the notation for simultaneous updates in Section 3F, prove
that

π{v1 := x1, . . . , vn := xn} = π{v1 := x1}{v2 := x2} · · · {vn := xn}.

x2.10. Prove Theorem 3F.1, the Tarski conditions for the satisfaction
relation.

x2.11. For each formula χ of the Propositional Calculus PL, any se-
quence p1, . . . , pn of distinct propositional variables which includes all
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the variables which occur in χ and any sequence ϕ1, . . . , ϕn of LPCI(τ)-
formulas, let

χ∗ ≡ χ{p1 :≡ ϕ1, . . . , pn :≡ ϕn}
≡ the result of replacing each pi in χ by ϕi.

Fix a τ -structure A and for any assignment π into A let vπ be any truth-
value assignment to the propositional variables such that

vπ(pi) =

{
1, if A, π |= ϕ,

0, otherwise.

Prove that vπ |= χ ⇐⇒ A, π |= χ∗ and infer that

if χ is a tautology, then for every π, A, π |= χ∗.

x2.12. Prove that if σ : A↣→B is an isomorphism, then its inverse
σ−1 : B↣→A is also an isomorphism. Infer that isomorphism is an equiv-
alence condition between structures, i.e., for all A,B,C,

A ∼= A, A ∼= B=⇒B ∼= A, [A ∼= B ∧ B ∼= C] =⇒A ∼= C.

x2.13. Suppose σ : A↣→B is an isomorphism between the two τ -
structures A,B.
(1) Prove that for every extended term t(v⃗) and all x1, . . . , xn ∈ A,

σ(tA[x1, . . . ,n ]) = tB[σ(x1), . . . , σ(xn)].

(2) Prove that for every extended formula χ(v⃗) and all x1, . . . , xn ∈ A,

χA[x1, . . . , xn] ⇐⇒ χB[σ(x1), . . . , σ(xn)].

(3) Infer that if σ : A↣→A is an automorphism of A and P (x1, . . . , xn)
is A-elementary, then

P (x1, . . . , xn) ⇐⇒ P (σ(x1), . . . , σ(xn)).

x2.14. Prove that if a binary relation P (x, y) is elementary in a struc-
ture A, then so is the converse relation

P̆ (x, y) ⇐⇒ P (y, x).

x2.15. Prove that if f(x⃗), g(x⃗) are elementary functions in a structure
A, then so is the relation

P (x⃗) ⇐⇒ f(x⃗) = g(x⃗).

In the next two problems you are asked to decide whether a given rela-
tion is elementary or not on a given structure and to provide an extended
formula which defines it if your answer is “yes”. For example, the relation

x | y ⇐⇒ x divides y

Math. 114L, Spring 2021, Y. N. Moschovakis

Lower Predicate Calculus with identity August 19, 2022, 19:07, 45



46 2. THE LOWER PREDICATE CALCULUS WITH IDENTITY, LPCI

is elementary on the structure of arithmetic N (arithmetical), defined by
the extended formula

ϕ(x, y) ≡ ∃z(y = x · z).

You will not be able to prove your negative answers, as we have not
developed yet tools for proving non-elementarity, but you should try to
guess the correct answers.

x2.16∗. Determine whether the following relations are elementary on
a fixed, symmetric graph G = (G,E), and if your answer is positive, find
a formula which defines them.

(1) P (x, y) ⇐⇒ d(x, y) ≤ 2.
(2) P (x, y) ⇐⇒ d(x, y) = 2.
(3) P (x, y) ⇐⇒ d(x, y) <∞.
(4) P (x, y, z) ⇐⇒ d(x, y) ≤ d(x, z)
(5) P (x) ⇐⇒ every y can be joined to x.

x2.17. Determine whether the (usual) ordering relation on real num-
bers is elementary on the field R = (R, 0, 1,+, ·), and if your answer is
positive, find a formula which defines them. (You need to know something
about the real numbers to do this.)

x2.18∗ (Dedekind’s characterization of N). Prove that every two struc-
tures

N1 = (N1, 01, S1,+1, ·1), N2 = (N2, 02, S2,+2, ·2)

which satisfy the Peano axioms in 1D are isomorphic. Hint: Let

X =
{
t ∈ N1 | there exists a function f : A→ B such that

01 ∈ A, f(01) = 02 ∈ N2, and for all t ∈ N1,

S1(t) ∈ A=⇒
[
t ∈ A & f(t) ∈ N2 & f(S1(t)) = S2(f(t))

]}
.

Use the Induction Axiom on N1 to prove that X = N1 and there is an
injection σ : N1 ↣ N2 such that

σ(01) = 02 and for all t ∈ N1, σ(S1(t)) = S2(σ(t));

and then use the Induction Axiom on N2 to prove that σ[N1] = N2.

x2.19 (The Division Theorem for N). Prove that for every x ∈ N and
every y > 0 in N, there exist unique q, r ∈ N such that

x = y · q + r, 0 ≤ r < y.

We set quot(x, y) = q and rem(x, y) = r, and for completeness, we also
let quot(x, 0) = 0, rem(x, 0) = x.
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x2.20. Suppose that d0, . . . , dt ∈ N are relatively prime, i.e., no two
of them have a common factor > 1; prove that if x ∈ N and di | x for
i = 0, . . . , dt, then d0d1 · · · dt | x.

x2.21. Determine whether the following relations are arithmetical, i.e.,
elementary on the structure of arithmetic N = (N, 0, S,+, ·).
1. Prime(x) ⇐⇒ x is a prime number.
2. TP(x) ⇐⇒ there are infinitely many twin primes y such that x ≤ y.
3. Exp(x,w) ⇐⇒ 2x = w, where 2x is defined as usual,

20 = 1, 2x+1 = 2 · 2x.

4. Quot(x, y, w) ⇐⇒ quot(x, y) = w.
5. Rem(x, y, w) ⇐⇒ rem(x, y) = w.
6. x⊥y ⇐⇒ x and y are coprime (i.e., no number other than 1 divides

both x and y).

x2.22. Prove that the following functions and relations on N are arith-
metical.

1. p(i) = pi = the i’th prime number, so that p0 = 2, p1 = 3, p2 = 5,
etc.

2. fn(x0, . . . , xn) = px0+1
0 · px1+1

1 · · · pxn+1
n . (This is a different function

of n+ 1 arguments for each n.)
3. R(u) ⇐⇒ there exists some n and some x1, . . . , xn such that

u = fn(x1, . . . , xn).

x2.23. The Ackermann function is defined by the following double re-
cursion:

A(0, x) = x+ 1

A(n+ 1, 0) = A(n, 1)

A(n+ 1, x+ 1) = A(n,A(n+ 1, x))

1. Compute A(1, 2).
2. Compute A(2, 1).
3. Prove that the Ackermann function is arithmetical.

x2.24. Prove Lemma 4B.1.

x2.25. Prove that the ring of integers Z admits coding of tuples (Ex-
ample 4B.2).

x2.26. Prove (1) – (3) of Proposition 5A.1. Hint: Use Problem x2.11.

x2.27. Prove (4) and (5) of Proposition 5A.1.

x2.28. Prove (6) of Proposition 5A.1 and infer Corollary 5A.2.
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x2.29. (1) Let L = ([0, 1), 0,≤), where [0, 1) is the half-open interval
of real numbers,

[0, 1) = {x ∈ R | 0 ≤ x < 1}
and 0 is a constant which names the number 0. Prove that L admits
effective elimination of quantifiers. Infer that it is a decidable structure,
i.e., there is an effective procedure which decides whether L |= χ, for an
arbitrary sentence χ.

(2) Let L′ = ([0, 1),≤) be the same linear ordering as in (1), but in the
language without a name for 0. Does L′ admit elimination of quantifiers?

(3) Is the structure L′ decidable?

In the next three problems you are asked to decide whether a class Φ of
τ -structures is basic elementary, elementary or neither, and if your answer
is positive for one of these questions to define the relevant theory. For
example, when τ = (≤) is the signature of partial orderings (with just
one binary relation symbol ≤),

(P,≤) is a partial ordering

⇐⇒ (P,≤) |= (∀x)[x ≤ x] ∧ (∀x)(∀y)[(x ≤ y ∧ y ≤ x) → x = y]

∧ (∀x)(∀y)(∀z)[(x ≤ y ∧ y ≤ z) → x ≤ z].

You will not be able to prove your negative answers as we have not devel-
oped yet tools for proving that a class of structures is not basic elementary
or elementary, but you should try to guess the correct answers.

x2.30. For the empty signature τ (for which the τ -structures are just
sets) decide whether the following properties of τ -structures are basic
elementary, elementary or neither; and if your answer is positive to one
of these, find a theory which axiomatizes the given property:

1. A has exactly 3 elements.
2. A is finite.
3. A is infinite.

x2.31. For the signature τ = (≤) with just one binary relation symbol,
decide whether the following properties of τ -structures are basic elemen-
tary or elementary, and if your answer is positive, define the relevant
theory:

1. (P,≤) is an infinite partial ordering.
2. (P,≤) is a finite partial ordering.
3. (P,≤) is an infinite linear ordering.
4. (P,≤) is a finite linear ordering.

x2.32. For the signature τ = (E) with just one binary relation sym-
bol, decide whether the following properties of τ -structures (graphs) are
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basic elementary or elementary, and if your answer is positive, define the
relevant theory:

1. (G,E) is a symmetric graph.
2. (G,E) is symmetric and connected.

x2.33∗. Prove that isomorphic structures are elementarily equivalent,

A ∼= B=⇒A ≈ B.

x2.34. Prove that every bijection σ : A↣→A of a set A with itself is
an automorphism of the trivial structure (A) with no primitives. Use this
fact to identify all unary and binary (A)-elementary relations.

x2.35. Consider the structure (Q,≤) of the rational numbers with their
ordering.

1. Find all unary, elementary relations in (Q,≤).
2. Find all binary, elementary relations in (Q,≤).

x2.36. Construct a model of the Robinson system Q which is not iso-
morphic with the standard model N. Hint: Take for universe A =
N ∪ {∞} for some object ∞ /∈ N.

x2.37∗. Construct a model of the Robinson system Q in which addition
is not commutative.

x2.38. Give an example which shows that the restriction is necessary
in Axiom scheme (10) for LPCI(τ).

x2.39. Give an example which shows that the restriction on the Exists
Elimination Rule (14) is necessary.

x2.40. Show that if T ⊢ ∀vϕ(v, u⃗) and x is any variable which is free
for v in ϕ(v, u⃗), then T ⊢ ∀xϕ(x, u⃗).

x2.41. Let ϕ be a formula of the Propositional Calculus PL whose
variables are included in the list of distinct variables p1, . . . , pn, and let
ψ1, . . . , ψn be LPCI-formulas. The substitution

ϕ{p1 :≡ ψ1, . . . , pm :≡ ψn}(8-1)

is defined in the obvious way, by replacing each pi in ϕ by ψi.

(1) Prove that it ϕ is a propositional tautology, then the formula (8-1)
is a propositional theorem of LPCI.

(2) Prove that if χ is a propositional theorem of LPCI, then there is a
propositional tautology ψ such that for suitable p1, . . . , pn and ψ1, . . . , ψn,
χ ≡ ϕ{p1 :≡ ψ1, . . . , pm :≡ ψn}.

x2.42. Prove Lemma 7C.9, that a theory is consistent if and only if all
its finite subsets are consistent.
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x2.43. Prove that version I of the Completeness Theorem 7C.7 implies
version II, Theorem 7C.10.

x2.44. Prove the Compactness Theorem 7D.1.

x2.45. Prove the Skolem-Löwenheim Theorem 7D.2.

x2.46. Prove that the theory T (c) in (7-7) is consistent. Hint: Show
that each finite subset of T (c) has a model.

x2.47. Prove that the structure N∗ defined in (7-8) is not isomorphic
with the standard model of arithmetic N = (N, 0, S,+, ·).

x2.48. Prove that if a τ -theory T has arbitrarily large, finite models,
then it has an infinite model.

x2.49. For the empty signature τ (for which the τ -structures are just
sets) decide whether the following properties of τ -structures are basic
elementary or elementary, and prove your answer.

1. A is finite.
2. A is infinite.

x2.50. For the signature τ = (E) with just one, binary relation symbol,
prove that the class of structures which are symmetric, connected graphs
is not elementary.

x2.51. (1) Prove that if a sentence χ in the language (0, 1,+, ·) of fields
is true in every field F of characteristic 0, then there is a number p0 such
that χ is true in every field F of characteristic p ≥ p0.

(2) Infer that the theory Fields0 of fields of characteristic 0 is not a basic
elementary class.

x2.52. There is an apparent contradiction between

(1) the construction in the last section 7E of a model N∗ of Peano Arith-
metic which is not isomorphic with N, and

(2) Dedekind’s characterization of N in Problem x2.18∗.

Discuss and explain.

x2.53∗. Let N∗ be a non-standard model of true arithmetic as in Sec-
tion 7E, i.e., N∗ is elementarily equivalent but not isomorphic with N.
Prove that if we define on N∗ the relation

xE∗y ⇐⇒ (x+∗ 1 = y) ∨ (y +∗ 1 = x),

then the following two relations (from Problem x2.16∗) are not elementary
in N∗—and hence not elementary in the graph (N∗, E∗):

(3) P (x, y) ⇐⇒ d(x, y) <∞.
(4) P (x, y, z) ⇐⇒ d(x, y) ≤ d(x, z).
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Hint: The standard part of N∗ is an initial segment of N∗ which is
isomorphic with N. We may assume that it is N and put

Inf = N∗ \ N = the set of “infinite numbers” in N∗.

This set is not empty. For (3), prove and use the fact that Inf is not
elementary; and for (4) prove and use the stronger fact, that Inf is not
elementary from a parameter, i.e., for every extended formula χ(u, v) of
arithmetic and every z ∈ N∗,

Inf ̸= {x ∈ N∗ | χN∗
[x, z]}.
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