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ABSTRACT

In the past decade, information theory has been studied extensively in computational imaging. In particular,
image matching by maximizing mutual information has been shown to yield good results in multimodal image
registration. However, there have been few rigorous studies to date that investigate the statistical aspect of
the resulting deformation fields. Different regularization techniques have been proposed, sometimes generating
deformations very different from one another. In this paper, we present a novel model for multimodal image
registration. The proposed method minimizes a purely information-theoretic functional consisting of mutual
information matching and unbiased regularization. The unbiased regularization term measures the magnitude of
deformations using either asymmetric Kullback-Leibler divergence or its symmetric version. The new multimodal
unbiased matching method, which allows for large topology preserving deformations, was tested using pairs of
two and three dimensional serial MRI images. We compared the results obtained using the proposed model to
those computed with a well-known mutual information based viscous fluid registration. A thorough statistical
analysis demonstrated the advantages of the proposed model over the multimodal fluid registration method when
recovering deformation fields and corresponding Jacobian maps.
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1. INTRODUCTION

In recent years, computational neuroimaging has become an exciting interdisciplinary field with many applications
in functional and anatomic brain mapping, image-guided surgery, and multimodality image fusion.1–6 The goal of
image registration is to align, or spatially normalize, one image to another. In multi-subject studies, this reduces
subject-specific anatomic differences by deforming individual images onto a population average brain template.
When applied to serial scans of human brain, image registration offers tremendous power in detecting the
earliest signs of illness, understanding normal brain development or aging, and monitoring disease progression.
Recently, there has been an expanding literature on various nonrigid registration techniques, with different
image matching functionals, regularization schemes, and numerical implementations. In7,8 we systematically
examined the statistical properties of Jacobian maps (the determinant of the local Jacobian operator applied
to the deformations), and proposed an unbiased large-deformation image registration approach. In this context,
unbiased means that the Jacobian determinants of the deformations recovered between a pair of images follow a
log-normal distribution, with zero mean after log-transformation. We argued that this distribution is beneficial
when recovering change in regions of homogeneous intensity, and in ensuring symmetrical results when the order
of two images being registered is switched. We applied this method to a longitudinal MRI dataset from a single
subject, and showed promising results in eliminating spurious signals. We also noticed that different registration
techniques, when applied to the same longitudinal dataset, may sometimes yield visually very different Jacobian
maps, causing problems in interpreting local structural changes. Given this ambiguity and the increasing use
of registration methods to measure brain change, more information is required concerning the baseline stability,
reproducibility, and statistical properties of signals generated by different nonrigid registration techniques.

Further author information:
I.Y.: E-mail: yanovsky@math.ucla.edu
P.T.: E-mail: thompson@loni.ucla.edu
S.O.: E-mail: sjo@math.ucla.edu
A.L.: E-mail: feuillet@ucla.edu



In this paper, we present a novel model for multimodal image registration. The proposed method minimizes
a purely information-theoretic functional consisting of mutual information matching and unbiased regulariza-
tion (prior work has focused on the case where unbiased regularization was coupled with the summed squared
intensity difference matching). The unbiased regularization term measures the magnitude of deformations us-
ing either asymmetric Kullback-Leibler (KL) divergence or symmetric Kullback-Leibler (SKL) distance yielding
Asymmetric Unbiased and Symmetric Unbiased models, respectively. We also aim to provide quality calibrations
for different non-rigid registration techniques in TBM. In particular, we compare three regularization techniques
(fluid registration versus the Asymmetric Unbiased and Symmetric Unbiased techniques). Our experiments are
designed to decide which registration method is more reproducible, more reliable, and offers less artifactual vari-
ability in regions of homogeneous image intensity. The foundation of our calibrations is based on the assumption
that, by scanning healthy normal human subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
baseline dataset twice over a 2-week period using the same protocol, serial MRI scan pairs should not show any
systematic biological change. Therefore, any regional structural differences detected using TBM over such a
short interval may be assumed to be errors. We apply statistical analysis to the profile of these errors, providing
information on the reliability, reproducibility and variability of different registration techniques. Moreover, serial
images of 10 subjects from the ADNI follow-up phase (images acquired one year apart) were analyzed in a similar
fashion. In images collected one year apart, real anatomical changes are present; neurobiological changes due to
aging and dementia include widespread cell shrinkage, regional gray and white matter atrophy and expansion
of fluid-filled spaces in the brain. Thus, a good computational technique should be able to detect physiological
changes for the ADNI follow-up (1-year) phase.

At this point, we would like to motivate the unbiased approach, which couples the computation of deforma-
tions with statistical analyses on the resulting Jacobian maps. As a result, the unbiased approach ensures that
deformations have intuitive axiomatic properties by penalizing any bias in the corresponding statistical maps.
In the following sections, we describe the mathematical foundations of this approach, define energy functionals
for minimization, and perform thorough statistical analyses to demonstrate the advantages of the multimodal
unbiased registration models.

2. UNBIASED LARGE-DEFORMATION IMAGE REGISTRATION
Let Ω be an open and bounded domain in Rn, for arbitrary n. Without loss of generality, assume that the volume
of Ω is 1, i.e. |Ω| = 1. Let I1 : Ω → R and I2 : Ω → R be the two images to be registered. We seek to find the
transformation g : Ω → Ω that maps the source image I2 into correspondence with the target image I1. In this
paper, we will restrict this mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix
of a deformation g to be Dg, with Jacobian denoted by |Dg(x)|. The displacement field u(x) from the position
x in the deformed image I2 ◦ g(x) back to I2(x) is defined in terms of the deformation g(x) by the expression
g(x) = x− u(x) at every point x ∈ Ω. Thus, we consider the problems of finding g and u to be equivalent.

We now describe the construction of the Unbiased Large-Deformation Image Registration. We associate three
probability density functions to g, g−1, and the identity mapping id:

pg(x) = |Dg(x)|, pg−1(x) = |Dg−1(x)|, pid(x) = 1. (1)

By associating deformations with their corresponding global density maps, we can now apply information theory
to quantify the magnitude of deformations. In our approach, we choose the Kullback-Leibler (KL) divergence
and symmetric Kullback-Leibler (SKL) distance. The KL divergence between two probability density functions,
p1(x) and p2(x), is defined as KL(p1(x), p2(x)) =

∫
Ω

p1(x) log[p1(x)/p2(x)]dx ≥ 0. We define the SKL distance
as SKL(p1(x), p2(x)) = KL(p1(x), p2(x)) + KL(p2(x), p1(x)).

The Unbiased method solves for the deformation g (or, equivalently, for the displacement u) minimizing the
energy functional E, consisting of the image matching term F and the regularizing term R which is based on
KL divergence or SKL distance. The fidelity term F dependents on I2 and I1, as well as the displacement u.
The general minimization problem can be written as

E(I1, I2,u) = F (I1, I2,u) + λR(u), inf
u

E(I1, I2,u). (2)

Here, λ > 0 is a weighting parameter.



2.1 Asymmetric Unbiased Registration

To quantify the magnitude of deformation g, in this paper we introduce a new regularization term RKL, which
is an asymmetric measure between pid and pg: RKL(g) = KL(pid, pg). This regularization term can be shown
to be

RKL(g) =
∫

Ω

pid log
pid

pg
dx =

∫

Ω

− log |Dg(x)|dx =
∫

Ω

|Dg−1(y)| log |Dg−1(y)|dy. (3)

Thus, the energy functional in (2) implementing Asymmetric Unbiased registration can be written as

E(I1, I2,u) = F (I1, I2,u)− λ

∫

Ω

log |D(x− u(x))|dx, (4)

for some distance measure F between I2(x− u) and I1(x).

2.2 Symmetric Unbiased Registration

In this section, we describe the regularization functional based on the symmetric KL distance between pid and
pg: RSKL(g) = SKL(pid, pg). As shown in,7 the regularization term is linked to statistics on Jacobian maps as
follows

RSKL(g) = KL(pg, pid) + KL(pg−1 , pid) = KL(pg, pid) + KL(pid, pg)
= KL(pid, pg−1) + KL(pid, pg) = KL(pid, pg−1) + KL(pg−1 , pid)

=
∫

Ω

(|Dg(x)| − 1
)
log |Dg(x)|dx =

∫

Ω

(|Dg−1(y)| − 1
)
log |Dg−1(y)|dy.

The energy functional employing Symmetric Unbiased registration can be rewritten as

E(I1, I2,u) = F (I1, I2,u) + λ

∫

Ω

(|D(x− u(x))| − 1
)
log |D(x− u(x))|dx, (5)

for some distance measure F . Notice that the symmetric unbiased regularizing functional is pointwise nonnega-
tive, while the asymmetric unbiased regularizer in (3) can take either positive or negative values locally.

3. MUTUAL INFORMATION MATCHING

In,7,8 we used the sum of squared intensity differences as a measure of the distance between the deformed image
I2(x− u) and target image I1(x), defined as FSSD(I1, I2,u) = 1

2

∫
Ω

(
I2(x− u(x))− I1(x)

)2
dx. The sum of the

squared differences matching functional is suitable when the images have been acquired through similar sensors
and thus are expected to present the same intensity range and distribution. In this paper, we employ mutual
information as the distance metric. Mutual information is a measure of how much information one random
variable has about another. One of the main advantages of using mutual information is that it can be used to
align images of different modalities, without requiring knowledge of the relationship (joint intensity distribution)
of the two registered images. In this section, we will briefly review information theory basics and define the
mutual information between the deformed image and the target image.

3.1 Information Theory

Let X be a continuous random variable with continuous cumulative distribution function P (x) = Pr{X ≤ x}.
Let p(x) = P ′(x) when the derivative is defined. The differential entropy H(X) of a continuous random variable
X with the probability density function p(x) is defined as H(X) = − ∫

D
p(x) log p(x)dx, where D is the support

set of the random variable. The joint differential entropy H(X, Y ) of a pair of random variables X and Y with
joint density function p(x, y) is defined as H(X, Y ) = − ∫

p(x, y) log p(x, y)dxdy, and the conditional differential
entropy H(X|Y ) is provided by H(X|Y ) = − ∫

p(x, y) log p(x|y)dxdy. Here, p(x|y) is the conditional probability
density function. It can be shown that the joint entropy of two random variables is the entropy of one plus the
conditional entropy of the other: H(X, Y ) = H(X) + H(Y |X).



We now introduce mutual information, which is a measure of the amount of information that one random
variable contains about another random variable. Mutual information MI(X,Y ) is provided by

MI(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(X, Y ).

Hence, the mutual information is the reduction in the uncertainty of X due to the knowledge of Y . It is often
more convenient to write the mutual information in terms of the Kullback-Leibler divergence between the joint
distribution p(x, y) and the product of marginal distributions p(x) and p(y):

MI(X, Y ) = KL(p(x, y), p(x)p(y)) =
∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy.

3.2 Image Matching
To define the mutual information between the deformed image I2(x−u) and the target image I1(x), we follow the
notations in,9 where pI1 and pI2

u are used to denote the intensity distributions estimated from I1(x) and I2(x−u),
respectively. An estimate of their joint intensity distribution is denoted as pI1,I2

u . In this probabilistic framework,
the link between two modalities is fully characterized by a joint density. We let i1 = I1(x), i2 = I2(x − u(x))
denote intensity values at point x ∈ Ω. Given the displacement field u, the mutual information computed from
I1 and I2 is provided by

MII1,I2
u = MI(I1(x), I2(x− u(x))) =

∫

R2
pI1,I2
u (i1, i2) log

pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

di1di2.

We seek to maximize the mutual information between I2(x−u) and I1(x), or equivalently, minimize the negative
of MII1,I2

u :
FMI(I1, I2,u) = −MII1,I2

u . (6)

The gradient of (6) is given by ∂uFMI(u) =
1
|Ω|

[
Qu ∗ ∂ψ

∂ξ2

]
(I1(x), I2(x − u))∇I2(x − u), where Qu(i1, i2) =

1 + log
pI1,I2
u (i1, i2)

pI1(i1)pI2
u (i2)

, and ψ(ξ1, ξ2) is a two-dimensional Parzen windowing kernel, which is used to estimate

the joint intensity distribution from I2(x − u) and I1(x). Here, we use the Gaussian kernel with variance σ2:

ψ(ξ1, ξ2) = Gσ(ξ1, ξ2) =
1

2πσ2
e
−(ξ2

1+ξ2
2)

2σ2 .

4. MINIMIZATION OF ENERGY FUNCTIONALS
In general, we expect minimizers of the energy functional E(u) to exist. Computing the first variation of the
functional in (2), we obtain the gradient of E(I1, I2,u), namely ∂uE(I1, I2,u). We define the force field f , which
drives I2 into registration with I1, as

f(x,u) = ∂uE(I1, I2,u) = ∂uFMI(I1, I2,u) + λ∂uR(u). (7)

Here, R(u) is either RKL(u) or RSKL(u). Explicit expressions for components of ∂uR(u), in both cases, are
derived in Appendix A for three dimensional case. We minimize (2) using the fluid flow proposed in.5 Given the
velocity field v, the following partial differential equation can be solved to obtain the displacement field u:

∂u(x, τ)
∂τ

= v(x, τ)− v(x, τ) · ∇u(x, τ). (8)

Here, τ is an artificial time variable. The instantaneous velocity is obtained10 by convolving f with Gaussian
kernel Gσ of variance σ2, v = Gσ ∗ (−f(x,u)).

To avoid possible confusion, we summarize the methods we will be referring to in our subsequent analyses.
In later discussions, minimization of the following energies

E(I1, I2,u) = FMI(I1, I2,u) + λRKL(u), (9)
E(I1, I2,u) = FMI(I1, I2,u) + λRSKL(u) (10)

using equations (7), (8) will be referred to as MI-Asymmetric Unbiased and MI-Symmetric Unbiased models,
respectively. The model above, provided λ = 0, will be referred to as the MI-Fluid model.



5. STATISTICAL ANALYSIS

5.1 Statistical testing on the deviation of log Jacobian maps

Based on the authors’ approach in,7 we observe that, given that there is no systematic structural change within
two weeks, any deviation of the Jacobian map from one should be considered error. Thus, we expect that a better
registration technique would yield log |Dg| values closer to 0 (i.e., smaller log Jacobian deviation translates into
better methodology). Mathematically speaking, one way to test the performance is to consider the deviation
map dev of the logged (i.e., logarithmically transformed) Jacobian away from zero, defined at each voxel as

dev(x) =
∣∣ log |Dg(x)|

∣∣. (11)

For two different registration methods A and B, we define the voxel-wise deviation gain of A over B (denoted
by SA,B) as

SA,B(x) = devA(x)− devB(x).

For the ADNI baseline dataset (in which patients are scanned twice with MRI, two weeks apart), two distinct
types of t tests are used, a within-subject paired t test and a group paired t test. A within-subject paired t test
is conducted for each subject by pooling all voxels inside a region of interest, as defined by the ICBM whole
brain mask. This determines whether two methods differ significantly inside the whole brain (for each subject).
A group paired t test, on the other hand, is performed across subjects, by computing a voxel-wise t-map of
deviation gains. In this case, to statistically compare the performance of two registration methods, we rely on
the standard t test on the voxel mean of S. To construct a suitable null hypothesis, we notice that the following
relation would hold, assuming B outperforms A: SA,B > 0. Thus, the null hypothesis in this case would be
testing if the mean deviation gain is zero: H0 : µSA,B = 0. To determine the ranking of A and B, we have to
consider one-sided alternative hypotheses. For example, when testing if B outperforms A, we use the following
alternative hypothesis H1 : µSA,B > 0. The voxel-wise T statistic, defined as

TSA,B (x) =
√

n · SA,B(x)
σSA,B (x)

,

where SA,B(x) =
∑

i SA,B
i (x)/n, and (σSA,B (x))2 =

∑
i(S

A,B
i (x)−SA,B(x))2/(n−1), thus follows the Student’s

t distribution under the null hypothesis and may be used to determine the p-value that the null hypothesis is
true. If the alternative hypothesis is accepted, we confirm that sequence B outperforms A at point x. Otherwise,
we would rank A and B equally if the null hypothesis is not rejected.

5.2 Permutation Testing to Correct Multiple Comparisons

To determine the overall global effects of different registration methods on the deviation of log Jacobian maps
throughout the brain, we performed permutation tests to adjust for multiple comparisons.11,12 Following the
analyses in,13 we resampled the observations by randomly flipping the sign of SA,B

i (i = 1, 2, ..., n) under the null
hypothesis. For each permutation, voxelwise t tests are computed. We then compute the percentage of voxels
inside the chosen ROI (in this case the ICBM mask) with T statistics exceeding a certain threshold. The multiple
comparisons corrected p value may be determined by counting the number of permutations whose above-defined
percentage exceeds that of the un-permuted observed data. For example, we say that sequence B outperforms
A on the whole brain if this corrected p value is smaller than 0.05 (that is, less than 5% of all permutations have
the above-defined percentage greater than that of the original data). All possible (210 = 1024) permutations
were considered in determining the final corrected p value.

5.3 Cumulative Distribution Function (CDF)

To visually assess the global significance level of the voxel-wise t tests on deviation gains, we also employed the
cumulative distribution function (CDF) plot. In brief, we plot observed cumulative probabilities against the
theoretical distribution under the null hypothesis. These CDF plots are commonly created as an intermediate
step, when using the false discovery rate (FDR) method to assign overall significance values to statistical maps.14

As they show the proportion of supra-threshold voxels in a statistical map, for a range of thresholds, these CDF



(a) I1 (c) I2 ◦ g, MI-Fluid (e) |Dg|, MI-Fluid

(b) I2 (d) I2 ◦ g, MI-Sym.Unbiased (f) |Dg|, MI-Sym.Unbiased

Figure 1. Serial MRI example. (a) image I1; (b) image I2; (c) image I2 is deformed to image I1 using MI-Fluid model; (d)
image I2 is deformed to image I1 using MI-Symmetric Unbiased model. Jacobian map of the deformation is superimposed
with the deformed image for (e) MI-Fluid model and (f) MI-Symmetric Unbiased model.

plots offer a measure of the effect size in a statistical map. They also may be used to demonstrate which
methodological choices influence the effect size in a method that creates statistical maps. In the case of deviation
gains S of a worse technique A over a better technique B in the ADNI baseline data, we expect a CDF curve to
lie above the Null line, in the sense that a better technique exhibits less systematic changes.

6. RESULTS

In this section, we tested the MI-Asymmetric Unbiased and MI-Symmetric Unbiased models and compared the
results to those obtained using the MI-Fluid registration model (see equations (9)-(10)). Of note, even though
Asymmetric Unbiased and Symmetric Unbiased methods minimize different energy functionals, our experiments
showed that they generate very similar maps.

To obtain a fair comparison, re-gridding was not employed. Re-gridding is a method to relax the energy
computed from the linear elasticity prior after a certain number of iterations, which allows large-deformation
mappings to be recovered without any absolute penalty on the displacement field (other than via the smoothness
constraint on the velocity field which is integrated to give the displacement).5 It is essentially a memory-less
procedure, as how images are matched after each re-gridding is independent of the final deformation before the
re-gridding, rendering the comparison of final Jacobian fields and cost functionals problematic. Moreover, we
consider the strategy of re-gridding, through the relaxation of deformation fields over time, to be less rigorous
from a theoretical standpoint, as the imposition of a regularizer can be used to secure distributional properties
in the resulting statistics (e.g., symmetric log-Jacobian).

In order to observe the robustness of mutual information matching and also to gain more insight into the
effect of the unbiased regularization, in Figures 1 and 2 we first consider matching pairs of 2D binary slices
from a set of serial MRI images (each of size 226 by 256), where visually significant ventricle enlargement



(a) I1 (c) I2 ◦ g, MI-Fluid (e) |Dg|, MI-Fluid

(b) I2 (d) I2 ◦ g, MI-Sym.Unbiased (f) |Dg|, MI-Sym.Unbiased

Figure 2. Serial MRI example. (a) image I1; (b) image I2; (c) image I2 is deformed to image I1 using MI-Fluid model; (d)
image I2 is deformed to image I1 using MI-Symmetric Unbiased model. Jacobian map of the deformation is superimposed
with the deformed image for (e) MI-Fluid model and (f) MI-Symmetric Unbiased model.

is present. In both figures, source and target images are of different contrast, making the sum of squared
intensity differences inapplicable as a choice of a data fidelity term. Both MI-Fluid and MI-Symmetric Unbiased
methods generated a close match between the deformed image and the target image (Figures 1(c,d) and 2(c,d)).
Figures 1(e,f) and 2(e,f) show Jacobian maps of deformations. Here, there is no reason not to evenly distribute the
Jacobian field inside the ventricles, as realized using the Unbiased method. In contrast, Fluid method generated
noisy mean Jacobian maps with extreme values along the ventricular boundary. Indeed, given the overall
longitudinal ventricular dilatation, we argue that the corresponding density change map should be constant
inside the ventricle.

We also performed nonlinear registration on a dataset that we shall refer to as the “ADNI Baseline” dataset,
collected during the preparatory phase of the ADNI project, which includes serial MRI images of ten normal
elderly subjects acquired two weeks apart. Each of the ten pairs of scans is represented on a 128 × 160 × 128
grid. Here, the foundation of calibrations is based on the assumption that, by scanning normal control human
subjects serially within a two-week period using the same MRI protocol, no systematic structural changes should
be recovered.

Here, we compared Fluid, Asymmetric Unbiased, and Symmetric Unbiased methods coupled with mutual
information matching. Uniform values of λ = 5 and λ = 10 were used for all deformations using MI-Symmetric
Unbiased and MI-Asymmetric Unbiased algorithms, respectively. Since the Asymmetric Unbiased model quanti-
fies only the forward deformation, the weight of the corresponding regularization functional is half the magnitude
of that of the Symmetric Unbiased model, and hence, a weighting parameter twice as large should be used.

Figures 3-5 show the results of registering a pair of serial MRI images for one of the subjects. The deformation
was computed in both directions (time 2 to time 1, and time 1 to time 2) using all three regularization methods
based on mutual information matching. Results indicate the Asymmetric Unbiased and Symmetric Unbiased
methods outperform Fluid method, generating more stable inverse consistent maps15 with less variability.



MI-Fluid

MI-Asymmetric Unbiased

MI-Symmetric Unbiased
time 2 to time 1 time 1 to time 2 products of Jacobians

Figure 3. Nonrigid registration was performed on an image pair from one of the subjects from the ADNI Baseline
study (serial MRI images acquired two weeks apart) using MI-Fluid (row 1), MI-Asymmetric Unbiased (row 2), and
MI-Symmetric Unbiased (row 3) registration methods. Jacobian maps of deformations from time 2 to time 1 (column
1) and time 1 to time 2 (column 2) are superimposed on the target volumes. The unbiased methods generate less noisy
Jacobian maps with values closer to 1; this shows the greater stability of the approach when no volumetric change is
present. Column 3 examines the inverse consistency of deformation models. Products of Jacobian maps generated using
all three models are shown, for the forward direction (time 1 to time 2) and backward direction (time 2 to time 1). For
the mutual information-based unbiased methods, the products of the Jacobian maps are less noisy, with values closer to
1, showing better inverse consistency.

In Table 1, we compared MI-Fluid and MI-Symmetric Unbiased methods, conducting a within-subject paired
t test inside the ICBM mask for each of the ten subjects. In this case, p < 0.0001 for all subjects, indicating that
the Symmetric Unbiased registration, when coupled with mutual information matching cost functional, produces
more reproducible maps with less variability.

Figure 6(a,b,c) shows the mean Jacobian maps of ten subjects obtained using Fluid, Asymmetric Unbiased,
and Symmetric Unbiased registration algorithms coupled with mutual information matching. Jacobian maps
generated using unbiased models have values closer to 1, whereas Fluid model generated noisy mean maps. Fig-
ures 7(a,b) demonstrate the Unbiased regularization technique outperforming Fluid registration with statistical
significance.

To emphasize the differences between the distributions of log Jacobian values for Fluid and unbiased (both
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Figure 4. (a) KL divergence and (b) SKL distance per iteration are shown for the MI-Fluid (solid red), MI-Asymmetric
Unbiased (solid blue), and MI-Symmetric Unbiased (dashed green) methods. For MI-Fluid, both KL and SKL measures
increase. Even though the Asymmetric Unbiased method explicitly minimizes the KL distance, and the Symmetric
Unbiased model minimizes the SKL distance, both the KL and SKL measures stabilize for both unbiased methods.
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Figure 5. Histograms of voxel-wise deviation gains (a) MI-Fluid over MI-Asymmetric Unbiased and (b) MI-Fluid over
MI-Symmetric Unbiased for one of the subjects, for the forward direction (time 2 to time 1) and backward direction (time
1 to time 2). The histograms are skewed to the right, indicating the superiority of Asymmetric Unbiased and Symmetric
Unbiased registration methods over Fluid registration. Paired t test shows significance (p < 0.0001).

asymmetric and symmetric) methods, in Figure 7(c), we plotted the cumulative distribution function of the
p-values in deviation gains (SA,B). For a null distribution, this cumulative plot falls along the line y = x. Larger
upward inflections of the CDF curve near the origin are associated with significant deviation gains, indicating
that both Asymmetric Unbiased and Symmetric Unbiased methods outperform Fluid method in being less likely
to exhibit structural changes in the absence of systematic biological changes.

We also analyzed a dataset we shall call the “ADNI Follow-up” phase dataset, which includes serial MRI
images (220 × 220 × 220) of ten subjects acquired one year apart. As the images are now one year apart, real
anatomical changes are present, which allows methods to be compared in the presence of true biological changes.
In Figure 6(d,e,f), nonlinear registration was performed using Fluid, Asymmetric Unbiased, and Symmetric
Unbiased methods coupled with mutual information matching. Visually, the Fluid method generates noisy mean
Jacobian maps, while maps generated using unbiased methods suggest a volume reduction in gray matter as
well as ventricular enlargement. Here, both Asymmetric Unbiased and Symmetric Unbiased methods perform
equally well.

7. CONCLUSION

This paper introduced a novel model for multimodal image registration. The proposed method minimizes a
purely information-theoretic functional consisting of mutual information matching and unbiased regularization.
This work also systematically investigated the reproducibility and variability of different registration methods in
TBM. We showed that Asymmetric Unbiased and Symmetric Unbiased models perform significantly better than
the fluid registration technique. Although various techniques have been extensively applied to detect disease
effects and monitor brain changes with TBM, this paper is the first calibration study to compare registration



Table 1. Global T statistics for all ten subjects testing whether Symmetric Unbiased registration (method B) outperforms
Fluid registration (method A) when coupled with mutual information.

Subject # 1 2 3 4 5 6 7 8 9 10

SA,B 0.0697 0.0262 0.0399 0.0342 0.0379 0.0820 0.0853 0.0774 0.0489 0.0773

σ2
SA,B 0.0058 0.00077 0.0016 0.0014 0.0014 0.0071 0.0084 0.0070 0.0023 0.0053

TSA,B 455 468 501 456 505 484 460 460 504 527

models for tensor-based morphometry. We believe our results are important, as they provide greater insight into
the interpretation of TBM results in the future.

APPENDIX A. DERIVATIONS OF GRADIENT OF R(u) IN THREE SPATIAL
DIMENSIONS

In this Appendix, we derive an explicit expression for ∂uR(u) in (7) when Ω ⊂ R3. Let us denote the components
of vector x to be (x1, x2, x3) and the components of vector u be (u1, u2, u3). We also denote ∂jui = ∂ui/∂xj .

To simplify the notation, we let J = |Dg| = |D(x − u)|. Also, denote L(J) = LKL(J) = − log J , when
R = RKL and L(J) = LSKL(J) = (J − 1) log J , when R = RSKL. Note that J : M3×3(R) → R, where
M3×3(R) is the set of 3 × 3 matrices with real elements, and L : R → R. Jacobian J is a function of ∂jui, for
i, j = 1, 2, 3, and is given by

J
(
∂1u1, ∂2u1, ∂3u1, ∂1u2, ∂2u2, ∂3u2, ∂1u3, ∂2u3, ∂3u3

)
= (1− ∂1u1)(1− ∂2u2)(1− ∂3u3) − ∂1u2 ∂2u3 ∂3u1

− ∂2u1 ∂3u2 ∂1u3 − ∂3u1(1− ∂2u2)∂1u3 − ∂2u1 ∂1u2(1− ∂3u3) − ∂3u2 ∂2u3(1− ∂1u1).

We would like to minimize the functional

R(u) =
∫

Ω

L
(
J(∂jui)

)
dx, 1 ≤ i, j ≤ 3.

We find the first Euler-Lagrange equation. For some η ∈ C1
c (Ω):

dR

dε
(u1 + εη, u2, u3)

∣∣
ε=0

=
∫

Ω

[
dL

dJ

∂J

∂(∂1u1)
∂x1η +

dL

dJ

∂J

∂(∂2u1)
∂x2η +

dL

dJ

∂J

∂(∂3u1)
∂x3η

]
dx

= −
∫

Ω

[
∂

∂x1

(
dL

dJ

∂J

∂(∂1u1)

)
+

∂

∂x2

(
dL

dJ

∂J

∂(∂2u1)

)
+

∂

∂x3

(
dL

dJ

∂J

∂(∂3u1)

)]
η dx.

With notation L′ = dL/dJ , the first Euler-Lagrange equation becomes:

− ∂

∂x1

(
L′

∂J

∂(∂1u1)

)
− ∂

∂x2

(
L′

∂J

∂(∂2u1)

)
− ∂

∂x3

(
L′

∂J

∂(∂3u1)

)
= 0.

Thus, minimizing the energy R(u) with respect to u1, for fixed u2 and u3, yields the first component of ∂uR(u):

∂u1R(u) =
∂

∂x1

((
(1− ∂2u2)(1− ∂3u3)− ∂3u2 ∂2u3

)
L′

)
+

∂

∂x2

((
∂3u2 ∂1u3 + ∂1u2(1− ∂3u3)

)
L′

)

+
∂

∂x3

((
∂1u2 ∂2u3 + (1− ∂2u2)∂1u3

)
L′

)
.

Note that L′KL(J) = −1/J and L′SKL(J) = 1 + log J − 1/J .



Baseline Study Follow-up Study

(a) MI-Fluid (b) MI-A.Unbiased (c) MI-S.Unbiased (d) MI-Fluid (e) MI-A.Unbiased (f) MI-S.Unbiased

Figure 6. Nonrigid registration was performed on the ADNI Baseline study (columns 1-3) and ADNI Follow-up study
(columns 4-6) using MI-Fluid, MI-Asymmetric Unbiased, and MI-Symmetric Unbiased registration methods. For each
method, the mean of the resulting 10 Jacobian maps is superimposed on one of the brain volumes. Visually, MI-Fluid
generates noisy mean maps. For the ADNI Baseline dataset (serial MRI images acquired two weeks apart), unbiased
methods generate less noisy maps with values closer to 1. For the ADNI Follow-up dataset (serial MRI images of patients
with Alzheimer’s disease acquired 12 months apart), maps generated using unbiased methods suggest a volume reduction
in gray matter as well as ventricular enlargement.

Similarly, the other two Euler-Lagrange equations can be found to be:

∂u2R(u) =
∂

∂x1

((
∂2u3 ∂3u1 + ∂2u1(1− ∂3u3)

)
L′

)
+

∂

∂x2

((
(1− ∂1u1)(1− ∂3u3)− ∂3u1 ∂1u3

)
L′

)

+
∂

∂x3

((
∂2u1 ∂1u3 + ∂2u3(1− ∂1u1)

)
L′

)
,

∂u3R(u) =
∂

∂x1

((
∂2u1 ∂3u2 + ∂3u1(1− ∂2u2)

)
L′

)
+

∂

∂x2

((
∂1u2 ∂3u1 + ∂3u2(1− ∂1u1)

)
L′

)

+
∂

∂x3

((
(1− ∂1u1)(1− ∂2u2)− ∂2u1 ∂1u2

)
L′

)
.
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