
Homework 1 Solutions

Igor Yanovsky (Math 151B TA)

Theorem 5.4: Suppose that D = {(t, y) | a ≤ t ≤ b, −∞ < y < ∞} and that f(t, y)
is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the
initial-value problem

y′(t) = f(t, y), a ≤ t ≤ b,

y(a) = α,

has a unique solution y(t) for a ≤ t ≤ b.

Section 5.1, Problem 1(d): Use Theorem 5.4 to show that

y′ =
4t3y

1 + t4
, 0 ≤ t ≤ 1,

y(0) = 1.

has a unique solution, and find the solution.

Solution: Note that

f(t, y) =
4t3y

1 + t4

is continuous on D = {(t, y) | 0 ≤ t ≤ 1, −∞ < y < ∞}.
Also, f satisfies a Lipschitz condition on D in the variable y:∣∣∣∣

∂f

∂y
(t, y)

∣∣∣∣ =
∣∣∣∣

4t3

1 + t4

∣∣∣∣ ≤ 2, 0 ≤ t ≤ 1.

Thus, the initial-value problem has a unique solution for a ≤ t ≤ b.

We now solve the initial-value problem.

dy

dt
=

4t3y

1 + t4
,

∫
dy

y
=

∫
4t3

1 + t4
dt,

log y = log(1 + t4) + C1,

y = C(1 + t4).

Thus, y(t) = C(1 + t4), and using initial condition, we obtain y(0) = C = 1. Hence, the
solution to the initial value problem is y(t) = 1 + t4. X

It is always recommended to check if your solution (y(t) = 1 + t4) is correct, i.e. whether
it satisfies the initial value problem. Note that,

dy

dt
=? 4t3y

1 + t4
,

4t3 =
4t3(1 + t4)
(1 + t4)

, X

and also, y(0) = 1. X
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Section 5.2, Problem 1(b): Use Euler’s method to approximate the solution for the
following initial-value problem:

y′ = 1 + (t− y)2, 2 ≤ t ≤ 3,

y(2) = 1,

with h = 0.5.

Solution: We have f(t, y) = 1 + (t− y)2.
Since h = 0.5, ti = 2 + 0.5i. Given the initial condition w0 = 1, Euler’s method calculates
wi, i = 0, 1, 2, . . .:

wi+1 = wi + hf(ti, wi)
= wi + h(1 + (ti − wi)2)
= wi + 0.5(1 + (2 + 0.5i− wi)2).

So,

w1 = w0 + 0.5(1 + (2− w0)2) = 1 + 0.5(1 + (2− 1)2) = 2.0,

w2 = w1 + 0.5(1 + (2 + 0.5− w1)2) = 2 + 0.5(1 + (2 + 0.5− 2)2) = 2.625.

Section 5.2, Problem 1(c): Use Euler’s method to approximate the solution for the
following initial-value problem:

y′ = 1 + y/t, 1 ≤ t ≤ 2,

y(1) = 2,

with h = 0.25.

Solution: We have f(t, y) = 1 + y/t.
Since h = 0.25, ti = 1 + 0.25i, w0 = 2. We have

wi+1 = wi + hf(ti, wi)
= wi + 0.25(1 + wi/ti)
= wi + 0.25(1 + wi/(1 + 0.25i)).

So,

w1 = w0 + 0.25(1 + w0) = 2 + 0.25(3) = 2.75,
w2 = w1 + 0.25(1 + w1/(1 + 0.25)) = 2.75 + 0.25(1 + 2.75/1.25) = 3.55,

and, similarly, calculate w3 and w4.
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Section 5.2, Problem 11: Given the initial-value problem:

y′ = −y + t + 1, 0 ≤ t ≤ 5,

y(0) = 1,

with exact solution y(t) = e−t + t.
a) Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.
b) Determine the optimal value of h to use in computing y(5), assuming δ = 10−6 and
that the following equation

h =

√
2δ

M

is valid.

Solution:
a) Note how small the time-step h is compared to the length of the time interval t ∈ [0, 5].
The book, hence, wants you to use the computer (e.g. Matlab) to solve this problem.

y(5) = 5.00673795

N = 25, h = 0.20, w = 5.00377789, E = 0.00296005;
N = 50, h = 0.10, w = 5.00515378, E = 0.00158417;
N = 100, h = 0.05, w = 5.00592053, E = 0.00081742.

b) Since the exact solution is y(t) = e−t + t, we have y′′(t) = e−t. Hence, |y′′(t)| ≤ 1 = M .

h =

√
2δ

M
=

√
2 · 10−6

1
= 0.00141.
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Section 5.2, Problem 12: Consider the initial-value problem:

y′ = −10y 0 ≤ t ≤ 2,

y(0) = 1,

which has solution y(t) = e−10t. What happens when Euler’s method is applied to this
problem with h = 0.1? Does this behavior violate Theorem 5.9?

Solution: Using Euler’s method, we get:

wi+1 = wi + hf(ti, wi)
= wi + 0.1 · (−10wi)
= wi − wi = 0, for all i.

We can also run the program to get the following results:

after the first step (t = 0.1):
N = 1, h = 0.10, t = 0.10, w = 0.0000000000e + 000, y = 3.6787944117e − 001, E =
3.6787944117e− 001;

after 20 steps (t = 2):
N = 20, h = 0.10, t = 2.00, w = 0.0000000000e + 000, y = 2.0611536224e − 009, E =
2.0611536224e− 009.

Theorem 5.9 gives the following estimate:

|y(ti)− wi| ≤ hM

2L

[
eL(ti−a) − 1

]
.

For our problem, h = 0.1, |y′′(t)| = |100e−10t| ≤ 100 = M ,
∣∣∂f
∂y (t, y)

∣∣ = | − 10| = 10 = L,
a = 0.
We now see if the estimate holds. After the first step, we have

|0.369− 0| ≤ 10
20

[
e10·(0.1−0) − 1

]
= 0.859. X

After the final step, we have

|2.06 · 10−9 − 0| ≤ 10
20

[
e10·(2−0) − 1

]
= 2.43 · 108. X

Thus, even though we obtain an incorrect solution, this behavior does not violate the
theorem.
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Section 5.2, Problem 15: Let

E(h) =
hM

2
+

δ

h
.

a) For the initial-value problem

y′ = −y + 1, 0 ≤ t ≤ 1,
y(0) = 0,

(1)

compute the value of h to minimize E(h). Assume δ = 5 · 10−(n+1) if you will be using
n-digit arithmetic in part (c).

b) For the optimal h computed in part (a), use the following equation

|y(ti)− ui| ≤ 1
L

(hM

2
+

δ

h

)[
eL(ti−a) − 1

]
+ |δ0|eL(ti−a) (2)

to compute the minimal error obtainable.

c) Compare the actual error obtained using h = 0.1 and h = 0.01 to the minimal er-
ror in part (b).

Solution: a) In order to find the minimum of E(h), we find E′(h) and set it to equal 0:

E′(h) =
M

2
− δ

h2
= 0.

Therefore,

h =

√
2δ

M
.

In order to find M such that |y′′(t)| ≤ M , t ∈ [0, 1], we need to find the analytic solution
of the initial-value problem (2). We have

dy

dt
= −y + 1,

∫
dy

−y + 1
=

∫
dt,

− log(−y + 1) = t + C1,

log
( 1
−y + 1

)
= t + C1,

1
−y + 1

= Cet,

y(t) = 1− 1
Cet

.

We now employ initial condition in order to find constant C:

y(0) = 1− 1
C

= 0.

Thus, C = 1, which gives y(t) = 1 − 1
et

. We also have: y′(t) = e−t and y′′(t) = −e−t.

Hence, |y′′(t)| = | − e−t| ≤ 1 if 0 ≤ t ≤ 1, which gives M = 1. We can calculate h now:

h =

√
2δ

M
=

√
2 · 5 · 10−(n+1)

1
=

√
2 · 5 · 10−(n+1) =

√
10−n = 10−n/2. X
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b) We have
∣∣∣∂f

∂y

∣∣∣ = 1 = L. δ0 = ε/2, where ε = 10−n is the machine epsilon. So,

|y(ti)− ui| ≤ 1
L

(hM

2
+

δ

h

)[
eL(ti−a) − 1

]
+ |δ0|eL(ti−a)

=
1
1

(10−n/2 · 1
2

+
5 · 10−(n+1)

10−n/2

)[
e1·(1−0) − 1

]
+ 5 · 10−n−1 · e1·(1−0)

=
(10−n/2

2
+

5 · 10−(n+1)

10−n/2

)
(e− 1) + 5 · 10−n−1 · e

=
(
5 · 10−n/2−1 + 5 · 10−n/2−1

)
(e− 1) + 5 · 10−n−1 · e

= 10−n/2(e− 1) + 5 · 10−n−1 · e. X

c) In Matlab, n = 15, that is, your arithmetic is exact to 15 digits.

|y(ti)− ui| ≤ 10−n/2(e− 1) + 5 · 10−n−1 · e = 10−7.5(e− 1) + 5 · 10−16

= 5.4337 · 10−8.

The solution in Matlab with h = 0.1, and h = 0.01 will give:
N = 10, h = 0.10, t = 1.00, w = 6.5132155990e − 001, y = 6.3212055883e − 001, error =
1.9201001071e− 002;
N = 100, h = 0.01, t = 1.00, w = 6.3396765873e − 001, y = 6.3212055883e − 001, error =
1.8470998982e− 003.

That is, if you take a smaller timestep (as long as it is not smaller than h = 10−n/2 =
10−7.5), the error will get smaller.
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