Homework 1 Solutions

Igor Yanovsky (Math 151B TA)

Theorem 5.4: Suppose that D = {(t,y) | a <t < b, —00 < y < oo} and that f(t,y)
is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the
initial-value problem

y(t)=f(ty), a<t<b,
y(a) = a,

has a unique solution y(t) for a <t <b.

Section 5.1, Problem 1(d): Use Theorem 5.4 to show that
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y(0) = 1.

has a unique solution, and find the solution.

Solution: Note that
4t3y
t,
is continuous on D = {(t,y) | 0 <t <1, —c0 < y < 00}.
Also, f satisfies a Lipschitz condition on D in the variable y:
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Thus, the initial-value problem has a unique solution for a <t < b.

2, 0<t<l.

We now solve the initial-value problem.
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logy = log(1 + t*) + €1,
y=C1+th).

Thus, y(t) = C(1 + t*), and using initial condition, we obtain y(0) = C' = 1. Hence, the
solution to the initial value problem is y(t) = 1 +t1. v

It is always recommended to check if your solution (y(t) = 1 + t*) is correct, i.e. whether
it satisfies the initial value problem. Note that,

dy 43y

dat 1+t
A3(1 + t4

g - WA+ ), v
(1+41t4)

and also, y(0) =1. Vv



Section 5.2, Problem 1(b): Use Euler’s method to approximate the solution for the
following initial-value problem:

Yy =1+ (t—-y)? 2<t<3,

y(2) =1,

with h = 0.5.

Solution: We have f(t,y) =1+ (t —y)>.
Since h = 0.5, t; = 2+ 0.5¢. Given the initial condition wg = 1, Euler’s method calculates
w;, 1 =0,1,2,...

wir1 = w; + hf(ti,w;)
= w; +h(1+ (t; —w;)?)
w; + 0.5(1 + (2 + 0.51 — w;)?).

So,

w; = wo+0.5(1+(2—wp)?) =1+0.5(14+(2—1)%) =2.0,
wy = w4051+ (2+05—w)?) =2+05(1+(2+0.5—2)2) =2.625.

Section 5.2, Problem 1(c): Use Euler’s method to approximate the solution for the
following initial-value problem:

Y =1+y/t, 1<t<2
y(1) =2,
with h = 0.25.

Solution: We have f(t,y) =1+ y/t.
Since h = 0.25, t; = 1 4+ 0.25¢, wy = 2. We have

wit1 = w; + hf(ti,w)
= wi+0.25(1+w,-/ti)
= wi+0.25(1+wi/(1+0.25i)).

So,

wy = wo+0.25(1 + wp) = 2+ 0.25(3) = 2.75,
wy = wy +0.25(1+wy /(1 +0.25)) = 2.75 + 0.25(1 + 2.75/1.25) = 3.55,

and, similarly, calculate w3 and w;.



Section 5.2, Problem 11: Given the initial-value problem:

Yy =—y+t+1, 0<t<5,
y(0) =1,
with exact solution y(t) = e~t +¢.
a) Approximate y(5) using Euler’s method with h = 0.2, h = 0.1, and h = 0.05.

b) Determine the optimal value of h to use in computing y(5), assuming § = 107¢ and
that the following equation
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M
is valid.

Solution:
a) Note how small the time-step h is compared to the length of the time interval ¢ € [0, 5].
The book, hence, wants you to use the computer (e.g. Matlab) to solve this problem.

y(5) = 5.00673795

N =25,h =0.20,w = 5.00377789, E = 0.00296005;
N =50,h =0.10,w = 5.00515378, E = 0.00158417;
N =100, h = 0.05,w = 5.00592053, E = 0.00081742.

b) Since the exact solution is y(t) = e~*+t, we have y”(t) = e~*. Hence, |y’ (t)| < 1= M.

. —6
h= 2—5: 2 110 = 0.00141.




Section 5.2, Problem 12: Consider the initial-value problem:
Yy =—-10y 0<t<2,
y(0) =1,

which has solution y(t) = . What happens when Euler’s method is applied to this
problem with A = 0.17 Does this behavior violate Theorem 5.97

e—lOt

Solution: Using Euler’s method, we get:

wip1 = w;+ hf(ti,w;)
= w; +0.1-(—10w;)

= w; —w; =0, for alli.
We can also run the program to get the following results:
after the first step (¢ = 0.1):
N = 1,h = 0.10,t = 0.10,w = 0.0000000000e + 000,y = 3.6787944117¢ — 001, F =
3.6787944117e — 001,
after 20 steps (t = 2):
N = 20,h = 0.10,t = 2.00,w = 0.0000000000e + 000,y = 2.0611536224e — 009, E =
2.0611536224e — 009.

Theorem 5.9 gives the following estimate:

ly(t;) — w;| < % [eL(ti—a) _ 1]_

2L
For our problem, h = 0.1, |y (t)| = [100e~1%| < 100 = M, %(t’ y)| =|-10[ =10 =L,
(\IN: r?(.)w see if the estimate holds. After the first step, we have
10.369 — 0] < % [e!001=0) 1] = 0.859. Vv
After the final step, we have
2.06-1077 — 0] < % [0 1] =243.10%. v

Thus, even though we obtain an incorrect solution, this behavior does not violate the
theorem.



Section 5.2, Problem 15: Let

hM ¢
E(h)=—+ —.
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a) For the initial-value problem
y=—y+1, 0<t<1, (1)
y(0) =0,

compute the value of A to minimize E(h). Assume § = 5- 10~ if you will be using
n-digit arithmetic in part (c).

b) For the optimal A computed in part (a), use the following equation

1 /hM ) L(t;—a) _ L(t;—a)

to compute the minimal error obtainable.

ly(ti) — us| <

c) Compare the actual error obtained using h = 0.1 and A = 0.01 to the minimal er-
ror in part (b).

Solution: a) In order to find the minimum of E(h), we find E’(h) and set it to equal 0:

M 0
/ = — — — =
E'(h) = 5 72 0.
Therefore,
26
h=14/—.
M

In order to find M such that |y”(t)] < M, t € [0, 1], we need to find the analytic solution
of the initial-value problem (2). We have

dy
g _ _ 1
a y+ 1

f ==
—y+1

—log(—y+1)=t+Cy,

k%(_;¥1):t+0h

1
=Ceé,
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H=1——.
y(t) Col
We now employ initial condition in order to find constant C:
1
0)=1-—==0.
y(0) c
1
Thus, C' = 1, which gives y(t) = 1 — —. We also have: y/(t) = " and y"(t) = —e™".
e
Hence, |y’ (t)| =] — et <1if 0 <t <1, which gives M = 1. We can calculate h now:
26 2.5.10~(n+1)
h=7\l3 =\ =V2:5- 107 = V10 = 1072 v

5



d
b) We have ‘a—f‘ =1= L. §o = €/2, where ¢ = 10~" is the machine epsilon. So,
Y
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ly(ti) —ui| < 7 (hT + %) [eL(t=a) — 1] 4 |gp|el(ti=a)

B 1(10"/2 1,5 10-(n+D)
1 2 10-7/2
10—n/2 5. 10—(n+1)
— ( +
2 10—"/2
= (51072 451072 ) e = 1) +5 107 e

) [61-(1—0) _ 1} 1+5.10"" L. (1(1-0)

)(6—1)+5'10_n_1'6

= 107"2(e—1)+5-10"""e. v

¢) In Matlab, n = 15, that is, your arithmetic is exact to 15 digits.

ly(t) —wi| < 1072(e—1)4+5-107""1.e=10"(e—1)+5-10716
= 5.4337-107%.

The solution in Matlab with h = 0.1, and h = 0.01 will give:

N =10,h = 0.10,t = 1.00,w = 6.5132155990e — 001,y = 6.3212055883e — 001, error
1.9201001071e — 002;

N =100,h = 0.01,¢t = 1.00,w = 6.3396765873e — 001,y = 6.3212055883e — 001, error
1.8470998982¢ — 003.

That is, if you take a smaller timestep (as long as it is not smaller than h = 10~
10~7?), the error will get smaller.
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