Math 273a: Optimization
Subgradients of convex functions

Made by: Damek Davis
Edited by Wotao Yin

Department of Mathematics, UCLA
Fall 2015

online discussions on piazza.com
Subgradients

Assumptions and Notation

1. $f : \mathbb{R}^n \rightarrow \mathbb{R}^n \cup \{\infty\}$ is a closed proper convex function, i.e.

 $\text{epi} f = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} | f(x) \leq t\}$

 is closed and convex.

2. The effective domain of f is

 $\text{dom} f = \{x \in \mathbb{R}^n : f(x) < \infty\}$

3. The function f is proper, i.e. $\text{dom} f \neq \emptyset$.

4. A raised * (e.g., x^*) means global minimum of some function.
Recall: a convex function of C^1 obeys

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbb{R}^n$$
Non-C^1 convex functions

For all each $\bar{x} \in \mathbb{R}^n$,

$$\partial f(\bar{x}) := \{ g \in \mathbb{R}^n : f(y) \geq f(\bar{x}) + \langle g, y - \bar{x} \rangle \}$$
Which functions have subgradients?

- If \(f \in C^1 \), then \(\nabla f(x) \in \partial f(x) \).
- In fact, \(\partial f(x) = \{\nabla f(x)\} \).

Proof: if \(g \) is a subgradient, then for \(y \in \mathbb{R}^n \)

\[
\langle \nabla f(x), y \rangle = \lim_{t \to 0} \frac{f(x + ty) - f(x)}{t} \\
\geq \lim_{t \to 0} \frac{\langle g, x + ty - x \rangle}{t} \\
= \langle g, y \rangle.
\]

Change \(y \) to \(-y \), and the inequality still holds. \(\implies \langle \nabla f(x), y \rangle = \langle g, y \rangle \).

Plugging in standard basis vectors \(\implies \nabla f(x) = g \).

- Next, the general case.
Which functions have subgradients?

Theorem (Nesterov’03 Thm 3.1.13)

Let f be a closed convex function and $x_0 \in \text{int}(\text{dom}(f))$. Then $\partial f(x_0)$ is a nonempty bounded set.

Proof uses supporting hyperplanes of epigraph to show existence, and local lipschitz continuity of convex functions to show boundedness.

The converse

Lemma (Nesterov’03 Lm 3.1.6)

If \(\partial f(x) \neq \emptyset \) for all \(x \in \text{dom}(f) \), then \(f \) is convex.

Proof.

\[x, y \in \text{dom}(f), \alpha \in [0,1], y_\alpha = (1 - \alpha)x + \alpha y = x + \alpha(y - x), \ g \in \partial f(y_\alpha). \]

\[
\begin{align*}
 f(y) & \geq f(y_\alpha) + \langle g, y - y_\alpha \rangle = f(y_\alpha) + (1 - \alpha)\langle g, y - x \rangle \quad (1) \\
 f(x) & \geq f(y_\alpha) + \langle g, x - y_\alpha \rangle = f(y_\alpha) - \alpha \langle g, y - x \rangle \quad (2)
\end{align*}
\]

- Multiply equation (1) by \(\alpha \) and equation (2) by \((1 - \alpha) \).
- Add them together to get

\[
\alpha f(y) + (1 - \alpha) f(x) \geq f(y_\alpha)
\]
Technicality: \(\text{int}(\text{dom}(f)) \)

We cannot relax the assumption \(x \in \text{int}(\text{dom}(f)) \) to \(x \in \text{dom}(f) \).

Example:

\[
f : [0, +\infty) \rightarrow \mathbb{R}. \quad f(x) = -\sqrt{x}.
\]

\(\text{dom}(f) = [0, +\infty) \) but

\[
\partial f(0) = \emptyset.
\]
Compute subgradients: general rules

► Smooth functions: \(\partial f(x) = \{ \nabla f(x) \} \).

► Composition with affine: \(\phi(x) = f(A(x) + b) \)

\[
\partial \phi(x) = A^T \partial f(A(x) + b).
\]

► Positive sums: \(\alpha, \beta > 0, f(x) = \alpha f_1(x) + \beta f_2(x) \).

\[
\partial f(x) = \alpha \partial f_1(x) + \beta \partial f_2(x)
\]

► Maximums: \(f(x) = \max_{i \in \{1, \ldots, n\}} \{ f_i(x) \} \)

\[
\partial f(x) = \text{conv}\{ \partial f_i(x) | f_i(x) = f(x) \}
\]
Examples

f(x) = |x|.

\[
\partial f(x) = \begin{cases}
\{\text{sign}(x)\} & x \neq 0; \\
[-1, 1] & \text{otherwise}
\end{cases}
\]

\[f(z) = |z|\]

\[\partial f(x)\]

\(^3\)figure taken from Boyd and Vandenberghe,

Examples

\(f(x) = \sum_{i=1}^{n} |\langle a_i, x \rangle - b_i| \). Define

\[
I_-(x) = \{ i | \langle a_i, x \rangle - b_i < 0 \} \\
I_+(x) = \{ i | \langle a_i, x \rangle - b_i > 0 \} \\
I_0(x) = \{ i | \langle a_i, x \rangle - b_i = 0 \}.
\]

Then

\[
\partial f(x) = \sum_{i \in I_+(x)} a_i - \sum_{i \in I_-(x)} a_i + \sum_{i \in I_0(x)} [-a_i, -a_i]
\]

\(f(x) = \max_{i \in \{1, \ldots, n\}} x_i \). Then

\[
\partial f(x) = \text{conv}\{e_i | x_i = f(x)\} \\
\partial f(0) = \text{conv}\{e_i | i \in \{1, \ldots, n\}\}
\]
Examples

▸ $f(x) = \|x\|_2$. f is differential away from 0, so:

$$\partial f(x) = \frac{x}{\|x\|_2} \quad x \neq 0.$$

At 0, go back to subgradient equation:

$$\|y\|_2 \geq 0 + \langle g, y - 0 \rangle$$

Thus, $g \in \partial f(0)$, if, and only if, $\frac{\langle g, y \rangle}{\|y\|_2} \leq 1$ for all $y \neq 0$. Thus, g is in the dual ball $B_2^*(0, 1) = B_2(0, 1)$.

▸ This is a common pattern!
How to compute subgradients: Examples

$\n f(x) = \|x\|_\infty = \max_{i \in \{1, \ldots, n\}} |x^{(i)}|.
\n\partial f(x) = \text{conv}\{-e_i, e_i\} |x^{(i)}| = f(x) \quad x \neq 0.

Going back to subgradient equation

$\|y\|_\infty \geq 0 + \langle g, y \rangle$

Thus, $g \in \partial f(0)$, if, and only if, $\frac{\langle g, y \rangle}{\|y\|_\infty} \leq 1$ for all $y \neq 0$. Thus, $\partial f(0)$ is the dual ball to the l_∞ norm: $B_1(0, 1)$.
$f(x) = \|x\|_1 = \sum_{i=1}^{n} |x_i|$. Then

\[
\partial f(x) = \sum_{x_i > 0} e_i - \sum_{x_i < 0} e_i + \sum_{x_i = 0} [-e_i, e_i]
\]

for all x. Then

\[
\partial f(0) = \sum_{i=1}^{n} [-e_i, e_i] = B_\infty(0, 1).
\]
Semi-continuity

Definition (upper semi-continuity)

A point-to-set mapping M is upper semi-continuous at x' if any convergent sequence $(x^k, s^k) \to (x', s')$ satisfying $s^k \in M(x^k)$ for each k also obeys

$$s' \in M(x').$$

Interpretation: if (i) $x^k \to x'$ and (ii) for each x^k you can find $s^k \in M(x^k)$ so that $s^k \to s'$, then $s' \in M(x')$.

Lower semi-continuity is essentially the opposite.

Definition (lower semi-continuity, lsc)

A point-to-set mapping M is lower semi-continuous if any convergent sequence $x^k \to x'$ and $s' \in M(x')$, there exists sequence $s^i \in M(x^{k_i})$ such that

$$s^i \to s'.$$
Lemma

Let f be a proper convex function. ∂f is upper semi-continuous, and $\partial f(x)$ is a convex set.

Proof: Take the limit of

$$f(y) \geq f(x^k) + \langle s^k, y - x^k \rangle, \quad s^k \in \partial f(x^k).$$

The second part is a direct result of linearity of $\langle \cdot, y - x \rangle$.

However, if $f(x) = |x|$, the ∂f is not lower semi-continuous at $x = 0$.

Directional derivative versus Subgradient

Assume that $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper, closed (thus lsc), and convex. Then

1. the directional derivative is well defined for every $d \in \mathbb{R}^n$:

$$f'(x; d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}.$$

2. the directional derivatives at x bound all the subgradient projections

$$\partial f(x) = \{p \in \mathbb{R}^n : f'(x; d) \geq \langle p, d \rangle, \ \forall \ d \in \mathbb{R}^n\}.$$

3. directional derivatives are extreme subgradients:

$$f'(x; d) = \max\{\langle p, d \rangle : p \in \partial f(x)\}.$$
0 subgradient \implies minimum

- Suppose that $0 \in \partial f(x)$.
- If f is smooth and convex, $0 \in \partial f(x) = \{\nabla f(x)\} \implies \nabla f(x) = 0$.
- In general: If $0 \in \partial f(x)$, then

$$f(y) \geq f(x) + \langle 0, y - x \rangle$$

$$= f(x)$$

for all $y \in \mathbb{R}^n$.

$\implies x$ is a minimum!

- Converse also true: $f(y) \geq f(x^*) + 0 = f(x^*) + \langle 0, y - x^* \rangle$.
Subgradient method

Iteration:

\[x^{k+1} \leftarrow x^k - \alpha^k p^k \]

where \(p^k \in \partial f(x^k) \).

Applications:

- find \(x^* \in \bigcap_{i=1}^m C_i \) by \(\min f(x) = \max \{ \text{dist}(x, C_1), \ldots, \text{dist}(x, C_m) \} \)
- minimize non-smooth convex functions, e.g., SVM with hinge loss
- dual ascent method (typically, non-smooth), dual decomposition

Step size and convergence: assumption \(\|p^k\| \leq G \) uniformly

- fix \(\alpha^k \equiv \alpha \). While \(k < O(\frac{1}{\alpha^2 G^2}) \), \(f_{\text{best}}^k - f^* \leq O(\frac{1}{\alpha k}) \).

 Larger \(\alpha \Rightarrow \) faster, less accurate. Smaller \(\alpha \Rightarrow \) slower, more accurate.

- diminishing \(\alpha_k \): \(\lim \alpha_k \to 0 \) and \(\sum_k \alpha_k = \infty \), then \(f_{\text{best}}^k - f^* \leq O(\frac{1}{\sqrt{k}}) \).
A negative subgradient may not be a descent direction!

Consider

\[f(x) = |x_1| + 2|x_2| \]

At \(x = (1, 0) \),

\[\partial f(x) = \{(1, \alpha)^T : \alpha \in [-2, 2]\}. \]

\(d = -(1, 2)^T \in -\partial f(x) \) but for any small \(\alpha > 0 \),

\[f(x + \alpha d) = |1 - \alpha| + 2|\alpha| > 1 = f(x). \]

Consequences:

- iterative monotonicity of \(f^k \) is not generally guaranteed
- line search (highly effective in gradient descent) may not help here
Theorem (Nesterov’03 Thm 3.1.16)

Let \(x_0 \in \mathbb{R}^n \). Then all \(g \in \partial f(x_0) \) define supporting hyperplanes to the lower level set \(\mathcal{L}_f(f(x_0)) = \{x|f(x) < f(x_0)\} \):

\[
\langle g, x_0 - x \rangle \geq f(x_0) - f(x) \geq 0.
\]

Thus, each \(g \in \partial f(x_0) \) cuts the search space for \(x^* \) in half:

\[
\langle g, x_0 - x^* \rangle \geq 0
\]

Theorem

Define \(\mathcal{H}_f = \{ \text{affine function } h \text{ such that } h(x) \leq f(x) \ \forall \ x \in \mathbb{R}^n \} \). Then

\[
f(x) = \sup\{h(x) : h \in \mathcal{H}_f\}.
\]

These results motivate the cutting plane method.
Cutting plane method: a demonstration

\[9\]

Cutting plane method: a demonstration

Cutting plane method: a demonstration

Cutting plane method: a demonstration

Initialize compact set C containing the minimizer, tolerance $\epsilon > 0$, $k = 1$, $x^1 \in C$, and $h_0 = -\infty$.

Iterate:

1. compute $p^k \in \partial f(x^k)$;
2. construct piece-wise affine function
 \[h_k(x) = \max\{h_{k-1}(x), f(x^k) + \langle p^k, x - x^k \rangle\}; \]
3. find $x^{k+1} \in \arg\min_{x \in C} h_k(x)$;
4. compute $\epsilon_k = f(x^k) - h_k(x^k)$;
5. if $\epsilon_k < \epsilon$, STOP; otherwise, continue with $k \leftarrow k + 1$.
Remarks:

- at every iteration, $x^{k+1} \in \arg \min_{x \in C} h_k(x)$ is an LP since h_k is piece-wise maximum of affine functions
- the LP' size increases with k!
- the stopping condition is reliable
 if $f(x^k) - h_k(x^k) < \epsilon$, then since

$$\min h_k(x) \leq \min f(x)$$

for any k, we have

$$f(x^k) \leq h_k(x^k) + \epsilon = \min h_k(x) + \epsilon \leq \min f(x) + \epsilon.$$

It is more reliable than the subgradient method, which often uses unreliable $\|p^k\|$.

- but, it possibly takes big, zig-zagging steps
Bundle methods

A bundle is referred to as \(\{x^k, f(x^k), p^k\} \) where \(p^k \in \partial f(x^k) \).

Initialize: tolerance \(\epsilon > 0, \gamma \in (0, 1), k = 1, \hat{x}^1 = x^1 \in C \), and \(h_0 = -\infty \).

Iterate:

1. compute \(p^k \in \partial f(x^k) \);

2. construct piece-wise affine function

\[
 h_k(x) = \max\{h_{k-1}(x), f(x^k) + \langle p^k, x - x^k \rangle\};
\]

3. find \(x^{k+1} \in \arg\min_{x \in C} h_k(x) + \frac{\mu_k}{2} \|x - \hat{x}^k\|^2 \);

4. compute \(\epsilon_k = f(\hat{x}^k) - [h_k(x^{k+1}) + \frac{\mu_k}{2} \|x^{k+1} - \hat{x}^k\|^2] \);

5. if \(\epsilon_k < \epsilon \), STOP; else, continue;

6. if \(f(\hat{x}^k) - f(x^{k+1}) \geq m\epsilon_k \), then serious step \(\hat{x}^{k+1} \leftarrow x^{k+1} \); else, null step \(\hat{x}^{k+1} \leftarrow \hat{x}^k \);

7. \(k \leftarrow k + 1 \).
Remarks:

- Bundle algorithm (BA) is a stabilized cutting plane algorithm
- next iterate is closer to the current \hat{x}^k to avoid drastic moves
- let $K_s := \{k : a \text{ serious step is taken at iteration } k\}$
- step 6 ensures strictly decreasing $f(\hat{x}^k), k \in K_{\text{serious}}$
- the presented BA is a basic version; several enhancements exist
- convergence under non-growing # of constraints
- has convergence analysis assuming bounded μ_k

<table>
<thead>
<tr>
<th>Method</th>
<th>Per-itr cost</th>
<th>Iteration #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgradient</td>
<td>Update a vector</td>
<td>Very high</td>
</tr>
<tr>
<td>Cutting plane</td>
<td>LP</td>
<td>Medium/High</td>
</tr>
<tr>
<td>Bundle method</td>
<td>QP</td>
<td>Small/Medium</td>
</tr>
</tbody>
</table>
Karush-Kuhn-Tucker conditions

Theorem (Kuhn-Tucker, Nesterov’03 Thm 3.1.17)

Let $f_i, i = 0, \cdots, m$, be C^1 convex functions.

► Suppose there exists \bar{x} such that $f_i(\bar{x}) < 0$, for $i = 1, \cdots, m$.

Then a point x^* is a solution to

$$\minimize_{x \in \mathbb{R}^n} f_0(x) \quad \text{s.t.} \quad f_i(x) < 0, \quad i = 1, \cdots, m,$$

if, and only if, there exists $\lambda_i \geq 0$, such that

$$\nabla f_0(x^*) + \sum_{\{i \mid f_i(x) = 0\}} \lambda_i \nabla f_i(x^*) = 0$$
Karush-Kuhn-Tucker conditions

Proof.

Suppose x^* is a solution to (3), and $f^* := f(x^*)$.

Define

$$
\phi(x) = \max_{x \in \mathbb{R}^n} \{f(x) - f^*, f_1(x), \ldots, f_m(x)\}.
$$

Suppose \hat{x} is a minimum of ϕ. If $\phi(\hat{x}) < 0$, then $f(\hat{x}) < f^*$ and $f_i(\hat{x}) < 0$. Thus, \hat{x} produces a strictly smaller objective value than x^* does. It is also feasible. This is clearly a contradiction.

Thus, $\phi(x^*) = 0$, and x^* is the minimum of ϕ.

(Cont.)
Karush-Kuhn-Tucker conditions

Proof (Cont.)

How can we get an expression for x^*?

Subgradients! x^* is a minimum of ϕ if, and only if,

$$0 \in \partial \phi(x^*) = \text{conv}\{\nabla f_i(x^*) : i \in I_0\},$$

where $I_0 = \{0\} \cup \{i | f_i(x^*) = 0\}$.

This is true if, and only if, there exists $\alpha_i \geq 0$, $i \in I_0$, such that

$$\alpha_0 + \sum_{i \in I_0} \alpha_i = 1 \quad \text{and} \quad \alpha_0 \nabla f(x^*) + \sum_{i \in I_0} \alpha_i \nabla f_i(x^*) = 0.$$

If $\alpha_0 \neq 0$, we’re done (divide by α_0).

(Cont.)
Karush-Kuhn-Tucker conditions

Proof (Cont.)

- Suppose that $\alpha_0 = 0$. Remember \bar{x}, in the interior of the feasible set?

\[
\sum_{i \in I_0} \alpha_i f_i(\bar{x}) = \sum_{i \in I_0} \alpha_i (f_i(\bar{x}^*) + \langle \nabla f(\bar{x}^*), \bar{x} - \bar{x}^* \rangle) = 0.
\]

But $f_i(\bar{x}) < 0$ for all $i \in I_0$, and there exists $\alpha_i > 0$.

- This is a contradiction

\[
\implies \lambda_i = \frac{\alpha_i}{\alpha_0} \geq 0.
\]
The expression

\[L(x, \lambda) := f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) \]

is called the Lagrangian of (3). Note that we restrict \(\lambda \geq 0 \).

Lagrangian is a relaxation: If \(f_i(x) \leq 0 \) \(i = 1, \ldots, m \), then \(L(x, \lambda) < f_0(x) \).

For fixed \(\lambda \geq 0 \),

\[\inf_{x} L(x, \lambda) \leq f_0(x^*) . \]

Note that

\[\sup_{\lambda \geq 0} L(x, \lambda) = \begin{cases} f_0(x) & \text{if } f_i(x) < 0 \text{ for all } i > 0; \\ \infty & \text{otherwise} \end{cases} \]

Thus,

\[\inf_{x} \sup_{\lambda \geq 0} L(x, \lambda) = f_0(x^*) . \]
If we set
\[\nabla_x L(x, y) = \nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) = 0 \]
we get a constraint for a characterization of \(x_\lambda \) for each \(\lambda \geq 0 \).

The previous theorem shows that \(x^* = x_{\lambda x^*} \) for some \(\lambda \geq 0 \).

In particular, it showed that \(\lambda_i = 0 \) for all \(f_i(x) < 0 \). Thus,
\[
L(x^*, \lambda_{x^*}) = f_0(x^*) + \sum_{i=1}^{n} \lambda_{x^*,i} f_i(x^*) \\
= f_0(x^*)
\]
Strong duality

If we take the supremum

\[f_0(x^*) = L(x^*, \lambda x^*) \]

\[= \sup_{\lambda \ge 0} L(x_{\lambda}, \lambda) \]

\[= \sup_{\lambda \ge 0} \inf_x L(x, \lambda) \]

\[\le \inf_x \sup_{\lambda \ge 0} L(x, \lambda) \]

\[= f_0(x^*). \]

i.e.

\[\sup_{\lambda \ge 0} \inf_x L(x, \lambda) = \inf_x \sup_{\lambda \ge 0} L(x, \lambda) \]

This is called strong duality.

Key to result is the existence of \(\bar{x} \) such that \(f_i(\bar{x}) < 0 \). (Slater’s condition)
Strong duality

Strong duality says problem (3) is equivalent to the dual problem:

\[
\sup_{\lambda \geq 0} \inf_x L(x, \lambda)
\]

Introduce \(g(\lambda) = \inf_x L(x, \lambda) \), which is called the dual function.

Since \(g \) is the infimum of a family of linear functions (infimum over \(x \), linear in \(\lambda \)), \(g(\lambda) \) is concave, regardless of the structure of \(f_0 \).

Sometimes, the dual problem is easier to solve than original problem. It takes care of constraints \(f_i(x) < 0, i > 0 \), implicitly, though introduce constraints \(\lambda \geq 0 \).

We’ll come back to duality at a later lecture.