Math 273a: Optimization
Netwon’s methods

Instructor: Wotao Yin
Department of Mathematics, UCLA
Fall 2015

some material taken from Chong-Zak, 4th Ed.
Main features of Newton’s method

- Uses both first derivatives (gradients) and second derivatives (Hessian)
- Based on local quadratic approximations to the objective function
- Requires a positive definite Hessian to work
- Converges very quickly near the solution (under conditions)
- Require a lot of work at each iteration:
 - forming the Hessian
 - inverting or factorizing the (approximate) Hessian
Basic idea

Given the current point $x^{(k)}$

- construct a quadratic function (known as the quadratic approximation) to the objective function that matches the value and both the first and second derivatives at $x^{(k)}$
- minimize the quadratic function instead of the original objective function
- set the minimizer as $x^{(k+1)}$

Note: a new quadratic approximation will be constructed at $x^{(k+1)}$

Special case: the objective is quadratic

- the approximation is exact and the method returns a solution in one step
Quadratic approximation

- Assumption: function $f \in C^2$, i.e., twice continuously differentiable
- Apply Taylor’s expansion, keep first three terms, drop terms of order ≥ 3

\[
 f(x) \approx q(x) := f(x^{(k)}) + g^{(k)}(x - x^{(k)}) + \frac{1}{2}(x - x^{(k)})^T F(x^{(k)})(x - x^{(k)})
\]

where

- $g^{(k)} := \nabla f(x^{(k)})$ is the gradient at $x^{(k)}$
- $F(x^{(k)}) := \nabla^2 f(x^{(k)})$ is the Hessian at $x^{(k)}$
Generating the next point

- Minimizing $q(x)$ by apply the first-order necessary condition:

$$0 = \nabla q(x) = g^{(k)} + F(x^{(k)})(x - x^{(k)}).$$

- If $F(x^{(k)}) \succ 0$ (positive definite), then q achieves its unique minimizer at

$$x^{(k+1)} := x^{(k)} - F(x^{(k)})^{-1} g^{(k)}.$$

We have $0 = \nabla q(x^{(k+1)})$

- Can be viewed an iteration for solving $g(x) = 0$ using its Jacobian $F(x)$.
Example

\[f(x_1, x_2) = -\log(1 - x_1 - x_2) - \log(x_1) - \log(x_2) \]
Start Newton’s method from \[\left[\frac{1}{10}; \frac{6}{10} \right]\]
Example

$f(x_1, x_2)$ and its quadratic approximation $q(x_1, x_2)$ at $\left[\frac{1}{10}; \frac{6}{10}\right]$ share the same value, gradient and Hessian at $\left[\frac{1}{10}; \frac{6}{10}\right]$. The new point minimizes $q(x_1, x_2)$.
Start Newton’s method from $\left[\frac{1}{10}; \frac{1}{10} \right]$.
Example

Start Newton’s method from \([\frac{1}{10}; \frac{1}{100}]\)
Unlike the move along $-\nabla f(x^{(k)})$, where a sufficiently small step size guarantees the objective decrease, Newton’s method jumps to a potentially distant point. This makes it vulnerable.

- recall in 1D, $f'' < 0$ can cause divergence
- even if $F(x^{(k)}) \succ 0$ (positive definite), objective descent is not guaranteed

Nonetheless, Newton’s method has superior performance when starting near the solution.
Analysis: quadratic function minimization

- The objective function

\[f(x) = \frac{1}{2} x^T Q x - b^T x \]

Assumption: \(Q \) is symmetric and invertible

\[g(x) = Q x - b \]
\[F(x) = Q. \]

- First-order optimality condition \(g(x^*) = Q x^* - b = 0 \). So, \(x^* = Q^{-1} b \).

- Given any initial point \(x^{(0)} \), by Newton’s method

\[x^{(1)} = x^{(0)} - F(x^{(0)})^{-1} g^{(0)} \]
\[= x^{(0)} - Q^{-1} (Q x^{(0)} - b) \]
\[= Q^{-1} b \]
\[= x^*. \]

The solution is obtained in one step.
Analysis: how fast is Newton’s method?
(assumption: Lipschitz continuous Hessian near x^*)

- Let $e^{(k)} := x^{(k)} - x^*$

Theorem

Suppose $f \in C^2$, F is Lipschitz continuous near x^*, and $\nabla f(x^*) = 0$. If $x^{(k)}$ is sufficiently close to x^* and $F(x^*) \succ 0$, then $\exists C > 0$ such that

$$\|e^{(j+1)}\| \leq C\|e^{(j)}\|^2, \quad j = k, k + 1, \ldots.$$

Just a sketch proof.

Since F is Lipschitz around x^* and $F(x^*) \succ 0$, we can have

- $(F(x) - cI) \succ 0$ for some $c > 0$ for all x in a small neighborhood of x^*.
- Thus, $\|F(x)^{-1}\| < c^{-1}$ for all x in the neighborhood.

$$e^{(j+1)} = e^{(j)} + d^{(j)} \quad \text{where} \quad d^{(j)} = -F(x^{(j)})^{-1}g^{(j)}.$$

Taylor expansion near $x^{(j)}$: $0 = g(x^*) = g(x^{(j)}) - F(x^{(j)})e^{(j)} + O(\|e^{(j)}\|^2)$. Thus $e^{(j+1)} = e^{(j)} + d^{(j)} = F(x^{(j)})^{-1}O(\|e^{(j)}\|^2) = O(\|e^{(j)}\|^2)$. Argue that $x^{(j+1)}, x^{(j+2)}, \ldots$ stay in the neighborhood.
Asymptotic rates of convergence

Suppose sequence \(\{x^k\} \) converges to \(\bar{x} \). Perform the ratio test

\[
\lim_{k \to \infty} \frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|} = \mu.
\]

- if \(\mu = 1 \), then \(\{x^k\} \) converges \text{sublinearly}.
- if \(\mu \in (0, 1) \), then \(\{x^k\} \) converges \text{linearly};
- if \(\mu = 0 \), then \(\{x^k\} \) converges \text{superlinearly};

To distinguish superlinear rates of convergence, we check

\[
\lim_{k \to \infty} \frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|^q} = \mu > 0
\]

- if \(q = 2 \), it is \text{quadratic convergence};
- if \(q = 3 \), it is \text{cubic convergence};
- \(q \) can be non-integer, e.g., 1.618 for the secant method ...
Example

- \(a_k = \frac{1}{2^k} \)
- \(b_k = \frac{1}{4^\lfloor k/2 \rfloor} \)
- \(c_k = \frac{1}{2^{2^k}} \)
- \(d_k = \frac{1}{k+1} \)

"semilog" plots (wikipedia)
Another example

Let $C = 100$.

<table>
<thead>
<tr>
<th>k</th>
<th>$(1/k^2)$</th>
<th>Ce^{-k}</th>
<th>$Ce^{-k^{1.618}}$</th>
<th>Ce^{-k^2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0e0</td>
<td>3.7e2</td>
<td>3.7e2</td>
<td>3.7e2</td>
</tr>
<tr>
<td>3</td>
<td>3.3e-1</td>
<td>5.0e1</td>
<td>2.7e0</td>
<td>1.2e-1</td>
</tr>
<tr>
<td>5</td>
<td>2.0e-1</td>
<td>6.7e-0</td>
<td>1.3e-3</td>
<td>1.4e-8</td>
</tr>
<tr>
<td>7</td>
<td>1.4e-1</td>
<td>9.1e-1</td>
<td>7.6e-8</td>
<td>5.2e-19</td>
</tr>
<tr>
<td>9</td>
<td>1.1e-1</td>
<td>1.2e-1</td>
<td>6.4e-13</td>
<td>6.6e-33</td>
</tr>
</tbody>
</table>

Comments:

- the constant C is not important in superlinear convergence
- even with a big C, higher-order convergence will quickly catch up
- the constant C is more important in lower-order convergence
- superlinear convergence is shockingly fast!
Analysis: descent direction

Theorem

If the Hessian $\mathbf{F}(\mathbf{x}^{(k)}) \succ 0$ (positive definite) and $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}) \neq 0$, then the search direction

$$d^{(k)} = -\mathbf{F}(\mathbf{x}^{(k)})^{-1} \mathbf{g}^{(k)}$$

is a **descent direction**, that is, there exists $\bar{\alpha} > 0$ such that

$$f(\mathbf{x}^{(k)} + \alpha d^{(k)}) < f(\mathbf{x}^{(k)}), \quad \forall \alpha \in (0, \bar{\alpha}).$$

Proof.

Let $\phi(\alpha) := f(\mathbf{x}^{(k)} + \alpha d^{(k)})$. Then $\phi'(\alpha) := \nabla f(\mathbf{x}^{(k)} + \alpha d^{(k)})^T d^{(k)}$. Since $\mathbf{F}(\mathbf{x}^{(k)}) \succ 0$ and $\mathbf{g}^{(k)} \neq 0$, we have $\mathbf{F}(\mathbf{x}^{(k)})^{-1} \succ 0$

$$\phi'(0) := \nabla f(\mathbf{x}^{(k)} + \alpha d^{(k)})^T d^{(k)} = -\mathbf{g}^{(k)}^T \mathbf{F}(\mathbf{x}^{(k)})^{-1} \mathbf{g}^{(k)} < 0.$$

Finally, apply first-order Taylor expansion to $\phi(\alpha)$ to get the result. □
Two more issues with Newton’s method

Hessian evaluation:

- When the dimension n is large, obtain $F(x^{(k)})$ can be computationally expensive.
- We will study quasi-Newton methods to alleviate this difficulty (in a future lecture).

Indefinite Hessian:

- When the Hessian is not positive definite, the direction is not necessarily descending.
- There are simple modifications.
Modified Newton’s method

Strategy:

- use $F(x^{(k)})$ if $F(x^{(k)}) \succ 0$ and $\lambda_{\min}(F(x^{(k)})) > \epsilon$; otherwise,
- use $\hat{F}(x^{(k)}) = F(x^{(k)}) + E$ so that $\hat{F}(x^{(k)}) \succ 0$ and $\lambda_{\min}(\hat{F}(x^{(k)})) > \epsilon$.

Method 1 (Greenstadt): replace any tiny or negative eigenvalues by

$$\delta = \max\{\epsilon_{\text{machine}}, \epsilon_{\text{machine}}\|H\|_{\infty}\}$$

where $\|H\|_{\infty} = \max_{i=1,\ldots,n} \sum_{j=1}^{n} |h_{ij}|$. This is computationally expensive.

Method 2 (Levenberg-Marquardt): Was proposed for least-squares but works here. Replace

$$\hat{F} \leftarrow F + \gamma I.$$

It shifts every eigenvalue of F up by γ.
Modified Newton’s method

Method 3 (advanced topic: modified Cholesky / Gill-Murray):

Any symmetric matrix \(A \succ 0 \) can be factored as

\[
A = \bar{L}\bar{L}^T \quad \text{or} \quad A = LDL^T,
\]

where \(L \) and \(\bar{L} \) are lower triangular, \(D \) is positive diagonal, and \(L \) has ones on its main diagonal.

Properties of the Cholesky factorization:

- Very useful in solving linear systems of equations. Reduces a system to two backsolves.
- If \(A \not\succ 0 \) (indefinite but still symmetric), \(D \) has zero or negative element(s) on its diagonal.
Modified Newton’s method

- The factorization is **stable** if A is positive definite. (Small errors in A will not cause large errors in L or D.) Example:

\[
\begin{bmatrix}
1 & a \\
a & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
a & 1 \end{bmatrix}
\begin{bmatrix}
1 & 1 - a^2 \\
1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & a \\
1 & 1 \\
\end{bmatrix}.
\]

- If $A \leftarrow A + vv^T$, the factorization can be updated to a product form (avoiding the factorization from scratch, which is more expensive).

- If A is sparse, Cholesky with pivots keeps L sparse with moderately more zeros

- The cost is $n^3/6 + O(n^2)$, roughly half of Gaussian elimination.
Modified Newton’s method

Forsgren, Gill, Murray: perform pivoted Cholesky factorization. That is, permute the matrix at each step to pull the largest remaining diagonal element to the pivot position.

The effect: postpone the modification and keeps it as small as possible.

When no acceptable element remains

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
= \begin{bmatrix}
L_{11} & I \\
L_{21} & I
\end{bmatrix}
\begin{bmatrix}
D_1 & D_2 \\
I & I
\end{bmatrix}
\begin{bmatrix}
L_{11}^T & L_{21}^T
\end{bmatrix},
\]

replace \(D_2\) (not necessarily diagonal!) by a positive definition matrix and complete the factorization.

No extra work if the Cholesky factorization is taken in the outer-product form.

The Cholesky factorization also tells if the current point is a minimizer or a saddle point.
Modified Newton’s method for saddle point

Suppose we are at a saddle point \bar{x}. Then $\bar{g} = \nabla f(\bar{x}) = 0$ and 2nd-order approximation

$$f(\bar{x} + d) \approx q(d) := f(\bar{x}) + \bar{g}^T d + \frac{1}{2} d^T F(\bar{x}) d = 0.$$

How do we descend?

Greenstadt: pick $d = \sum_{i: \lambda_i < 0} \alpha_i u_i$, where $\alpha_i > 0$ and (λ_i, u_i) are eigen-pairs of $F(x)$. d is a positive linear combination of the *negative curvature* directions. Then, $d^T F(\bar{x}) d < 0$ and $q(d) < f(\bar{x})$.

Cholesky method: recall D_2 correspond to the negative curvatures. If entry d_{ij} of D_2 has the largest absolute value among all entries of D_2, pick

$$L^T d = e_i - \text{sign}(d_{ij}) e_j.$$

Then, $d^T F(x) d = d^T LDL^T d < 0$.
Overview of the Gauss-Newton method

- A modification to Newton’s method, solves nonlinear least squares, very popular
- Pros: second derivatives are no longer computed
- Cons: does not apply to general problems
- Can be improved by line search, Levenberg-Marquardt, etc.
Nonlinear least squares

- Given functions $r_i : \mathbb{R}^n \to \mathbb{R}, \ i = 1, \ldots, m$
- The goal is to find x^* so that $r_i(x) = 0$ or $r_i(x) \approx 0$ for all i.
- Consider the nonlinear least-squares problem

$$\minimize_{x} \frac{1}{2} \sum_{i=1}^{m} (r_i(x))^2.$$
- Define $r = [r_1, \ldots, r_m]^T$. Then we have

$$\minimize_x f(x) = \frac{1}{2} r(x)^T r(x).$$

- The gradient $\nabla f(x)$ is formed by components

$$(\nabla f(x))_j = \frac{\partial f}{\partial x_j}(x) = \sum_{i=1}^{m} r_i(x) \frac{\partial r_i}{\partial x_j}(x)$$

- Define the Jacobian of r

$$J(x) = \begin{bmatrix}
\frac{\partial r_1}{\partial x_1}(x) & \cdots & \frac{\partial r_i}{\partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial r_m}{\partial x_1}(x) & \cdots & \frac{\partial r_m}{\partial x_n}(x)
\end{bmatrix}$$

Then, we have

$$\nabla f(x) = J(x)^T r(x)$$
The Hessian $F(x)$ is symmetric matrix. Its (k,j)th component is

$$
\frac{\partial^2 f}{\partial x_k \partial x_j} = \frac{\partial}{\partial x_k} \left(\sum_{i=1}^{m} r_i(x) \frac{\partial r_i}{\partial x_j}(x) \right) = \sum_{i=1}^{m} \left(\frac{\partial r_i}{\partial x_k}(x) \frac{\partial r_i}{\partial x_j}(x) + r_i(x) \frac{\partial^2 r_i}{\partial x_k \partial x_j}(x) \right)
$$

Let $S(x)$ be formed by (k,j)th components

$$
\sum_{i=1}^{m} r_i(x) \frac{\partial^2 r_i}{\partial x_k \partial x_j}(x)
$$

Then, we have $F(x) = J(x)^T J(x) + S(x)$

Therefore, Newton’s method has the iteration

$$
x^{(k+1)} = x^{(k)} - \left((J(x)^T J(x) + S(x))^{-1} J(x)^T r(x) \right) / F(x)^{-1} \nabla f(x)
$$
The Gauss-Newton method

- When the matrix $S(x)$ is ignored in some applications to save computation, we arrive at the Gauss-Newton method

$$x^{(k+1)} = x^{(k)} - \underbrace{(J(x)^T J(x))^{-1}}_{(F(x) - S(x))^{-1}} \underbrace{J(x)^T r(x)}_{\nabla f(x)}$$

- A potential problem is that $J(x)^T J(x) \neq 0$ and $f(x^{(k+1)}) \geq f(x^{(k)})$.

 Fixes: line search, Levenberg-Marquardt, and Cholesky/Gill-Murray.
Example: nonlinear data-fitting

- Given a sinusoid
 \[y = A \sin(\omega t + \phi) \]

- Determine parameters \(A, \omega, \) and \(\phi \) so that the sinusoid best fits the observed points: \((t_i, y_i), i = 1, \ldots, 21. \)
• Let $\mathbf{x} := [A, \omega, \phi]^T$ and

$$r_i(\mathbf{x}) := y_i - A \sin(\omega t_i + \phi)$$

• Problem

$$\text{minimize} \sum_{i=1}^{21} (y_i - A \sin(\omega t_i + \phi))^2$$

• Derive $\mathbf{J}(\mathbf{x}) \in \mathbb{R}^{21 \times 3}$ and apply the Gauss-Newton iteration

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - (\mathbf{J}(\mathbf{x})^T \mathbf{J}(\mathbf{x}))^{-1} \mathbf{J}(\mathbf{x})^T \mathbf{r}(\mathbf{x})$$

• Results: $A = 2.01, \omega = 0.992, \phi = 0.541$.
Conclusions

Although Newton’s method has many issues, such as

- the direction can be ascending if $F(x^{(k)}) \neq 0$
- may not ensure descent in general
- must start close to the solution,

Newton’s method has the following strong properties:

- one-step solution for quadratic objective with an invertible Q
- second-order convergence rate near the solution if F is Lipschitz
- a number of modifications that address the issues.