Math 273a: Optimization
Gradient descent

Instructor: Wotao Yin
Department of Mathematics, UCLA
Fall 2015

slides based on Chong-Zak, 4th Ed.
online discussions on piazza.com
Main features of gradient methods

- The most popular methods (in continuous optimization)
- Simple and intuitive
- Work under very few assumptions
 (although they cannot directly handle nondifferentiable objectives and constraints, without applying smoothing techniques)
- Work together with many other methods: duality, splitting, coordinate descent, alternating direction, stochastic, online, etc.
- Suitable for large-scale problems, e.g., easy to parallelize for problems with many terms in the objective
Gradients

- We let $\nabla f(x_0)$ denote the gradient of f at point x_0.
- $\nabla f(x_0) \perp$ tangent of the levelset curve of f passing x_0, pointing outward (recall: level set $\mathcal{L}_f(c) := \{x : f(x) = c\}$)
\(\nabla f(x_0) \) is **max-rate ascending direction** of \(f \) at \(x_0 \) (for a small displacement), and \(\| \nabla f(x_0) \| \) is the rate.

Reason: pick any direction \(d \) with \(\| d \| = 1 \). The rate of change at \(x \) is

\[
\langle \nabla f(x), d \rangle \leq \| \nabla f(x) \| \cdot \| d \| = \| \nabla f(x) \|.
\]

If we set \(d = \nabla f(x)/\| \nabla f(x) \| \), then

\[
\langle \nabla f(x), d \rangle = \| \nabla f(x) \|.
\]

Therefore, \(-\nabla f(x)\) is the **max-rate descending direction** of \(f \) and a **good search direction**.
A negative gradient step can decrease the objective

- Let $x^{(0)}$ be any initial point.
- First-order Taylor expansion for candidate point $x = x^{(0)} - \alpha \nabla f(x^{(0)})$:
 \[
f(x) - f(x^{(0)}) = -\alpha \|\nabla f(x^{(0)})\|^2 + o(\alpha)
 \]
- Hence, if $\nabla f(x^{(0)}) \neq 0$ (the first-order necessary condition is not met) and α is sufficiently small, we have
 \[
f(x) < f(x^{(0)}).
 \]
- Therefore, for sufficiently small α, x is an improvement over $x^{(0)}$.
Gradient descent algorithm

- Given initial $x^{(0)}$, the gradient descent algorithm uses the following update to generate $x^{(1)}$, $x^{(2)}$, ..., until a stopping condition is met:
 from the current point $x^{(k)}$, generate the next point $x^{(k+1)}$ by
 $$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)}),$$
- α_k is called the step size
Alternative interpretation:

- notice that

\[x^{(k+1)} = \arg \min_x \frac{1}{2\alpha_k} \left\| x - (x^{(k)} - \alpha_k \nabla f(x^{(k)})) \right\|^2 \]

\[= \arg \min_x f(x^{(k)}) + \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle + \frac{1}{2\alpha_k} \| x - x^{(k)} \|^2 \]

(2nd “=” follows from that adding constants and multiplying a positive constant do not change the set of minimizers or “arg min”)

- Hence, \(x^{(k+1)} \) is obtained by minimizing the linearization of \(f \) at \(x^{(k)} \) and a proximal term that keeps \(x^{k+1} \) close to \(x^{(k)} \).

- The reformulation is useful to develop the extensions of gradient descent:
 - projected gradient method
 - proximal-gradient method
 - accelerated gradient method
 -
When to stop the iteration

The first-order necessary condition $\|\nabla f(x^{(k+1)})\| = 0$ is not practical.

Practical conditions:

- gradient condition $\|\nabla f(x^{(k+1)})\| < \epsilon$
- successive objective condition $|f(x^{(k+1)}) - f(x^{(k)})| < \epsilon$ or the relative one
 $$\frac{|f(x^{(k+1)}) - f(x^{(k)})|}{|f(x^{(k)})|} < \epsilon$$
- successive point difference $\|x^{(k+1)} - x^{(k)}\| < \epsilon$ or the relative one
 $$\frac{\|x^{(k+1)} - x^{(k)}\|}{\|x^{(k)}\|} < \epsilon$$
- to avoid division by tiny numbers (unstable division), we can replace the denominators by $\max\{1, |f(x^{(k)})|\}$ and $\max\{1, \|x^{(k)}\|\}$, respectively
Small versus large step sizes α_k

Small step size:
- Pros: iterations are more likely converge, closely traces max-rate descends
- Cons: need more iterations and thus evaluations of ∇f

Large step size:
- Pros: better use of each $\nabla f(x^{(k)})$, may reduce the total iterations
- Cons: can cause overshooting and zig-zags, too large \Rightarrow diverged iterations
Small versus large step sizes α_k

Small step size:

- Pros: iterations are more likely converge, closely traces max-rate descends
- Cons: need more iterations and thus evaluations of ∇f

Large step size:

- Pros: better use of each $\nabla f(x^{(k)})$, may reduce the total iterations
- Cons: can cause overshooting and zig-zags, too large \Rightarrow diverged iterations

In practice, step sizes are often chosen

- as a fixed value if ∇f is Lipschitz (rate of change is bounded) with the constant known or an upper bound of it known
- by line search
- by a method called Barzilai-Borwein with nonmonotone line search
Steepest descent method
(gradient descent with exact line search)

Step size α_k is determined by exact minimization

$$
\alpha_k = \arg \min_{\alpha \geq 0} f(x^{(k)} - \alpha \nabla f(x^{(k)})).
$$

It is used mostly for quadratic programs (with α_k in a closed form) and some problems with inexpensive evaluation values but expensive gradient evaluation; otherwise it is not worth the effort to solve this subproblem exactly.
Proposition 8.1 If \(\{x^{(k)}\}_{k=0}^\infty \) is a steepest descent sequence for a given function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), then for each \(k \) the vector \(x^{(k+1)} - x^{(k)} \) is orthogonal to the vector \(x^{(k+2)} - x^{(k+1)} \).

□
Steepest descent for quadratic programming

Assume that Q is symmetric and positive definite ($x^TQx > 0$ for any $x \neq 0$).

Consider the quadratic program

$$f(x) = \frac{1}{2}x^TQx - b^Tx$$

with

$$\nabla f(x) = Qx - b.$$

Steepest descent iteration: start from any $x^{(0)}$, set

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}, \quad k = 0, 1, 2, \ldots$$

where $g^{(k)} := \nabla f(x^{(k)})$ and

$$\alpha_k = \arg \min_{\alpha \geq 0} f(x^{(k)} - \alpha g^{(k)})$$

$$= \frac{g^{(k)T}g^{(k)}}{g^{(k)T}Qg^{(k)}}.$$
Examples

Example 1: $f(x) = x_1^2 + x_2^2$. Steepest descent arrives at $x^* = 0$ in 1 iteration.

Example 1: $f(x) = \frac{1}{5} x_1^2 + x_2^2$. Steepest descent makes progress in a narrow valley.
Performance of steepest descent

- **Per-iteration cost:** dominated by *two* matrix-vector multiplications:
 - \(g^{(k)} = Qx^{(k)} - b \)
 - computing \(\alpha_k \) involves \(Qg^{(k)} \)

but they can be easily reduced to *one* matrix-vector multiplication.

- **Convergence speed:** determined by the initial point and the spectral condition of \(Q \). To analyze them, we
 - define solution error: \(e^{(k)} = x^{(k)} - x^* \) (not known, an analysis tool)
 - have property: \(g^{(k)} = Qx^{(k)} - b = Qe^{(k)} \).
Good cases:

- $e^{(k)}$ is an eigenvector of Q with eigenvalue λ

$$
e^{(k+1)} = e_k - \alpha_k g^{(k)} = e^{(k)} - \frac{g^{(k)} g^{(k)}}{g^{(k)T} Q g^{(k)}} (Q e^{(k)})$$

$$= e^{(k)} + \frac{g^{(k)T} g^{(k)}}{\lambda g^{(k)T} g^{(k)}} (-\lambda e^{(k)}) = 0.$$

- Q has only one distinct eigenvalue (the level sets of Q are circles)

The general case: define $\|e\|_A := \sqrt{e^T A e}$ and $\kappa := \lambda_{\text{max}}(Q)/\lambda_{\text{min}}(Q)$, then we have

$$\|e^{(k)}\|_A \leq \left(\frac{\kappa - 1}{\kappa + 1} \right)^k \|e^{(0)}\|_A.$$
A example from *An Introduction to CG method* by Shewchuk
Gradient descent with fixed step size

- Iteration:
 \[x^{(k+1)} = x^{(k)} - \alpha g^{(k)} \]

- We assume that \(x^* \) exists

- Check distance to solution:
 \[
 \| x^{(k+1)} - x^* \|^2 = \| x^{(k)} - x^* - \alpha g^{(k)} \|^2 \\
 = \| x^{(k)} - x^* \|^2 - 2\alpha \langle g^{(k)}, x^{(k)} - x^* \rangle + \alpha^2 \| g^{(k)} \|^2.
 \]

- Therefore, in order to have \(\| x^{(k+1)} - x^* \| \leq \| x^{(k)} - x^* \| \), we must have
 \[
 \frac{\alpha}{2} \| g^{(k)} \|^2 \leq \langle g^{(k)}, x^{(k)} - x^* \rangle.
 \]

Since \(g^* := \nabla f(x^*) = 0 \), the condition is equivalent to
\[
\frac{\alpha}{2} \| g^{(k)} - g^* \|^2 \leq \langle g^{(k)} - g^*, x^{(k)} - x^* \rangle.
\]
Special case: convex and Lipschitz differentiable f

- **Definition:** A function f is *L*-Lipschitz differentiable, $L \geq 0$, if $f \in C^1$ and

$$\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n$$

(the maximum rate of change of ∇f is L)

- **Baiillon-Haddad theorem:** if $f \in C^1$ is a convex function, then it is *L*-Lipschitz differentiable if and only if

$$\|\nabla f(x) - \nabla f(y)\|^2 \leq L\langle \nabla f(x) - \nabla f(y), x - y \rangle.$$

(such ∇f is called $1/L$-cocoercive)
Theorem: Let $f \in C^1$ be a convex function and L-Lipschitz differentiable. If $0 < \alpha \leq 2/L$, then
\[
\frac{\alpha}{2} \|g^{(k)} - g^*\|^2 \leq \langle g^{(k)} - g^*, x^{(k)} - x^* \rangle
\]
and thus $\|x^{(k+1)} - x^*\| \leq \|x^{(k)} - x^*\|$ for $k = 0, 1 \ldots$. The iteration stays bounded.

Theorem: Let $f \in C^1$ be a convex function and L-Lipschitz differentiable. If $0 < \alpha < L/2$, then
\begin{itemize}
 \item both $f(x^{(k)})$ and $\|\nabla f(x^{(k)})\|$ are monotonically decreasing,
 \item $f(x^{(k)}) - f(x^*) = O\left(\frac{1}{k}\right)$,
 \item $\|\nabla f(x^{(k)})\| = o\left(\frac{1}{k}\right)$.
\end{itemize}
(one often writes $\|\nabla f(x^{(k)})\|^2 = o\left(\frac{1}{k^2}\right)$ since $\|\nabla f(x^{(k)})\|^2$ naturally appears in most analysis.)
Gradient descent with fixed step size
for quadratic programming

Assume that Q is symmetric and positive definite ($x^T Q x > 0$ for any $x \neq 0$).

Consider the quadratic program

$$f(x) = \frac{1}{2} x^T Q x - b^T x$$

Theorem 8.3 For the fixed-step-size gradient algorithm, $x^{(k)} \to x^*$ for any $x^{(0)}$ if and only if

$$0 < \alpha < \frac{2}{\lambda_{\text{max}}(Q)}.$$
Summary

- Negative gradient $-\nabla f(x^{(k)})$ is the max-rate descending direction
- For some small α_k, $x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$ improves over $x^{(k)}$
- There are practical rules to determine when to stop the iteration
- Exact line search works for quadratic program with $Q > 0$. Zig-zag occurs if $x^{(0)} - x^*$ is away from an eigenvector and spectrum of Q is spread
- Fixed step gradient descent works for convex and Lipschitz-differentiable f
- To keep the discussion short and informative, we have omitted much other convergence analysis.