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Convex conjugate (the Legendre transform)

Let f be a closed proper convex function.

The convex conjugate of f is

f∗(y) = sup
x∈domf

{yTx− f(x)}

• f∗ is convex (in y).

Reason: for each fixed x, (yTx− f(x)) is linear in y. Hence, f∗ is point-wise

maximum of linear functions, that is, point y and over x.

• As long as f is proper, f∗ is proper closed convex.



Geometry

• For fixed y and z, consider linear function: g(x) = yTx− z

• the corresponding hyperplane is

H = {(x, g(x)) : x ∈ Rn} ⊂ Rn+1

• [y;−1] is the downward normal direction of H

• H crosses the (n+ 1)th axis at g(0) = −z

• y (tilt) and z (height) uniquely define the hyperplane H and function g

Our task: for each y, determine z using the function f , thus determining g



• If we set two rules

1. g(x) = f(x) at some point x, i.e., H intersects epi(f),

2. H is as low as possible, i.e., −z is as small as possible,

then H will be the supporting hyperplane of f

By rule #1, ∃ point x ∈ domf , 3 yTx− z = f(x) or −z = f(x)− yTx

By rule #2, −z = infdomf{f(x)− yTx} =⇒ z = supx∈domf{y
Tx− f(x)}

Therefore,

• z = f∗(x)

• g(y) = yTx− f∗(x)

• H is the supporting hyperplane



Geometry

1. H intersects epi(f)

2. H is as low as possible

=⇒ −f∗(y) = infx∈domf{f(x)− yTx}

f(x)

epi(f )

x∗

f∗(y)−

f∗ almost completely characterizes f . “Almost” is because covers only up to

closure. This is a result of the Hahn-Banach Separation Theorem.



Relation to Lagrange duality

Consider convex problem

minimize
x

f(x) subject to Ax = b.

Lagrangian:

L(x; y) = f(x)− yT (Ax− b).

Lagrange dual function:

d(y) = − inf
x∈domf

L(x; y)

= sup
x∈domf

{yT (Ax− b)− f(x)}

= f∗(ATy)− bTy.

Lagrange dual problem (given in terms of convex conjugate f∗):

minimize
y

f∗(ATy)− bTy or maximize
y

bTy− f∗(ATy).



Exercise

Derive a Lagrange dual problem for

minimize
x∈Rn

f(x) + g(Ax)



Primal and dual subdifferentials

Suppose that [y;−1] is the downward normal of the hyperplane touching

epi(f) at x; therefore,

y = ∇f(x∗)

In general, for proper closed convex f ,

y ∈ ∂f(x∗).

Therefore,

domf∗ = {∂f(x) : x ∈ domf}.

Theorem (biconjugation)

Let x ∈ domf and y ∈ domf∗. Then,

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y).

If the relation holds, then

f(x) + f∗(y) = yTx.

The result is very useful in deriving optimality conditions.



Fenchel’s inequality

Theorem (Fenchel’s inequality)

For arbitrary x ∈ domf and y ∈ domf∗, we have

f(x) + f∗(y) ≥ yTx.

Proof.

Since x is not necessarily the maximizing point for f(y) = supx{∙ ∙ ∙ }, we have

f∗(y) ≥ yTx− f(x).



Theorem

If f is proper, closed, convex, then (f∗)∗ = f , i.e.,

f(x) = sup
y∈domf∗

{yTx− f∗(y)}.

Proof.

Consider linear function gy,z, defined as gy,z(x) = yTx− z.

Step 1.

gy,z ≤ f ⇐⇒ yTx− z ≤ f(x), ∀x

⇐⇒ yTx− f(x) ≤ z, ∀x

⇐⇒ sup
x
{yTx− f(x)} ≤ z

⇐⇒ f∗(y) ≤ z

⇐⇒ (y, z) ∈ epi(f∗)

(cont.)



Proof.

Step 2. From the Hahn-Banach Separation Theorem,

f(x) = sup
y,z
{gy,z(x) : gy,z ≤ f}, ∀x ∈ domf.

Step 3.

sup
y,z
{gy,z(x) : gy,z ≤ f} = sup

y,z
{gy,z(x) : f∗(y) ≤ z} by Step 1

= sup
y,z
{yTx− z : f∗(y) ≤ z}

= sup
y
{yTx− f∗(y)}

= (f∗)∗(x)

Combining Steps 2 and 3, we get f = (f∗)∗.



Examples

• f(x) = ιC(x), indicator function of nonempty closed convex set C; then

σ∗C := f∗(y) = sup
x∈C

yTx

is the support function of C

• Applying the theorem, we get (ι∗C)
∗ = ιC and (σ∗C)

∗ = σC .



Examples

• f(x) = ι{−1≤x≤1}, indicator function of the unit hypercube; then

f∗(y) = sup
−1≤x≤1

yTx = ‖y‖1

• f(x) = ι{‖x‖2≤1}, then

f∗(y) = ‖y‖2

• f(x) = 1
p
‖x‖pp, 1 < p <∞, then

f∗(y) =
1
q
‖x‖qq

1
p

+ 1
q

= 1

• lots of smooth examples ......



Alternative representation

Previously, we can represent f by f∗ via

f(x) = sup
y∈domf∗

{xTy− f∗(y)}

We can introduce a more general representation:

f(x) = sup
y∈domh∗

{(Ax− b)Ty− h∗(y)} = h(Ax− b)

so that h∗ might be simpler than f∗ (or h is simpler than f) in form.



Example f(x) = ‖x‖1

• Let C = {y = [y1; y2] : y1 + y2 = 1, y1,y2 ≥ 0} and

A =

[
1

−1

]
.

• We have

‖x‖1 = sup
y
{(y1 − y2)Tx− ιC(y)} = sup

y
{yTAx− ιC(y)}.

• Since ι∗C([x1; x2]) = 1T (max{x1,x2}), where max is taken entry-wise,

and

sup
y∈domh∗

{(Ax− b)Ty− h∗(y)} = h(Ax− b)

we have

‖x‖1 = ι∗C(Ax) = 1T (max{x,−x}).



Application: dual smoothing

Idea: “strongly convexify” h∗ =⇒ f becomes Lipschitz-differentiable

• Suppose that f is represented in terms of h∗ as

f(x) = sup
y∈domh∗

{yT (Ax− b)− h∗(y)}

• Let us strongly convexify h∗ by adding strongly convex function d:

ĥ∗(y) = h∗(y) + μd(y)

(a simple choice is d(y) = 1
2‖y‖

2)

• Obtain a Lipschitz-differentiable approximation:

fμ(x) = sup
y∈domh∗

{yT (Ax− b)− ĥ∗(y)}

• fμ(x) is differentiable since h∗(y) + μd(y) is strongly convex.



Example: augmented `1

• primal problem: min{‖x‖1 : Ax = b}

• dual problem: max{bTy + ι[−1,1]n(ATy)}

• f(y) = ι[−1,1]n(y) is non-differentiable

plan: strongly convexify the primal so that dual becomes smooth and can

be quickly solved

• let f∗(x) = ‖x‖1 and f(y) = ι[−1,1]n(y) = supx{y
Tx− f∗(x)},

• add μ2 ‖x‖2 to f∗(x) and obtain

fμ(y) = sup
x
{yTx− (‖x‖1 +

μ

2
‖x‖22)} =

1
2μ
‖y− Proj[−1,1]n(y)‖22

• fμ(y) is differentiable; ∇fμ(y) = 1
μ

shrink(y).

• On the other hand, we can also directly smooth f∗(x) = ‖x‖1 and obtain

differentiable f∗μ(x) by adding d(y) to f(y). (see the next slide ...)



Example: smoothed absolute value

Let x ∈ R. Recall

f(x) = |x| = sup
y

{yx− ι[−1,1](y)}

• add d(y) = y2/2 to ι[−1,1](y) and obtain:

fμ = sup
y

{yx− (ι[−1,1](y) + μy2/2)} =

{
x2/(2μ), |x| ≤ μ,

|x| − μ/2, |x| > μ,

which is the Huber function.

• If |x| ≤ μ, the maximizing y stays within [−1, 1] even if ι[−1,1](y)

vanishes, so it leaves with μy2/2 only.

• If |x| > μ, the maximizing y occurs at ±1, so −μy2/2 = −μ/2.

• The Huber function is used in robust least squares.



� add d(y) = 1−
√

1− y2, which is well defined and strongly convex in

[−1, 1]:

f∗μ = sup
y

{yx− (ι[−1,1](y)− μ
√

1− y2)} − μ =
√
x2 + μ2 − μ,

which is used in reweighted least-squares methods

� Recall

|x| = sup
y
{(y1 − y2)x− ιC(y)}

for C = {y : y1 + y2 = 1, y1, y2 ≥ 0}.

Add negative entropy d(y) = y1 log y1 + y2 log y2 + log 2:

f∗μ(x) = sup
y
{(y1 − y2)x− (ιC(y) + μd(y))} = μ log

ex/μ + e−x/μ

2
.
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x log(x) is strongly convex between [0, C] for any finite C > 0



Compare three smoothed functions

Courtesy of L. Vandenberghe



Example: smoothed maximum eigenvalue

• Let X ∈ Sn. Consider

f(X) = λmax(X),

which is the “`∞ norm” on the matrix spectrum.

• Recall the dual of `∞ is `1, and we have

‖x‖∞ = sup
y
{xTy− ι{1T y=1,y≥0}(y)}

• Let C = {Y ∈ Sn : trY = 1,Y � 0}. We have

f(X) = λmax(X) = sup
Y
{Y •X− ιC(Y)}

• Next, strongly convexify ιC(Y):



Negative entropy of {λi(Y)}:

d(Y) =
n∑

i=1

λi(Y) log λi(Y) + log n

(Courtesy of L. Vandenberghe)

Smoothed function

fμ(X) = sup
Y
{Y •X− (ιC(Y) + μd(Y))} = μ log

(
1
n

n∑

i=1

eλi(X)/μ

)



Application: smoothed minimization1

Instead of solving

min
x
f(x),

solve

min
x
fμ(x) = sup

y∈domh∗

{
yT (Ax + b)− [h∗(y) + μd(y)]

}

by gradient descent, with acceleration, line search, etc......

1?



Since h∗(y) + μd(y) is strongly convex, ∇fμ(x) is given by:

∇fμ(x) = AT ȳ, where ȳ = arg max
y∈domh∗

{yT (Ax + b)− [h∗(y) + μd(y)]}.

Theorem

If d(y) is strongly convex with modulus ν > 0, then

• h∗(y) + μd(y) is strongly convex with modulus at least μν

• ∇fμ(x) is Lipschitz continuous with constant no more than ‖A‖2/μν.



Nonsmooth optimization

Examples:

min ‖Ax− b‖1

min TV(x) s.t. ‖Ax− b‖2 ≤ σ

Worst-case complexity for ε-approximation:

• If f is convex and ∇f is L-Lipschitz, accelerated gradient method takes

O(
√
L/ε)

iterations.

• If f is convex and nonsmooth, f is G-Lipschitz, subgradient method takes

O(G2/ε2)

iterations.

Smooth optimization has much better complexities.



Nesterov’s complexity analysis

1. Construct smooth approximate satisfying

fμ ≤ f ≤ fμ + μD

and consequently

f(x)− f∗ ≤ fμ(x)− f∗μ + μD

2. Choose μ such that μD ≤ ε/2 =⇒ 1
μ
≥ 2D

ε

3. Minimize fμ such that fμ(x)− f∗μ ≤ ε/2

Step 3 has complexity

O(

√
1
με

) = O(

√
D

ε
),

which can be much better than the subgradient method’s

O(G2/ε2).



Theorem

Consider

h(x) = sup
y∈domh∗

yTx− h∗(y),

hμ(x) = sup
y∈domh∗

yTx− (h∗(y) + μd(y)),

where d(y) ≥ 0 is strongly convex with modulus ν > 0. Then,

1. ∇hμ is (μν)−1-Lipschitz;

2. if d(y) ≤ D for y ∈ domh∗, then

hμ(x) ≤ h(x) ≤ hμ(x) + μD, x ∈ domh.



Example: Huber function

Recall

hμ(x) = sup
y

{yx− (ι[−1,1](y) + μy2/2)} =

{
x2/(2μ), |x| ≤ μ,

|x| − μ/2, |x| > μ,

We have

hμ(x) ≤ |x| ≤ hμ(x) + μ/2

and

h′μ(x) =

{
x/μ, |x| ≤ μ,

sign(x), |x| > μ,

which is Lipschitz with constant μ−1.

Apply to `1-norm:
∑

i

hμ(xi) ≤ ‖x‖1 ≤
∑

i

hμ(xi) + nμ/2.



Robust least squares

Consider

min
x
f(x) = ‖Ax− b‖1

• Representation

‖x‖1 = sup
y
{yT (Ax− b)− ιC(y)}

where C = {y : ‖y‖∞ ≤ 1}.

• Add μd(y) = μ
2 ‖y‖

2
2 to ιC(y) and obtain

min
x
fμ(x) =

m∑

i=1

hμ(aTi x− bi).



Other examples and questions

• Total variation / analysis `1 minimization examples

• Nuclear norm examples

• More other one nonsmooth terms

• ...

• Stopping criteria


