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Convex conjugate (the Legendre transform)

Let f be a closed proper convex function.
The convex conjugate of f is
Fy)= sw {y'x—f(x)}

x€Edom f

= f*is convex (in y).
Reason: for each fixed x, (y'x — f(x)) is linear in y. Hence, f* is point-wise

maximum of linear functions, that is, point y and over x.

» As long as f is proper, f* is proper closed convex.



Geometry

= For fixed y and z, consider linear function: g(x) =y x — z

= the corresponding hyperplane is
H={(x,9(x)) : x €R"} C R"!

= [y;—1] is the downward normal direction of H
= H crosses the (n + 1)th axis at g(0) = —z
= y (tilt) and z (height) uniquely define the hyperplane H and function ¢

Our task: for each y, determine z using the function f, thus determining g



= If we set two rules
1. g(x) = f(x) at some point x, i.e., H intersects epi(f),
2. H is as low as possible, i.e., —z is as small as possible,
then H will be the supporting hyperplane of f
By rule #1, 3 point x € domf, >y x — z = f(x) or —z = f(x) —y'x
By rule #2, —z = infaoms {f(x) = ¥y'x} == 2 = subxeqoms ¥ x — f(x)}
Therefore,
=)
s gly) =y x— (%)

= H is the supporting hyperplane



Geometry

1. 'H intersects epi(f)

2. H is as low as possible

= —f*(y) = infxedoms{f(x) — y'x}

—f(y)

f* almost completely characterizes f. “Almost” is because covers only up to

closure. This is a result of the Hahn-Banach Separation Theorem.



Relation to Lagrange duality

Consider convex problem
minimize f(x) subject to Ax =b.
Lagrangian:
L(x;y) = f(x) = y" (Ax = b).

Lagrange dual function:

d(y) =—__inf L(xy)

x€Edom f

= sup {y"(Ax—b) - f(x)}

x€Edom f
= f"(ATy) - b"y.
Lagrange dual problem (given in terms of convex conjugate f*):

minimize f*(A”y) —b”y or maximizeb”y — f*(ATy).
y y



Exercise

Derive a Lagrange dual problem for

mini]ﬂf{lize f(x) + g(Ax)
xe n



Primal and dual subdifferentials

Suppose that [y; —1] is the downward normal of the hyperplane touching
epi(f) at x; therefore,

y = Vf(x")
In general, for proper closed convex f,

y € 0f(x7).
Therefore,

domf* = {0f(x) : x € domf}.
Theorem (biconjugation)
Let x € domf andy € domf*. Then,
y €0f(x) < x€df (y).

If the relation holds, then

)+ ) =y"x

The result is very useful in deriving optimality conditions.



Fenchel’s inequality

Theorem (Fenchel's inequality)

For arbitrary x € domjf and y € domjf*, we have
FEO+F ) 2y x

Proof.

Since x is not necessarily the maximizing point for f(y) = sup,{---}, we have

) >y 'x— f(x)



Theorem

If f is proper, closed, convex, then (f*)* = f, ie.,

fx)= suwp {y"x-f ¥}

yEdomf*

Proof.
Consider linear function gy ., defined as gy .(x) = y'x — z.
Step 1.
gy < f=y'x—2< f(x), Vx
—y'x—f(x)<z Vx
— sup{y’x— f(x)} < z
= fy) <=z
< (y,2) € epi(f7)

(cont.)



Proof.
Step 2. From the Hahn-Banach Separation Theorem,

f(x) =sup{gy,=(x) : gy, < f}, Vx € domf.
Y.z

Step 3.
S:yuf{gy,z(X) i 9y,s S f} = iug{gy,z(X) : f(y) < 2} by Step 1
= iug{yTx —z: f'(y) < 2}
= sgp{yTx - ")}
= (f")"(x)

Combining Steps 2 and 3, we get f = (f*)".



Examples

= f(x) = te(x), indicator function of nonempty closed convex set C; then
* T
oc = f"(y) =supy x
xeC
is the support function of C

= Applying the theorem, we get (:5)* = tc and (0¢)* = oc.



Examples

f(x) = t{—1<x<1y, indicator function of the unit hypercube; then

Fy)= sw y'x=lyl
1<x<1

f(x) = tx||a<1}, then
F ) =iyl

f(x) = %HXH% 1 < p < oo, then

Fy) = énxnz

1 1 _
;Jrg—l

lots of smooth examples ......



Alternative representation

Previously, we can represent f by f* via

fx)= sup {x'y—f'(y)}

y€domf*

We can introduce a more general representation:

fx)= sup {(Ax—b)"y—h*(y)} = h(Ax —b)

yEdomh*

so that h™ might be simpler than f* (or h is simpler than f) in form.



Example f(x) = ||x[)1

Let C={y=[y1;y2]:y1+y2=1, y1,y2 > 0} and

We have
Ix][1 = sup{(y1 — y2)"x — tc(y)} = sup{y” Ax — tc(y)}.
Yy Yy

Since 15 ([x1;%2]) = 17 (max{x1, x2}), where max is taken entry-wise,
and
sup  {(Ax—Db)"y —h"(y)} = h(Ax —b)

yedomh*
we have
[%[[1 = 1&(Ax) = 17 (max{x, —x}).



Application: dual smoothing

Idea: “strongly convexify” h* = f becomes Lipschitz-differentiable

= Suppose that f is represented in terms of h™ as

fx)= sup {y'(Ax—b)—-h*(y)}

yEdomh*

= Let us strongly convexify h* by adding strongly convex function d:
h*(y) = h*(y) + pd(y)
(a simple choice is d(y) = 1|y[*)

= Obtain a Lipschitz-differentiable approximation:

fulx) = sup {y"(Ax—b)—h'(y)}

yEdomh*

= fu(x) is differentiable since h*(y) + pd(y) is strongly convex.



Example: augmented /;

primal problem: min{||x||: : Ax = b}

dual problem: max{b”y + ¢[_1 1= (ATy)}

f(¥) = t{=1,1)» (y) is non-differentiable
plan: strongly convexify the primal so that dual becomes smooth and can
be quickly solved

let £*(x) =[xl and f(y) = tj—1,0n () = sup{y"x — f*(x)},

add 4[x||2 to f*(x) and obtain
1 .
Fuly) = sup{y"x = (|Ix[lx + £ xI3)} = oy = Proi_y 0 I

fu(y) is differentiable; V f,(y) = < shrink(y).

I
On the other hand, we can also directly smooth f*(x) = ||x||1 and obtain
differentiable f;(x) by adding d(y) to f(y). (see the next slide ...)



Example: smoothed absolute value

Let x € R. Recall
f(z) = |z = sup{yz — ¢(-1,1)(¥)}
Y

= add d(y) = y°/2 to t[_1,1(y) and obtain:

@®/(2p), =l <p,

fu=sup{yz — (-1, (y) + py®/2)} = {
v lz| = w/2, |z| > p,

which is the Huber function.
= If [2] < p, the maximizing y stays within [—1,1] even if 1;_; 17(y)
vanishes, so it leaves with zy?/2 only.
= If |2| > p, the maximizing y occurs at %1, so —uy®/2 = —u/2.

= The Huber function is used in robust least squares.



» add d(y) =1 — /1 — y2, which is well defined and strongly convex in
[-1,1]:

fo=sup{yz — (ti—1,(y) —pV/1 =92} —p =22+ p2 —p,
Yy

which is used in reweighted least-squares methods

» Recall

|| = sup{(y1 — y2)z — tc(y)}

for C={y:y1+y2=1, y1,92 > 0}.
Add negative entropy d(y) = y1 logy1 + y2 log y2 + log 2:

N ez/ﬂ + 6*I/H
fu(@) = sup{(y1 — y2)z — (ee(y) + pd(y))} = plog —————



x log(z)

xlog(x)
1.5f ‘ i
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zlog(x) is strongly convex between [0, C] for any finite C' > 0



Compare three smoothed functions
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Example: smoothed maximum eigenvalue

= Let X € §". Consider
f(X) = Amax(X),

which is the “fo, norm” on the matrix spectrum.

= Recall the dual of ¢/ is ¢1, and we have

T
[x[loo = sup{x"y = t(a7y—1 y501 ()}
y

s letC={Y e€S":trY =1,Y > 0}. We have

F(X) = Amax(X) = sgp{Y e X — (YY)}

= Next, strongly convexify cc(Y):



Negative entropy of {\;(Y)}:

entropy Euclidean

(Courtesy of L. Vandenberghe)

Smoothed function

fuX) = s1‘1{p{Y X — (te(Y) + ud(Y))} = nlog <711 Ze/\i(x)/u>

=1



Application: smoothed minimization?!

Instead of solving
min f(x),

solve
min f,,(x) = sup {y"(Ax+b) — [ (y) + pd(y)] }

yEdomh*

by gradient descent, with acceleration, line search, etc......




Since h*(y) + pd(y) is strongly convex, V f.(x) is given by:

Vfu(x) = A"y, wherey = argmax{y’ (Ax+b)— [h"(y) + ud(y)]}.

yedomh*

Theorem
If d(y) is strongly convex with modulus v > 0, then
= h*(y) + pd(y) is strongly convex with modulus at least pv

= Vf.(x) is Lipschitz continuous with constant no more than ||A||?/uv.



Nonsmooth optimization

Examples:
min [|[Ax — b||;

minTV(x) s.t. ||[Ax—bl|2 <o
Worst-case complexity for e-approximation:

= If fis convex and V f is L-Lipschitz, accelerated gradient method takes

O(/L/e)

iterations.

= If f is convex and nonsmooth, f is G-Lipschitz, subgradient method takes
O(G?/¢*)
iterations.

Smooth optimization has much better complexities.



Nesterov’'s complexity analysis

1. Construct smooth approximate satisfying

fu<f< fu+uD

and consequently

f&) =17 < fulz) = fu + puD

2. Choose p such that uD <¢/2 — i > %
3. Minimize f, such that f,(x) — f; < €/2
Step 3 has complexity
1 VD
O/ —)=0(—
(/2= 0%,

which can be much better than the subgradient method’s

O(G?/€%)



Theorem

Consider

h(x)= sup y x—h*(y),
yEdomh*

hu(x) = sup y'x = (h"(y) + pd(y)),

yEdomh*
where d(y) > 0 is strongly convex with modulus v > 0. Then,
1. Vhy is (uv) ™' -Lipschitz;
2. ifd(y) < D fory € domh*, then

hu(x) < h(x) < hu(x) + puD, x € dombh.



Example: Huber function

Recall
hu(z) = sup{ya — (1.1 (y) + py?/2)} = {552/(2#),
’ o] = /2,
We have
hu(z) < |z| < hy(z) + p/2
and

h;‘(x): {CL’//L, |I|§,U/7

sign(z), |z| > p,

which is Lipschitz with constant p~*.

Apply to ¢1-norm:

D ) Sl < Y hula) +npf2.

|| < p,
|z] > p,



Robust least squares

Consider
min f(x) = || Ax — bl];

= Representation
[xl: = sup{y” (Ax — b) — tc(y)}
Yy

where C = {y : ||yl < 1}.

» Add pd(y) = £|ly|l5 to wc(y) and obtain

m

min f,(x) = Zhu(aiTX— b;).

=1



Other examples and questions

Total variation / analysis £1 minimization examples
Nuclear norm examples

More other one nonsmooth terms

Stopping criteria



