Math 273a: Optimization Convex Conjugacy

Instructor: Wotao Yin
Department of Mathematics, UCLA
Fall 2015

online discussions on piazza.com

Convex conjugate (the Legendre transform)

Let f be a closed proper convex function.

The convex conjugate of f is

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbf{dom} f} {\{\mathbf{y}^T \mathbf{x} - f(\mathbf{x})\}}$$

• f^* is convex (in y).

Reason: for each fixed \mathbf{x} , $(\mathbf{y}^T\mathbf{x} - f(\mathbf{x}))$ is linear in \mathbf{y} . Hence, f^* is point-wise maximum of linear functions, that is, point \mathbf{v} and over \mathbf{x} .

As long as f is proper, f* is proper closed convex.

Geometry

- \bullet For fixed ${\bf y}$ and z, consider linear function: $g({\bf x})={\bf y}^T{\bf x}-z$
 - the corresponding hyperplane is

$$\mathcal{H} = \{ (\mathbf{x}, g(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n \} \subset \mathbb{R}^{n+1}$$

- $[\mathbf{y}; -1]$ is the downward normal direction of \mathcal{H}
- \mathcal{H} crosses the (n+1)th axis at $g(\mathbf{0}) = -z$
- ${f y}$ (tilt) and z (height) uniquely define the hyperplane ${\cal H}$ and function g

Our task: for each $\mathbf y,$ determine z using the function f, thus determining g

- If we set two rules
- 1. $g(\mathbf{x}) = f(\mathbf{x})$ at some point \mathbf{x} , i.e., \mathcal{H} intersects $\operatorname{epi}(f)$,
- 2. \mathcal{H} is as low as possible, i.e., -z is as small as possible,

then ${\cal H}$ will be the supporting hyperplane of f

By rule #1,
$$\exists$$
 point $\mathbf{x} \in \mathbf{dom} f$, $\ni \mathbf{y}^T \mathbf{x} - z = f(\mathbf{x})$ or $-z = f(\mathbf{x}) - \mathbf{y}^T \mathbf{x}$
By rule #2, $-z = \inf_{\mathbf{dom} f} \{ f(\mathbf{x}) - \mathbf{y}^T \mathbf{x} \} \implies z = \sup_{\mathbf{x} \in \mathbf{dom} f} \{ \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \}$

T1 C

- $z = f^*(\mathbf{x})$
- $g(\mathbf{y}) = \mathbf{y}^T \mathbf{x} f^*(\mathbf{x})$
- ullet ${\cal H}$ is the supporting hyperplane

Geometry

- 1. \mathcal{H} intersects epi(f)
- 2. \mathcal{H} is as low as possible

$$\implies -f^*(\mathbf{y}) = \inf_{\mathbf{x} \in \mathbf{dom} f} \{ f(\mathbf{x}) - \mathbf{y}^T \mathbf{x} \}$$

 f^* almost completely characterizes f. "Almost" is because covers only up to closure. This is a result of the Hahn-Banach Separation Theorem.

Relation to Lagrange duality

Consider convex problem

$$\underset{\mathbf{x}}{\text{minimize }} f(\mathbf{x}) \quad \text{subject to } \mathbf{A}\mathbf{x} = \mathbf{b}.$$

Lagrangian:

$$\mathcal{L}(\mathbf{x}; \mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}).$$

Lagrange dual function:

$$\mathbf{d}(\mathbf{y}) = -\inf_{\mathbf{x} \in \mathbf{dom} f} \mathcal{L}(\mathbf{x}; \mathbf{y})$$

$$= \sup_{\mathbf{x} \in \mathbf{dom} f} \{\mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - f(\mathbf{x})\}$$

$$= f^* (\mathbf{A}^T \mathbf{y}) - \mathbf{b}^T \mathbf{y}.$$

Lagrange dual problem (given in terms of convex conjugate f^*):

$$\underset{\mathbf{y}}{\text{minimize}} \, f^*(\mathbf{A}^T \mathbf{y}) - \mathbf{b}^T \mathbf{y} \quad \text{or} \quad \underset{\mathbf{y}}{\text{maximize}} \, \mathbf{b}^T \mathbf{y} - f^*(\mathbf{A}^T \mathbf{y}).$$

Exercise

Derive a Lagrange dual problem for

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{A}\mathbf{x})$$

Primal and dual subdifferentials

Suppose that [y;-1] is the *downward normal* of the hyperplane touching epi(f) at \mathbf{x} ; therefore,

$$\mathbf{y} = \nabla f(\mathbf{x}^*)$$

In general, for proper closed convex f,

$$\mathbf{y} \in \partial f(\mathbf{x}^*).$$

Therefore.

$$\mathbf{dom} f^* = \{\partial f(\mathbf{x}) : \mathbf{x} \in \mathbf{dom} f\}.$$

Theorem (biconjugation)

Let $x \in dom f$ and $y \in dom f^*$. Then,

$$\mathbf{y} \in \partial f(\mathbf{x}) \iff \mathbf{x} \in \partial f^*(\mathbf{y}).$$

If the relation holds, then

$$f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{y}^T \mathbf{x}.$$

The result is very useful in deriving optimality conditions.

Fenchel's inequality

Theorem (Fenchel's inequality)

For arbitrary $\mathbf{x} \in \mathbf{dom} f$ and $\mathbf{y} \in \mathbf{dom} f^*$, we have

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \mathbf{y}^T \mathbf{x}.$$

Proof.

Since ${\bf x}$ is not necessarily the maximizing point for $f({\bf y})=\sup_{{\bf x}}\{\cdots\}$, we have

$$f^*(\mathbf{y}) \ge \mathbf{y}^T \mathbf{x} - f(\mathbf{x}).$$

Theorem

If f is proper, closed, convex, then $(f^*)^* = f$, i.e., $f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} f^*} \{\mathbf{y}^T \mathbf{x} - f^*(\mathbf{y})\}.$

Proof.

Consider linear function $g_{\mathbf{y},z}$, defined as $g_{\mathbf{y},z}(\mathbf{x}) = \mathbf{y}^T\mathbf{x} - z$.

Step 1.

$$g_{\mathbf{y},z} \le f \iff \mathbf{y}^T \mathbf{x} - z \le f(\mathbf{x}), \ \forall \mathbf{x}$$

$$\iff \mathbf{y}^T \mathbf{x} - f(\mathbf{x}) \le z, \ \forall \mathbf{x}$$

$$\iff \sup_{\mathbf{x}} \{\mathbf{y}^T \mathbf{x} - f(\mathbf{x})\} \le z$$

$$\iff f^*(\mathbf{y}) \le z$$

$$\iff (\mathbf{y}, z) \in \operatorname{epi}(f^*)$$

(cont.)

Proof.

Step 2. From the Hahn-Banach Separation Theorem,

$$f(\mathbf{x}) = \sup\{g_{\mathbf{y},z}(\mathbf{x}) : g_{\mathbf{y},z} \le f\}, \quad \forall \mathbf{x} \in \mathbf{dom} f.$$

Step 3.

$$\begin{aligned} \sup_{\mathbf{y},z} \{g_{\mathbf{y},z}(\mathbf{x}) : g_{\mathbf{y},z} \le f\} &= \sup_{\mathbf{y},z} \{g_{\mathbf{y},z}(\mathbf{x}) : f^*(\mathbf{y}) \le z\} \text{ by Step 1} \\ &= \sup_{\mathbf{y},z} \{\mathbf{y}^T \mathbf{x} - z : f^*(\mathbf{y}) \le z\} \\ &= \sup \{\mathbf{y}^T \mathbf{x} - f^*(\mathbf{y})\} \end{aligned}$$

 $= (f^*)^*(\mathbf{x})$

Combining Steps 2 and 3, we get $f = (f^*)^*$.

Examples

• $f(\mathbf{x}) = \iota_{\mathcal{C}}(\mathbf{x})$, indicator function of nonempty closed convex set \mathcal{C} ; then

$$\sigma_{\mathcal{C}}^* := f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathcal{C}} \mathbf{y}^T \mathbf{x}$$

is the *support function* of $\mathcal C$

 $\bullet \ \ \text{Applying the theorem, we get} \ (\iota_{\mathcal{C}}^*)^* = \iota_{\mathcal{C}} \ \text{and} \ (\sigma_{\mathcal{C}}^*)^* = \sigma_{\mathcal{C}}.$

Examples

• $f(\mathbf{x}) = \iota_{\{-1 \leq \mathbf{x} \leq 1\}}$, indicator function of the unit hypercube; then

$$f^*(\mathbf{y}) = \sup_{-1 < \mathbf{x} < 1} \mathbf{y}^T \mathbf{x} = \|\mathbf{y}\|_1$$

• $f(\mathbf{x}) = \iota_{\{\|\mathbf{x}\|_2 \le 1\}}$, then

$$f^*(\mathbf{y}) = \|\mathbf{y}\|_2$$

• $f(\mathbf{x}) = \frac{1}{p} ||\mathbf{x}||_p^p$, 1 , then

$$f^*(\mathbf{y}) = \frac{1}{q} \|\mathbf{x}\|_q^q$$

$$\frac{1}{p} + \frac{1}{q} = 1$$

lots of smooth examples

Alternative representation

Previously, we can represent f by f^{\ast} via

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} f^*} \{ \mathbf{x}^T \mathbf{y} - f^*(\mathbf{y}) \}$$

We can introduce a more general representation:

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} h^*} \{ (\mathbf{A}\mathbf{x} - \mathbf{b})^T \mathbf{y} - h^*(\mathbf{y}) \} = h(\mathbf{A}\mathbf{x} - \mathbf{b})$$

so that h^* might be simpler than f^* (or h is simpler than f) in form.

Example $f(\mathbf{x}) = \|\mathbf{x}\|_1$

• Let $C = \{ \mathbf{y} = [\mathbf{y}_1; \mathbf{y}_2] : \mathbf{y}_1 + \mathbf{y}_2 = \mathbf{1}, \ \mathbf{y}_1, \mathbf{y}_2 \ge 0 \}$ and

$$\mathbf{A} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

We have

$$\|\mathbf{x}\|_1 = \sup_{\mathbf{y}} \{(\mathbf{y}_1 - \mathbf{y}_2)^T \mathbf{x} - \iota_{\mathcal{C}}(\mathbf{y})\} = \sup_{\mathbf{y}} \{\mathbf{y}^T \mathbf{A} \mathbf{x} - \iota_{\mathcal{C}}(\mathbf{y})\}.$$

• Since $\iota_{\mathcal{C}}^*([\mathbf{x}_1;\mathbf{x}_2]) = \mathbf{1}^T(\max\{\mathbf{x}_1,\mathbf{x}_2\})$, where \max is taken entry-wise, and

$$\sup_{\mathbf{y} \in \mathbf{dom} h^*} \left\{ (\mathbf{A}\mathbf{x} - \mathbf{b})^T \mathbf{y} - h^*(\mathbf{y}) \right\} = h(\mathbf{A}\mathbf{x} - \mathbf{b})$$

we have

$$\|\mathbf{x}\|_1 = \iota_{\mathcal{C}}^*(\mathbf{A}\mathbf{x}) = \mathbf{1}^T(\max\{\mathbf{x}, -\mathbf{x}\}).$$

Application: dual smoothing

Idea: "strongly convexify" $h^* \Longrightarrow f$ becomes Lipschitz-differentiable

• Suppose that f is represented in terms of h^* as

$$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom}h^*} \{ \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - h^*(\mathbf{y}) \}$$

Let us strongly convexify h* by adding strongly convex function d:

$$\hat{h}^*(\mathbf{y}) = h^*(\mathbf{y}) + \mu d(\mathbf{y})$$

(a simple choice is $d(\mathbf{y}) = \frac{1}{2} ||\mathbf{y}||^2$)

• Obtain a Lipschitz-differentiable approximation:

$$f_{\mu}(\mathbf{x}) = \sup_{\mathbf{y} \in \text{dom } h^*} \{ \mathbf{y}^T (\mathbf{A} \mathbf{x} - \mathbf{b}) - \hat{h}^* (\mathbf{y}) \}$$

• $f_{\mu}(\mathbf{x})$ is differentiable since $h^*(\mathbf{y}) + \mu d(\mathbf{y})$ is strongly convex.

Example: augmented ℓ_1

- primal problem: $\min\{\|\mathbf{x}\|_1 : \mathbf{A}\mathbf{x} = \mathbf{b}\}$
- dual problem: $\max\{\mathbf{b}^T\mathbf{y} + \iota_{[-1,1]^n}(\mathbf{A}^T\mathbf{y})\}$
- $f(\mathbf{y}) = \iota_{[-1,1]^n}(\mathbf{y})$ is non-differentiable plan: strongly convexify the primal so that dual becomes smooth and can be quickly solved
- let $f^*(\mathbf{x}) = \|\mathbf{x}\|_1$ and $f(\mathbf{y}) = \iota_{[-1,1]^n}(\mathbf{y}) = \sup_{\mathbf{x}} \{\mathbf{y}^T \mathbf{x} f^*(\mathbf{x})\},$
- add $\frac{\mu}{2} \|\mathbf{x}\|_2$ to $f^*(\mathbf{x})$ and obtain

$$f_{\mu}(\mathbf{y}) = \sup_{\mathbf{x}} \{\mathbf{y}^{T}\mathbf{x} - (\|\mathbf{x}\|_{1} + \frac{\mu}{2}\|\mathbf{x}\|_{2}^{2})\} = \frac{1}{2\mu}\|\mathbf{y} - \operatorname{Proj}_{[-1,1]^{n}}(\mathbf{y})\|_{2}^{2}$$

- $f_{\mu}(\mathbf{y})$ is differentiable; $\nabla f_{\mu}(\mathbf{y}) = \frac{1}{\mu} \operatorname{shrink}(\mathbf{y})$.
- On the other hand, we can also directly smooth $f^*(\mathbf{x}) = \|\mathbf{x}\|_1$ and obtain differentiable $f^*_{\mu}(\mathbf{x})$ by adding $d(\mathbf{y})$ to $f(\mathbf{y})$. (see the next slide ...)

Example: smoothed absolute value

Let $x \in \mathbb{R}$. Recall

$$f(x) = |x| = \sup_{y} \{yx - \iota_{[-1,1]}(y)\}$$

• add $d(y) = y^2/2$ to $\iota_{[-1,1]}(y)$ and obtain:

$$f_{\mu} = \sup_{y} \{ yx - (\iota_{[-1,1]}(y) + \mu y^{2}/2) \} = \begin{cases} x^{2}/(2\mu), & |x| \leq \mu, \\ |x| - \mu/2, & |x| > \mu, \end{cases}$$

which is the Huber function.

- If $|x| \le \mu$, the maximizing y stays within [-1,1] even if $\iota_{[-1,1]}(y)$ vanishes, so it leaves with $\mu y^2/2$ only.
- If $|x|>\mu$, the maximizing y occurs at ± 1 , so $-\mu y^2/2=-\mu/2$.
- The Huber function is used in robust least squares.

▶ add $d(y) = 1 - \sqrt{1 - y^2}$, which is well defined and strongly convex in [-1, 1]:

$$f_{\mu}^* = \sup_{y} \{ yx - (\iota_{[-1,1]}(y) - \mu\sqrt{1-y^2}) \} - \mu = \sqrt{x^2 + \mu^2} - \mu,$$

which is used in reweighted least-squares methods

► Recall

$$|x| = \sup_{\mathbf{y}} \{ (y_1 - y_2)x - \iota_{\mathcal{C}}(y) \}$$
 for $\mathcal{C} = \{ \mathbf{y} : y_1 + y_2 = 1, \ y_1, y_2 > 0 \}.$

Add negative entropy $d(y) = y_1 \log y_1 + y_2 \log y_2 + \log 2$:

$$f_{\mu}^{*}(x) = \sup_{\mathbf{y}} \{ (y_1 - y_2)x - (\iota_{\mathcal{C}}(y) + \mu d(y)) \} = \mu \log \frac{e^{x/\mu} + e^{-x/\mu}}{2}.$$

$x \log(x)$

 $x \log(x)$ is strongly convex between [0, C] for any finite C > 0

Compare three smoothed functions

Courtesy of L. Vandenberghe

Example: smoothed maximum eigenvalue

• Let $\mathbf{X} \in \mathcal{S}^n$. Consider

$$f(\mathbf{X}) = \lambda_{\max}(\mathbf{X}),$$

which is the " ℓ_{∞} norm" on the matrix spectrum.

• Recall the dual of ℓ_{∞} is ℓ_1 , and we have

$$\|\mathbf{x}\|_{\infty} = \sup_{\mathbf{y}} \{\mathbf{x}^T \mathbf{y} - \iota_{\{\mathbf{1}^T \mathbf{y} = 1, \mathbf{y} \geq 0\}}(\mathbf{y})\}$$

• Let $C = {\mathbf{Y} \in \mathcal{S}^n : \operatorname{tr} \mathbf{Y} = 1, \mathbf{Y} \succeq 0}$. We have

$$f(\mathbf{X}) = \lambda_{\max}(\mathbf{X}) = \sup_{\mathbf{Y}} \{ \mathbf{Y} \bullet \mathbf{X} - \iota_{\mathcal{C}}(\mathbf{Y}) \}$$

• Next, strongly convexify $\iota_{\mathcal{C}}(\mathbf{Y})$:

Negative entropy of $\{\lambda_i(\mathbf{Y})\}$:

$$d(\mathbf{Y}) = \sum_{i=1}^{n} \lambda_i(\mathbf{Y}) \log \lambda_i(\mathbf{Y}) + \log n$$

Smoothed function

$$f_{\mu}(\mathbf{X}) = \sup_{\mathbf{Y}} \{ \mathbf{Y} \bullet \mathbf{X} - (\iota_{\mathcal{C}}(\mathbf{Y}) + \mu d(\mathbf{Y})) \} = \mu \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_{i}(\mathbf{X})/\mu} \right)$$

Application: smoothed minimization¹

Instead of solving

$$\min_{\mathbf{x}} f(\mathbf{x}),$$

solve

$$\min_{\mathbf{x}} f_{\mu}(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} h^*} \left\{ \mathbf{y}^T (\mathbf{A} \mathbf{x} + \mathbf{b}) - [h^*(\mathbf{y}) + \mu d(\mathbf{y})] \right\}$$

by gradient descent, with acceleration, line search, etc.....

¹?

Since $h^*(\mathbf{y}) + \mu d(\mathbf{y})$ is strongly convex, $\nabla f_{\mu}(\mathbf{x})$ is given by:

$$abla f_{\mu}(\mathbf{x}) = \mathbf{A}^T \bar{\mathbf{y}}, \quad \text{where } \bar{\mathbf{y}} = \mathop{\mathrm{arg\,max}}_{\mathbf{y} \in \mathbf{dom}h^*} \{ \mathbf{y}^T (\mathbf{A}\mathbf{x} + \mathbf{b}) - [h^*(\mathbf{y}) + \mu d(\mathbf{y})] \}.$$

Theorem

If d(y) is strongly convex with modulus $\nu > 0$, then

- - $\nabla f_{\mu}(\mathbf{x})$ is Lipschitz continuous with constant no more than $\|\mathbf{A}\|^2/\mu\nu$.

• $h^*(\mathbf{y}) + \mu d(\mathbf{y})$ is strongly convex with modulus at least $\mu\nu$

Nonsmooth optimization

Examples:

$$\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1$$

$$\min \text{TV}(\mathbf{x}) \quad \text{s.t. } \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 < \sigma$$

Worst-case complexity for ϵ -approximation:

- If f is convex and ∇f is L-Lipschitz, accelerated gradient method takes

$$O(\sqrt{L/\epsilon})$$

iterations.

ullet If f is convex and nonsmooth, f is $G ext{-Lipschitz}$, subgradient method takes

$$O(G^2/\epsilon^2)$$

iterations.

Smooth optimization has much better complexities.

Nesterov's complexity analysis

1. Construct smooth approximate satisfying

$$f_{\mu} \leq f \leq f_{\mu} + \mu D$$

and consequently

$$f(\mathbf{x}) - f^* \le f_{\mu}(x) - f_{\mu}^* + \mu D$$

- 2. Choose μ such that $\mu D \leq \epsilon/2 \implies \frac{1}{\mu} \geq \frac{2D}{\epsilon}$
- 3. Minimize f_{μ} such that $f_{\mu}(x) f_{\mu}^* \leq \epsilon/2$

Step 3 has complexity

$$O(\sqrt{\frac{1}{\mu\epsilon}}) = O(\frac{\sqrt{D}}{\epsilon}),$$

which can be much better than the subgradient method's

$$O(G^2/\epsilon^2)$$
.

Theorem

1. ∇h_{μ} is $(\mu\nu)^{-1}$ -Lipschitz;

2. if $d(\mathbf{y}) \leq D$ for $\mathbf{y} \in \mathbf{dom}h^*$, then

 $h(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} h^*} \mathbf{y}^T \mathbf{x} - h^*(\mathbf{y}),$

where $d(\mathbf{y}) \geq 0$ is strongly convex with modulus $\nu > 0$. Then,

 $h_{\mu}(\mathbf{x}) = \sup_{\mathbf{y} \in \mathbf{dom} h^*} \mathbf{y}^T \mathbf{x} - (h^*(\mathbf{y}) + \mu d(\mathbf{y})),$

 $h_{\mu}(\mathbf{x}) \le h(\mathbf{x}) \le h_{\mu}(\mathbf{x}) + \mu D, \quad \mathbf{x} \in \mathbf{dom}h.$

Example: Huber function

Recall

$$h_{\mu}(x) = \sup_{y} \{ yx - (\iota_{[-1,1]}(y) + \mu y^{2}/2) \} = \begin{cases} x^{2}/(2\mu), & |x| \leq \mu, \\ |x| - \mu/2, & |x| > \mu, \end{cases}$$

We have

$$h_{\mu}(x) \le |x| \le h_{\mu}(x) + \mu/2$$

and

$$h'_{\mu}(x) = \begin{cases} x/\mu, & |x| \le \mu, \\ \operatorname{sign}(x), & |x| > \mu, \end{cases}$$

which is Lipschitz with constant μ^{-1} .

Apply to ℓ_1 -norm:

$$\sum_{i} h_{\mu}(x_{i}) \leq \|\mathbf{x}\|_{1} \leq \sum_{i} h_{\mu}(x_{i}) + n\mu/2.$$

Robust least squares

Consider

$$\min_{\mathbf{x}} f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1$$

Representation

$$\|\mathbf{x}\|_1 = \sup_{\mathbf{y}} \{\mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) - \iota_{\mathcal{C}}(\mathbf{y})\}$$

where $C = \{ \mathbf{y} : ||\mathbf{y}||_{\infty} \le 1 \}.$

• Add $\mu d(\mathbf{y}) = \frac{\mu}{2} ||\mathbf{y}||_2^2$ to $\iota_{\mathcal{C}}(\mathbf{y})$ and obtain

$$\min_{\mathbf{x}} f_{\mu}(\mathbf{x}) = \sum_{i=1}^{m} h_{\mu}(\mathbf{a}_{i}^{T}\mathbf{x} - b_{i}).$$

Other examples and questions

- Total variation / analysis ℓ_1 minimization examples
- Nuclear norm examples
- More other one nonsmooth terms
- ...
- Stopping criteria