Math 273a: Optimization
Convex Conjugacy

Instructor: Wotao Yin
Department of Mathematics, UCLA
Fall 2015

online discussions on piazza.com
Convex conjugate (the Legendre transform)

Let f be a closed proper convex function.

The convex conjugate of f is

$$f^*(y) = \sup_{x \in \text{dom} f} \{y^T x - f(x)\}$$

- f^* is convex (in y).

Reason: for each fixed x, $(y^T x - f(x))$ is linear in y. Hence, f^* is point-wise maximum of linear functions, that is, point y and over x.

- As long as f is proper, f^* is proper closed convex.
Geometry

- For fixed y and z, consider linear function: $g(x) = y^T x - z$
 - the corresponding hyperplane is
 $$\mathcal{H} = \{(x, g(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$$
 - $[y; -1]$ is the *downward normal direction* of \mathcal{H}
 - \mathcal{H} crosses the $(n+1)$th axis at $g(0) = -z$
 - y (tilt) and z (height) uniquely define the hyperplane \mathcal{H} and function g

Our task: for each y, determine z using the function f, thus determining g
• If we set **two rules**

1. \(g(x) = f(x) \) at some point \(x \), i.e., \(\mathcal{H} \) intersects \(\text{epi}(f) \),
2. \(\mathcal{H} \) is *as low as possible*, i.e., \(-z \) is *as small as possible*,

then \(\mathcal{H} \) will be the **supporting hyperplane** of \(f \)

By rule #1, \(\exists \) point \(x \in \text{dom} f \), \(\exists \ y^T x - z = f(x) \) or \(-z = f(x) - y^T x \)

By rule #2, \(-z = \inf_{\text{dom} f} \{ f(x) - y^T x \} \implies z = \sup_{x \in \text{dom} f} \{ y^T x - f(x) \} \)

Therefore,

- \(z = f^*(x) \)
- \(g(y) = y^T x - f^*(x) \)
- \(\mathcal{H} \) is the supporting hyperplane
Geometry

1. \mathcal{H} intersects $\text{epi}(f)$

2. \mathcal{H} is as low as possible

$$\implies -f^*(y) = \inf_{x \in \text{dom}_f} \{ f(x) - y^T x \}$$

f^* almost completely characterizes f. “Almost” is because covers only up to closure. This is a result of the Hahn-Banach Separation Theorem.
Relation to Lagrange duality

Consider convex problem

$$\min_x f(x) \quad \text{subject to } Ax = b.$$

Lagrangian:

$$\mathcal{L}(x; y) = f(x) - y^T(Ax - b).$$

Lagrange dual function:

$$d(y) = - \inf_{x \in \text{dom } f} \mathcal{L}(x; y) = \sup_{x \in \text{dom } f} \{y^T(Ax - b) - f(x)\} = f^*(A^T y) - b^T y.$$

Lagrange dual problem (given in terms of convex conjugate f^*):

$$\min_y f^*(A^T y) - b^T y \quad \text{or} \quad \max_y b^T y - f^*(A^T y).$$
Exercise

Derive a Lagrange dual problem for

\[
\min_{x \in \mathbb{R}^n} \quad f(x) + g(Ax)
\]
Primal and dual subdifferentials

Suppose that \([y; -1]\) is the *downward normal* of the hyperplane touching \(\text{epi}(f)\) at \(x\); therefore,

\[y = \nabla f(x^*) \]

In general, for proper closed convex \(f\),

\[y \in \partial f(x^*) \]

Therefore,

\[\text{dom} f^* = \{ \partial f(x) : x \in \text{dom} f \} \]

Theorem (biconjugation)

Let \(x \in \text{dom} f\) and \(y \in \text{dom} f^\). Then,*

\[y \in \partial f(x) \iff x \in \partial f^*(y) \]

If the relation holds, then

\[f(x) + f^*(y) = y^T x. \]

The result is very useful in deriving optimality conditions.
Fenchel’s inequality

Theorem (Fenchel’s inequality)

For arbitrary \(x \in \text{dom} f \) and \(y \in \text{dom} f^* \), we have

\[
f(x) + f^*(y) \geq y^T x.
\]

Proof.

Since \(x \) is not necessarily the maximizing point for \(f(y) = \sup_x \{\cdots\} \), we have

\[
f^*(y) \geq y^T x - f(x).
\]
Theorem

If \(f \) is proper, closed, convex, then \((f^*)^* = f\), i.e.,

\[
f(x) = \sup_{y \in \text{dom} f^*} \{y^T x - f^*(y)\}.\]

Proof.

Consider linear function \(g_{y,z} \), defined as \(g_{y,z}(x) = y^T x - z \).

Step 1.

\[
g_{y,z} \leq f \iff y^T x - z \leq f(x), \ \forall x
\]

\[
\iff y^T x - f(x) \leq z, \ \forall x
\]

\[
\iff \sup_{x} \{y^T x - f(x)\} \leq z
\]

\[
\iff f^*(y) \leq z
\]

\[
\iff (y, z) \in \text{epi}(f^*)
\]

(cont.)
Proof.

Step 2. From the Hahn-Banach Separation Theorem,

\[f(x) = \sup_{y,z} \{ g_{y,z}(x) : g_{y,z} \leq f \}, \quad \forall x \in \text{dom} f. \]

Step 3.

\[
\sup_{y,z} \{ g_{y,z}(x) : g_{y,z} \leq f \} = \sup_{y,z} \{ g_{y,z}(x) : f^*(y) \leq z \} \text{ by Step 1}
\]

\[
= \sup_{y,z} \{ y^T x - z : f^*(y) \leq z \}
\]

\[
= \sup_y \{ y^T x - f^*(y) \}
\]

\[
= (f^*)^*(x)
\]

Combining Steps 2 and 3, we get \(f = (f^*)^*. \)
Examples

- \(f(x) = \nu_C(x) \), *indicator function* of nonempty closed convex set \(C \); then

\[\sigma_C^* := f^*(y) = \sup_{x \in C} y^T x \]

is the *support function* of \(C \)

- Applying the theorem, we get \((\nu_C^*)^* = \nu_C\) and \((\sigma_C^*)^* = \sigma_C\).
Examples

- $f(x) = \iota_{\{-1 \leq x \leq 1\}}$, indicator function of the unit hypercube; then
 \[
 f^*(y) = \sup_{-1 \leq x \leq 1} y^T x = \|y\|_1
 \]

- $f(x) = \iota_{\{\|x\|_2 \leq 1\}}$, then
 \[
 f^*(y) = \|y\|_2
 \]

- $f(x) = \frac{1}{p} \|x\|_p^p$, $1 < p < \infty$, then
 \[
 f^*(y) = \frac{1}{q} \|x\|_q^q
 \]

 \[
 \frac{1}{p} + \frac{1}{q} = 1
 \]

- lots of smooth examples
Previously, we can represent f by f^* via

$$f(x) = \sup_{y \in \text{dom} f^*} \{x^T y - f^*(y)\}$$

We can introduce a more general representation:

$$f(x) = \sup_{y \in \text{dom} h^*} \{(Ax - b)^T y - h^*(y)\} = h(Ax - b)$$

so that h^* might be simpler than f^* (or h is simpler than f) in form.
Example $f(x) = \|x\|_1$

- Let $\mathcal{C} = \{y = [y_1; y_2]: y_1 + y_2 = 1, \ y_1, y_2 \geq 0\}$ and

\[
A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

- We have

\[
\|x\|_1 = \sup_y \{(y_1 - y_2)^T x - \iota_{\mathcal{C}}(y)\} = \sup_y \{y^T Ax - \iota_{\mathcal{C}}(y)\}.
\]

- Since $\iota_{\mathcal{C}}^*([x_1; x_2]) = 1^T(\max\{x_1, x_2\})$, where max is taken entry-wise, and

\[
\sup_{y \in \text{dom} h^*} \{(Ax - b)^T y - h^*(y)\} = h(Ax - b)
\]

we have

\[
\|x\|_1 = \iota_{\mathcal{C}}^*(Ax) = 1^T(\max\{x, -x\}).
\]
Application: dual smoothing

Idea: “strongly convexify” $h^* \implies f$ becomes Lipschitz-differentiable

- Suppose that f is represented in terms of h^* as

 $$f(x) = \sup_{y \in \text{dom} h^*} \{ y^T (A x - b) - h^*(y) \}$$

- Let us strongly convexify h^* by adding strongly convex function d:

 $$\hat{h}^*(y) = h^*(y) + \mu d(y)$$

 (a simple choice is $d(y) = \frac{1}{2} \| y \|_2^2$)

- Obtain a Lipschitz-differentiable approximation:

 $$f_\mu(x) = \sup_{y \in \text{dom} h^*} \{ y^T (A x - b) - \hat{h}^*(y) \}$$

- $f_\mu(x)$ is differentiable since $h^*(y) + \mu d(y)$ is strongly convex.
Example: augmented ℓ_1

- **primal problem:** $\min \{ \|x\|_1 : Ax = b \}$
- **dual problem:** $\max \{ b^T y + \iota_{[-1,1]^n}(A^T y) \}$
- $f(y) = \iota_{[-1,1]^n}(y)$ is non-differentiable

plan: strongly convexify the primal so that dual becomes smooth and can be quickly solved

- let $f^*(x) = \|x\|_1$ and $f(y) = \iota_{[-1,1]^n}(y) = \sup_x \{ y^T x - f^*(x) \}$,
- add $\frac{\mu}{2} \|x\|_2$ to $f^*(x)$ and obtain

$$f_\mu(y) = \sup_x \{ y^T x - (\|x\|_1 + \frac{\mu}{2} \|x\|_2^2) \} = \frac{1}{2\mu} \|y - \text{Proj}_{[-1,1]^n}(y)\|_2^2$$

- $f_\mu(y)$ is differentiable; $\nabla f_\mu(y) = \frac{1}{\mu} \text{shrink}(y)$.
- On the other hand, we can also directly smooth $f^*(x) = \|x\|_1$ and obtain differentiable $f_\mu^*(x)$ by adding $d(y)$ to $f(y)$. (see the next slide ...)
Example: smoothed absolute value

Let $x \in \mathbb{R}$. Recall

$$f(x) = |x| = \sup_y \{yx - \iota_{[-1,1]}(y)\}$$

- add $d(y) = y^2/2$ to $\iota_{[-1,1]}(y)$ and obtain:

$$f_\mu = \sup_y \{yx - (\iota_{[-1,1]}(y) + \mu y^2/2)\} = \begin{cases} x^2/(2\mu), & |x| \leq \mu, \\ |x| - \mu/2, & |x| > \mu, \end{cases}$$

which is the Huber function.

- If $|x| \leq \mu$, the maximizing y stays within $[-1, 1]$ even if $\iota_{[-1,1]}(y)$ vanishes, so it leaves with $\mu y^2/2$ only.
- If $|x| > \mu$, the maximizing y occurs at ± 1, so $-\mu y^2/2 = -\mu/2$.
- The Huber function is used in robust least squares.
add \(d(y) = 1 - \sqrt{1 - y^2} \), which is well defined and strongly convex in \([-1, 1]\):

\[
f^*_\mu = \sup_y \{yx - (\iota_{[-1,1]}(y) - \mu \sqrt{1 - y^2})\} - \mu = \sqrt{x^2 + \mu^2} - \mu,
\]

which is used in reweighted least-squares methods.

Recall

\[
|x| = \sup_y \{(y_1 - y_2)x - \iota_C(y)\}
\]

for \(C = \{y : y_1 + y_2 = 1, \ y_1, y_2 \geq 0\} \).

Add negative entropy \(d(y) = y_1 \log y_1 + y_2 \log y_2 + \log 2 \):

\[
f^*_\mu(x) = \sup_y \{(y_1 - y_2)x - (\iota_C(y) + \mu d(y))\} = \mu \log \frac{e^{x/\mu} + e^{-x/\mu}}{2}.
\]
$x \log(x)$ is strongly convex between $[0, C]$ for any finite $C > 0$
Compare three smoothed functions

 Courtesy of L. Vandenberghe
Example: smoothed maximum eigenvalue

- Let $X \in S^n$. Consider
 \[f(X) = \lambda_{\text{max}}(X), \]
 which is the "ℓ_∞ norm" on the matrix spectrum.

- Recall the dual of ℓ_∞ is ℓ_1, and we have
 \[\|x\|_\infty = \sup_{y} \{ x^T y - \iota_{\{1^T y = 1, y \geq 0\}}(y) \} \]

- Let $C = \{ Y \in S^n : \text{tr}Y = 1, Y \succeq 0 \}$. We have
 \[f(X) = \lambda_{\text{max}}(X) = \sup_{Y} \{ Y \bullet X - \iota_C(Y) \} \]

- Next, strongly convexify $\iota_C(Y)$:
Negative entropy of \(\{\lambda_i(Y)\} \):

\[
d(Y) = \sum_{i=1}^{n} \lambda_i(Y) \log \lambda_i(Y) + \log n
\]

(Courtesy of L. Vandenberghe)

Smoothed function

\[
f_{\mu}(X) = \sup_{Y} \{ Y \cdot X - (\nu C(Y) + \mu d(Y)) \} = \mu \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\lambda_i(X)/\mu} \right)
\]
Application: smoothed minimization

Instead of solving
\[
\min_x f(x),
\]
solve
\[
\min_{x} f_\mu(x) = \sup_{y \in \text{dom} h^*} \left\{ y^T (Ax + b) - [h^*(y) + \mu d(y)] \right\}
\]
by gradient descent, with acceleration, line search, etc......
Since $h^*(y) + \mu d(y)$ is strongly convex, $\nabla f_\mu(x)$ is given by:

$$\nabla f_\mu(x) = A^T \bar{y}, \quad \text{where } \bar{y} = \arg\max_{y \in \text{dom } h^*} \{ y^T (Ax + b) - [h^*(y) + \mu d(y)] \}.$$

Theorem

If $d(y)$ is strongly convex with modulus $\nu > 0$, then

- $h^*(y) + \mu d(y)$ is strongly convex with modulus at least $\mu \nu$
- $\nabla f_\mu(x)$ is Lipschitz continuous with constant no more than $\|A\|^2 / \mu \nu$.
Nonsmooth optimization

Examples:

\[
\begin{align*}
\min & \|Ax - b\|_1 \\
\min & \text{TV}(x) \quad \text{s.t. } \|Ax - b\|_2 \leq \sigma
\end{align*}
\]

Worst-case complexity for \(\epsilon \)-approximation:

- If \(f \) is convex and \(\nabla f \) is \(L \)-Lipschitz, accelerated gradient method takes
 \[
 O\left(\sqrt{L}/\epsilon\right)
 \]
 iterations.

- If \(f \) is convex and nonsmooth, \(f \) is \(G \)-Lipschitz, subgradient method takes
 \[
 O\left(G^2/\epsilon^2\right)
 \]
 iterations.

Smooth optimization has much better complexities.
Nesterov’s complexity analysis

1. Construct smooth approximate satisfying

\[f_\mu \leq f \leq f_\mu + \mu D \]

and consequently

\[f(x) - f^* \leq f_\mu(x) - f^*_\mu + \mu D \]

2. Choose \(\mu \) such that \(\mu D \leq \epsilon/2 \) \(\Rightarrow \) \(\frac{1}{\mu} \geq \frac{2D}{\epsilon} \)

3. Minimize \(f_\mu \) such that \(f_\mu(x) - f^*_\mu \leq \epsilon/2 \)

Step 3 has complexity

\[O\left(\sqrt{\frac{1}{\mu \epsilon}}\right) = O\left(\frac{\sqrt{D}}{\epsilon}\right), \]

which can be much better than the subgradient method’s

\[O\left(G^2/\epsilon^2\right). \]
Theorem

Consider

\[h(x) = \sup_{y \in \text{dom} h^*} y^T x - h^*(y), \]

\[h_\mu(x) = \sup_{y \in \text{dom} h^*} y^T x - (h^*(y) + \mu d(y)), \]

where \(d(y) \geq 0 \) is strongly convex with modulus \(\nu > 0 \). Then,

1. \(\nabla h_\mu \) is \((\mu \nu)^{-1} \)-Lipschitz;

2. if \(d(y) \leq D \) for \(y \in \text{dom} h^* \), then

\[h_\mu(x) \leq h(x) \leq h_\mu(x) + \mu D, \quad x \in \text{dom} h. \]
Example: Huber function

Recall

\[h_\mu(x) = \sup_y \{yx - (\iota_{[-1,1]}(y) + \mu y^2/2)\} = \begin{cases}
 x^2/(2\mu), & |x| \leq \mu, \\
 |x| - \mu/2, & |x| > \mu,
\end{cases} \]

We have

\[h_\mu(x) \leq |x| \leq h_\mu(x) + \mu/2 \]

and

\[h'_\mu(x) = \begin{cases}
 x/\mu, & |x| \leq \mu, \\
 \text{sign}(x), & |x| > \mu,
\end{cases} \]

which is Lipschitz with constant \(\mu^{-1} \).

Apply to \(\ell_1 \)-norm:

\[\sum_i h_\mu(x_i) \leq \|x\|_1 \leq \sum_i h_\mu(x_i) + n\mu/2. \]
Robust least squares

Consider

$$\min_x f(x) = \|Ax - b\|_1$$

- Representation

$$\|x\|_1 = \sup_y \{y^T(Ax - b) - \iota_C(y)\}$$

where $C = \{y : \|y\|_\infty \leq 1\}$.

- Add $\mu d(y) = \frac{\mu}{2} \|y\|_2^2$ to $\iota_C(y)$ and obtain

$$\min_x f_\mu(x) = \sum_{i=1}^m h_\mu(a_i^T x - b_i).$$
Other examples and questions

- Total variation / analysis ℓ_1 minimization examples
- Nuclear norm examples
- More other one nonsmooth terms
- ...
- Stopping criteria