Math 273a: Optimization
Proximal Operator and Proximal-Point Algorithm

Wotao Yin
Department of Mathematics, UCLA

online discussions on piazza.com
Outline

- Concept
- Definition
- Examples
- Optimization and operator-theoretic properties
- Algorithm
- Interpretations
Why proximal method?

- **Newton's method:**
 - for C^2-smooth, unconstrained problems
 - allow modest size

- **Gradient method:**
 - for C^1-smooth, unconstrained problems
 - give large size and sometimes distributed implementations

- **Proximal method:**
 - for smooth and non-smooth, constrained and unconstrained
 - but for structured problems
 - gives large size and distributed implementations
Why proximal method?

- **Newton’s method**
 - uses **low-level** (explicit) operation: \(x^{k+1} = x^k - \lambda H^{-1}(x^k) \nabla f(x^k) \).

- **Gradient method**
 - uses **low-level** (explicit) operation: \(x^{k+1} = x^k - \lambda \nabla f(x^k) \).

- **Proximal methods**
 - uses **high-level** (implicit) operation: \(x^{k+1} = \text{prox}_{\lambda f}(x^k) \).
 - \(\text{prox}_{\lambda f} \) is an **optimization** problem
 - only simple for structured \(f \), but there are many of them.
Proximal operator

Assumptions and Notation

1. $f : \mathbb{R}^n \rightarrow \mathbb{R}^n \cup \{\infty\}$ is a closed, proper, convex function

2. f is proper if $\text{dom} f \neq \emptyset$

3. f is closed if its graph is a closed set.

 $\Rightarrow \text{prox}_\lambda f$ is well-defined and unique for $\lambda > 0$

4. the raised * (e.g. x^*) is a global minimizer of some function.

5. $\text{dom} f$ is the domain of f, which is where $f(x)$ is finite.
The proximal operator $\text{prox}_f : \mathbb{R}^n \to \mathbb{R}^n$ of a function f is defined by:

$$\text{prox}_f(v) = \arg \min_{x \in \mathbb{R}^n} \left(f(x) + \frac{1}{2} \| x - v \|^2 \right)$$

The scaled proximal operator $\text{prox}_{\lambda f} : \mathbb{R}^n \to \mathbb{R}^n$ is defined by:

$$\text{prox}_{\lambda f}(v) = \arg \min_{x \in \mathbb{R}^n} \left(f(x) + \frac{1}{2\lambda} \| x - v \|^2 \right)$$
Special case: Projection

- Consider a closed convex set $C \neq \emptyset$
- Let ι_C be the **indicator function** of C: $\iota_C(x) = 0$ if $x \in C$; ∞ otherwise.

$$\text{prox}_{\iota_C}(x) = \arg \min_y \left(\iota_C(y) + \frac{1}{2} \| y - x \|^2 \right) = \arg \min_{y \in C} \frac{1}{2} \| y - x \|^2 =: P_C(x)$$

- By generalizing ι_C to f, we generalize P_C to prox_f.
Proximal “step size”

\[\text{prox}_{\lambda f}(v) = \arg \min_{x \in \mathbb{R}^n} \left(f(x) + \frac{1}{2\lambda} \| x - v \|^2 \right) \]

- \(\lambda > 0 \) is the “step size”:
 - \(\lambda \uparrow \infty \implies \text{prox}_{\lambda f}(v) \to \arg \min_{x \in \mathbb{R}^n} f(x) \)
 (In case there are multiple solutions, pick the one closest to \(v \))
 - \(\lambda \downarrow 0 \implies \text{prox}_{\lambda f}(v) \to P_{\text{dom} f}(v) \)

\[P_{\text{dom} f}(v) = \arg \min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} \| v - x \|^2 : f(x) \text{ is finite} \right\} \]

- Given \(v \), (\(\text{prox}_{\lambda f}(v) - v \)) is not linear in \(\lambda \), so \(\lambda \) has the function like a step size is not a step size
Examples

- **Linear function:** Let \(a \in \mathbb{R}^n, \ b \in \mathbb{R} \) and

 \[
 f(x) = a^T x + b.
 \]

 Then,

 \[
 \text{prox}_{\lambda f}(v) = \arg \min_{x \in \mathbb{R}^n} \left((a^T x + b) + \frac{1}{2\lambda} \|x - v\|^2 \right)
 \]

 has first-order optimality conditions:

 \[
 a + \frac{1}{\lambda} (\text{prox}_{\lambda f}(v) - v) = 0 \iff \text{prox}_{\lambda f}(v) = v - \lambda a
 \]

- **Application:** proximal operator of linear approximation of \(f \)

 - let \(f^{(1)}(x) = f(x^0) + \langle \nabla f(x^0), x - x^0 \rangle \)

 - then, \(\text{prox}_{\lambda f^{(1)}}(x^0) = x^0 - \lambda \nabla f(x^0) \) is a gradient step with size \(\lambda \)
Examples

- **Quadratic function** Let $A \in \mathbb{S}_+^n$ be a symmetric positive semi-definite matrix, $b \in \mathbb{R}^n$, and

\[
f(x) = \frac{1}{2} x^T A x - b^T x + c.
\]

The proximal operator

\[
\text{prox}_{\lambda f}(v) = \arg \min_{x \in \mathbb{R}^n} \left(f(x) + \frac{1}{2\lambda} \|x - v\|^2 \right)
\]

has first order optimality conditions:

\[
(Av^* - b) + \frac{1}{\lambda} (v^* - v) = 0 \iff v^* = (\lambda A + I)^{-1} (\lambda b + v)
\]

\[
\iff v^* = (\lambda A + I)^{-1} (\lambda b + \lambda Av + v - \lambda Av)
\]

\[
\iff v^* = v + (A + \frac{1}{\lambda} I)^{-1} (b - Av)
\]

It gives a **iterative refinement method** for least squares problems.
\[
\text{prox}_\lambda f(v) = v + (A + \frac{1}{\lambda} I)^{-1}(b - Av)
\]

- **Application:** *proximal operator of quadratic approximation of \(f \)

 - let \(f^{(2)}(x) = f(x^0) + \langle \nabla f(x^0), x - x^0 \rangle + \frac{1}{2}(x - x^0)^T \nabla^2 f(x^0)(x - x^0) \)

 \[
 = \frac{1}{2} x^T Ax - b^T x + c
 \]

 where

 - \(A = \nabla^2 f(x^0) \)
 - \(b = (\nabla^2 f(x^0))^T x^0 - \nabla f(x) \)

 - by letting \(v = x^0 \), we get

 \[
 \text{prox}_\lambda f^{(2)}(x^0) = x^0 - (\nabla^2 f(x^0) + \frac{1}{\lambda} I)^{-1}\nabla f(x^0)
 \]

- **modified-Hessian Newton** update, **Levenberg-Marquardt** update
Examples

- **ℓ_1-norm**: $x \in \mathbb{R}^n$, let $f(x) = \|x\|_1$, then

 $$\text{prox}_{\lambda f} = \text{sign}(x) \cdot \max(|x| - \lambda, 0) = x - P_{[-\lambda, \lambda]^n} x.$$

 The operator is often written as $\text{shrink}(x, \lambda)$

- **ℓ_2-norm**: let $f(x) = \|x\|_2$, then

 $$\text{prox}_{\lambda f} = \text{shrink}_{\| . \|}(x, \lambda) = \max(\|x\| - \lambda, 0) \frac{x}{\|x\|} = x - P_{B(0, \lambda)} x,$$

 where we let $0/0 = 0$ if $x = 0$.

More examples:

- **ℓ_{∞}-norm**.

- **$\ell_{2,1}$-norm**.

- Unitary-invariant matrix norms: **Frobenius-norm, nuclear-norm, maximal singular value**.
Properties

Proposition (separable sums)

Suppose that $f(x, y) = \phi(x) + \psi(y)$ is a block separable function

$$\text{prox}_{\lambda f}(v, w) = (\text{prox}_{\lambda \phi}(v), \text{prox}_{\lambda \psi}(w))$$

- Note: we have observed this with $f(x) = \sum_{i=1}^{n} |x_i|$.
Properties

Theorem (minimizer = fixed point)

Let $\lambda > 0$. Point $x^* \in \mathbb{R}^n$ is a minimizer of f if, and only if, $\text{prox}_{\lambda f}(x^*) = x^*$.

Proximal-point algorithm (PPA)

- **Iteration:**
 \[x^{k+1} = \text{prox}_{\lambda f}(x^k) \]

- **Convergence:**
 - For strongly convex \(f \), \(\text{prox}_{\lambda f} \) is a contraction, i.e., \(\exists C_0 < 1: \)
 \[\| \text{prox}_{\lambda f}(x) - \text{prox}_{\lambda f}(y) \| \leq C_0 \| x - y \|. \]

 Let \(x = x^k \) and \(y = x^* \). We get
 \[\| x^{k+1} - x^* \| = \| \text{prox}_{\lambda f}(x^k) - \text{prox}_{\lambda f}(x^*) \| \leq C_0 \| x^k - x^* \|. \]

 Iterate this, then
 \[\| x^{k+1} - x^* \| \leq C_0^{k+1} \| x^k - x^* \|. \]

 \(x^k \) converges \(x^* \) linearly.
For general convex f, $\text{prox}_{\lambda f}$ is **firmly nonexpansive**, i.e.,

$$\|\text{prox}_{\lambda f}(x) - \text{prox}_{\lambda f}(y)\|^2 \leq \|x - y\|^2 - \|(x - \text{prox}_{\lambda f}(x)) - (y - \text{prox}_{\lambda f}(y))\|^2.$$

From this inequality, one can show:

- $x^k \rightarrow x^*$ weakly; still true if computation error is summable
- fixed-point residual $\|\text{prox}_{\lambda f}(x^k) - x^k\|^2 = o(1/k^2)$
- objective function $f(x^k) - f(x^*) = o(1/k)$
Proximal operator and resolvent

Definition
Given a mapping T, $(I + \lambda T)^{-1}$ is called the resolvent of T.

Proposition
Suppose that f has subdifferential ∂f. We have

$$\text{prox}_{\lambda f} = (I + \lambda \partial f)^{-1}.$$

In addition, they are single valued.
Interpretation: implicit (sub)gradient

\[x^{k+1} = \text{prox}_{\lambda f}(x^k) \quad \iff \quad x^{k+1} = (I + \lambda \partial f)^{-1}(x^k) \]
\[\iff \quad x^k \in (I + \lambda \partial f)x^{k+1} \]
\[\iff \quad x^k \in x^{k+1} + \lambda \partial f(x^{k+1}) \]
\[\iff \quad x^{k+1} = x^k - \lambda \tilde{\nabla} f(x^{k+1}) \]

- **Notation:** \(\tilde{\nabla} f \) is the subgradient mapping uniquely defined by \(\text{prox}_{\lambda f} \)
- Let \(y^{k+1} = \tilde{\nabla} f(x^{k+1}) \in \partial f(x^{k+1}) \). Plugging formula of \(x^{k+1} \), we get
 \[y^{k+1} \in \partial f(x^k - \lambda y^{k+1}) \].
- Given \(x^k \) and \(\lambda \), compute \(\text{prox}_{\lambda f}(x^k) \iff \text{solve } x^{k+1} \) (primal approach)
 \[\iff \text{solve } y^{k+1} \] (dual approach)
Summary: proximal operator

- Conceptually simple, easy to understand and derive, a standard tool for nonsmooth and/or constrained optimization

- Work for any $\lambda > 0$, more stable than gradient descent

- Gives a fixed-point optimality condition and a converging algorithm

- “Sits at a high level of abstraction”

- Interpretations: general projection, implicit gradient, backward Euler

- Closed-formed or quick solutions for many basic functions

Next few lectures:

- Prox operation is applied when it is easily evaluated, so often a step in other algorithms, especially operator splitting algorithms

- Under separable structures, it is amenable to parallel and distributed algorithms with interesting applications in machine learning, signal processing, compressed sensing, large-scale modern convex problems