Tree Traversals

- It's unclear how we should print a tree.
- Top to bottom? Left to right?
- A tree traversal is a specific order in which to trace the nodes of a tree.
- There are 3 common tree traversals.
 1. in-order: left, root, right
 2. pre-order: root, left, right
 3. post-order: left, right, root
- This order is applied recursively.
- So for in-order, we must print each subtree's left branch before we print its root.
- Note "pre" and "post" refer to when we visit the root.
Tree Traversal Example

- Let's do an example first...
 - **in-order**: (left, root, right)
 3, 5, 6, 7, 10, 12, 13, 15, 16, 18, 20, 23
 - **pre-order**: (root, left, right)
 15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23
 - **post-order**: (left, right, root)
 3, 7, 6, 10, 13, 12, 5, 18, 23, 20, 16, 15

In-Order Traversal

The in-order traversal is probably the easiest to see, because it sorts the values from smallest to largest.

```cpp
template <typename T>
void Tree<T> :: printInOrder (std::ostream& out, TreeNode<T>* rootNode) {
    if (rootNode != NULL) {
        printInOrder (out, rootNode->left);
        out << (rootNode->data) << "\n";
        printInOrder (out, rootNode->right);
    }
    return;
}
```

Example call in main: `myTree.printInOrder (cout, myTree.getRoot());`
Pre-Order Traversal

- Pre-order traversal prints in order: root, left, right.

```cpp
template <typename T>
void Tree<T>::printPreOrder(std::ostream& out, TreeNode<T>* rootNode) {
    if (rootNode != NULL) {
        out << (rootNode->data) << "\n";
        printPreOrder (out, rootNode->left);
        printPreOrder (out, rootNode->right);
    }
    return;
}
```

Post-Order Traversal

- Post-order traversal prints in order: left, right, root.
- It is also called a depth-first search.

```cpp
template <typename T>
void Tree<T>::printPostOrder(std::ostream& out, TreeNode<T>* rootNode) {
    if (rootNode != NULL) {
        printPostOrder (out, rootNode->left);
        printPostOrder (out, rootNode->right);
        out << (rootNode->data) << "\n";
    }
    return;
}
```
Sorting Values Using In-Order

- The in-order traversal always prints the values in sorted order from smallest to largest.
- One application of the in-order traversal is sorting a list.
- How long would it take to sort a list?
- Each insert operation takes $O(h)$ time.
- So doing N inserts would take $O(Nh)$ time.
- The in-order traversal is $O(N)$, so building a tree and printing its values in sorted order takes: $O(Nh) + O(N) = O(Nh)$ time.

Storing Trees Using Pre-Order

- Suppose we want to transmit our tree across the country to another programmer.
- Sending the in-order list would tell them the values, but would not communicate how the tree is built.
- Trees are usually stored with the pre-order traversal.
- Ex All of the trees below have the in-order walk: 1 2 3. But only one of the trees below has the pre-order walk 1 2 3.

```
Pre-order: 2 1 3     1 2 3     1 3 2     3 2 1     3 1 2
  1---2 3
    2
  3
```
Storing Trees Using Pre-Order

- Ex Can you recover the binary tree from its pre-order traversal?

 15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23

Tree Traversal Example

- Given a tree, you are expected to know how to do the in-, pre-, and post-order traversals.

- Ex Write the 3 traversals of the given tree.

In-order: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda
Pre-order: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda
Post-order: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke
Summary of Trees

- Compared to vectors and linked lists, trees have a running time somewhere in between the best and worst.

<table>
<thead>
<tr>
<th></th>
<th>Vector</th>
<th>Linked List</th>
<th>Binary Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert / Erase</td>
<td>O(N)</td>
<td>O(1)</td>
<td>O(h)</td>
</tr>
<tr>
<td>(at known position)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexing</td>
<td>O(1)</td>
<td>O(N)</td>
<td>O(h)</td>
</tr>
<tr>
<td>(look up element)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finding an Element</td>
<td>O(N)</td>
<td>O(N)</td>
<td>O(h)</td>
</tr>
</tbody>
</table>

- But what is \(h \) in terms of \(N \)?

Best & Worst Height

- In the **worst case**, the tree is completely unbalanced.

- The height \(h = N-1 = O(N) \).
- In the **best case**, the tree is perfectly balanced.

- **Fact**: A completely full tree with height \(h \) has \(N = 2^{h+1} - 1 \) nodes.
- Solving for \(h \) gives \(h = \log(N+1)-1 = O(\log N) \).
- What's the average height?
Average Height

- Let's look at a randomly built tree: a tree built from random numbers inserted in random order.
- **Theorem** The average height h of a randomly built tree with N nodes satisfies

$$h \leq 2(\beta + 1) \left(\sum_{i=1}^{N} \frac{1}{i} \left(1 - \frac{2}{N} \right) \right) + 2$$

where $\beta \approx 4.3191366$ solves the equation

$$(\ln \beta - 1) \beta = 2$$

- So on average, $h = O(\log N)$.
- So tree operations are on average $O(\log N)$.