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Abstract

The Kantorovich-Rubinstein-Wasserstein metric defines the distance be-
tween two probability measures µ and ν on Rd+1 by computing the cheapest
way to transport the mass of µ onto ν, where the cost per unit mass transported
is a given function c(x,y) on R2d+2. Motivated by applications to shape recog-
nition, we analyze this transportation problem with the cost c(x,y) = |x− y|2

and measures supported on two curves in the plane, or more generally on the
boundaries of two domains Ω,Λ ⊂ Rd+1. Unlike the theory for measures which
are absolutely continuous with respect to Lebesgue, it turns out not to be the
case that µ-a.e. x ∈ ∂Ω is transported to a single image y ∈ ∂Λ; however, we
show the images of x are almost surely collinear and parallel the normal to ∂Ω
at x. If either domain is strictly convex, we deduce that the solution to the
optimization problem is unique. When both domains are uniformly convex, we
prove a regularity result showing the images of x ∈ ∂Ω are always collinear,
and both images depend on x in a continuous and (continuously) invertible
way. This produces some unusual extremal doubly stochastic measures.
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Introduction

In his 1993 thesis, D. Fry proposed an algorithm which he showed met with some suc-
cess in enabling a computer to identify leaves of New England from their outlines [9].
Like many other approaches to shape recognition, this algorithm involved comparing
the unknown leaf to a catalog of standard leaves, and deciding which known leaf af-
forded the best fit. The novelty of Fry’s approach lay in his criterion for measuring
goodness of fit between the unknown sample and the catalog leaves: his proposal
(which should be compared with alternatives discussed in Mumford [18]) was to dis-
tribute unit mass uniformly along each leaf boundary, and then calculate the total
cost of transporting the mass from the boundary of the sample leaf to the specified
distribution on the catalog leaf. The cost per-unit-mass-transported was expressed
as a sum

( distance
transported

)2 + β
[
1− cos( angle

rotated
)
]
≈ ( distance

transported
)2 + β

2
( angle

rotated
)2,

weighted by a parameter β measuring the significance of local reorientations relative
to translations. Parameterizing the two leaf boundaries by piecewise Lipschitz curves
σ and τ : [0, 1] −→ R2 (each having constant speed) in the plane, Fry’s distance
between them is defined by

d2
β(σ, τ) := inf

γ̃

∫ 1

0

∫ 1

0

|σ(s)− τ(t)|2 +
β

2

∣∣∣∣∣ σ̇(s)

|σ̇|
−
τ̇(t)

|τ̇ |

∣∣∣∣∣
2
 dγ̃(s, t), (1)

the infimum being taken over all doubly stochastic measures γ̃ on the unit square: i.e.
γ̃[B× [0, 1]] = H1[B] = γ̃[[0, 1]×B] for each Borel set B ⊂ [0, 1], where Hd denotes d-
dimensional Hausdorff measure (so H1 is Lebesgue measure). Thus each comparison
involves computing the solution to a Monge-Kantorovich transportation problem (1),
c.f. Rachev [19]. When β = 0, this amounts to metrizing the distance between leaf
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boundaries using the Kantorovich-Rubinstein-Wasserstein L2 metric [14][23], or the
Wasserstein distance as it has come to be known in information theory [12].

Motivated by the desire to understand what features of the curves this distance
is sensitive to, we analyze the β = 0 problem by examining the measures γ̃ which
minimize (1). Such γ̃ are called optimal. Since the minimization problem amounts to
an infinite-dimensional linear program, at least one optimal joint measure is known
to exist (e.g. Kellerer [15]), and to be an extreme point in the convex set of dou-
bly stochastic measures. The geometrical properties of this measure can be studied
through its support, which is denoted spt γ̃ and refers to the smallest closed subset
K ⊂ [0, 1]2 of the square carrying full mass γ̃[K] = 1. Having (so, to) ∈ spt γ̃ means it
is efficient to transport mass from the point x = σ(so) on the first curve to y = τ(to)
on the second one. Our main results establish topological and geometrical properties
of this support, and show strict convexity of either curve is enough to ensure unique-
ness of the optimal measure. We give examples demonstrating some ways in which
our hypotheses are necessary and our conclusions sharp. Of course, β 6= 0 proved
important in Fry’s study of object recognition, but unfortunately remains beyond the
scope of our techniques to analyze.

Fixing β = 0, it is convenient to dispense with the parameterizations σ and τ and
rephrase the transportation problem in terms of the normalized arclength measures
µ and ν of the two curves in the plane. More generally, given two Borel probability
measures µ and ν on Rd+1, the Wasserstein distance between them is defined by

d2(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Rd+1×Rd+1

|x− y|2 dγ(x,y). (2)

Here Γ(µ, ν) denotes the set of all Borel measures on Rd+1 × Rd+1 having µ and
ν as marginals: µ[B] = γ[B × Rd+1] and γ[Rd+1 × B] = ν[B] for each Borel set
B ⊂ Rd+1. When µ = σ#H1 and ν = τ#H1 measure arclengh along two curves
(defined e.g. by using (28) to push forward Lebesgue measure from the interval to the
plane), then d(µ, ν) = d0(σ, τ) is easily verified. Moreover, each optimal measure γ̃
for (1) corresponds to an optimal measure γ ∈ Γ(µ, ν) for (2) obtained by pushing γ̃
forward through the map (s, t) −→ (σ(s), τ(t)) from the square [0, 1]2 to R2 ×R2.

In the more familiar form (2) to which we now restrict ourselves, the Monge-
Kantorovich problem has begun to be quite well-understood after much scrutiny
through the past decade; see Brenier [4] or Gangbo & McCann [11] for references.
One of the initial insights of Brenier [3], Smith & Knott [22], and Rüschendorf &
Rachev [21], was that minimizers to (2) could be characterized by the existence of
a convex function ψ : Rd+1 → R ∪ {+∞} whose subdifferential ∂ψ ⊂ Rd+1 × Rd+1

contains the support of every optimal measure γ ∈ Γ(µ, ν). Support again refers to
the smallest closed set spt γ ⊂ Rd+1 ×Rd+1 of full mass, while ∂ψ denotes the set of
all (x,y) ∈ Rd+1 ×Rd+1 satisfying

ψ(z)− ψ(x) ≥ y · (z− x) (∀ z ∈ Rd+1); (3)

each (x,y) ∈ ∂ψ corresponds to a hyperplane which touches but does not cross the
graph of ψ. The convex function ψ arises as a Lagrange multiplier to the constraints
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µ and ν; its existence was originally deduced from the duality theory of Kantorovich
[13]. For alternative approaches consult Gangbo [10] or McCann [16].

As Brenier also realized, when µ is absolutely continuous with respect to Lebesgue,
so ψ is differentiable on a set dom∇ψ ⊂ Rd+1 of full µ-measure, the optimizer γ in
(2) will be unique: it full mass lies on the graph {(x,∇ψ(x)) | x ∈ dom∇ψ} of the
gradient of ψ. This means µ-a.e. point x must be mapped to the unique destination
y = ∇ψ(x) for transportation to be efficient; the Borel map t := ∇ψ pushes µ forward
to ν, and it does so optimally. The same conclusions were subsequently extended
to the case where µ vanishes merely on all Lipschitz hypersurfaces (i.e. surfaces of
codimension one) in Rd+1 [16][11]. And when µ and ν are given by bounded densities
on two domains Ω and Λ ⊂ Rd+1, Caffarelli [5][6] exploited connections with the
Monge-Ampère equation to show that smoothness of the map t = ∇ψ follows from
convexity of Λ.

Nevertheless, for the present application we are interested precisely in the case
in which both measures concentrate on hypersurfaces: namely curves in R2. In this
case, Fry’s numerical evidence suggested that the support of the optimal measure γ
might fail to concentrate on the graph of any map [9, Figure 3.5]. This evidence is
reproduced in Figure 1(a), which provides a ‘movie’ illustrating the optimal matching
between a pair of pentagons, depicted as an evolution from the convex to the non-
convex shape. This evolution is obtained by projecting spt γ ⊂ R2 × R2 onto the
plane though a sequence of nine maps πλ(x,y) = (1 − λ)x + λy which interpolate
between π0(x) = x and π1(y) = y. Note how certain stretches of boundary seem to
disintegrate into two pieces just after time λ = 0, the two pieces being rearranged
into the final curve when λ = 1. Fry claims this disintegration became finer and finer
when the grid size was reduced. Although this picture may seem pathological, he
noted that the presence of such phenomena varied with the initial and final shapes Ω
and Λ ⊂ R2; for comparison see Figure 1(b).

In trying to reconcile the theory with these numerical experiments, we have been
led to natural examples in which the optimal measure γ can be proved to be unique,
though its support fails to concentrate on the graph of a single map. Even when both
curves are smooth and strictly convex perturbations of the same isosceles triangle
an optimal map may not exist; see Figures 3–4 and Examples 3.12–3.13. What
does remain true is that the images of µ-a.e. x will be collinear: they lie on a line
perpendicular to the first curve’s tangent at x, as one observes in Figure 1(a). This
follows from the tangential differentiability of the Kantorovich potential ψ almost
everywhere along the curve: in those sections which disintegrate into multiple images
it is the normal differentiability of ψ which fails. Finally, when both curves are
strictly convex, the tangential derivative of ψ will be shown not only to exist but to
be continuous everywhere (assuming the curves are differentiable). Since each line
intersects a strictly convex curve twice at most, this means each point x ∈ sptµ can
have only two images: denoted t+(x) and t−(x) ∈ spt ν, they correspond to the two
limits of ∇ψ(xk) obtained as xk → x from outside or inside the curve, respectively.
The outer trace t+ : sptµ −→ spt ν is shown to give a global homeomorphism between
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a) b)

Figure 1: Numerical simulations of ∂Ω evolving optimally onto ∂Λ (for β = 0).
Each movie starts in the upper left corner and proceeds from left to right, down
the page. They were constructed by discretizing the boundaries, finding the optimal
correspondence between segments of ∂Ω and ∂Λ, and interpolating the locations of
those segments linearly with time λ. Courtesy of David Fry.

the curves, while the inner trace t− is continuous and continuously invertible on the
closure of the set S2 := {x ∈ sptµ | t+(x) 6= t−(x)}where it differs from t+. Together,
the graphs of these two maps cover the support spt γ of the optimal measure. It is
interesting that the geometry of the traces determines unambiguously how each bit
of the first curve must divide itself among its potential destinations when the curve
at x splits into two segments of masses dµ1(x) and dµ(x) − dµ1(x) whose positions
(1−λ)x+λt+(x) and (1−λ)x+λt−(x) evolve toward the second curve with λ ∈ [0, 1].
The rule determining µ1 is that if dµ(x) 6= dµ1(x), then no point but x of the first
curve arrives at the point t+(x) on the second curve (Lemma 2.5). This rule implies
the graph of t+ is covered by spt γ. Uniqueness of the optimal measure is a more
important consequence, implying in turn that γ is extremal in the convex set Γ(µ, ν).

Our results extend to hypersurfaces in all dimensions, where they may also find
application and — except for continuous differentiability of ψ — are not much harder
to prove. Thus the general framework we choose involves measures µ and ν, each
supported on the boundary of a domain Ω ⊂ Rd+1 which will be assumed to be
bounded, Lipschitz, convex, etc. as required. Typical examples are the surface mea-
sures µ = z1Hdb∂Ω and ν = z2Hdb∂Λ, obtained by restricting d-dimensional Hausdorff
measure to the boundaries of two domains Ω and Λ ⊂ Rd+1 and normalizing with
constants z1 := 1/Hd(∂Ω) and z2 := 1/Hd(∂Λ). However, any Borel probability mea-
sures satisfying sptµ ⊂ ∂Ω and spt ν ⊂ ∂Λ may also be considered. In this case one
interprets the support of µ as a set covered to various depths using a unit volume
of paint, and the Wasserstein distance d(µ, ν) as measuring the minimum work (or
elastic energy) required to rearrange the paint so as to cover spt ν to a depth specified
by ν. This metric takes into account not only the geometry of the supports but also
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the weighting of points, thus combining useful aspects of the Hausdorff distance and
the area (or ‘template’) metric [18][9].

The first section of the paper is devoted mainly to recovering revelant background
theory concerning the Monge-Kantorovich problem (2) and convex functions [1][24],
before using it to deduce that the images of µ-a.e. x are collinear provided µ concen-
trates no mass on any submanifold of codimension two in Rd+1 (Corollary 1.5). For
the images to be perpendicular to the tangent space at x ∈ ∂Ω, we assume µ is abso-
lutely continuous with respect to surface measure on the Lipschitz domain Ω ⊂ Rd+1,
Lipschitz meaning that ∂Ω can be parameterized as the graph of a Lipschitz function
in suitable coordinates near any point, and therefore has a well-defined tangent space
at Hd-a.e. x. This condition is verified explicitly for convex domains in (68). We im-
pose the further geometrical restriction on the target that any straight line intersects
∂Λ at most k times when we want to conclude that almost every x ∈ ∂Ω has finitely
many images in Corollary 1.7.

Section 2 establishes uniqueness of the minimizer γ for (2) under the assumption
that Ω ⊂ Rd+1 is strictly convex, and µ absolutely continous with respect to its
surface measure Hdb∂Ω. The target ν can be any Borel probability measure on Rd+1.
A simple example with µ and ν measuring arclength along two rectangles shows
uniqueness can fail without strict convexity: Figure 2 and Example 2.1.

The third section marks the beginning of a regularity theory: it shows tangential
differentiability along ∂Ω of the convex function ψ whose subdifferential ∂ψ ⊃ spt γ
contains the support of the optimal measure. The proof is carried out for boundary
measures on strictly convex domains in the plane, leaving the extension to higher
dimensions for Section 4. We assume that µ (and ν) are free from atoms — meaning
µ[{x}] = 0 for every x ∈ Rd+1 — while ∂Λ = spt ν and ∂Ω = sptµ. The key idea is
monotonicity of ∂ψ, which follows from (3) and the definition:

Definition 0.1 (Monotonicity) The set M ⊂ Rd+1 × Rd+1 is monotone if all
(x1,y1) ∈M and (x2,y2) ∈M satisfy

(y1 − y2) · (x1 − x2) ≥ 0. (4)

A monotone relation is generally viewed as a multivalued mapping on Rd+1 which
rotates pairs of points by no more than 90◦; in keeping with this tradition we use
the notation M(x) := {y | (x,y) ∈M} to denote the images of x. We exploit the
fact that the subdifferential ∂ψ ⊂ Rd+1 × Rd+1 is also closed (because our convex
functions are continuous) to derive continuity of the maps t+ : ∂Ω −→ ∂Λ and t−bS2

whose graphs cover spt γ. Both maps are said to be monotone, meaning their graphs
are monotone subsets of Rd+1 × Rd+1. They are continuously invertible because of
symmetry in µ ↔ ν. The results of this section and the next are summarized by
Theorem 3.8, which asserts that the optimal measure γ ∈ Γ(µ, ν) satisfies

{(x, t+(x))}x∈spt µ ⊂ spt γ ⊂ {(x, t+(x))}x∈∂Ω ∪ {(x, t
−(x))}x∈S2

, (5)

where t+ and t− are the traces of ∇ψ on the boundary of Ω, and S2 := ∂Ω\dom∇ψ.
As we know from the examples studied at the end of Section 3, the result (5) is
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optimal in the sense that the first containment cannot be replaced by an equality:
the full mass of γ is not contained by any graph. On the other hand, we cannot say
whether the second containment generally reduces to equality.

The final section contains the key estimate used to prove Theorem 3.8 in dimen-
sions d > 1. To establish the estimate (and theorem), we assume that the surface
densities of µ and ν are uniformly bounded:

µ <
1

ε
Hdb∂Ω and ν > εHdb∂Λ (6)

while

µ > εHdb∂Ω and ν <
1

ε
Hdb∂Λ (7)

for some ε > 0, where the domains Ω and Λ ⊂ Rd+1 both satisfy the definition 0.2
below of uniform convexity. Actually, continuity of the maps t+ and t−bS2

in (5)
follows just from (6), uniform convexity of Ω, and strict convexity of ∂Λ ⊃ spt ν; it
is only in proving t+ : ∂Ω −→ ∂Λ and t− : S2 ⊂ ∂Ω −→ T 2 ⊂ ∂Λ are continuously
bijective that (7) and uniform convexity of Λ are employed. The bounds (6–7) are
stronger than we required in the plane: the difference between R2 and Rd+1 in the
proof is that any connected subset of ∂Ω ⊂ R2 having more than one point contains
a relatively open arc, and therefore has positive ν-measure just from ∂Λ = spt ν
without using area estimates to appeal to (6).

Before concluding this discussion, we introduce some terminology pertaining to
convex sets Ω ⊂ Rd+1. We say that n ∈ Rd+1 is a generalized outward normal to ∂Ω
at x ∈ ∂Ω if 0 ≥ n · (z − x) for all z ∈ Ω. Thus the generalized outward normal
coincides with the classical normal at points where ∂Ω is differentiable. Abusing
terminology, we drop the prefix “generalized”. Observe that convexity of Ω yields a
non-zero normal at every point of ∂Ω. The set of unit outward normals at x ∈ ∂Ω is
therefore non-empty, and denoted NΩ(x). Then NΩ(x) consists of a single element,
denoted nΩ(x), if and only if x is a point of differentiability for ∂Ω.

Definition 0.2 (Strict vs. Uniform Convexity) A convex domain Ω ⊂ Rd+1 is
strictly convex if its boundary ∂Ω contains no line segments. It is uniformly convex
if for some R > 0, all x ∈ ∂Ω and all unit normals n̂ ∈ NΩ(x), the entire domain
Ω ⊂ B(x−R n̂;R) lies inside the ball of radius R having outward normal n̂ at x.

Observe that uniformly convex domains will necessarily be bounded and strictly con-
vex: any boundary segment would lie outside of a sphere through its midpoint. An-
other characterization of strict convexity is that each supporting hyperplane touches
∂Ω at a single point: thus x = xo whenever x ∈ Ω, xo ∈ ∂Ω and no ∈ NΩ(xo) satisfy

no · (x− xo) ≥ 0. (8)

Further properties of convex sets are summarized in Appendix A.
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A final feature of Fry’s distance (1) worth mentioning is its behaviour with respect
to symmetries, which may prove useful in applications where one wants to disregard
e.g. translations and/or dilations of the known prototype. The identity

d2
β(σ, τ + y) = d2

β(σ, τ) + |y|2 − 2y ·
∫ 1

0
[σ(s)− τ(s)]ds (9)

shows d2
β(σ, τ + y) to be minimized when the center of masses of the two curves

coincide with, say, the origin. For β = 0 the best dilation λ ≥ 0 of the standard leaf
is easily deduced by computing d0(σ, τ) and using

d2
β(σ, λτ) = (1− λ)

[∫ 1

0
|σ(s)|2 ds− λ

∫ 1

0
|τ(t)|2 dt

]
+ λ d2

β/λ(σ, τ). (10)

It is our pleasure to conclude by thanking David Mumford for bringing this prob-
lem to our attention, and for his ongoing inspiration and advice. We are also very
grateful to David Fry for permission to reproduce [9, Figures 3.4 and 3.5].

Notation

For the convenience of the reader we collect together some of the notation introduced
throughout the text.
• Hn denotes n-dimensional Hausdorff measure on the Borel σ-algebra of sets.
• The closed segment joining x to y ∈ Rd+1 is denoted by

[x,y] := {(1− λ)x + λy | λ ∈ [0, 1]}. (11)

• If Ω ⊂ Rd+1 then Ω denotes the closure, Ωc := Rd+1 \ Ω the complement, and
conv(Ω) the convex hull of Ω, meaning the smallest convex set containing Ω.
• If Ω is a convex set and x ∈ ∂Ω, then NΩ(x) stands for the set of all outward

unit normals to ∂Ω at x — a closed, geodesically convex subset of the unit sphere.
When NΩ(x) contains only one element, we denote that unit vector by nΩ(x).
• If ψ : Rd+1 → R∪{+∞} is not identically +∞, the Legendre-Fenchel transform

of ψ is the convex, lower semicontinuous function ψ∗ : Rd+1 → R∪{+∞} defined by

ψ∗(y) := sup
x∈Rd+1

{x · y− ψ(y)}. (12)

Hence ψ∗∗ is the greatest lower semicontinuous convex function dominated by ψ.
• The set where ψ is differentiable is denoted by dom∇ψ ⊂ Rd+1.
• The subdifferential of a convex function ψ : Rd+1 → R ∪ {+∞} is the set

∂ψ ⊂ Rd+1 ×Rd+1 consisting of all (x,y) satisfying

ψ(z)− ψ(x) ≥ y · (z− x), (∀z ∈ Rd+1).

If (x,y) ∈ ∂ψ we may also write y ∈ ∂ψ(x). Recall x ∈ ∂ψ∗(y) whenever y ∈ ∂ψ(x),
while the converse also holds true if ψ is convex lower semicontinuous. In that case



WG/RJMc/Shape recognition via Wasserstein distance/August 2, 2000 9

∂ψ is a closed set. Note that x ∈ dom∇ψ precisely when ∂ψ(x) consists of a single
element, namely ∇ψ(x). In general, the set ∂ψ(x) ⊂ Rd+1 is closed and convex.
• If µ is a Borel measure on Rd+1, we denote by sptµ the support of µ, which

refers to the smallest closed set K such that µ[Rd+1 \K] = 0. For S ⊂ Rd+1 Borel we
denote by µbS the restriction of µ to S, defined by µbS[B] := µ[B ∩ S] for B ⊂ Rd+1.
• Similarly, ψbS denotes the restriction of the function ψ to S ⊂ Rd+1.
• If µ is a Borel measure on Rd+1 and t : Rd+1 → Rn is a Borel map we define

t#µ to be the Borel measure on Rn given by t#µ[B] := µ[t−1(B)] for B ⊂ Rn. We
call t#µ the push-forward of µ by t.
• We denote the identity map id(x) = x by id.
• If µ and ν are two Borel measures on on Rd+1, Γ(µ, ν) stands for the set of all

Borel measures on Rd+1×Rd+1 having µ and ν as their marginals: µ[B] = γ[B×Rd+1]
and γ[Rd+1 ×B] = ν[B] for all Borel sets B ⊂ Rd+1.

1 BackgroundTheory, General Curves andSurfaces

The first goal of the present section is to recall a central result from the theory
developed for the special form (2) of the Monge-Kantorovich problem by Brenier [3][4],
Smith and Knott [22], Rüschendorf and Rachev [21], and others. It characterizes
the optimal measures γ ∈ Γ(µ, ν) via the existence of a convex function ψ whose
subdifferential contains their support. It is the starting point for our study. Although
this function will not be unique, we can (and do) normalize ψ so that ∇ψ(x) belongs
to spt ν ⊂ Rd+1. Focusing on compactly supported measures thus ensures our convex
functions satisfy Lipschitz estimates throughout Rd+1. At the end of the section
we shall exploit the theorem to conclude that if µ is absolutely continuous with
respect to surface measure Hdb∂Ω on a Lipschitz domain Ω ⊂ Rd+1, then the images
∂ψ(x) ∩ spt ν almost surely lie on a line parallel to the normal nΩ(x). Although the
first theorem is well-known and can be recovered from e.g. [11, Corollaries 2.4 and 2.8],
we conveniently sketch a duality based proof following the argument of Brenier.

Theorem 1.1 (Optimality Criterion) Fix Borel probability measures µ and ν of
bounded support in Rd+1. Then there is a convex function ψ : Rd+1 −→ R whose
subdifferential ∂ψ includes the support spt γ ⊂ Rd+1 × Rd+1 of all minimizers γ ∈
Γ(µ, ν) for (2). Moreover, at each point x where ψ is differentiable, ∇ψ(x) ∈ spt ν.

Proof: 1. The factorization |x − y|2 = |x|2 − 2x · y + |y|2 implies that computing
our Wasserstein distance (2) is equivalent to maximizing correlations:

sup
γ∈Γ(µ,ν)

∫
Rd+1×Rd+1

x · y dγ(x,y). (13)

Indeed γo is a maximizer for (13) if and only if it minimizes (2). Now the Kantorovich
duality principle asserts the infinite dimensional linear program (13) is dual to the
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minimization
inf

(ψ,φ)∈A

∫
Rd+1

ψ(x)dµ(x) +
∫

Rd+1
φ(y)dν(y), (14)

in the sense that the supremum in (13) and infimum in (14) coincide; see e.g. [15,
19, 21, 4]. Here A denotes the set of all pairs of functions (ψ, φ) from Rd+1 into
R ∪ {+∞} which are lower semicontinuous and satisfy

ψ(x) + φ(y) ≥ x · y (15)

for all x,y ∈ Rd+1. Another way of stating the duality is to say that (ψo, φo) ∈ A
and γo ∈ Γ(µ, ν) solve∫

Rd+1×Rd+1
(ψo(x) + φo(y)− x · y) dγo(x,y) = 0 (16)

if and only if (ψo, φo) and γo optimize (14) and (2) respectively. Note that the inte-
grand of (16) is non-negative whenever (ψo, φo) ∈ A.

2. Since the measures µ and ν have bounded support, well-known continuity
and compactness principles show that (13) admits a maximizer γo and (14) admits
a minimizer (ψo, φo) ∈ A; see e.g. Kellerer [15]. Without losing generality we may
assume φo(y) = +∞ outside spt ν, and define its Legendre-Fenchel transform φ∗o by

φ∗o(x) := sup
y∈Rd+1

{x · y − φo(y)}. (17)

Setting ψ := φ∗o, the pair (ψ, φo) ∈ A continues to be optimal since φ∗o ≤ ψo follows
from (15) and (17). Since y 6∈ sptµ does not contribute to (17), ψ is the convex
function given by

ψ(x) = sup
y∈spt ν

{x · y− φo(y)}. (18)

3. Claim: The compactness of spt ν and lower semicontinuity of φo in (18) imply
∇ψ(xo) ∈ spt ν at each point xo where ψ is differentiable.

Proof of Claim: Fix any xo ∈ Rd+1 where ψ happens to be differentiable. Since
the maximum value (18) is attained at some yo ∈ spt ν, the non-negative function

ψ(x) + φo(yo)− x · yo ≥ 0 (19)

vanishes at x = xo. It is therefore minimized, so its derivative ∇ψ(xo) − yo (with
respect to x ∈ Rd+1) must vanish. This proves the claim: ∇ψ(xo) = yo ∈ spt ν.

4. Recall that (16) is satisfied by our functions (ψ, φo) and any maximizer γo for
(13). The lower semicontinuous integrand is positive outside of a closed set where it
vanishes (and which therefore contains sptγo). Now let (xo,yo) ∈ spt γo, and observe
that (19) is minimized at x = xo. Thus 0 ∈ ∂ψ(xo) − yo and hence yo ∈ ∂ψ(xo)
which concludes the proof that spt γo ⊂ ∂ψ. QED.
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Remark 1.2 (Symmetry) Similarly, there is a convex function φ : Rd+1 −→ R
for which x ∈ ∂φ(y) whenever (x,y) belongs to the support of a minimizer γ for (2).
Indeed, we may take

φ(y) := sup
x∈spt µ

x · y − ψ(x), (20)

in which case ∇φ ∈ sptµ holds at each point of differentiability, while ∂φ(y) ⊂ ∂ψ∗(y)
and ∂ψ(x) ⊂ ∂φ∗(x) hold for y ∈ spt ν and x ∈ sptµ.

Remark 1.3 (Converse) Conversely, if γ ∈ Γ(µ, ν) is supported in the subdifferen-
tial ∂ψ of any convex function ψ : Rd+1 −→ R, then γ minimizes (2).

Proof of Remarks 1.2 and 1.3: We shall prove the second remark first:
1. Suppose γo ∈ Γ(µ, ν) is supported on the subdifferential of any convex function

ψ. Then for fixed (xo,yo) ∈ spt γo, the concave function x · yo−ψ(x) must attain its
maximum value at x = xo since 0 ∈ yo−∂ψ(xo). This maximum value xo ·yo−ψ(xo)
is more commonly denoted by ψ∗(yo) as in (12). Setting (ψo, φo) = (ψ, ψ∗) we have
just shown that the integrand in (16) vanishes on spt γ. Thus γo maximizes (13) —
establishing Remark 1.3 — while (ψ, ψ∗) ∈ A minimize the dual problem (14).

2. To prove the remaining remark, take ψ from Theorem 1.1 and let γo minimize
(2). Then spt γo ⊂ ∂ψ so (ψo, φo) := (ψ, ψ∗) ∈ A minimizes (14) as we just verified.
At this point we can repeat steps 2–4 of the proof of the theorem exchanging ψo ↔ φo,
x ↔ y and µ ↔ ν to conclude that xo ∈ ∂φ(yo) whenever (xo,yo) ∈ spt γ. Note in
particular that (18) becomes (20).

3. Comparing (12) with (20) yields ψ∗ ≥ φ; we claim equality holds on spt ν.
Indeed, since our measures are compactly supported, for each yo ∈ spt ν there is some
xo ∈ sptµ such that (xo,yo) ∈ spt γo ⊂ ∂ψ. This implies ψ∗(yo) = xo · yo − ψ(xo)
as in 1 above, after which (20) yields ψ∗(yo) ≤ φ(yo) to establish the equality claim.
Keeping yo ∈ spt ν, from 3 we deduce that any x ∈ ∂φ(yo) also belongs to ∂ψ∗(yo)
because

ψ∗(y)− ψ∗(yo) ≥ φ(y)− φ(yo) ≥ x · (y − yo)

holds for all y ∈ Rd. Thus ∂φ(yo) ⊂ ∂ψ∗(yo). For xo ∈ sptµ, the same computation
yields ∂ψ(xo) ⊂ ∂φ∗(xo) after verifying:

4. Claim: φ∗ ≥ ψ holds on Rd+1, with equality on sptµ.
Proof of Claim: Legendre transforming inequality 3 yields φ∗ ≥ ψ∗∗ = ψ, where

the identity follows from convexity and continuity of ψ in Theorem 1.1. It remains
to check equality on sptµ. From (20) one has φ := ψ∗∞, where

ψ∞(x) :=
{
ψ(x) if x ∈ sptµ
+∞ otherwise.

(21)

Thus ψ∞ ≥ ψ∗∗∞ = φ∗ ≥ ψ, since Legendre transforming twice yields the greatest
lower semi-continuous convex function dominated by ψ∞. The definition (21) of ψ∞
forces equalities throughout spt µ. QED.
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Corollary 1.4 (Extremal Images) For the convex function ψ of the theorem and
all x ∈ Rd+1, the extreme points of ∂ψ(x) will lie on spt ν.

Proof: Rockafellar [20, §25.6] asserts that ∂ψ(x) is the closed convex hull convS(x)
of the set S(x) of all limits of sequences of the form ∇ψ(x1), ∇ψ(x2), · · · , such that
xk ∈ dom∇ψ converges to x. Theorem 1.1 asserts that S(x) ⊂ spt ν and is bounded.
Thus ∂ψ(x) = convS(x) and its extreme points lie in S(x) ⊂ spt ν as desired. QED.

The next corollary states that if µ vanishes on all submanifolds of codimension
two, the optimal images of µ-a.e. x will be collinear. Though not needed here, should
µ merely vanish on the Lipschitz submanifolds of codimension k+1 in Rd+1, the same
argument yields the images of x almost surely lie in a k-dimensional affine subspace.

Corollary 1.5 (Collinearity) If the measure µ of the theorem vanishes on each
Lipschitz submanifold of dimension d− 1 in Rd+1, the images ∂ψ(x)∩ spt ν of x will
be collinear for µ-a.e. x ∈ Rd+1.

Proof: Take the convex function ψ : Rd+1 −→ R of the theorem, and let Z ⊂ Rd+1

denote the set of all x such that the convex set ∂ψ(x) has dimension greater than or
equal to two. Then Zaj́ıček [24] (and also Alberti [1]) show the Borel set Z can be
covered by countably many Lipschitz submanifolds of dimension d−1. Thus µ[Z] = 0.
For any x ∈ Rd+1 \ Z, which is to say µ-almost every x, all of the points in ∂ψ(x)
must lie on a single line: if even three points failed to be collinear their convex hull
would form a two-dimensional triangle inside ∂ψ(x). Since ψ is locally Lipschitz,
∂ψ(x) is a bounded convex set in one dimension: at most a line segment. QED.

Since we are primarily interested in boundary measures on a domain Ω ⊂ Rd+1,
it is useful to refine this corollary by relating the orientation of the segment to the
geometry of ∂Ω. This is accomplished in the following lemma, where we use [y, z] to
denote the line segment [y, z] := {λy + (1− λ)z | λ ∈ [0, 1]} in Rd+1.

Lemma 1.6 (Tangential Differentiability a.e.) Fix a Lipschitz domain Ω ⊂Rd+1

and convex function ψ : Rd+1 −→ R. At Hd-a.e. boundary point x, the surface ∂Ω is
differentiable and ψ is tangentially differentiable; i.e., ∂ψ(x) = [t+(x), t−(x)] parallels
the outward normal: t+(x)− t−(x) = λ(x)nΩ(x) with λ(x) ≥ 0.

Proof: Being convex, ψ is locally Lipschitz throughout Rd+1. Thus its restriction
ψb∂Ω is locally Lipschitz with respect to the induced metric on the Lipschitz sub-
manifold ∂Ω ⊂ Rd+1. Rademacher’s theorem assures differentiability of ψb∂Ω and ∂Ω
except on a Borel set Z ⊂ ∂Ω of zero area Hd[Z] = 0. At x ∈ ∂Ω \ Z the (Lipschitz)
function ψbRd+1 is therefore tangentially differentiable along ∂Ω; we claim nothing
about normal derivatives. Now the derivative of ψ in direction p ∈ Rd+1 is given [20,
§23.4] by

∇pψ(x) := lim
λ→0+

λ−1[ψ(x + λp)− ψ(x)] = sup
y∈∂ψ(x)

y · p. (22)
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Tangential differentiability means ∇pψ(x) = −∇−pψ(x) provided p · nΩ(x) = 0.
For each such p, (22) yields ∂ψ(x) ⊂ Hp := {y ∈ Rd+1 | y · p = ∇pψ(x)}. The
intersection of these affine subspaces Hp ⊃ ∂ψ(x) is a line parallel to nΩ(x). Now
∂ψ(x) is a closed convex subset of this line, and bounded by the Lipschitz constant of
ψ near x. Either it must degenerate to a single point ∂ψ(x) = {∇ψ(x)} = {t+(x)} =
{t−(x)}, or else to a closed segment with endpoints denoted by t+(x) and t−(x).
Here the superscripts ± are assigned so that t−(x)− t+(x) is anti-parallel to nΩ(x).
Setting λ(x) := |t+(x)− t−(x)| concludes the proof of the lemma. QED.

The map t+ : ∂Ω −→ Rd+1 of the lemma corresponds to the gradient of ψ as
computed from outside the domain Ω, while t− : ∂Ω −→ Rd+1 gives the gradient
of ψ as computed from inside the domain Ω. Where ψ is tangentially differentiable
along ∂Ω, these two gradients are well-defined and coincide in all but their normal
components. Should the normal components also agree, ∂ψ(x) = {∇ψ(x)} and
∇ψ(x) = t+(x) = t−(x). This point of view makes it easy to show that t+ and
t− are Borel maps on ∂Ω as claimed in the following section. They shall be referred
to as the outer trace (t+) and inner trace (t−) of ∇ψ on ∂Ω.

Now suppose µ and ν are boundary measures on a pair of domains Ω and Λ.
Since we are interested in obtaining maps t : ∂Ω −→ ∂Λ, the collinearity property
motivates the following condition on Λ:

any straight line intersects ∂Λ in at most k points. (23)

Strictly convex domains Λ ⊂ Rd+1 satisfy (23) with k = 2.

Corollary 1.7 (Images a.s. Parallel Normal) Let Ω and Λ ⊂ Rd+1 be bounded
domains, with probability measures µ on ∂Ω and ν on ∂Λ. Assume Ω is Lipschitz, µ
is absolutely continous with respect to surface measure Hdb∂Ω, and Λ satisfies (23).
There exist k maps t1, · · · , tk : ∂Ω→ ∂Λ, whose graphs

⋃k
1 {(x, ti(x)) | x ∈ ∂Ω} ⊂ ∂ψ

carry the full mass of all minimizers γ to (2). At µ-a.e. x, ∂Ω is differentiable and
has ti(x)− ti+1(x) as a (possibly degenerate) outward normal, i = 1, . . . , k − 1.

Proof: Let ψ denote the convex function from Theorem 1.1. Lemma 1.6 yields a
Borel set Z ⊂ ∂Ω of Hd and hence µ measure zero, such that ∂Ω is differentiable at
each x 6∈ Z and ∂ψ(x) = [t+(x), t−(x)] is a segment parallel to nΩ(x). This segment
intersects ∂Λ in at most k places by assumption (23), and at least 1 by Corollary 1.4.
We label the intersections t1(x), . . . , tk(x), ordered so that [ti(x)−ti+1(x)]·nΩ(x) ≥ 0.
Thus ti(x) − ti+1(x) parallels nΩ(x) and is a (possibly degenerate) outward normal
at x ∈ ∂Ω.

Finally, suppose γ ∈ Γ(µ, ν) minimizes (2) so spt γ ⊂ ∂ψ from Theorem 1.1.
Also spt γ ⊂ ∂Ω × ∂Λ. The preceding paragraph shows that ∂ψ ∩ [∂Ω × ∂Λ] ⊂⋃k

1 {(x, ti(x)) | x ∈ ∂Ω \ Z} ∪ [Z × ∂Λ]. Since γ[Z × ∂Λ] = µ[Z] = 0, we conclude
that the full mass of γ is carried by the graphs of the ti. QED.
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Figure 2: Several of the Possible Intermediate States between Two Rectangles

2 Unique Solutions for Strictly Convex Shapes

An example shows that our minimization (2) will not have a unique solution when µ
and ν measure arclength along a rectangle and its rotation by 90◦:

Example 2.1 (Uniqueness Fails for Rectangles) Let Ω ⊂ R2 be the 2× 6 rect-
angle ABEF and Λ its rotation C ′D′G′H ′ by 90◦. Taking µ := H1b∂Ω and ν := H1b∂Λ

to measure arclength around their respective boundaries, the optimal measures γ in
(2) can be computed explicitly (by checking their supports lie in the subdifferential ∂ψ
of the convex potential ψ(x1, x2) = f(x1) + g(x2) given by

f(s) = g(s) := (s2 + 5)/2 where |s| ≤ 1,
f(s) := |3s|, g(s) := |s|+ 2 where |s| ≥ 1,

(24)

and invoking Remark 1.3); they turn out not to be unique. Indeed, for efficient trans-
portation the line segments AB, CD, EF and GH must be mapped to A′B′, C ′D′,
E′F ′ and G′H ′ respectively in the orientation preserving way. The segment AH must
also be transported to A′H ′, but this time the map can reverse orientations, preserve
them, or do anything in between. In fact, it need not be a map at all, because every
joint measure with marginals H1bAH and H1bA′H′ has the very same cost. Similarly
one has the freedom to transport each of the segments BC, DE and FG to its re-
spective image B′C ′, D′E′ or F ′G′ in an arbitrary way. Thus all three intermediate
states depicted in Figure 2 are possible, and the optimization (2) yields no preference
among them. Note that this degeneracy is not removed by incorporating Fry’s penalty
β 6= 0 for local rotations.

The remainder of this section is devoted to proving that as long as one of the
two shapes — say Ω ⊂ Rd+1 — is strictly convex, and µ absolutely continuous with
respect to its surface measure Hdb∂Ω, then the optimal measure γ ∈ Γ(µ, ν) is unique.
In the context of Lemma 1.6 and its corollary, each x ∈ ∂Ω can have multiple images
t1(x), t2(x), · · · , tk(x) ∈ [t+(x), t−(x)]. The difficulty is to decide what fraction of
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the mass of µ near x is transported to each of the ti(x). This issue is resolved by
Lemma 2.5, which specifies that when ti(x) 6= t−(x) no point but x on the first
surface ∂Ω supplies ti(x) ∈ ∂Λ. In principle, the Jacobian of ti : ∂Ω −→ ∂Λ at x and
the density dν/dHdb∂Λ at y = ti(x) then determine what fraction of dµ/dHdb∂Ω must
move from x to y. And after the images ti 6= t− are saturated, any remaining mass at
x is moved to t−. Unfortunately, the proof as outlined would be complicated by the
requirement (among other things) that ti be differentiable µ-a.e. Such technicalities
can be avoided in practice by first pushing whatever mass of ν is unambiguously
destined for x backwards through the map y −→ ∇φ(y) (from Remark 1.2) to obtain
a measure µ1 ≤ µ, and then pushing the balance µ − µ1 of the mass of µ forward
through the map x −→ t−(x) to obtain a complete picture of γ. This strategy is
used to prove Theorem 2.6. We first need to verify that the inner trace t−(x) is Borel
on ∂Ω and recall a few facts about pushing measures forward through Borel maps:
Definition 2.3 and Lemma 2.4.

Lemma 2.2 (Traces are Borel) Fix a Lipschitz domain Ω ⊂ Rd+1 and convex
function ψ : Rd+1 −→ R. The outer and inner traces t+ : ∂Ω −→ Rd+1 and
t− : ∂Ω −→ Rd+1 of ∇ψ on ∂Ω are Borel maps (defined Hd-a.e. by Lemma 1.6).

Proof: 1. Recall that the gradient of a Lipschitz function is defined as the limit of
continuous approximants (finite differences), hence Borel. By Rademacher’s theorem,
these limits converge outside a Borel set of measure zero. From this one can readily
deduce the well-known fact that the Gauss map nΩ : ∂Ω −→ ∂B(0, 1) ⊂ Rd+1 on a
Lipschitz surface is a Borel map (defined Hd-a.e.).

2. Claim: If ∂Ω is differentiable and ψ is tangentially differentiable at a point
x ∈ ∂Ω, then the i-th component of t+(x) = (t+1 (x), . . . , t+d+1(x)) is given by

t+i (x) = lim
λ→0+

λ−1[ψ(x + λei)− ψ(x)] (25)

if ei · nΩ(x) ≥ 0, and otherwise by the same limit but with λ→ 0− from below.
Proof of Claim: From (22) recall

lim
λ→0+

λ−1[ψ(x + λei)− ψ(x)] = sup
y∈∂ψ(x)

y · ei (26)

and lim
λ→0−

λ−1[ψ(x + λei)− ψ(x)] = inf
y∈∂ψ(x)

y · ei. (27)

Since Lemma 1.6 forces ∂ψ(x) = [t+(x), t−(x)] to be a line segment whose orientation
t+(x)−t−(x) parallels nΩ(x), we may evaluate the supremum and infimum explicitly.
Indeed, the supremum (26) is given by t+(x)·ei when ei·nΩ(x) ≥ 0, while the infimum
(27) is given by t+(x) · ei if ei · nΩ(x) ≤ 0. This establishes Claim 2.

3. Now let S ⊂ ∂Ω be the Borel set on which ∂Ω is differentiable and ψ is tan-
gentially differentiable. The subset Si = {x ∈ S | nΩ(x) · ei ≥ 0} and its complement
Sci := S \ Si are Borel since the Gauss map nΩ( · ) was Borel in step 1. On Si,
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t+i (x) is given by the restriction to Si of a limit (25) of continuous functions, hence
t+i : Si −→ R is Borel. Similarly, the second part of Claim 2 gives t+i : Sci −→ R as a
measurable limit of continuous functions when λ→ 0−. Thus we conclude that each
component t+i : S −→ R is Borel measurable and hence t+ : S −→ Rd+1 is Borel.

4. Interchanging Ω with Rd+1 \ Ω corresponds to reversing the directions of the
outer unit normal nΩ(x) along ∂Ω, hence to interchanging t+ and t−. Thus we
conclude from step 3 that t− : S −→ Rd+1 is also Borel. Since the complement of
S ⊂ ∂Ω has zero area Hd[∂Ω \ S] = 0, the proof of the lemma is complete. QED.

Definition 2.3 (Push-forward) A measure ω on (X,X ) and measurable map t :
X −→ Y induce a measure on (Y,Y) called the push-forward of ω through t, denoted
t#ω and defined by

(t#ω)[B] := ω[t−1(B)] (28)

for each set B ∈ Y. More generally, the map t need only be defined on a subset S ∈ X
of full measure µ[X \ S] = 0.

Note that for measurable functions f : Y −→ R, it follows from Definition 2.3
that the change of variables formula is satisfied:∫

Y
f(y) dt#ω(y) =

∫
S⊂X

f(t(x)) dω(x). (29)

The following lemma shows that any joint measure γ supported on the graph of
a function {(x, t(x)) | x ∈ S} can be recovered from t and its left marginal µ, by
pushing µ forward through the map id× t : x −→ (x, t(x)). Here id(x) = x denotes
the identity map. In alternative notation the conclusion is often expressed by writing
dγ(x,y) = δ(y − t(x))dµ(x).

Lemma 2.4 (Measures on Graphs are Push-Forwards) Let (X, d) and (Y, ρ)
be metric spaces with a Borel measure µ on X and Borel map t : S −→ Y defined on
a (Borel) subset S ⊂ X of full measure µ[X\S] = 0. If a non-negative Borel measure
γ on the product space X×Y has left marginal µ and satisfies∫

X×Y
ρ(t(x),y) dγ(x,y) = 0, (30)

then γ = (id× t)#µ.

Proof: The argument generalizes the proof of [16, Proposition 10]. It suffices to show
that the measure (id× t)#µ coincides with γ on products U ×V of Borel sets U ⊂ X
and V ⊂ Y; the semi-algebra of such products generates the Borel sets in X ×Y.
Observe that the graph G := {(x, t(x)) | x ∈ S} coincides with the zeros in S×Y of
the measurable function ρ(t(x),y). This graph must therefore be a Borel set of full
γ measure by (30). Since

(U × V ) ∩G = ((U ∩ t−1(V ))×Y) ∩G
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it follows that

γ[U × V ] = γ[(U ∩ t−1(V ))×Y]

= µ[U ∩ t−1(V )]

= ((id× t)#µ)[U × V ],

which proves that γ = (id× t)#µ. QED.

For boundary measures on convex domains, the next proposition implies that
x ∈ ∂Ω alone supplies destinations in the half-open segment [t+(x), t−(x)) ⊂ ∂ψ(x).
On a non-convex domain, a similar lemma would hold at exposed points of conv(Ω).

Lemma 2.5 (Sole Supplier) Fix a strictly convex domain Ω ⊂ Rd+1 and convex
function ψ : Rd+1 −→ R. At x ∈ ∂Ω, let ∂Ω be differentiable and ψ tangentially
differentiable. Then if (x,y) ∈ ∂ψ, either (i) Ω∩∂ψ∗(y) = {x} or else (ii) y = t−(x),
where t− denotes the inner trace of ∇ψ on ∂Ω defined in Lemma 1.6.

Proof: Recall that ∂ψ(x) = [t+(x), t−(x)] with t+(x) − t−(x) parallel to nΩ(x) by
Lemma 1.6. Thus when (ii) fails, t−(x) − y 6= 0 is antiparallel to nΩ(x). Assuming
(ii) fails, take z ∈ Ω∩∂ψ∗(y). Monotonicity of ∂ψ then yields (z−x) ·(y−t−(x)) ≥ 0
so (z− x) · nΩ(x) ≥ 0. Strict convexity of Ω implies z = x as in (8). Thus (i) holds
unless Ω∩∂ψ∗(y) is empty, which cannot happen since (y,x) ∈ ∂ψ∗ was a hypothesis.

QED.

Theorem 2.6 (Uniqueness of Correlation with a Strictly Convex Shape)
Fix Borel probability measures µ and ν of bounded support in Rd+1. If µ is absolutely
continuous with respect to the surface measure Hdb∂Ω of a strictly convex domain
Ω ⊂ Rd+1, then the infimum (2) is uniquely attained. Indeed the unique optimal
measure in Γ(µ, ν) is given by γ = γ1 + γ2, where

γ1 = (∇φ× id)#ν1 and γ2 = (id× t−)#µ2, (31)

ν1 := νbdom ∇φ is the restriction of ν to the subset of Rd+1 where φ is differentiable,
µ1 := (∇φ)#ν1 and µ2 := µ− µ1. Here φ and ψ are the convex functions of (20) and
Theorem 1.1, while t− : ∂Ω −→ Rd+1 is the inner trace of ∇ψ on ∂Ω.

Proof: At least one optimal measure exists according to, e.g. Givens & Shortt [12].
1. Suppose the infimum (2) is attained by γ ∈ Γ(µ, ν). Denoting the Borel set

where φ is differentiable by T := dom∇φ ⊂ Rd+1, let us define γ1 := γbRd+1×T and
γ2 := γ − γ1 and try to derive (31). When this derivation is complete, uniqueness
will have been established since (31) expresses γ completely in terms of µ, ν, ψ and
φ (which depend only on µ and ν in Theorem 1.1 and not on γ).
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2. The reflection γ∗1 := R#γ1 of γ1 under R(x,y) := (y,x) assigns full mass to
the Borel set

(T ×Rd+1) ∩ ∂φ = {(x,∇φ(x)) | x ∈ T}

since spt γ∗1 ⊂ ∂φ by Remark 1.2. Thus∫
Rd+1×Rd+1

|∇φ(x)− y| dγ∗1(x,y) =
∫

(T×Rd+1)∩∂φ
|∇φ(x)−∇φ(x)| dγ∗1(x,y)

= 0.

Since the left marginal of γ∗1 agrees with ν1 := νbdom∇φ, applying Lemma 2.4 yields
γ∗1 = (id×∇φ)#ν1. Reflecting proves the first equality in (31).

3. The last conclusion shows the left marginal of γ1 to be µ1 := (∇φ)#ν1. The
left marginal of γ2 := γ − γ1 must therefore coincide with µ2 := µ− µ1. Let S ⊂ ∂Ω
denote the set where ∂Ω is differentiable and ψ is tangentially differentiable. It is a
Borel set of full µ2 measure on which the inner trace t− : S −→ Rd+1 of ∇ψ is Borel
and defined by Lemmas 1.6 and 2.2. Setting T c = spt ν \ T , we claim:

4. Claim: If (x,y) ∈ (S × T c) ∩ ∂ψ then y = t−(x).
Proof of Claim: Let (x,y) ∈ (S × T c) ∩ ∂ψ. According to Lemma 2.5, either (i)

Ω ∩ ∂ψ∗(y) = {x} or (ii) y = t−(x). We shall show that (i) implies differentiability
of φ at y thus contradicting y ∈ T c. Recall Remark 1.2 yields ∂φ(y) ⊂ ∂ψ∗(y). Also,
the bounded convex set ∂φ(y) has its extreme points on sptµ ⊂ Ω by Corollary 1.4,
hence is contained in the convex set Ω. Thus (i) implies ∂φ(y) ⊂ {x}, which in turn
yields x = ∇φ(y), contradicting y ∈ T c, The only alternative (ii) establishes the
claim.

5. Theorem 1.1 asserts sptγ2 ⊂ ∂ψ. Using this gives∫
Rd+1×T c

|t−(x)− y| dγ2(x,y) =
∫

(S×T c)∩∂ψ
|t−(x)− y| dγ2(x,y) (32)

= 0, (33)

where the second inequality follows from claim 4. On the other hand, the definition
of γ2 = γbRd+1×T c yields ∫

Rd+1×T
|t−(x)− y| dγ2(x,y) = 0. (34)

Summing (33) and (34) allows us to conclude γ2 = (id × t−)#µ2 from Lemma 2.4.
This establishes (31) and completes the proof of the theorem. QED.

3 Pairs of Maps Between Strictly Convex Curves

The main goal of this section is to develop a (partial) regularity theory for the convex
function ψ from Theorem 1.1 along the boundary of Ω, when µ and ν are a pair of
measures satisfying the following hypotheses:



WG/RJMc/Shape recognition via Wasserstein distance/August 2, 2000 19

Definition 3.1 (Suitable Boundary Measures) Let Ω and Λ ⊂ Rd+1 be bounded,
strictly convex domains with Borel probability measures µ on ∂Ω and ν on ∂Λ. The
pair of boundary measures (µ, ν) is said to be suitable if (i) µ has no atoms and
(ii) spt ν = ∂Λ. For d > 1 we furthermore require (iii) the surface density bounds

µ < ε−1Hdb∂Ω and ν > εHdb∂Λ (35)

hold for some ε > 0, and (iv) the uniform convexity of Ω ⊂ Rd+1.
If in addition, the above hypotheses remain satisfied when the roles of µ↔ ν and

Ω↔ Λ are interchanged, we say the pair (µ, ν) is symmetrically suitable.

Our first task is to establish tangential differentiability of ψ not only almost ev-
erywhere, but everywhere along ∂Ω ⊂ Rd+1. In the plane this follows from the
next proposition (through Corollary 4.4). The more complicated argument in higher
dimensions d > 1 is postponed until Section 4. Since we know this result will be es-
tablished, we proceed to state Theorem 3.8 — the culmination of the present section
— in all dimensions. It asserts that the outer and inner traces of ∇ψ on ∂Ω yield a
pair of continuous maps t+ and t−b{x∈∂Ω|t− 6=t+} covering the support of the optimal
measure. Two concluding examples demonstrate the necessity of both maps. In these
examples, non-tangential differentiability of ψ must fail.

Proposition 3.2 (Images Surely Parallel Normal) Let Ω,Λ ⊂ R2 be bounded,
strictly convex domains with suitable measures µ on ∂Ω and ν on ∂Λ. Take the
convex function ψ from Theorem 1.1. If no is any normal to Ω at xo ∈ ∂Ω and both
yo,y ∈ ∂ψ(xo), then yo − y is parallel to no.

Proof: Recall that ∂ψ(xo) is a closed, non-empty, convex set whose extreme points
lie on ∂Λ = spt ν by Corollary 1.4. Thus ∂ψ(xo) ⊂ Λ.

1. Claim: If y ∈ Λ∩ ∂ψ(xo) there exists a unique λ > 0 such that y + λno ∈ ∂Λ.
Furthermore, ∂φ(y + λno) = {xo} where φ is defined in (20).

Proof of Claim: Assume no 6= 0 (since otherwise the proposition holds trivially)
and define the ray L := {y + λno | λ ≥ 0}. The intersection L ∩ Λ, being compact
and convex, must be a segment [y,y + λn0] with one endpoint y in Λ. The other
endpoint y + λn0 belongs to ∂Λ, being a limit of points y + (λ + 1/k)no outside Λ.
Convexity of Λ implies [y,y +λno) ⊂ Λ by Rockafellar [20, Theorem 6.1], so y +λno
is the only point where L intersects ∂Λ. This proves a unique λ > 0 exists.

Setting y1 := y + λno ∈ ∂Λ (= spt ν), the second part of the claim — that y1 is
supplied solely by xo — is argued like Lemma 2.5. Indeed, ∂φ(y1) is a (non-empty)
subset of Ω ∩ ∂ψ∗(y1) by Remark 1.2 and Corollary 1.4, so let x1 ∈ ∂φ(y1). Then
y1 ∈ ∂ψ(x1) and the monotonicity of ∂ψ yields

λ(x1 − xo) · no = (x1 − xo) · (y1 − y) ≥ 0.

The strict convexity of ∂Ω then forces x1 = xo because of (8). This concludes the
proof of Claim 1.
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2. We assume henceforth that ∂ψ(xo) ⊂ Ω contains two distinct points yo 6= y
since otherwise the proposition holds trivially. We shall complete the proof of the
proposition by showing:

Claim: The segment [yo,y] := {syo + (1− s)y | s ∈ [0, 1]} is parallel to no.
Proof of Claim: The entire segment [yo,y] lies in the convex sets ∂ψ(xo) ⊂ Λ.

Since Λ is strictly convex, a slightly shorter segment, also denoted [yo,y] ⊂ Λ, lies
in the interior of this domain. Defining y(s) = syo + (1− s)y, for each s ∈ [0, 1] we
deduce from Claim 1 that there exists a unique λ(s) > 0 such that y(s)+λ(s)no ∈ ∂Λ
and

∂φ(y(s) + λ(s)no) = {xo}. (36)

The uniqueness of λ(s) ≥ 0 implies the map s −→ y(s) + λ(s)no is continuous, so

A := {y(s) + λ(s)no | s ∈ [0, 1]} ⊂ ∂Ω

is a connected closed arc on the boundary of Ω. Either its endpoints yo +λ(0)no and
y+λ(1)no coincide, in which case the claim will follow, or else A contains a relatively
open subset of ∂Λ = spt ν in which case ν[A] > 0.

We preclude the latter possibility by considering any minimizer γ ∈ Γ(µ, ν) for (2)
(which exists by lower semicontinuity and compactness; see e.g. Givens & Shortt [12]).
Since spt γ ⊂ ∂φ∗ from Remark 1.2, (36) yields

(R2 × A) ∩ spt γ ⊂ {xo} ×A,

hence
ν[A] =

∫
R2×A

dγ ≤
∫
{xo}×R2

dγ = µ[{xo}] = 0.

Thus A must degenerate to a single point A = {yo + λ(0)no} = {y + λ(1)no} so
y − yo = (λ(1)− λ(0))no, to conclude the proof of the claim. QED.

An elementary lemma helps to distingish t+(x) from t−(x) without refering to ψ:

Lemma 3.3 Take distinct points y1,y2 ∈ ∂Λ on the boundary of a strictly convex
domain Λ ⊂ Rd+1. Every outer unit normal q1 to ∂Λ at y1 satisfies q1 ·(y1−y2) > 0.
Similarly, each q2 ∈ NΛ(y2) satisfies q2 · (y1 − y2) < 0.

Proof: According to our definition, a (generalized) outer normal q1 ∈ NΛ(y1) satisfies
q1 · (z− y1) ≤ 0 for all z ∈ Λ. Strict convexity of Λ forces a strict inequality unless
z = y1 by (8). Setting z = y2 6= y1 proves the first desired inequality q1 ·(y2−y1) < 0.
The second desired inequality follows by relabling symmetry after interchanging the
indices 1↔ 2. QED.

For the next proposition, we recall the notation [y1,y2] for line segments (11), and
that extreme points of ∂ψ(x) must lie on ∂Λ = spt ν in view of Corollary 1.4.
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Proposition 3.4 (Trichotomy) Let Ω,Λ ⊂ Rd+1 be bounded, strictly convex do-
mains with suitable measures µ on ∂Ω and ν on ∂Λ. Take the convex function ψ as
in Theorem 1.1. For each x ∈ ∂Ω exactly one of the following three statements holds:
(o) ∂ψ(x) = {y1} with n·q1 = 0 for some pair of normals n ∈NΩ(x) and q1 ∈NΛ(y1);
(i) ∂ψ(x) = {y1} with n · q1 > 0 for all pairs n ∈ NΩ(x) and q1 ∈ NΛ(y1); or
(ii) ∂ψ(x) = [y1,y2], in which case ∂Ω is differentiable at x and nΩ(x) · q1 > 0 but

nΩ(x) · q2 < 0 for all qi ∈ NΛ(yi), i = 1, 2.

Proof: Recall that ∂ψ(x) is a non-empty compact convex set which lies in a line
parallel to no ∈ NΩ(x) by Proposition 3.2 (or 4.3). Thus ∂ψ(x) = [y1,y2] consists
either of a segment parallel to no or a single point y1 = y2. Either way the extreme
points y1,y2 ∈ spt ν ⊂ ∂Λ by Corollary 1.4.

1. Assume first that y1 6= y2, so neither (o) nor (i) holds. Now Proposition 3.2
implies that every outward unit normal n ∈ NΩ(x) must be parallel to y1−y2, which
means there is only one supporting hyperplane to Ω at x. In other words, x is a point
of differentiability for ∂Ω. Interchange y1 and y2 if necessary to ensure that y1 − y2

is an outward normal rather than an inward normal. Lemma 3.3 then concludes the
proof that nΩ(x) ·q1 > 0 but nΩ(x) ·q2 < 0 for all qi ∈ NΛ(yi), so we are in case (ii).

2. Suppose y1 = y2 on the other hand. Then ∂ψ(x) = {y1} and (ii) is violated.
We must show that one of the mutually exclusive claims (o) or (i) is satisfied. Choose
any normal n ∈ NΩ(x) and define the line L := {y1 + λn | λ ∈ R}. The convex
intersection L ∩ Λ consists of either a segment [y0,y1] with endpoints on ∂Λ or the
single point y1 ∈ ∂Λ.

If the line intersects Λ only at y1 ∈ ∂Λ, then it can be separated from the convex
interior Λ by a hyperplane: there exists a unit vector q ∈ Rd+1 and s ∈ R such that

q · y ≥ s for all y ∈ L, (37)

q · y < s for all y ∈ Λ. (38)

Obviously s = q · y1, so we deduce q ∈ NΛ(y1) from (38). Furthermore, substituting
y = y1 ± n in (37) yields both q · n ≥ 0 as well as q · n ≤ 0, whence (o) has been
verified.

The other possibility is L ∩ Λ = [y0,y1] with y1 6= y0 ∈ ∂Λ. In this case we need
to prove y1 − y0 is parallel to n rather than antiparallel. To derive a contradiction,
suppose y1 = y0−λn with λ > 0. Since y0 ∈ spt ν we have ∂φ(y0) ⊂ Ω∩∂ψ∗(y0) non-
empty, where φ is defined in Remark 1.2. Therefore, take x0 ∈ Ω with (x0,y0) ∈ ∂ψ
and observe monotonicity yields

λ(x0 − x) · n = (x0 − x) · (y0 − y1) ≥ 0.

The strict convexity of Ω forces x0 = x as in (8). But then y0 ∈ ∂ψ(x) contradicts
our hypothesis 2: ∂ψ(x) = {y1}. Thus we have proved that y1−y0 = λn with λ > 0.
Lemma 3.3 now shows λq1 · n = q1 · (y1 − y0) > 0 for all q1 ∈ NΛ(y1) to complete
the proof that (i) holds. QED.
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Observe that ψ is differentiable at x in each of the first two cases; in the last
case (y1 6= y2) its non-tangential derivatives fail to exist since the partial derivatives
∂ψ/∂xi from the left and the right (26–27) do not coincide unless ei · nΩ(x) = 0.

Definition 3.5 (Twin Maps) Given Ω,Λ, (µ, ν) and ψ as in Proposition 3.4, we
decompose ∂Ω = S0 ∪ S1 ∪ S2 into three disjoint sets such that (o) holds for x ∈ S0,
(i) holds for x ∈ S1 and (ii) holds for x ∈ S2. We use the extreme images y1,y2 ∈
∂ψ(x) of the proposition to define an outer map t+ : ∂Ω −→ ∂Λ and inner map
t− : S2 −→ ∂Λ by t+(x) := y1 and t−(x) := y2. It is convenient to extend the
definition of t− to ∂Ω by setting t−(x) := t+(x) for x ∈ S0 ∪ S1.

Definition 3.6 (Inverse Maps) If the boundary measures (ν, µ) are symmetrically
suitable, then the analogous construction starting from (20) yields a decomposition
∂Λ = T0 ∪ T1 ∪ T2 and maps s± : ∂Λ −→ ∂Ω such that ∂φ(y) = [s+(y), s−(y)] while
(o) y ∈ T0 if s+(y) = s−(y) and q · n = 0 for some q ∈ NΛ(y) and n ∈ NΩ(s+(y));
(i) y ∈ T1 if s+(y) = s−(y) and q ·n > 0 for all q ∈ NΛ(y) and n ∈ NΩ(s+(y)); and
(ii) y ∈ T2 if s+(y) 6= s−(y), in which case ∂Λ is differentiable at y and nΛ(y)·n+ > 0

but nΛ(y) · n− < 0 for all n± ∈ NΩ(s±(y)).

Comparing these definitions with the discussion of Lemma 1.6, it should be clear
that t+ is the trace of ∇ψbΩc on ∂Ω and t− the boundary trace of ∇ψbΩ. Similarly,
s+ and s− are the outer and inner traces respectively of∇φ on ∂Λ, where φ is defined
by (20). The next proposition explores continuity properties of these four maps.

Proposition 3.7 (Twin Homeomorphisms) Given bounded, strictly convex do-
mains Ω,Λ ⊂ Rd+1 with suitable measures µ on ∂Ω and ν on ∂Λ define the maps
t+, t− and decomposition ∂Ω = S0 ∪ S1 ∪ S2 as in Definition 3.5. Then
(i) the map t+ : ∂Ω −→ ∂Λ is continuous;
(ii) the sets S0 and S0 ∪ S2 ⊂ ∂Ω are both closed; and
(iii) the map t− : S0 ∪ S2 −→ ∂Λ is continuous.
Furthermore, if the measures (µ, ν) are symmetrically suitable then
(iv) t+ : ∂Ω −→ ∂Λ is a homeomorphism with inverse map s+ = (t+)−1; and
(v) t− : Si −→ Ti is a homeomorphism with inverse map s−bTi for i = 2, 0.

Here s+, s− and the decomposition ∂Λ = T0 ∪ T1 ∪ T2 are defined in Definition 3.6.

Proof: Let ψ and φ denote the convex functions of Definition 3.5, 3.6 and Remark 1.2.
Strict convexity of the domains yields

∂Λ ∩ ∂ψ(x) = {t+(x), t−(x)} for x ∈ ∂Ω, while (39)

∂Ω ∩ ∂φ(y) = {s+(y), s−(y)} for y ∈ ∂Λ (40)

if (µ, ν) are symmetrically suitable.
(i) Continuity of t+. Take any sequence of points xk ∈ ∂Ω and set yk =

t+(xk). The definition 3.5 of t+ shows there exist a correponding sequence of nor-
mals (nk,qk) ∈ NΩ(xk) × NΛ(yk) such that nk · qk ≥ 0. Compactness of ∂Ω, ∂Λ,
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and the unit sphere Sd ensure that a subsequence, also denoted xk, can be extracted
for which (xk,yk,nk,qk) converge to limits denoted (x,y,n,q) ∈ ∂Ω× ∂Λ× Sd ×Sd

respectively. It follows that (n,q) ∈ NΩ(x)×NΛ(y). Since (xk, t
+(xk)) belong to the

closed set ∂ψ, we have (x,y) ∈ ∂ψ as well. Now y ∈ ∂Λ ∩ ∂ψ(x) implies y = t±(x)
by (39). Since n · q ≥ 0 we know that y = t+(x). This concludes the demonstration
of continuity: t+(xk)→ y = t+(x) whenever xk → x.

(ii) Compactness of S0. Start with a sequence xk ∈ S0 ⊂ ∂Ω and set yk = t+(xk).
The definition of S0 yields a sequence of normals (nk,qk) ∈ NΩ(xk) × NΛ(yk) with
nk · qk = 0. Repeating the argument in (i) above and using continuity of t+, we
extract a convergent subsequence (xk,yk,nk,qk) → (x, t+(x),n,q) ∈ ∂Ω × ∂Λ ×
NΩ(x) × NΛ(t+(x)). This time n · q = lim nk · qk = 0, which proves that x ∈ S0.
Thus S0 is compact.

(iii) Compactness of S0∪S2 and continuity of t−. Take any sequence of points xk ∈
S0∪S2 and mimic the preceding proofs, this time setting yk = t−(xk). The definition
of t− yields a sequence of normals (nk,qk) ∈ NΩ(xk)×NΛ(yk) satisfying nk · qk ≤ 0.
Extract a convergent subsequence (xk,yk,nk,qk)→ (x,y,n,q) ∈ ∂Ω×∂Λ×NΩ(x)×
NΛ(y) as in (i) above. Noting that (x,y) ∈ ∂ψ follows from (xk, t

−(xk)) ∈ ∂ψ, we
conclude y = t±(x) from (39). Finally, since nk ·qk ≤ 0 either n ·q < 0, in which case
x ∈ S2 and y = t−(x); or n · q = 0, in which case x ∈ S0 and y = t−(x) = t+(x).
Either way, the limit point x ∈ S0 ∪ S2 demonstrates that S0 ∪ S2 is compact, while
xk → x implies t−(xk)→ y = t−(x) so t− is continuous.

(iv) t+ : ∂Ω −→ ∂Λ is a homeomorphism. We have already proved t+ is con-
tinuous, and since the hypotheses are symmetrical under interchange of (Ω, µ, ψ, t±)
with (Λ, ν, φ, s±) we also have continuity of s+ : ∂Λ −→ ∂Ω. If we can prove that
s+(t+(x)) = x on ∂Ω then we will have shown t+ is one-to-one and continuously
invertible while s+ maps onto ∂Ω. By symmetry, t+(s+(y)) = y on ∂Λ and it follows
that t+ : ∂Ω −→ ∂Λ is a bijection with inverse s+. Establishing (iv) is thus reduced
to verifying the following claim.

Claim: s+(t+(x)) = x for all x ∈ ∂Ω.
Proof of Claim: Fix x ∈ ∂Ω = sptµ and set y = t+(x). ¿From Definition 3.5, y

is unique characterized among points in ∂Λ ∩ ∂ψ(x) by the existence of n ∈ NΩ(x)
and q ∈ NΛ(y) such that n · q ≥ 0. Since x ∈ sptµ we conclude y ∈ ∂φ∗(x) from
Remark 1.2. Thus x ∈ ∂Ω∩ ∂φ(y) so x = s±(y) by (40). Since n ·q ≥ 0 we conclude
x = s+(y) to establish the claim.

(v) t− : Si −→ Ti is a homeomorphism for i = 0, 2. We have already shown
continuity of t− : Si −→ ∂Λ and by symmetry s− : Ti −→ ∂Ω. The result will be
established by the next claim, which implies t−bSi is one-to-one and its continuous
inverse s− maps Ti onto Si. By symmetry, it follows that t− maps Si onto Ti and
hence is a homeomorphism.

Claim: t−(x) ∈ Ti and s−(t−(x)) = x whenever x ∈ Si for i = 2, 0.
Proof of Claim: Fix x ∈ Si and set y = t−(x). For i = 2, 0, y is characterized

uniquely among points in ∂Λ ∩ ∂ψ(x) by the existence of n ∈ NΩ(x) and q ∈ NΛ(y)
such that n · q ≤ 0 according to Definition 3.5. Since x ∈ ∂Ω = sptµ we conclude
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y ∈ ∂φ∗(x) from Remark 1.2. Now x ∈ ∂Ω ∩ ∂φ(y) so x = s±(y) by (40). Since
n ·q ≤ 0 we conclude x = s−(y) and y ∈ T0∪T2. If x ∈ S0 then n ·q = 0 and y ∈ T0,
while if x ∈ S2 then n · q < 0 and y ∈ T2. This concludes the proof that x = s−(y)
and y = t−(x) ∈ Ti for i = 2, 0. QED.

The next theorem collects together and summarizes our results.

Theorem 3.8 (Twin Homeomorphisms Optimize) Fix bounded, strictly convex
domains Ω,Λ ⊂ Rd+1 with suitable measures µ on ∂Ω and ν on ∂Λ (Definition 3.1).
Then the graphs of a pair of continuous maps t+ : ∂Ω −→ ∂Λ and t− : S2 −→ T 2

contain the support of all minimizers γ ∈ Γ(µ, ν) for (2):

{(x, t+(x))}x∈spt µ ⊂ spt γ ⊂ {(x, t+(x))}x∈∂Ω ∪ {(x, t
−(x))}x∈S2

(= ∂ψ ∩ (∂Ω× ∂Λ)).
(41)

Here ψ is from Theorem 1.1, S2 = ∂Ω \ dom∇ψ, T2 ⊂ ∂Λ, and t+ = t− on S2 \ S2,
whereas t+(x) − t−(x) 6= 0 is an outward normal for ∂Ω at x whenever x ∈ S2.
Furthermore, t+ and t−bS2

are homeomorphisms if (µ, ν) are symmetrically suitable.

Proof: Take ψ from Theorem 1.1, so that any minimizer γ of (2) is supported on the
closed set ∂ψ ∩ (∂Ω× ∂Λ). Define t± : ∂Ω −→ ∂Λ and S2 ⊂ ∂Ω using Definition 3.5.
The alternatives in Proposition 3.4 make it clear that S2 consists precisely of those
points x ∈ ∂Ω where ψ is not differentiable, and that t+(x) 6= t−(x) for x ∈ S2

while t+ = t− elsewhere. ¿From Proposition 3.2, t+(x) − t−(x) is normal to ∂Ω at
x ∈ S2; it is an outward normal by Lemma 3.3. Continuity of t+ and t−bS2

follow

from Proposition 3.7(i)–(iii); one may take T2 = t−(S2) in which case T 2 = t−(S2)
follows from compactness of S2 ⊂ ∂Ω. If the measures are symmetrically suitable
then Proposition 3.7(iv) shows t+ to be a homeomorphism, while (ii), (iii) and (v)
combine to show t− : S0 ∪ S2 −→ T0 ∪ T2 is a homeomorphism of the closed set
S0 ∪ S2 ⊃ S2. It remains only to verify the next two claims to establish (41) and the
theorem.

1. Claim: ∂ψ ∩ (∂Ω× ∂Λ) = {(x, t+(x)) | x ∈ ∂Ω} ∪ {(x, t−(x)) | x ∈ S2}.
Proof of Claim: If x ∈ ∂Ω then ∂ψ(x) = [t+(x), t−(x)] from Definition 3.5, while

the extreme points t±(x) lie on ∂Λ according to Corollary 1.4. Thus (x, t±(x)) ∈
∂ψ ∩ (∂Ω × ∂Λ), so the graphs of both t+ and t− are contained in ∂ψ ∩ (∂Ω× ∂Λ).
Conversely, if (x,y) ∈ ∂ψ ∩ (∂Ω × ∂Λ) then strict convexity of Λ ⊃ ∂ψ(x) forces
y ∈ ∂Λ to be an extreme point of ∂ψ(x). This means y = t±(x). If x ∈ ∂Ω \ S2

then t−(x) = t+(x) = y so (x,y) ∈ graph(t+); otherwise x ∈ S2 so (x,y) belongs
either to graph(t+) or graph(t−bS2). This shows the union of the two graphs contains
∂ψ ∩ (∂Ω× ∂Λ) thereby completing the claim.

2. Claim: If x ∈ sptµ then (x, t+(x)) ∈ spt γ when γ ∈ Γ(µ, ν) minimizes (2).
Proof of Claim: Fix x ∈ sptµ and let γ minimize (2). Since γ is compactly

supported one can find y ∈ spt ν with (x,y) ∈ spt γ ⊂ ∂ψ. Then either y = t+(x) or
else x ∈ S2 by Claim 1. In the first case we have (x, t+(x)) ∈ spt γ and are done, so
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therefore assume x ∈ S2. ¿From Proposition 3.4 we know ∂Ω is differentiable at x ∈
S2, (x, t+(x)) ∈ ∂ψ, and ψ is tangentially differentiable along ∂Ω (c.f. Corollary 4.4).
Thus Lemma 2.5 yields (i) Ω ∩ ∂ψ∗(t+(x)) = {x} since t+(x) 6= t−(x) on S2. On
the other hand, since t+(x) ∈ ∂Λ = spt ν, one can find z ∈ sptµ ⊂ ∂Ω such that
(z, t+(x)) ∈ spt γ ⊂ ∂ψ. Then (i) forces z = x to establish the claim and the theorem.

QED.

Remark 3.9 (Continuous Extension of t−) If Ω has a C1 smooth boundary, then
a continuous map t̃ : ∂Ω −→ ∂Λ can be defined to be the point at the opposite end
of the segment L ∩ Λ = [t+(x), t̃(x)] where the line L := {t+(x) + λnΩ(x) | λ ∈ R}
through t+(x) intersects the compact convex set Λ. Then t̃ coincides with t− on
S0 ∩ S2, though we do not expect that t̃ will remain one-to-one throughout ∂Ω.

Remark 3.10 (Another View) For xo ∈ S1 and any neighbourhood U ⊂ ∂Ω \ S2

of xo, the restriction of γ to U×Rd+1 is concentrated on the graph of t+ : ∂Ω −→ ∂Λ.
Indeed, (41) yields

γ[{(x, t+(x)) | x ∈ U}] = µ[U ]. (42)

On the other hand, if the measures (µ, ν) are symmetrically suitable, we can deduce
t+(S2) ⊂ T1 by applying Lemma 2.5 and Corollary 4.4 to each x ∈ S2 and y = t+(x).
Since t+ is a homeomorphism with inverse s+ : ∂Λ −→ ∂Ω we have

{(x, t+(x)) | x ∈ B(xo, r) ∩ ∂Ω} = {(s+(y),y) | y ∈ t+(B(xo, r)) ⊂ ∂Λ}. (43)

Now if xo ∈ S2, then t+(xo) ∈ T1 so taking r > 0 very small ensures t+(B(x0, r)) is
disjoint from T 2. Thus there exists r(xo) > 0 such that

γ[{(x, t+(x)) | x ∈ B(x0, r) ∩ ∂Ω}] =

{
µ[B(xo, r)] if xo ∈ S1

ν[t+(B(xo, r))] if xo ∈ S2
(44)

holds for 0 < r < r(xo), where the first equality follows from U = B(xo, r) ∩ ∂Ω in
(42) and the second from U = t+(B(xo, r)) in (42–43) and the symmetry µ ↔ ν.
Note that the mass γ assigns to the graph of t+ near xo is unambiguous in either
case. Moreover, a limiting version of (44) can be shown to hold at µ-a.e. xo ∈ S0:

lim
r→0

γ[{(x, t+(x)) | x ∈ B(x0, r) ∩ ∂Ω}]

µ[B(xo, r)]
= 1. (45)

This provides another approach to the uniqueness of γ in Theorem 2.6.

Remark 3.11 (Uniqueness) ¿From Theorem 2.6 the minimizer γ of (2) is unique
whenever µ is absolutely continuous with respect to Hdb∂Ω. For symmetrically suitable
measures, that theorem goes on to express γ = γ1 + γ2 explicitly by

γ1 = (id× t+)#µ1 and γ2 = (id× t−)#µ2, (46)

where µ1 := (t+)−1
#ν1, µ2 := µ− µ1, and we have defined the restriction ν1 := νbT c2

of ν to T c2 := ∂Λ \ t−(S2) and extended t− by setting t−(x) := t+(x) for x ∈ ∂Ω \S2.
Note that µ2 can be replaced by µ2bS2 in (46) if we also replace µ1 by µ1 + µ2bSc2 .
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a) Reflected Triangles b) Strictly Convex Perturbations

Figure 3: No Optimal Map Links these Two Triangles (Perturbed for Strict Convexity)

The two maps t+ and t− provide just enough flexibility to allow the optimum (2)
to be attained. Indeed, for convex sets, t+(x) serves as the primary destination —
accepting as much mass as is compatible with ν — while t− acts as a kind of auxiliary
or overflow map. We interpret this second map as providing the necessary slack in a
few key places to permit much of the mass of µ to be transported onto ∂Λ extremely
efficiently. The following two examples show our conclusions are sharp in the sense
that the support of the optimal measure cannot be contained in the graph of a single
map. The second example differs from the first in that its two triangular shapes may
be taken to be arbitrarily close to each other.

Example 3.12 (Reflected Triangles) Let Ω∗ be the interior of the triangle ∆IJK
with vertices I := (−a, 1), J := (0, 3), and K := (a, 1), and Λ∗ its reflection ∆I ′J ′K ′

in the x-axis (Figure 3(a)). Although our theorems apply only to strictly convex
domains, these two triangles can be approximated arbitrarily well by strictly convex
shapes formed by joining the same old vertices, this time with circular arcs of very
small curvature ε > 0 instead of straight lines (Figure 3(b)). Let Ω and Λ ⊂ R2 denote
these slightly perturbed strictly convex domains. For all x on the sides IJ ∪ JK and
all y on the sides I ′J ′ ∪ J ′K ′ of the original triangles we have

nΩ∗(x) · nΛ∗(y) ≤ −
a2 − 4

a2 + 4
, (47)

(excluding the vertices where outward unit normals are not uniquely defined). Also,

H1
[
IJ ∪ JK

]
= H1

[
I ′J ′ ∪ J ′K ′

]
= 2
√
a2 + 4 (48)

and
H1

[
IK

]
= 2a. (49)

Now fix a > 2 and 0 < δ < (
√
a2 + 4− a)/2. Taking the perturbation ε > 0 small

enough, (47)–(49) imply that we can find an arc A ⊂ ∂Ω and its reflection A′ ⊂ ∂Λ



WG/RJMc/Shape recognition via Wasserstein distance/August 2, 2000 27

on the boundaries of the perturbed domains such that

nΩ(x) · nΛ(y) < 0 (50)

for all x ∈ A and all y ∈ A′. We may assume in addition that

H1[A] = H1[A′] > 2
√
a2 + 4− δ, (51)

and
H1[∂Ω] = H1[∂Λ] < 2

√
a2 + 4 + 2a+ 2δ. (52)

Combining (51) and (52) we have

H1[A] > H1[∂Λ \A′]. (53)

Finally, let µ = H1b∂Ω and ν = H1b∂Λ measure arclength around the boundaries of
Ω and Λ respectively. We claim (53) precludes the optimal measure γ in (2) from being
supported on the graph of a single function. Assume on the contrary spt γ is contained
in the graph of a single map t from ∂Ω into ∂Λ. ¿From (41), the homeomorphism t+

has its graph in spt γ so we must have t = t+. In light of (50) and Definition 3.5 we
see

t+[A] ⊂ ∂Λ \A′,

and so
H1[A] ≤ H1[∂Λ \A′],

which is at a variance with (53). Consequently, in this example no optimal measure
for (2) is supported on the graph of a single function.

Example 3.13 (Triangles which Differ Only Slightly) Take a pair of isosceles
triangles ∆LMN and ∆L′M ′N ′ with different side lengths but the same perimeter;
e.g. the first triangle shorter and squatter than the second: |LN | > |L′N ′| in Figure 4.
Again our theorems apply only to strictly convex shapes, but a slight rounding of
corners and edges will make the triangles smooth and strictly convex without changing
their geometry significantly; i.e., the scale ε of the perturbation is kept very small with
respect to the differences in side lengths, while reflection symmetry around a vertical
axis is preserved. Let Ω and Λ ⊂ R2 denote these perturbed domains, rescaled if
necessary to maintain the same (e.g. unit) length of perimeter. Take µ = H1b∂Ω

and ν = H1b∂Λ to measure arclength around their boundaries. By Theorems 2.6
and 3.8, the optimal measure γ is unique in (2), and its support contains the graph of
a homeomorphism t+ : ∂Ω −→ ∂Λ while being contained in the union of that graph
with the graph of a second homeomorphism t− : S2 ⊂ ∂Ω −→ T 2 ⊂ ∂Λ. The next
claim demonstrates that the second homeomorphism is necessary; it implies that both
graphs in (41) carry positive mass.

Claim: In this example, {(x, t+(x)) | x ∈ ∂Ω} is a strict subset of spt γ.
Proof of Claim: Since ∂Ω = sptµ, non-strict containment is asserted by (41).

To derive a contradiction, suppose strict containment fails, i.e. spt γ = graph(t+).
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Figure 4: Nor these Slight Perturbations of a Given Isosceles Triangle

Then the homeomorphism t+ must preserve arclengths because ν = t+
#µ follows from

γ ∈ Γ(µ, ν) and Lemma 2.4; it gives an arclength reparameterization of ∂Λ by ∂Ω.
Denoting the midpoints of the bases of the (perturbed) triangles by x0 ∈ ∂Ω and
y0 ∈ ∂Λ respectively, we next use symmetry to establish that y0 = t+(x0). Indeed,
t+(x0) and t−(x0) are the only two points paired with x0 in spt γ. By Lemma 3.2
they lie in a vertical line. Since γ is unique this line can only be the symmetry axis,
so either t+(x0) = y0 or t+(x0) = M ′. But the latter possibility is precluded since t+

was defined so nΩ(x) · nΛ(t+(x)) ≥ 0.
Having shown t+ to be arclength parameterization of ∂Λ starting from t+(x0) = y0,

take two points x1 and x2 on ∂Ω near N positioned so that |y0N
′| + ε < |x0x1| <

|x0x2| < |x0N | − ε as in Figure 4. The first inequality forces yi := t+(xi) to lie
between N ′ and M ′ on ∂Λ since t+ is length preserving. The ε’s keep the xi and yi
(i = 0, 2) away from the smoothed corners N and N ′ (the scale ε of the rounding and
smoothing being too small to be detectable in Figure 4). Apart from corrections which
become negligible for ε very small, x2−x1 points horizontally to the right while y2−y1

points upwards and to the left. But this violates the monotonicity (4) of spt γ which
follows from Theorem 1.1. This contradiction establishes the claim. QED.

4 ContinuousMaps BetweenConvex Hypersurfaces

This final section contains the proof of tangential differentiability when d > 1 for the
convex function ψ of Theorem 1.1 and suitable measures µ and ν on Rd+1. The hy-
potheses (Definition 3.1) and conclusions should be compared with Caffarelli’s theory
which applies in a distinct though related setting [5][6]. The key result is Proposi-
tion 4.3, which shows that as long as γ ∈ Γ(µ, ν) has monotone support, then the
images in ∂Λ = spt ν of each xo ∈ sptµ will be collinear: they parallel the outer
normals no ∈ NΩ(xo). When Theorem 3.8 and Corollary 4.4 are derived, it is here
that the bounds (35) and the uniform convexity of Ω are invoked. As a preliminary
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lemma shows, the polar dual cone defined below is a useful construction for probing
the constraints imposed by monotonicity on the area of ∂Λ ∩ ∂ψ(xo).

Definition 4.1 (Polar Dual) Given Y ⊂ Rd+1 we define its polar dual cone Y ∗ by

Y ∗ := {x ∈ Rd+1 | x · y < 0 for all y ∈ Y }.

In the sequel we often take Y to be the cone

Y (θ) := {y ∈ Rd+1 | y · e1 < −|y| cos θ }

where e1 := (1, 0, · · · , 0) ∈ Rd+1. One then readily checks that for θ ∈ (0, π
2
),

Y (θ)∗ = {x ∈ Rd+1 | 0 < |x| sin θ ≤ x · e1 }. (54)

Lemma 4.2 Choose any Y ⊂ Rd+1 and a monotone set M ⊂ Rd+1 × Rd+1. For
each xo ∈ Rd+1 the set [xo + Y ∗]× [M(xo) + Y ] will be disjoint from M .

Proof: Assume on the contrary that there exist x ∈ Y ∗, y ∈ Y and (xo,yo) ∈ M
such that

(xo + x,yo + y) ∈M.

Since (xo,yo) also belongs to M , monotonicity (4) yields x · y ≥ 0. But then x ∈ Y ∗

and y ∈ Y contradict Definition 4.1, concluding the proof of the lemma. QED.

Proposition 4.3 (Images Still Parallel Normal If d > 1) Let Ω,Λ ⊂ Rd+1 be
bounded, strictly convex domains with Borel probability measures µ on ∂Ω and ν
on ∂Λ. Assume Ω is uniformly convex, while

µ < ε−1Hdb∂Ω and ν > εHdb∂Λ (55)

holds for some ε > 0. Suppose a joint measure γ with marginals µ and ν has support
contained in a monotone set M ⊂ Rd+1 × Λ. If no ∈ Rd+1 is any normal of Ω at
xo ∈ ∂Ω and both yo,y ∈M(xo), then yo − y must be parallel to no.

Proof: It costs no generality to replace the monotone set M in the proposition by
a maximal monotone set which contains it; i.e. a set M ⊂ Rd+1 × Λ which cannot
be enlarged without violating monotonicity (4). This assures convexity of M(x) :=
{y ∈ Rd+1 | (x,y) ∈M} by e.g. Alberti & Ambrosio [2, Proposition 1.2].

1. Take no normal to ∂Ω at xo. Translating and rotating coordinates if necessary,
Lemma A.1 shows ∂Ω may be parameterized by a function x1 = k(x2, . . . , xd+1) ≥ 0
near xo = 0. In particular, n = −e1 := (−1, 0, . . . , 0) will be an outer normal to ∂Ω
at xo (and coincides with no unless differentiability of ∂Ω fails). Let θ ∈ (0, π

2
) and

Y := Y (θ). Since γ ∈ Γ(µ, ν) is supported on M , Lemma 4.2 yields

ν[M(0) + Y ] = γ[Y ∗c × (M(0) + Y )]

≤ µ[Y ∗c]. (56)
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This combines with (55) to show the ratio of surface areas

ρ(θ) :=
Hdb∂Ω[Y ∗c(θ)]

Hdb∂Λ[M(0) + Y (θ)]
(57)

remains bounded away from zero: ρ(θ) > ε2 > 0.
2. Let π : Rd+1 → Rd denote the orthogonal projection

π(x1, x2, · · · , xd+1) = (x2, · · · , xd+1)

and let yo,y1 ∈M(0) ⊂ Λ. Our goal is to show that for small θ, the bound ρ(θ) > ε2

forces π(yo) = π(y1). This will complete the proof that yo − y1 is parallel to n.
To derive a contradiction, suppose π(yo) 6= π(y1). The convexity of M(0) and

strict convexity of Λ imply a slightly shorter segment, also denoted [yo,y1], lies strictly
inside Λ. Denote the distance from this segment to the boundary by

δ := inf
y,z
{|y − z| | y ∈ [yo,y1], z ∈ ∂Λ}. (58)

To parametrize the bottom of ∂Λ define the convex function h : Rd → R∪{+∞} by

h(p) = inf
y
{e1 · y | y ∈ Λ, π(y) = p ∈ Rd}.

3. Claim: If the distance from p to the segment π[yo,y1] is less than δ sin θ then
(h(p),p) ∈M(0) + Y .

Proof of Claim: To begin note that the function f(λ, τ) = λ/
√
λ2 + τ2 increases

with λ ∈ R for every fixed τ , and that z = (z1, . . . , zd+1) belongs to the cone Y :=
Y (θ) precisely when

f(z1, |π(z)|) < − cos θ and z 6= 0. (59)

Now if y ∈ [yo,y1] and
|p− π(y)| < δ sin θ (60)

then z := (−δ cos θ,p− π(y)) satisfies |z| cos θ < −z · e1 and belongs to the cone Y .
The definition of δ and (60) yield

y + z ∈ B(y, δ) ⊂ Λ. (61)

Note that π(y+z) = p and so h(p) < y1−δ cos θ. Monotonicity of f( · , τ) then gives

f(h(p)− y1 , |p− π(y)| ) ≤ f(z1, |π(z)|)

which combines with z ∈ Y and (59) to yield (h(p) − y1,p − π(y)) ∈ Y . Thus
(h(p),p) ∈ y + Y establishes the claim.

4. Claim: If h(p) 6= +∞ then (h(p),p)) ∈ ∂Λ.
Proof of Claim: Let λn ⊂ R be a non-increasing sequence such that

(λn,p) ∈ Λ and h(p) = lim
n→+∞

λn.
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We have (h(p),p) ∈ Λ and (h(p),p) ∈ Λ does not occur since otherwise the latter
yields (h(p)− r,p) ∈ Λ, for some r > 0 and contradicts the definition of h(p).

5. Combining Claims 3 and 4 we obtain

{(h(p),p)) | p ∈ G} ⊂ [M(0) + Y ] ∩ ∂Λ, (62)

where G is the set of all p ∈ Rd satisfying dist(p, π[yo,y1]) < δ sin θ. By the area
formula

Hd[{(h(p),p)) | p ∈ G}] =
∫
G

√
1 + |∇h(p)|2 dHd(p) ≥ Hd[G]. (63)

Noting that G is the union of two half balls of Rd with radius δ sin θ, joined by the
cylinder of the same radius centered on the axis π[yo,y1], we deduce that

Hd[G] = ωd−1H
1[π[yo,y1]] (δ sin θ)d−1 + ωd (δ sin θ)d, (64)

where ωd is the volume of the unit ball in Rd. Using (62)–(64) we obtain the following
lower bound for the area of [M(0) + Y ] ∩ ∂Λ :

Hd[[M(0) + Y ] ∩ ∂Λ] ≥ ωd−1 |π(yo)− π(y1)| (δ sin θ)d−1. (65)

6. Our next goal is to bound the area of ∂Ω∩Y ∗c by exploiting uniform convexity.
Remark A.3 yields a constant R > 0 such that the function x1 = k(x2, . . . , xd+1)
parameterizing ∂Ω near xo = 0 satisfies

k(p) ≥ |p|2/R. (66)

Claim: For small enough θ > 0 one has ∂Ω ∩ Y (θ)∗c ⊂ {(k(p),p) | |p| ≤ R tan θ}.
Proof of Claim: Observe that x = (x1, π(x)) ∈ Y ∗c \ {0} if and only if x1 <

|π(x)| tan θ. Thus any x ∈ Ω ∩ Y ∗c satisfies

|p|2/R ≤ k(p) ≤ x · e1 ≤ |p| tan θ

where p = π(x) and Remarks A.2–A.3 have been used. One concludes |p| ≤ R tan θ.
For small θ, say 0 < θ < θo, this forces |p| and x1 to be small enough that x lies in
the ball B(0, r) of (68). Then x ∈ ∂Ω yields x1 = k(p) to establish the claim.

7. Recall that k(p) is locally Lipschitz near the origin in Rd. For 0 < θ < θo,
Claim 6 and the area formula yield

Hd[∂Ω ∩ Y ∗c] ≤
∫
|p|≤R tan θ

√
1 + |∇k(p)|2 dHd(p) ≤ L(tan θ)d, (67)

where the constant L depends on R, θo and Ω but is independent of θ.
8. Finally, the ratio ρ(θ) > ε2 > 0 of (57) can be bounded using (65) and (67):

ρ(θ) ≤
L tan θ

ωd−1|π(yo)− π(y1)|(δ cos θ)d−1
.
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Unless π(yo) = π(y1), this forces ρ(θ) to zero with θ — a contradiction!
9. We conclude that y0 − y1 must have been parallel to n. If ∂Ω is differentiable

at xo = 0, then no = n and the proposition is complete. Otherwise, we may choose
new co-ordinates obtained by rotating the −e1 axis slightly from n toward no. Since
the rotation is slight it is still possible to parameterize ∂Ω locally using a Lipschitz
function x1 = k̃(x2, . . . , xd+1) of the new co-ordinates. Moreover, k̃ ≥ 0 since both n
and no are outer normals. Repeating arguments 2–8 yields y0 − y1 parallel to both
unit normals: −e1 and n 6= −e1. The only conclusion left is that y0 − y1 = 0, hence
parallel to all normals. This establishes the proposition. QED.

To reinforce our interpretation of this proposition, we verify tangential differen-
tiability as a corollary. The examples discussed at the end of the previous section
with t− 6= t+ give instances where non-tangential differentiability of ψ must fail.

Corollary 4.4 (Tangential Differentiability) When the set M = ∂ψ of Proposi-
tion 4.3 or 3.2 is the subdifferential of a convex function ψ : Rd+1 −→ R, then ψ is
tangentially differentiable along ∂Ω: at xo ∈ ∂Ω and in the coordinates of Lemma A.1,
the partial derivatives ∂ψ/∂xi exist for i = 2, 3, . . . , d+ 1. Should Ω fail to be differ-
entiable at xo ∈ ∂Ω, then the gradient ∇ψ(xo) exists.

Proof: By Proposition 4.3 or 3.2 we know the convex set ∂ψ(xo) is contained in a line
parallel to each no ∈ NΩ(xo). Unless NΩ(xo) consists of a single unit normal nΩ(xo),
this line must degenerate to a point, namely∇ψ(xo). Thus we may henceforth assume
∂Ω differentiable at xo, since otherwise we are done. Translating xo to the origin and
choosing the coordinates of Lemma A.1, (68) and k ≥ 0 force nΩ(xo) = −e1 whence
∂ψ(xo) ⊂ {z + λe1 | λ ∈ R} for some z ∈ Rd+1. Choosing i ∈ {2, 3, . . . , d+ 1} in
(26–27) yields ∂ψ/∂xi = z · ei + 0 to complete the proof. QED.

We close by speculating about Hölder continuity of the homeomorphism t+ :
∂Ω −→ ∂Λ in Theorem 3.8. Here S0 ⊂ ∂Ω refers to the closed set of Proposition 3.7.

Remark 4.5 (Hölder Continuity) For symmetrically suitable measures on Rd+1

satisfying density bounds (6–7), we conjecture that a more delicate monotonicity
argument like that of Caffarelli and McCann [7] should show the homeomorphism
t+ : ∂Ω \ S0 −→ ∂Λ \ T0 to satisfy bi-Hölder estimates with exponent 1

d
locally. For

curves in the plane (d = 1), this suggests t+ is locally bi-Lipschitz outside of S0 ⊂ ∂Ω.

A Appendix on Convex Domains

This appendix recalls a standard construction for parameterizing the boundary of a
convex domain Ω ⊂ Rd+1 near any point xo ∈ ∂Ω in suitable Cartesian coordinates
as the graph of a convex function x1 = k(x2, . . . , xd+1).



WG/RJMc/Shape recognition via Wasserstein distance/August 2, 2000 33

Lemma A.1 (Boundary Parameterization) Let xo lie on the boundary of a con-
vex domain Ω ⊂ Rd+1. Translating xo ∈ ∂Ω to the origin and rotating if necessary,
one can find an open ball B(0, r) around xo and a Lipschitz function k : Rd −→
[0,+∞), such that

Ω ∩B(0, r) = {x ∈ B(0, r) | x1 > k(x2, . . . , xd+1)}. (68)

Proof: Let f(x) denote the signed distance from x ∈ Rd+1 to the boundary of Ω:

f(x) :=

{
dist(x, ∂Ω) if x 6∈ Ω

−dist(x, ∂Ω) if x ∈ Ω.

The function f is known to be convex, e.g. [17, Lemma 4.2]. Since f < 0 in Ω but
f(xo) = 0, clearly 0 6∈ ∂f(xo). Let n denote the point of ∂f(xo) closest to the
origin, and rotate co-ordinates so that n lies along the negative x1-axis. The compact
convex set ∂f(xo) can be separated from the ball Bd+1(0, |n|) by a hyperplane which,
since it passes through n, can only be the plane x1 = −|n|. Thus ∂f(xo) lies in
the half-space x1 ≤ −|n| < 0. This means that f(x1, x2, . . . , xd+1) is a decreasing
function of x1 on a neighbourhood Bd+1(0, r) of xo = 0. Taking r > 0 smaller
if necessary, Clarke’s non-smooth version of the implicit function theorem [8, §7.1]
yields a Lipschitz function k on Rd vanishing at the origin such that f(k(p),p) = 0
for |p| < r. Since f(x) ≥ −|n|x1 it follows that k(p) ≥ 0. To verify (68) observe
that on Bd+1(0, r) strict monotonicity forces f(x1,p) to take the opposite sign from
x1 − k(p). Thus (x1,p) ∈ Ω precisely when x1 > k(p). QED.

Remark A.2 Retaining the coordinates of the lemma, we see that the convex function

k(p) := inf {λ ∈ R | (λ,p) ∈ Ω} (69)

also satisfies (68). Now k : Rd −→ [0,+∞] but remains Lipschitz near 0 ∈ Rd.

Remark A.3 (Uniform Convexity) If Ω ⊂ Rd+1 is uniformly convex the function
k of (68–69) satisfies k(x2, . . . , xd+1) ≥ (x2

2+. . .+x2
d+1)/2R on Rd, where the constant

R > 0 is from Definition 0.2 and independent of xo ∈ ∂Ω. Equivalence of this

condition to uniform convexity is deduced from |X|2/R ≥ R−
√
R2 − |X|2 ≥ |X|2/2R.
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