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Abstract. In this article, under suitable assumptions, it is proved that infu∈UΛ
E[u] is dual to

sup(a,b){
∫
Ω a(F(x))dx +

∫
Λ b(y)dy}, where, E[u] :=

∫
Ω(h(detDu) − F · u)dx. Here, the infimum is

performed over UΛ, the set of all orientation-preserving deformations u ∈ C1(Ω)d that are homeo-
morphisms from Ω̄ onto Λ̄, and the supremum is performed over the set of all upper semicontinuous
functions a, b such that a(z) +αb(y) ≤ h(α)− y · z. This duality result turns out to be important in
the study of existence and uniqueness of smooth minimizers of E. Note that M → h(detM) is not
coercive and thus direct methods of the calculus of variations don’t apply here.
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Introduction. The theory of duality, one of the main tools in the calculus of
variations, is well developed within the context of convex variational problems of the
form infU

∫
Ω
L(x,u(x), Du(x))dx, where the real-valued function M → L(x,u,M)

defined on the set Rd×d of the d × d matrices is convex for each x ∈ Ω and u ∈ Rd.
We recall that in the particular case L(x,u,M) = g(M)−F(x) ·u, where g is convex
and coercive, then the duality statement is as follows: the infimum

inf

{∫
Ω

L(x,u(x), Du(x))dx : u ∈W 1,p
0 (Ω,Rd)

}

and the supremum

sup

{
−
∫

Ω

g∗(−p(x))dx : p ∈ Lq(Ω,Rd×d), div p = F

}

coincide, where g∗ is the Legendre transform of g. Furthermore, the extremum is
attained in both problems (see [10]). An important class of nonconvex functions that
occur in nonlinear elasticity theory is the class of polyconvex functions. There is no
available theory of duality for that class. Recall that a real-valued functionW of Rd×d

into R∪{+∞} is said to be polyconvex if it can be written as a convex function of the
minors of M (see [8]). In this paper we consider a special class of polyconvex functions
of the form L(x,u,M) := W (M) − F(x) · u and introduce a maximization problem,
dual to infU

∫
Ω
L(x,u, Du)dx. As an application we study stable configurations of

solid crystals occupying a reference configuration Ω and subject to a body force F.
If the crystal undergoes a deformation represented by a map u : Ω → Rd, d ≥ 2 (in
general d = 3), then its total energy functional is

E[u] :=

∫
Ω

(W (Du) − F · u)dx,
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where W represents the Helmholtz free energy density. In the framework of the con-
tinuum theory proposed by Ericksen [11] and [12], which has stimulated a growing
body of work (see [23], [22], [21], [20], [25], [29], [28], [27], [26]), W belongs to a class
of energy density functions that are invariant under change of lattice basis and frame:

W (M) = W (QMH)(1)

for all M ∈ Rd×d, all Q ∈ Rd×d such that QTQ = I, detQ > 0, and all H ∈ Zd×d,
|detH| = 1. The class of the energy densities suggested by Ericksen contains those of
the form

W (M) = h(detM) (M ∈ Rd×d),(2)

where h is a convex function. In fact, it was shown by Chipot and Kinderlehrer [7] and
Fonseca [15] that if W is of the form (1), then its quasi-convex envelope QW is of the
form (2). Let us point out that the class of functions in (1) does not fall in the updated
class of energy density functions of solid crystals. However, for purely mathematical
interest, in what follows we choose to study the case where W satisfies (1), QW = W,
and we still interpret the functional E as a solid crystal energy functional.

Following previous works (see, for instance, [17]) we assume that

h ∈ C2(0,+∞) is strictly convex,(3)

h(t) → +∞ as t→ 0+ and h(t)/t→ +∞ as t→ +∞.(4)

We extend h to R by setting

h(t) := +∞ if t ≤ 0.(5)

Requirements (4) and (5) are imposed to make it energically impossible to compress
part of the body of the crystal to zero volume, to extend part of the body excessively,
or to change orientation. A typical example of body force is the gravity F = −g ed,
which can be written as the L1-limit of a sequence of diffeomorphisms. Here we have
set ed := (0, . . . , 0, 1).

If the crystal undergoes a deformation ū under the action of the body force F,
then

− div (σū) = F in Ω,(6)

where σū is the stress tensor ∂W
∂M (Dū). Solutions of (6) could be interpreted as critical

points of the functional E.
A problem of great interest in nonlinear elasticity is the so-called pure displace-

ment boundary value problem: given a diffeomorphism uo from Ω̄ onto Λ̄, where
Λ ⊂ Rd is an open, bounded set, find ū stable solution of (6) such that the restric-
tions of ū and uo on ∂Ω coincide. Stability means that not only is ū a critical point
of E, but ū minimizes E over Uo, the set of all maps u from Ω̄ onto Λ̄ that are in
C1(Ω)d, detDu > 0, and such that the restrictions of u and uo on ∂Ω coincide. Since
M → h(detM) is not coercive, and Uo is not closed under the weak topology on Lp

spaces, the problem of minimizing E over Uo escapes the classical methods of the
calculus of variations, and there is currently a wide literature on the subject. When
uo is the identity map and F = −g ed is the gravity force, Fonseca and Tartar [17]
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showed that E has infinitely many minimizers in the set of displacements that are in
W 1,∞(Ω)d. Also, Chipot and Kinderlehrer [7] proved for E existence of parametrized
measure minimizers by enlarging the set Uo to a set of Radon measures. We show
that if F ∈ C1(Ω̄)d is a homeomorphism, such that detDF ∈ C1(Ω̄)d, detDF > 0, if
Λ and F(Ω) are convex, then the infimum

inf
Uo

E(7)

coincides with the infimum

inf
UΛ

E(8)

and (8) admits a unique minimizer. Here, UΛ is the set of all orientation-preserving
maps u ∈ C1(Ω)d that are homeomorphisms from Ω̄ onto Λ̄.

One can interpret (8) as finding ū stable solution of the equations{− div [∂W∂M (Dū)] = F in Ω,
ū(Ω) = Λ.

(9)

Uniqueness of a minimizer in (8) clearly implies that, in general, (7) does not admit a
minimizer. In fact, sharper conclusions hold for a relaxation of (8): we substitute UΛ

by a bigger set U ′
Λ containing maps which may not be smooth. We define U ′

Λ to be
the set of all maps u from Ω onto Λ that are one-to-one almost everywhere and such
that |detDu| 6= 0 almost everywhere in the weak sense. Since it is delicate to define
determinants of maps u ∈ U ′

Λ we define absolute values of determinants of these maps
in the weak sense (see Definition 1.3). We denote by I the extension of −E to U ′

Λ. In
this new setting, under the assumptions that Ω, Λ, are bounded sets and F ∈ L1(Ω)d

is one-to-one, (d− 1)-nondegenerate (see Definition 1.2), we prove that the following
problem admits a unique maximizer

sup
U ′

Λ

I[u],(10)

where

I[u] :=

∫
Ω

(F · u − h(|detDu|))dx.

If ū is the unique maximizer in (10), even if we drop the assumption that F is (d−1)-
nondegenerate, then there exists a convex function ψo : Rd → R such that F =
Dψ∗

o ◦ ū, and

H(|detDū|) = ψ∗
o ◦ ū.(11)

Here

H(t) = h(t) − th′(t) (t ∈ R),

and ψ∗
o is for the Legendre transform of ψo. One can readily check that

H is decreasing and H(0,+∞) = R,(12)

and so, if H−1 is of class C1, smoothness of |detDū| is a straightforward consequence
of (11). To understand the relation F = Dψ∗

o ◦ ū, one can divide the computation of
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the supremum in (10) into two steps. First, for each function α > 0, we maximize
u → ∫

Ω
F · udx over the set of all u such that u(Ω) = Λ and |detDu| = α. Note that

this intermediary variational problem is a Monge problem (see [3] and [18] in the case
where α ≡ χΩdx ), and so the supremum is obtained for a map uα of the formDψα◦F,
where ψα is a convex function. A sufficient condition for ψα to be differentiable at
F(x) and thus for Dψα ◦F to be well defined at x is that F be (d−1)-nondegenerate.
Formally, if α∞ maximizes the functional α→ ∫

Ω
(F ·Dψα ◦F− h(α))dx over the set

of all α > 0, then ū = Dψα∞ ◦ F is a maximizer in (10).
Uniqueness of minimizers of E over UΛ and Uo may clearly fail if we don’t assume

that F is (d− 1)-nondegenerate. For instance, let uo be the identity map, F ≡ 0, and
h(t) = t2/2 + 1/(2t2). Since h attains it minimum for t = 1, any map u ∈ Uo such
that detDu = 1 is a minimizer of E over Uo and UΛ where Λ = Ω. Hence, E admits
infinitely many minimizers over both sets Uo and UΛ. As shown in [17] it is necessary
to have that detDF(x) ≥ 0 for E to admit a minimizer over Uo.

Our primary and new contribution is to show that (10) is dual to the minimization
problem (13):

inf
A
J [ψ, φ],(13)

where

J [ψ, φ] :=

∫
Ω

ψ(F(x))dx +

∫
Λ

φ(y)dy,(14)

and A is the set of all pairs (ψ, φ) such that ψ : Rd → R∪ {+∞} and φ : conv(Λ) →
R ∪ {+∞} are lower semicontinuous, not identically +∞, and

ψ(z) + αφ(y) + h(α) ≥ y · z
for all y ∈ conv(Λ), all z ∈ Rd, and all α > 0. To obtain the above duality result we
first show that if µ is a finite positive measure on Rd of finite moments Mo(µ) and
M1(µ) (see (20)), then

sup
γ∈Γ(µ)

Ī[γ] = inf
(ψ,φ)∈A

Jµ[ψ, φ],(15)

where

Jµ[ψ, φ] :=

∫
Rd

ψ(z)dµ(z) +

∫
Λ

φ(y)dy,

and

Ī[γ] :=

∫
C

(y · z − h(α))dγ(α,y, z).

Here, Γ[µ] is the set of all Borel measures on C := (0,+∞) × Rd × Rd such that∫
C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy
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for all f ∈ Co(R
d).

In fact, one can view Γ(µ) as a set containing W, the set that consists of all Borel
maps w : Rd → Λ such that the push forward of µ by w is absolutely continuous
with respect to Lebesgue measure, say, w]µ = dy/β(y) for some Borel function
β : Λ → (0,+∞). The inclusion W ⊂ Γ(µ) means that we identify w ∈ W to
γw ∈ Γ(µ), defined by∫

C

f(α,y, z)dγw(α,y, z) :=

∫
Rd

f(β(w(z)),w(z), z)dµ(z)(16)

for all f ∈ Co(R×Rd ×Rd). This definition makes sense provided that w is defined
almost everywhere with respect to µ. Observe that if µ = µF where µF[A] := |F−1[A]|
is the d-dimensional Lebesgue measure of F−1[A], then

Ī[γw] = I[w ◦ F ].(17)

The plan is to first establish (15) and prove that the variational problems involved
admit extremums under the general assumptions that h satisfies (3), (4), and (5) and
that µ is a finite positive measure on Rd whose moments of order one are finite. Next
we show that Ī admits a unique maximizer γo over Γ(µ). That maximizer can be
parametrized over Λ: there is a map m : Λ → Rd and a function β : Λ → R, defined
χΛdy-almost everywhere such that∫

C

f(α,y, z)dγo(α,y, z) :=

∫
Λ

f(β(y),y,m(y))dy

for all f ∈ Co(R×Rd×Rd). Then, we show that if µF[A] := |F−1[A]| where F is one-
to-one and (d−1)-nondegenerate, then every γo maximizing Ī over Γ(µ) is of the form
γw (see (16)). Roughly speaking, µ[Rd \ m(Λ)] = 0, m has an inverse w defined µ-
almost everywhere. We combine (15) and (17) to deduce that w◦F maximizes I, and
that (10) is dual to (13). Simple examples such as F(x) ≡ c and h(t) = t2 +1/t2 show
that uniqueness of maximizer of Ī over Γ(µ) does not imply uniqueness of maximizer
of I over U ′

Λ unless the body force F is one-to-one and (d− 1)-nondegenerate.
The remainder of the paper is organized as follows. In section 2 we prove existence

of a minimizer (ψo, φo) of Jµ over A under the assumptions that h satisfies (3), (4), and
(5) and that µ is a finite positive measure on Rd of finite moments Mo(µ) and M1(µ).
We write the Euler–Lagrange equations corresponding to the variational problem
infA Jµ and deduce that if in addition µ vanishes on (d − 1)-rectifiable subsets of
Rd, then there exist a convex function ψ and a positive Borel function β such that
Dψ]µ = dy/β(y) and γo = γDψ maximizes Ī over Γ(µ). It is well known that a convex
function is differentiable everywhere except on a (d − 1)-rectifiable set (see [1]), and
so the assumption that µ vanishes on (d− 1)-rectifiable subsets of Rd is necessary to
guarantee that Dψ exists almost everywhere with respect to µ, so that the measure
γo = γDψ be well-defined. Here, the analytical arguments used to write the Euler–
Lagrange equations corresponding to infA Jµ are similar to the one independently
introduced by Caffarelli–Varadhan [5] and the first author [18]. Having γo of the form
γDψ readily yields that the duality (15) holds. By an approximation argument we
extend (15) to the case where µ fails to vanish on (d − 1)-rectifiable subsets of Rd

and still obtain that supports of every maximizers of Ī over Γ(µ) are contained in the
graph of a map from Λ into (0,+∞) ×Rd. We also show that the maximizer γo of Ī
over Γ(µ) is unique.
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In section 3, we assume that the given body force F belongs to L1(Ω) and apply
results of section 2 with µ[A] := |F−1[A]| to obtain that (10) is dual to (13). If in
addition F is (d−1)-nondegenerate and one-to-one, then I admits a unique maximizer
ū over U ′

Λ. Furthermore, ū satisfies Dψ∗
o ◦ ū = F and satisfies the Hamilton–Jacobi

equation H(|detDū|) = ψ∗
o ◦ ū for some lower semicontinuous, convex function ψo :

Rd → R. Note that if Dψo is differentiable almost everywhere with respect to µ, then
we can conclude that ū = Dψo ◦F. Conversely, we show that if ū ∈ U ′

Λ, ψo : Rd → R
is a lower semicontinuous, convex function such that H(|detDū|) = ψ∗

o ◦ ū and F =
Dψ∗

o ◦ ū, then ū is the unique maximizer of I over U ′
Λ.

In section 4, using Caffarelli’s regularity results on smoothness of convex poten-
tials [4], [5], [6], we prove that if F and detDF are of class C1, if Λ and F(Ω) are
convex sets, then ū is of class C1 and is the unique minimizer of E over UΛ. A corol-
lary of this result is that given a diffeomorphism uo of Ω̄ onto Λ̄, the infima infUΛ

E
and infUo

E coincide.
Four appendices are also provided. In Appendix A, we review basic facts about

convex functions and study needed properties of the transformations introduced in
Definition 1.6, φ → φ], ψ → ψ] from the set of real-valued functions to the set of
convex functions. In Appendix C, we state that every one-to-one map u ∈ UΛ of class
C1(Ω)∩C(Ω̄) such that detDu+ 1

detDu is bounded is a pointwise limit of a sequence
of one-to-one maps (un) ⊂ Uo of class C1(Ω) ∩ C(Ω̄) with detDun = detDu. This
approximation result is used in section 4 to prove that the infima infUΛ

E and infUo
E

coincide. In Appendix D we recall facts on existence and smoothness of optimal maps
in the Monge problem.

We next summarize the main results of the paper.
Theorem 0.1 (main results). Suppose that Ω, Λ ⊂ Rd are bounded open sets,

that (3), (4), and (5) hold, and that F ∈ L1(Ω)d is a Borel map. Then we have the
following.

(i) Duality. J admits a minimizer (ψo, φo) over A and we have that infA J [ψ, φ] =
supU ′

Λ
I[u].

(ii) Uniqueness of a minimizer. If in addition F is one-to-one almost everywhere
with respect to the d-dimensional Lebesgue measure and |F−1(N)| = 0 whenever N
is (d− 1)-rectifiable, then I admits a unique maximizer ū over U ′

Λ; we also have that
ū = Dψo ◦ F, and H(|detDū|) = ψ∗

o ◦ ū, where (ψo, φo) minimizes J over A.
(iii) Smoothness of the minimizer. Assume in addition that Ω is connected, its

boundary ∂Ω is Lipschitz, and Λ,F(Ω) are convex. If F and detDF belong to C1(Ω̄)d

and detDF > 0 on Ω̄, then ū ∈ UΛ ∩ C0,s(Ω̄)d, 0 < detDū ∈ C0,s(Ω̄) ∩ C1(Ω) for
all 0 < s < 1, ū is the unique minimizer of E over UΛ. Furthermore, we have that
− div [∂W∂M (Dū)] = F in Ω in the weak sense.

Proof. Parts (i) and (ii) follow from Theorem 3.1, and (iii) is a consequence of
Theorem 4.1.

Simple calculations show that the duality result obtained in Theorem 0.1 is

inf
U ′

Λ

{∫
Ω

(h(detDu) − F · u)dx

}
= sup

b

{∫
Ω

Lb(F(x))dx +

∫
Λ

b(y)dy

}
,(18)

where the supremum is performed over the set of all upper semicontinuous functions
b : Rd → R and

Lb(z) := inf
y∈conv(Λ)

{−y · z − h∗(b(y))}.
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1. Notations and definitions. For the convenience of the reader we collect
together some of the notation introduced throughout the text.

• If Ω ⊂ Rd, then Ω denotes the closure of Ω.
• BR is the closed ball of center 0 and radius R > 0.
• |A| stands for the d-dimensional Lebesgue measure of the set A ⊂ Rd, and∫

Rd Gdx is the Lebesgue integral of G.

• If µ is a Borel measure on Rd, then we denote by sptµ the support of µ,
which refers to the smallest closed set K such that µ[Rd \K] = 0. If µ is absolutely
continuous with respect to the d-dimensional Lebesgue measure and µ[A] =

∫
A
fdx

for A ⊂ Rd Borel, then we write µ = fdx.
• If µ is a Borel measure on Rd and v : Rd → Rm is a Borel map, then we define

v#µ to be the Borel measure on Rm given by v#µ[B] := µ[v−1(B)] for B ⊂ Rm.
• The characteristic function of A ⊂ Rd is denoted by χA.
• If ψ : Rd → R ∪ {+∞} is not identically +∞, then the Legendre–Fenchel

transform of ψ is the convex, lower semicontinuous function ψ∗ : Rd → R ∪ {+∞}
defined by

ψ∗(y) := sup
x∈Rd

{x · y − ψ(x)}.(19)

• The subdifferential of a convex function ψ : Rd → R ∪ {+∞} is the set ∂ψ ⊂
Rd × Rd consisting of all (x,y) satisfying

ψ(z) − ψ(x) ≥ y · (z − x) for all z ∈ Rd.

If (x,y) ∈ ∂ψ, we may also write y ∈ ∂ψ(x). Recall x ∈ ∂ψ∗(y) whenever y ∈ ∂ψ(x),
while the converse also holds true if ψ is convex lower semicontinuous. In that case
∂ψ is a closed set. In general, the set ∂ψ(x) ⊂ Rd is closed and convex.

• id stands for the identity map id(x) = x.
• We denote the set of all d×d matrices whose entries are real numbers by Rd×d.
• We denote the set of all homeomorphism from A ⊂ Rd onto B ⊂ Rd by

Diff0(A,B). If k ≥ 1 is an integer, Ω,Λ ⊂ Rd are open, then Diffk(Ω,Λ) is the set
of all maps v ∈ Diff0(Ω,Λ) such that v ∈ Ck(Ω)d and v−1 ∈ Ck(Λ)d. We denote
the set of all maps v ∈ Diff0(Ω̄, Λ̄) such that v is of class Ck in a neighborhood of
Ω̄ and v−1 is of class Ck in a neighborhood of Λ̄ by Diffk(Ω̄, Λ̄).

• We define Uo to be the set of all continuous maps u from Ω̄ onto Λ̄ that are
in C1(Ω)d, such that detDu > 0, u, and uo coincide on ∂Ω. UΛ is the set of all
orientation-preserving maps u ∈ C1(Ω)d that are homeomorphisms from Ω̄ onto Λ̄.
U ′

Λ is the set of all maps u from Ω onto Λ that are one-to-one almost everywhere and
such that |detDu| 6= 0 almost everywhere in the weak sense.

• We define A to be the set of all pairs of functions (ψ, φ) such that ψ : Rd →
R ∪ {+∞}, φ : conv(Λ) → R ∪ {+∞} are lower semicontinuous, not identically +∞,
and ψ(z) + αφ(y) + h(α) ≥ y · z for all y ∈ conv(Λ), z ∈ Rd, and all α > 0.

We recall definitions needed in that which follows.
Definition 1.1. Let A,B ⊂ Rd. We say that v : A → B is one-to-one almost

everywhere from A onto B (with respect to the d-dimensional Lebesgue measure) if
|B \v(A)| = 0, if there exists a set N ⊂ A such that |N | = 0, and if the restriction of
v to A \N is one-to-one. By abuse of language we omit the expression “with respect
to the d-dimensional Lebesgue measure.”

Definition 1.2. Let A,B ⊂ Rd. We say that a Borel map v : A→ B is nonde-
generate if |v−1(N)| = 0 whenever |N | = 0. We say that v is (d − 1)-nondegenerate
if |v−1(N)| = 0 whenever N is (d− 1)-rectifiable.
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Recall that N ⊂ Rd is (d − 1)-rectifiable if N is a countable union of (d − 1)-
hypersurfaces of class C1, union a set of zero (d− 1)-dimensional Hausdorff measure.

Definition 1.3. Let A,B ⊂ Rd, and let βo ∈ L1(A), β1 ∈ L1(B) be nonnegative
functions. Let v : A→ B be a one-to-one almost everywhere Borel map from A onto
B. We say that β1(v(x))|detDv(x)| = βo(x) in A in the weak sense if∫

A

ϕ(v(x))βo(x)dx =

∫
B

ϕ(y)β1(y)dy

for all ϕ ∈ Co(R
d).

Remark 1.4. Note that if v is one-to-one almost everywhere, and if |v−1[C]| = |C|
for every Borel set C, then |detDv| = 1 in the weak sense althoughDv may not exist.

Definition 1.5. Let µ and ν be two Borel measures on Rd. We say that the Borel
map v : Rd → Rd pushes µ forward to ν and we write v]µ = ν if µ[v−1(B)] = ν[B]
for all Borel sets B ⊂ Rd.

Definition 1.6. If φ and ψ are two real valued functions of subsets of Rd into
R ∪ {+∞}, then we define φ] and ψ] to be the following convex functions of Rd into
R ∪ {+∞}:

φ](z) := sup
y∈conv(Λ)

{y · z + h∗(−φ(y))} and ψ](y) := sup
α>0

{
ψ∗(y) − h(α)

α

}
.

2. An auxiliary variational problem: Duality. Throughout this section we
assume that Λ ⊂ Rd is an open bounded set whose closure is contained in the closed
ball BRo

of center 0 and radius Ro. We assume that h satisfies (3), (4), (5) and µ is
a finite positive measure on Rd of finite moments Mo(µ) and M1(µ), where

Mo(µ) := µ[Rd] < +∞, M1(µ) :=

∫
Rd

|z|dµ(z) < +∞.(20)

We define

Jµ[ψ, φ] :=

∫
Rd

ψ(z)dµ(z) +

∫
Λ

φ(y)dy

and

Ī[γ] :=

∫
C

(y · z − h(α))dγ(α,y, z),

where C is the set (0,∞) × Rd × Rd. Let Γ[µ] be the set of all Borel measures on C
such that ∫

C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy

for all f ∈ Co(R
d). Observe that for every (ψ, φ) ∈ A and every γ ∈ Γ(µ) we have

that

Jµ[ψ, φ] =

∫
C

(ψ(z) + αφ(y))dγ ≥
∫
C

(y · z − h(α))dγ = Ī[γ],
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and so

sup
Γ(µ)

Ī[γ] ≤ inf
A
Jµ[ψ, φ].(21)

We establish the reverse inequality in this section.
Remark 2.1. Note that if (ψ, φ) ∈ A, then we have that

ψ−(z) ≤ Ro|z| + |h(1)| + inf
conv(Λ)

φ+(22)

for all z ∈ Rd and

φ−(y) ≤ |y||z| + |h(1)| + ψ+(z)(23)

for all y ∈ conv (Λ), z ∈ Rd. Combining (20), (22), and (23) we deduce that both∫
Rd ψ(z)dµ(z),

∫
Λ
φ(y)dy exist although they may be +∞ and Jµ[ψ, φ] is well-defined.

Lemma 2.2. The set A contains at least an element (ψ, φ). Also, there exists a
constant ca depending only on h, Λ, Mo[µ] such that

(i) | infA Jµ| ≤ ca(1 +M1[µ]);
(ii) if ψ, φ are convex and |Jµ[ψ, φ] − infA Jµ| ≤ 1, then∫

Λ

|φ(y)|dyand

∫
Rd

|ψ(z)|dµ(z) ≤ ca(1 +M1[µ]);

(iii) if in addition Lip(ψ) ≤ Ro, then we have that

ψ(z) ≤ Ro|z| +RRo +
ca

µ[BR]
(1 +M1[µ]) (z ∈ Rd).

Proof. Step 1. The set A is nonempty since it contains (ψo, φo), where φo(y) := 1
on conv (Λ), ψo(z) := Ro|z| − c on Rd, and c := infα>0{h(α) + α}. We deduce that

inf
A
Jµ ≤ Jµ[ψo, φo] ≤ |Λ| +RoM1[µ] − cMo[µ].(24)

If (ψ, φ) ∈ A, then

Jµ[ψ, φ] ≥ −(αφ(yo) + h(α))Mo[µ] −RoM1[µ] +

∫
Λ

φ(y)dy(25)

for all α > 0 and all yo ∈ Λ. Setting α := |Λ|/Mo[µ] in (25) and using (24) we have
that

| inf
A
Jµ| ≤ c1,(26)

where c1 := |Λ| +RoM1[µ] + h(|Λ|/Mo[µ])Mo[µ].
Step 2. Let (ψ, φ) ∈ A be such that |Jµ[ψ, φ] − infA Jµ| ≤ 1. In light of (25) we

have that ∫
Λ

φ(y)dy ≤ 1 + inf
A
Jµ + (αφ(yo) + h(α))Mo[µ] +RoM1[µ](27)

for all α > 0 and all yo ∈ Λ. Choosing α and yo appropriately in (27) we have that∣∣∣∣
∫

Λ

φ(y)dy

∣∣∣∣ ≤ c2(1 +M1[µ]),(28)
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where c2 is a constant depending only on h, Λ, Mo[µ]. Combining (26) and (28) we
deduce that there exists a constant c3 depending only on h, Λ, and Mo[µ] such that∣∣∣∣

∫
Λ

φ(y)dy

∣∣∣∣ ,
∣∣∣∣
∫
Rd

ψ(z)dµ(z)

∣∣∣∣ ≤ c3(1 +M1[µ]).(29)

Step 3. Assume that (ψ, φ) ∈ A, φ is convex on conv(Λ), ψ is convex on Rd, and
|Jµ[ψ, φ] − infA Jµ| ≤ 1. In light of (29) there exists zo ∈ Rd such that

|ψ(zo)| ≤ c3(1 +M1[µ])/µ[Rd].(30)

Integrating (23) over Rd we have that

Mo[µ]φ−(y) ≤ |y|M1[µ] + |h(1)|Mo[µ] +

∫
Rd

ψ+(z)dµ(z)(31)

for all y ∈ conv(Λ). Either infconv(Λ) φ
+ > 0, in which case

φ− ≡ 0 on conv(Λ),(32)

or infconv(Λ) φ
+ = 0, in which case (22) and (29) imply that there exists a constant

c4 depending only on h, Λ, and Mo[µ] such that∫
Rd

|ψ(z)|dµ(z) ≤ c4(1 +M1[µ]),

which, combined with (31), yields

Mo[µ]φ−(y) ≤ |y|M1[µ] + |h(1)|Mo[µ] + c4(1 +M1[µ])(33)

for all y ∈ conv(Λ). Using (32) and (33) we deduce that in any case, there exists a
constant c5 depending only on h, Λ, and Mo[µ] such that

φ−(y) ≤ c5(1 +M1[µ])(34)

for all y ∈ conv(Λ). In light of (29) and (34) we have that there exists a constant c6
depending only on h, Λ, and Mo[µ] such that∫

Λ

|φ(y)|dy ≤ c6(1 +M1[µ]).(35)

Since φ is convex, (35) implies that for each K ⊂ Λ compact set, there exists a
constant cK depending only on h, Λ, Mo[µ], and K such that (see [13, p. 236])

|φ|L∞(K) + |Dφ|L∞(K) ≤ cK(1 +M1[µ]).(36)

Now, (22) and (36) imply that there exists a constant c7 depending only on h, Λ, and
Mo[µ] such that

ψ−(z) ≤ Ro|z| + c7(1 +M1[µ])(37)

for all z ∈ Rd. By (29) and (37) we have that there exists a constant c8 depending
only on h, Λ, and Mo[µ] such that∫

Rd

|ψ(z)|dµ(z) ≤ c8(1 +M1[µ]).(38)
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This concludes the proof of (ii).
Step 4. By (38),

µ[BR] inf
BR

|ψ| ≤ c8(1 +M1[µ]),

and so, if in addition Lip(ψ) ≤ Ro, we readily obtain (iii). This concludes the proof
of the lemma.

Proposition 2.3. Suppose that µ satisfies (20) such that (µn) is a sequence of
Borel measures, that Mo[µn] = Mo[µ] (n = 1, 2, . . .), that (µn) converges weak ∗ to µ,
and that (M1[µn]) converges to M1[µ]. Then the following hold:

(i) There exists (ψµ, φµ) ∈ A minimizing Jµ over A, and

inf
A
Jµ ≤ lim inf

n→+∞(inf
A
Jµn).

(ii) We have that lim supn→+∞(supΓ(µn) Ī) ≤ supΓ(µ) Ī.

(iii) If supΓ(µ) Ī 6= −∞, then there exists γµ ∈ Γ(µ) maximizing Ī over Γ(µ).
Proof. Step 1. We shall show in Step 5 that (i) is a direct consequence of the

following statement: If (fn, gn) ∈ A is such that | infA Jµn
− Jµn

(fn, gn)| ≤ 1/n, then
there exists (ψµ, φµ) ∈ A such that

Jµ(ψµ, φµ) ≤ lim inf
n→+∞ Jµn

(fn, gn) (n = 1, 2, . . .).(39)

To proceed, let R1 > 0 be such that

µ[int(BR1
)] > 1/2µ[Rd].(40)

Note that since (µn) converges weak ∗ to µ, in light of (40) we may assume without
loss of generality that (see [13, p. 59])

µn[int(BR1
)] > 1/2Mo[µ] = 1/2Mo[µn](41)

for all n = 1, 2, . . . . Define

φn := (fn)], ψn := (φn)
].

By Lemma A.1 (ii)–(iii) ψn and φn are convex functions, ψn ≤ fn, φn ≤ gn, and

Lip(ψn) ≤ Ro;(42)

hence

Jµn(ψn, φn) ≤ Jµn(fn, gn)(43)

for all n = 1, 2, . . . . Since in addition | infA Jµn
− Jµn

(ψn, φn)| ≤ 1/n, by Lemma 2.2
and (41) there exists a constant c̄ > 0 independent of n such that∫

Λ

|φn(y)|dy ≤ c̄(44)

and

|ψn(z)| ≤ Ro|z| + c̄ (z ∈ Rd).(45)



476 WILFRID GANGBO AND ROBERTO VAN DER PUTTEN

Using (45) we deduce that the sequence (ψn) is bounded in W 1,∞(BR′) for every
R′ > 0. Since ψn is convex, we may find a subsequence of (ψn) that we still label
(ψn), converging in L∞

loc(R
d) to a convex function ψµ : Rd → R. One can readily

check the following claims.
Step 2. Claim. We have that

lim sup
n→+∞

∫
Bc

R

(Ro|z| + c̄)dµn(z) ≤
∫
Bc

R−2

(Ro|z| + c̄)dµ(z)

for all R > 2.
Step 3. Claim. We have that limn→+∞

∫
Rd |ψn − ψµ|dµn = 0.

We next prove the following.
Step 4. Claim. We have that lim infn→+∞

∫
Rd ψµdµn ≥ ∫

Rd ψµdµ.
Proof: For R > 1 let lR : R → [0, 1] be of class C∞ such that

lR(t) =

{
1 if |t| ≤ R− 1,
0 if |t| ≥ R.

(46)

We have that

χBc
R
≤ 1 − lR(|z|) ≤ χBc

R−2
.(47)

Because (µn) converges weak ∗ to µ and (M1[µn]) converges to M1[µ], using (45) and
(47) we have that

lim inf
n→+∞

∫
Rd

ψµdµn ≥
∫
Rd

ψµlRdµ−
∫
Rd

(Ro|z| + c̄)(1 − lR(|z|))dµ

≥
∫
Rd

ψµlRdµ−
∫
Bc

R−2

(Ro|z| + c̄)dµ.(48)

Letting R go to +∞ in (48) we conclude the proof of Claim 4.
Now, combining Claims 3 and 4 we have that∫

Rd

ψµdµ ≤ lim inf
n→+∞

∫
Rd

ψndµn.(49)

Similarly, since φn is convex (44) implies that there exists a convex function φµ :
conv(Λ) → R∪{+∞} such that up to a subsequence, (φn) converges pointwise to φµ
in Λ and ∫

Λ

φµdy ≤ lim inf
n→+∞

∫
Λ

φndy.(50)

Because (ψn, φn) ∈ A, we obtain that (ψµ, φµ) ∈ A. Thanks to (43), (49), and (50)
we have that

inf
A
Jµ ≤ Jµ(ψµ, φµ) ≤ lim inf

n→+∞ Jµn
(fn, gn),(51)

which proves (39).
Step 5. Taking µn ≡ µ for all n in (51) we have that there exists (ψµ, φµ) ∈ A

minimizing Jµ over A. Next, assuming (fn, gn) minimizes Jµn
over A, (51) implies

that infA Jµ ≤ lim infn→+∞(infA Jµn) which completes the proof of (i).
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If lim supn→+∞(supΓ(µn))Ī = −∞, then (ii) is straightforward to obtain.

Step 6. Now we prove (ii). If lim supn→+∞(supΓ(µn))Ī = −∞, then (ii) is straight-
forward to obtain. Therefore we may assume without loss of generality that

lim sup
n→+∞

( sup
Γ(µn)

Ī) > −∞.

Note first that since by (21) supΓ(µn) Ī ≤ infA Jµn
, using the fact that (M1[µn])

converges to M1[µ], and Lemma 2.2 (i) we have that lim supn→+∞(supΓ(µn) Ī) < +∞.
Let (nj) be such that

lim sup
n→+∞

( sup
Γ(µn)

Ī) = lim
j→+∞

( sup
Γ(µnj

)

Ī).

Choose e1 a real number independent of j, smaller than supΓ(µnj
) Ī for all j ∈ N and

let γnj ∈ Γ(µnj ) be such that

sup
Γ(µnj

)

Ī ≤ Ī[γnj
] + 1/nj .

One can readily check that
∫
C
h(α)dγnj

is less than or equal to RoM1[µnj
] + 1 − e1,

and so there exists a constant e2 independent of j such that∫
C

|h(α)|dγnj ≤ e2(52)

for all j ∈ N. By Proposition B.1, (52) implies that there exists a subsequence of (nj)
that we still label (nj) and a Borel measure γ ∈ Γ(µ) such that (γnj ) converges weak ∗
to γ. Because h satisfies (4), Λ̄ is contained in BRo and γnj [(0,+∞)×Λc×Rd] = 0 we
deduce that there exists a constant e3 such thatmR : (α,y, z) → h(α)−y·z−e3+Ro|z|
is nonnegative for γnj

-almost every (α,y, z) ∈ C. Hence, if we define kR : (α,y, z) →
lR(α+ |y| + |z|), then

lim
j→+∞

∫
C

mRdγnj
≥ lim
j→+∞

∫
C

mRkRdγnj

=

∫
C

mRkRdγ.(53)

Consequently,

(54)

lim
j→+∞

∫
C

(h(α) − y · z)dγnj
+RoM1[µnj

] ≥
∫
C

(h(α) − y · z)kRdγ +RoM1[µ].

Letting R go to +∞ in (54), using that (M1[µnj ]) converges to M1[µ] we obtain
that

lim sup
n→+∞

( sup
Γ(µn)

Ī) ≤ Ī[γ] ≤ sup
Γ(µ)

Ī(55)

and conclude the proof of (ii).
Step 7. Setting µn = µ for all n ∈ N in (55) we obtain (iii).
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Theorem 2.1 (duality). Suppose that h satisfies (3), (4), (5) and that µ satisfies
(20). Then the following hold:

(i) There exists a pair (ψµ, φµ) of convex functions minimizing Jµ over A such
that (ψµ)] = φµ and (φµ)

] = ψµ and Lip(ψµ) ≤ Ro.
(ii) The duality relation supΓ(µ) Ī = infA Jµ holds. Defining on C the measure γ

by ∫
C

gdγ =

∫
Λ

1

βµ(y)
g(βµ(y),y, Dψ∗

µ(y))dy

for all g ∈ Co(R×Rd ×Rd), we have that γ is the unique maximizer of Ī over Γ(µ).
Here βµ : Λ → (0,+∞) is a Borel map such that βµ(y)(ψµ)](y) + ψµ(Dψ

∗
µ(y)) =

y ·Dψ∗
µ(y) − h(βµ(y)) for almost every y ∈ Λ.

(iii) If we assume in addition that µ[N ] = 0 for every (d− 1)-rectifiable subset N
of Rd, then γ is of the form γ = γDψ, i.e., γ can be parametrized on (Rd, µ):∫

C

gdγ =

∫
Rd

g(βµ(Dψµ(z)), Dψµ(z), z)dµ(z)

for all g ∈ Co(R × Rd × Rd).
Proof. By Proposition 2.3 there exists a pair (ψµ, φµ) minimizing J over A. By

Lemma A.1 (iii)–(iv) the pairs (ψµ, (ψµ)]) and (((ψµ)])
], (ψµ)]) minimize J over A

and (((ψµ)])
])] = (ψµ)]. Hence, we may assume without loss of generality that ψµ,

φµ are convex, (ψµ)] = φµ, and (φµ)
] = ψµ, and so

Lip(ψµ) ≤ Ro(56)

(see Lemma A.1 ). This concludes the proof of (i).
Step 1. We first give the proof of (ii) in the special case when there exists R > 0

such that the support of µ is contained in BR and µ[N ] = 0 for every (d−1)-rectifiable
subset N of Rd.

Step 2. For G ∈ Co(R
d) and r > 0 define

ψr(z) :=

{
ψµ(z) + rG(z) if z ∈ BR,

+∞ if z 6∈ BR

and

φr := (ψr)].

We have that ψ∗
r is finite at every point of Rd and so Dψ∗

r exists except on a (d −
1)-rectifiable set (see [1]). Hence, Sr := Dψ∗

r : Λ → BR is well-defined µ-almost
everywhere. In light of Lemma A.1 let βr : Λ → (0,+∞) be the unique Borel function
such that

βr(y)φr(y) + ψr(Sr(y)) = y · Sr(y) − h(βr(y)).(57)

Note that βr is well-defined µ-almost everywhere. By (56) |ψr|L∞(BR) is bounded
independently of |r| ≤ 1 and so Lemma A.1 implies

c ≤ βr(y) ≤ 1/c(58)
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for all y ∈ Λ and for some constant c > 0 independent of r. Observe that (57) implies

− r

βo(y)
G(So(y)) ≤ φr(y) − φo(y) ≤ − r

βr(y)
G(Sr(y))(59)

for all y ∈ Λ. This, together with (58), yields

|φr(y) − φo(y)| ≤ r

c
|G|L∞(Rd)(60)

for all y ∈ Λ.
Step 3. Claim. Whenever So(y) exists we have that (φr(y) − φo(y))/r tends to

−G(So(y))/βo(y) as r tends to 0.
Proof. Fix y such that So(y) exists and assume that (rj) ⊂ (0,+∞) is a sequence

converging to 0,

Srj (y) → zo, βrj (y) → αo,(61)

as j tends to +∞. Since (ψr) converges uniformly to ψo on BR and by (60) (φr)
converges uniformly to φo on Λ, (57) implies that

αoφo(y) + ψo(zo) = y · zo − h(αo).(62)

Since So(y) = Dψ∗
o(y) exists, (62) and Lemma A.1 imply

αo = βo(y) and zo = So(y).

Because (rj) ⊂ (0,+∞) is arbitrary we deduce that (Sr(y)) converges to So(y) and
(βr(y)) converges to βo(y) as r tends to 0. This together with (59) yields Claim 3.

Step 4. Claim. So pushes dy/βo(y) forward to µ.
Proof. Note that Jµ[ψo, φo] = Jµ[ψµ, φµ] and so (ψo, φo) also minimizes Jµ over

A. This combined with Claim 3 implies

0 = lim
r→0

Jµ[ψr, φr] − Jµ[ψo, φo]

r
=

∫
Rd

Gdµ−
∫

Λ

G ◦ So
βo

dy.(63)

Since G is arbitrary in (63), we conclude Claim 4.
Step 5. Using (57) and Claim 4 we have that

Jµ[ψo, φo] =

∫
Λ

ψo ◦ So + βoφo
βo

dy =

∫
Λ

y · So(y) − h(βo(y))

βo(y)
dy

=

∫
C

(y · z − h(α))dγµ = Ī[γµ],(64)

where we have defined the measure γµ by∫
C

gdγµ =

∫
Λ

1

βo(y)
g(βo(y),y, So(y))dy

for all g ∈ Co(R×Rd ×Rd). Clearly γµ ∈ Γ(µ). Combining (21) and (64) we deduce
that

sup
Γ(µ)

Ī = inf
A
Jµ.(65)
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Step 6. We complete the proof of (ii). Assume now that µ satisfies only (20).
Let (µn) be a sequence of Borel measures on Rd such that µn[N ] = 0 whenever
N is a (d − 1)-rectifiable subset of Rd, Mo[µn] = Mo[µ], spt(µn) is bounded for
all n = 1, 2, . . . , and (M1[µn]) converges to M1[µ] as n tends to +∞. Combining
Proposition 2.3 and (65) we have that

inf
A
Jµ ≤ lim inf

n→+∞(inf
A
Jµn

) ≤ lim sup
n→+∞

( sup
Γ(µn)

Ī) ≤ sup
Γ(µ)

Ī .(66)

Combining (21) and (66) we deduce that

sup
Γ(µ)

Ī = inf
A
Jµ.

This proves that duality persists under the sole assumption that µ satisfies only (20).
In light of Proposition 2.3 and the above duality result, if γ maximizes Ī over Γ(µ),
we have that ∫

C

(ψµ(z) + αφµ(y) + h(α) − y · z)dγ = 0,

and so

ψµ(z) + αφµ(y) + h(α) − y · z = 0

for every (α,y, z) ∈ D′ where D′ ⊂ C is such that γ[C \D′] = 0. Let A be the subset
of Λ where Dψ∗

µ exists. Since Hd[Λ \A] = 0 we deduce that γ[C \D′′ = 0 where

D′′ := (0,+∞) ×A× Rd.

In light of Lemma A.1, there exists a Borel function βµ : Λ → (0,+∞) such that

D := D′ ∩D′′ ⊂ {(βµ(y),y, Dψ∗
µ(y)) | y ∈ A}.(67)

Since γ[C \D] = 0, (67) implies the representation formula∫
C

gdγ =

∫
Λ

1

βµ(y)
g(βµ(y),y, Dψ∗

µ(y))dy(68)

for all g ∈ Co(R × Rd × Rd), and so γ is uniquely determined. This concludes the
proof of (ii).

Step 7. We complete the proof of (iii). Assume that µ satisfies (20) and µ[N ] = 0
whenever N is a (d− 1)-rectifiable subset of Rd. Since γ[C] is finite, (68) implies that
1/βµ ∈ L1(Λ). Choosing g ≡ g(z) in (68) we obtain that Dψ∗

µ is the optimal map
in the Monge problem that pushes dy/βµ(y) forward to µ, and so Dψ∗

µ is one-to-one
with respect to Lebesgue measure, its inverse is Dψµ and is one-to-one with respect
to µ (see Proposition D.1). This together with the representation formula of γ given
in (ii) proves (iii).

Remark 2.4. Note that if h satisfies (3), (4), (5) and µ is a measure whose support
is contained in BR for some R > 0, then by Step 1 of the proof of Theorem 2.1 we
obtain that ψ∗

µ can be extended to a convex, lower semicontinuous function which is

finite on Rd. If βµ : Λ → (0,+∞) is the Borel function such that βµ(y)(ψµ)](y) +
ψµ(Dψ

∗
µ(y)) = y ·Dψ∗

µ(y)−h(βµ(y)) for almost every y ∈ Λ, and ψµ is convex, lower
semicontinuous, since H ◦βµ = ψ∗

µ, we then deduce that there exists a constant c > 0
such that c ≤ βµ ≤ 1/c.
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3. Existence of equilibrium configuration. Throughout this section we as-
sume that Ω,Λ ⊂ Rd are two open bounded sets whose closures are contained in the
closed ball BRo

of center 0 and radius Ro. We assume that h satisfies (3), (4), (5)
and F ∈ L1(Ω)d is a Borel map. The aim of this section is to prove that a direct
consequence of section 2 is that problem

inf
(ψ,φ)∈A

J [ψ, φ](69)

and problem

sup
u∈U ′

Λ

I[u](70)

are dual of each other. Here

I[u] :=

∫
Ω

(F · u − h(|detDu|))dx (u ∈ U ′
Λ),

and J is defined as in (14) by

J [ψ, φ] :=

∫
Ω

ψ(F(x))dx +

∫
Λ

φ(y)dy.

We also show that if in addition F is one-to-one almost everywhere and |F−1(N)| = 0
whenever N is (d−1)-rectifiable, then (70) admits a unique minimizer. The inequality

sup
u∈U ′

Λ

I[u] ≤ inf
(ψ,φ)∈A

J [ψ, φ]

is straightforward. Indeed, if u ∈ U ′
Λ and (ψ, φ) ∈ A, then

F · u − h(|detDu|) ≤ ψ ◦ F + |detDu| · φ ◦ u

almost everywhere in Ω, which by integration yields I[u] ≤ J [ψ, φ]. Because u ∈ U ′
Λ

and (ψ, φ) ∈ A are arbitrary we have that

sup
u∈U ′

Λ

I[u] ≤ inf
(ψ,φ)∈A

J [ψ, φ].(71)

The task in this section is to establish the reverse inequality.
Lemma 3.1. Suppose that (3), (4), and (5) hold and that ψo : Rd → R is convex,

lower semicontinuous. If ū ∈ U ′
Λ, F = Dψ∗

o ◦ ū, and H(|detDū|) = (ψo)
∗ ◦ ū, then

I[ū] = J [ψo, (ψo)]], ū is a maximizer of I over U ′
Λ, and the pair (ψo, (ψo)]) minimizes

J over A.
Proof. Define φo := (ψo)]. Because |detDū| 6= 0 almost everwhere in the weak

sense, we have that |ū−1[N ]| = 0 whenever |N | = 0. Also, since the convex functions
φo and (ψo)

∗ are differentiable everywhere except on a (d− 1)-rectifiable set, we have
that both φo and (ψo)

∗ are differentiable at ū(x) for almost every x ∈ Ω. By Lemma
A.1, for these x ∈ Ω we may define α(x) > 0 and z(x) ∈ ∂ψ∗

o(ū(x)) such that

H(α(x)) = ψ∗
o(ū(x))(72)

and

α(x)φo(ū(x)) + ψo(z(x)) = z(x) · ū(x) − h(α(x)).(73)
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We use the fact that H is decreasing, H(|detDū|) = ψ∗
o ◦ ū, and (72) to obtain that

α(x) = |detDū(x)|.(74)

Since ψ∗
o is differentiable at ū(x) and z(x) ∈ ∂ψ∗

o(ū(x)) we deduce that

z(x) = F(x).(75)

By (73), (74), and (75) we obtain that

|detDū(x)|φo(ū(x)) + ψo(F(x)) = F(x) · ū(x) − h(|detDū(x)|),

which by integration yields I[ū] = J [ψo, φo]. Since (ψo, φo) ∈ A (71) implies ū maxi-
mizes I over U ′

Λ and (ψo, (ψo)]) minimizes J over A.
Theorem 3.1 (main results). Suppose that (3), (4), and (5) hold. Then we have

the following.
(i) infA J [ψ, φ] = supU ′

Λ
I[u].

(ii) If F is one-to-one almost everywhere and (d−1)-nondegenerate, then I admits
a unique maximizer ū over U ′

Λ, ū = Dψµ ◦ F, and I[ū] = J [ψµ, (ψµ)]], and the
map ū satisfies the Hamilton–Jacobi equation H(|detDū|) = ψ∗

µ ◦ ū for some lower

semicontinuous convex function ψµ : Rd → R such that Lip(ψµ) ≤ Ro and ψµ =
((ψµ)])

].
(iii) If F satisfies the assumptions in (ii) and in addition F ∈ L∞(Ω)d, then there

exists a constant c > 0 such that c ≤ |detDū| ≤ 1/c, and we may extend ψ∗
µ into a

Lipschitz, convex function in a neighborhood of conv(Λ̄).
Proof. We define on Rd the measure µ given by

µ[A] := |F−1[A]|

for A ⊂ Rd. Note that

J [ψ, φ] =

∫
Rd

ψdµ+

∫
Λ

φdy,

which, using the notation of section 2, is Jµ[ψ, φ], and the following condition on the
moments is satisfied:

Mo[µ] = |Ω| < +∞, M1[µ] = |F|L1(Ω) < +∞.(76)

By Theorem 2.1 (i) there exists a pair (ψµ, φµ) of convex functions minimizing Jµ
over A such that (ψµ)] = φµ and (φµ)

] = ψµ and Lip(ψµ) ≤ Ro.
Step 1. Assume first that F is one-to-one almost everywhere, (d−1)-nondegenerate.

Note that µ[N ] = 0 wheneverN is a (d−1)-rectifiable subset of Rd. Since ψµ is convex,
the set where ψµ is not differentiable is (d− 1)-rectifiable (see [1]) and so

ū(x) := Dψµ(F(x))(77)

is defined for almost every x ∈ Ω. In light of Theorem 2.1 (iii) Dψµ is the optimal map
in the Monge problem that pushes µ forward to dy/βµ(y) where βµ : Λ → (0,+∞) is
a Borel function such that

βµ(y)(ψµ)](y) + ψµ(Dψ
∗
µ(y)) = y ·Dψ∗

µ(y) − h(βµ(y))
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for almost every y ∈ Λ. Note that in light of Remark 2.4, if in addition F ∈ L∞(Ω)d,
then we may assume without loss of generality that ψ∗

µ is Lipschitz on conv(Λ̄). We

have that Dψµ is one-to-one on Rd up to a set of zero measure with respect to µ and
Dψµ maps Rd onto Λ. We deduce that

ū is one-to-one up to a set of zero measure with respect to χΩdx.(78)

Recall that in light of Theorem 2.1 (iii) the measure γµ defined on C by∫
C

gdγµ =

∫
Rd

g(βµ(Dψµ(z)), Dψµ(z), z)dµ(z)

for all g ∈ Co(R × Rd × Rd) maximizes Ī over Γ(µ). Therefore we have that∫
Ω

f(ū(x))βµ(ū(x))dx =

∫
Λ

f(y)dy

for all f ∈ Co(R
d). Consequently,

|detDū| = βµ ◦ ū.(79)

Using (78), (79), and the fact that βµ > 0 we obtain that

ū ∈ U ′
Λ.(80)

Since βµ(ψµ)] + ψµ ◦Dψ∗
µ = id ·Dψ∗

µ − h ◦ βµ Lemma A.1 implies H ◦ βµ = ψ∗
µ, and

so using (79) we obtain that

H(|detDū|) = ψ∗
µ ◦ ū.(81)

By Lemma 3.1, (77), (80), and (81) we obtain that ū maximizes I over U ′
Λ and

I[ū] = J [ψµ, (ψµ)]]. Therefore, we have proved (i) under the assumption that F is
one-to-one almost everywhere, (d− 1)-nondegenerate.

Step 2. We prove that ū is the unique maximizer of I over U ′
Λ. Indeed, if u is

another maximizer of I over U ′
Λ, the duality relation between (10) and (13) implies

F(x) · u(x) − h(|detDu(x)|) = ψµ(F(x)) + |detDu(x)|φµ(u(x))

for all almost every x ∈ Ω, and so, by Lemma A.1 (i),

u(x) ∈ ∂ψµ(F(x))(82)

for these x. Since ψµ is differentiable everywhere in BR except on a (d− 1)-rectifiable
set and F is (d − 1)-nondegenerate, (82) implies u(x) = Dψµ(F(x)) = ū(x) for all
almost every x ∈ Ω. This concludes the proof of (ii).

Step 3. If F satisfies the assumptions in (ii) and in addition F ∈ L∞(Ω)d, then
there exists R > 0 such that the support of µ is contained in BR. Using Remark 2.4
and (79) we obtain (iii).

Step 4. We now prove (i) under the sole assumption that F ∈ L1(Ω)d. For each
n ∈ N we may find Fn ∈ L∞(Ω)d that is one-to-one almost everywhere, (d − 1)-
nondegenerate, and such that

|Fn − F|L1(Ω) → 0
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as n tends to +∞. Define

Jn[ψ, φ] :=

∫
Rd

ψ(Fn(x))dx +

∫
Λ

φ(y)dy

and

In[u] :=

∫
Ω

(Fn · u − h(|detDu|))dx.

By (ii) there exists ψn : Rd → R convex function such that Lip(ψn) ≤ Ro and

Jn[ψn, (ψn)]] = inf
A
Jn = sup

U ′
Λ

In.(83)

Using that Lip(ψn) ≤ Ro we have that

Jn[ψn, (ψn)]] ≥ inf
A
J −Ro|Fn − F|L1(Ω)(84)

and using that u(Ω) ⊂ Λ ⊂ BRo
for all u ∈ U ′

Λ we deduce that

sup
U ′

Λ

In ≤ sup
U ′

Λ

I +Ro|Fn − F|L1(Ω).(85)

Combining (83), (84), and (85) we obtain (i).
Corollary 3.2 (characterization of maximizers of I). Suppose that (3), (4), (5)

hold and that F ∈ L1(Ω)d. Assume that ū ∈ U ′
Λ. Then ū maximizes I over U ′

Λ if and
only if there exists a lower semicontinuous convex function ψo : Rd → R such that
Dψ∗

o exists almost everywhere in Λ, F = Dψ∗
o ◦ ū, and H(|detDū|) = ψ∗

o ◦ ū on Ω.
Proof. Step 1. Assume that ū maximizes I over U ′

Λ. By Theorem 3.1 there exists
a lower semicontinuous convex function ψo : Rd → R such that I[ū] = J [ψo, φo] and
ψo = (φo)

], where φo := (ψo)]. We deduce that

|detDū(x)|φo(ū(x)) + ψo(F(x)) = F(x) · ū(x) − h(|detDū(x)|))(86)

for almost every x ∈ Ω. Since ψ∗
o is differentiable at almost every ū(x), using (86) and

Lemma A.1 we deduce that

F = Dψ∗
o ◦ ū(87)

and

H(|detDū|) = ψ∗
o ◦ ū.(88)

Step 2. The converse implication is given by Lemma 3.1, and we conclude the
proof of the lemma.

4. Smoothness of equilibrium configurations. Throughout this section, un-
less the contrary is explicitly stated, we assume that Ω,Λ ⊂ Rd are two open bounded
sets. Recall that d ≥ 2 is an integer. We now state the main result of this section.

Theorem 4.1 (smoothness of maximizers of I). Assume that Ω is connected, its
boundary ∂Ω is Lipschitz, Λ and F(Ω̄) are convex. Assume that F,detDF ∈ C1(Ω̄)d,
0 < detDF on Ω̄, F is a homeomorphism of Ω̄ onto F(Ω̄). If h satisfies (3), (4), and
(5), then the following hold:
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(i) Problem supA −J and infUΛ
E are dual to each other, and there exists a unique

ū minimizing E over UΛ.
(ii) We have that ū ∈ C1(Ω)d ∩ C0,s(Ω̄)d, detDū ∈ C0,s(Ω̄) ∩ C1(Ω) for all

0 < s < 1, and detDū + 1/detDū ∈ L∞(Ω).
(iii) Furthermore, ū satisfies the partial differential equations (9) in the weak sense

and (11) pointwise.
Proof. Step 1. To show (i), it suffices to check that the map ū maximizing I

over U ′
Λ belongs to UΛ. By Theorem 3.1 there exists a lower semicontinuous, convex

function ψo : Rd → R such that ū := Dψo ◦ F ∈ U ′
Λ, H ◦ |detDū| = ψ∗

o ◦ ū,

I[ū] = J [ψo, (ψo)]],(89)

and Dψo pushes fodz forward to dy/βo(y), where

fo(z) :=
1

detDF(F−1(z))
(z ∈ F(Ω̄)),

and βo : Λ → (0,+∞) is defined by βo(y)(ψo)](y) + ψo(Dψ
∗
o(y)) = y · Dψ∗

o(y) −
h(βo(y)). By Lemma A.1 we have that

H ◦ βo = ψ∗
o .(90)

Since F is bounded we may assume without loss of generality that ψ∗
o is Lipschitz

on Λ̄ and because the inverse H−1 of H is of class C1, (90) and Proposition D.2
imply that βo ∈ C1(Λ̄). Clearly, fo is of class C1, bounded below and above on
F(Ω̄). Using Proposition D.2 again, using that Dψo pushes fodz forward to dy/βo(y)
and that the density functions fo and 1/βo(y) are smooth we deduce that Dψo ∈
C0,s(F(Ω̄))d ∩C1,s(F(Ω))d for all 0 < s < 1. This proves (i) and (ii). Note that there
exists a constant c > 0 such that

c ≤ detDū ≤ 1/c.(91)

Step 2. Let v ∈ C∞
o (Ω)d, let K be the support of v, and for each |r| < 1 define

ur := ū + rv.

Since ū ∈ C1(K), ur = ū on Ω \K, and (91) holds we deduce that (Dur) converges
uniformly to Dū on Ω and there exists ro > 0 such that

c/2 ≤ detDur(x) ≤ 2/c(92)

for almost every x ∈ Ω and for every |r| < ro. Thanks to Remark 4.1, since ur ∈
C1(Ω)d ∩ C(Ω̄)d, ur and ū agree on ∂Ω, (92) implies that ur is one-to-one from Ω̄
onto ū(Ω̄) and ur ∈ UΛ. Using that ū maximizes I over UΛ we have that

0 = − lim
r→0

(I[ur] − I[ū])/r = lim
r→0

∫
K

(W (Dur) −W (Dū))/rdx −
∫
K

F · vdx.(93)

Since (Dur) converges uniformly to Dū on Ω, {AdjDur}r and AdjDū are uniformly
bounded by a constant c1 > 0. Now note that DW is bounded on {M ∈ Rd×d :
c/2 ≤ detM ≤ 2/c, |AdjM | < c1}, and so (92) and (93) yield

0 =

∫
K

DW (Dū) ·Dvdx =

∫
K

F · vdx.(94)
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Since v is arbitrary in (94) we read off

− div (DW (Dū)) = F in Ω

in the weak sense.
This concludes the proof of Theorem 4.1.
Remark 4.1. If uo ∈ C1(Ω)d ∩C(Ω̄)d is one-to-one on Ω, detDuo is positive, and

uo(Ω) := Λ, then by the invariance of domain theorem the set Λ is open (see [16]). If
u ∈ C1(Ω)d ∩ C(Ω̄)d agrees with uo on ∂Ω, then

deg(u,Ω,y) = deg(uo,Ω,y) =

{
1 if y ∈ Λ,
0 if y 6∈ Λ̄,

(95)

where deg(u,Ω,y) stands for the topological degree of u at y on Ω. If in addition
detDu > 0 in Ω, then (95) implies u is one-to-one and u(Ω) = Λ. Hence u ∈ UΛ. In
particular, Uo is a subset of UΛ (see, for instance, [16] for properties of the topological
degree theory).

Corollary 4.2. Assume that uo ∈ C1(Ω)d∩C(Ω̄)d is one-to-one on Ω̄, detDuo
is positive and belongs to C1(Ω), detDuo + 1/detDuo ∈ L∞(Ω), and uo(Ω) = Λ.
Under the assumptions of Theorem 4.1 the infima in (7) and (8) coincide.

Proof. Thanks to Remark 4.1 we have that infUΛ E ≤ infUo E. To conclude
the proof of the corollary it suffices to show the reverse inequality. Let ū be the
minimizer of E over UΛ. By Proposition C.1 there exists a sequence (un) ⊂ Uo such
that ||un − ū||1||F||∞ ≤ 1/n and

detDun = detDū almost everywhere in Ω

for each n = 1, 2, . . . . We have that

E[un] = E[ū] +

∫
Ω

F · (ū − un)dx ≤ inf
UΛ

E + 1/n.

This concludes the proof of Corollary 4.2.

Appendix A. Properties of the map φ → φ]. Throughout this section Λ is
an open subset of Rd contained in the closed ball BR of center 0 and radius R > 0,
h ∈ C2(0,+∞) is strictly convex and satisfies the growth conditions (4). Recall that

H(t) := h(t) − th′(t) (t ∈ (0,+∞)).

Suppose that φ̃ : conv(Λ) → R, ψ̃ : Rd → R ∪ {+∞} are lower semicontinuous,
and define the convex functions

ψ(z) = φ̃](z) := sup
y∈conv(Λ)

{y · z + h∗(−φ̃(y))} (z ∈ Rd),(96)

and

φ(y) = ψ̃](y) := sup
α>0

{
(ψ̃)∗(y) − h(α)

α

}
(y ∈ Rd).(97)

Lemma A.1. Let yo, zo ∈ Rd. The following statements hold:
(i) The supremum in φ(yo) is attained for β(yo) ∈ (0,+∞) provided that (ψ̃)∗(yo)

is finite. If S(yo) ∈ ∂(ψ̃)∗(yo), then we have that S(yo) ∈ β(yo)∂φ(yo), and H(β(yo))
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= (ψ̃)∗(yo). Consequently, the pair (β(yo), S(yo)) or in other words the pair (β(yo),
Dψ̃∗(yo)) is uniquely determined if (ψ̃)∗ is differentiable at yo; β, S are Borel func-
tions.

(ii) If ψ 6≡ +∞, then Lip(ψ) ≤ R.
(iii) If (ψ̃, φ̃) ∈ A, then φ ≤ φ̃ on conv(Λ) and ψ ≤ ψ̃ on Rd.
(iv) We have that ((φ̃])])

] = φ̃] on Rd and ((ψ̃])
])] = ψ̃] on conv(Λ).

Proof. Step 1. We first prove (i). Note that in light of (4), φ(yo) is finite if
and only if (ψ̃)∗(y) is finite, in which case existence of a maximizer β(yo) in φ(yo)
is a straightforward to obtain. Next, observe that if S(yo) ∈ ∂(ψ̃)∗(yo), then the
auxiliary function K : (α,y, z) → αφ(y) + ψ̃(z) + h(α) − y · z attains its minimum
at (β(yo),yo, S(yo)). Exploiting the fact that both functions K and ∂K

∂α vanish at
(β(yo),yo, S(yo)) we deduce that

−φ(yo) = h′(β(yo)) and H(β(yo)) = yo · S(yo) − ψ̃(S(yo)).

Step 2. Since K(β(yo),yo, z) and K(β(yo),y, S(yo)) are greater than or equal
to K(β(yo),yo, S(yo)), we readily deduce that S(yo) ∈ β(yo)∂φ(yo). Using the fact
that ψ̃(S(yo))+(ψ̃)∗(yo) = yo ·S(yo), the equation H(β(yo)) = yo ·S(yo)− ψ̃(S(yo))
reads off H(β(yo)) = (ψ̃)∗(yo). This concludes the proof of (i). Since Λ ⊂ BR we
conclude (ii).

Step 3. The proof of (iii) is straightforward.
Step 4. We now prove (iv). We have that (φ̃], (φ̃])]) ∈ A and because (φ̃], φ̃) ∈ A,

(iii) implies that (φ̃])] ≤ φ̃ on conv(Λ). Using the fact that the operator ϕ → ϕ] is

nonincreasing we deduce that ((φ̃])])
] ≥ φ̃] on Rd. But (iii) and (φ̃], (φ̃])]) ∈ A

also imply that ((φ̃])])
] ≤ φ̃] on Rd. Consequently, ((φ̃])])

] = φ̃] on Rd. Likewise,

((ψ̃])
])] = ψ̃] on conv(Λ).

This concludes the proof of Lemma A.1.
Lemma A.2. Suppose that ψ̃ ≡ +∞ on the complement of BR and that |ψ̃|L∞(BR)

< +∞. Let β be defined as in Lemma A.1. Then there exists a constant c depending
only on h, R, and |ψ̃|L∞(BR) such that c ≤ β(y) ≤ 1/c for all y.

Proof. Set to := R2 + |ψ̃|L∞(BR). Since ψ̃ ≡ +∞ on the complement of BR we

obtain that |(ψ̃)∗|L∞(BR) ≤ to. Using (12) and Lemma A.1 (i) we conclude the lemma
with c := max{H−1(to), 1/H

−1(−to)}.
Appendix B. Compacity of a special class of measures. Throughout this

section we assume that Λ ⊂ Rd is an open bounded set whose closure is contained in
the closed ball BRo of center 0 and radius Ro. If µ is a finite positive measure on Rd, we
recall that the moments Mo(µ) and Mo(µ) are defined in (20), C := (0,∞)×Rd×Rd,
and Γ[µ] is the set of all Borel measures on C such that∫

C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy

for all f ∈ Co(R
d).

Proposition B.1. Suppose that µ satisfies (20), that (µn) is a sequence of
Borel measures converging weak ∗ to µ, Mo[µn] = Mo[µ] (n = 1, 2, . . .), and that
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h satisfies (4). If γn ∈ Γ(µn) and the sequence of real numbers (
∫
C
|h(α)|dγn) is

bounded independently of n, then there exists a sequence (nj) ⊂ N and a Borel measure
γ ∈ Γ(µ) such that (γnj

) converges weak ∗ to γ.
Proof. Because γn ∈ Γ(µn) we have that γn[C] = Mo[µ], and so there exists a

sequence (nj) ⊂ N and a Borel measure γ on C such that (γnj ) converges weak ∗ to
γ. We next introduce the functions

k(α,y) := lR(α+ |y|) (α > 0,y ∈ Rd),

where, for R > 1, lR : R → [0, 1] is of class C∞ and satisfies

lR(t) =

{
1 if |t| ≤ R− 1,
0 if |t| ≥ R.

(98)

If f ∈ Co(R
d), then∣∣∣∣
∫
C

f(z)(1 − k(α,y))dγnj

∣∣∣∣ =

∣∣∣∣∣
∫
α>(R−1)/2

f(z)(1 − k(α,y))dγnj

∣∣∣∣∣
≤ 2(|f |∞|Λ|)/(R− 1).(99)

Using (99) and the fact that γnj ∈ Γ(µnj ) we have that∣∣∣∣
∫
Rd

f(z)dµnj (z) −
∫
C

f(z)k(α,y)dγnj

∣∣∣∣ ≤ 2(|f |∞|Λ|)/(R− 1).(100)

Letting first j go to +∞ and then R go to +∞ in (100) we deduce that∫
Rd

f(z)dµ(z) =

∫
C

f(z)dγ.(101)

Define the function

β(R) := M sup
t
{t/|h(t)| | t ≥ (R− 1)/2} (R > 1),

whereM > 0 is a constant independent of n such that
∫
C
|h(α)|dγn ≤M for all n ∈ N.

Since γnj
∈ Γ(µnj

), if AR is the subset of all (α,y, z) ∈ C such that |z| > (R − 1)/2
and |α| ≤ (R− 1)/2, then we have that∣∣∣∣

∫
Λ

f(y)dy −
∫
C

αf(y)k(α, z)dγnj

∣∣∣∣ ≤
∣∣∣∣
∫
C

αf(y)(1 − k(α, z))dγnj

∣∣∣∣(102)

and ∣∣∣∣
∫
C

αf(y)(1 − k(α, z))dγnj

∣∣∣∣ ≤ 2

∫
α>(R−1)/2

α|f(y)|(1 − k(α, z))dγnj

+

∫
AR

α|f(y)|(1 − k(α, z))dγnj

≤ 2|f |∞
(
β(R) +R(µ[BcR−1

2

] + 1/nj)
)
.

Hence ∣∣∣∣
∫
C

αf(y)(1 − k(α, z))dγnj

∣∣∣∣ ≤ 2|f |∞
(
β(R) +

∫
Bc

R−1
2

(2|z| + 1)dµ+R/nj

)
.(103)
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In light of (4) β(R) tends to 0 as R tends to +∞. Using (102) and letting first j go
to +∞ and then R tend to +∞ in (103), since Mo[µ],M1[µ] < +∞, we deduce that∫

Λ

f(y)dy =

∫
C

αf(y)dγ.(104)

Since f ∈ Co(R
d) is arbitrary (101) and (104) yield γ ∈ Γ(µ), which concludes the

proof of Proposition B.1.

Appendix C. Density of the set of maps with prescribed boundary
values.

Proposition C.1. Suppose that d ≥ 2, Ω,Λ ⊂ Rd are two open, bounded sets,
that ∂Ω is Lipschitz, and that Λ is convex. Let u,uo ∈ C1(Ω)d ∩ C(Ω̄)d be such that
detDu,detDuo are positive, of class C1(Ω), with detDu + 1

detDu and detDuo +
1

detDuo
in L∞(Ω). Suppose furthermore that uo is one-to-one on Ω̄, that u is one-

to-one on Ω, and that u(Ω) = uo(Ω) = Λ. Then there exists a sequence (un) ⊂
C1(Ω)d ∩ C(Ω̄)d of one-to-one maps from Ω̄ onto Λ̄ converging almost everywhere in
Ω to u and such that for each integer n{

detDun = detDu almost everywhere in Ω,
un = uo on ∂Ω.

(105)

Proof. Step 1. Using Theorem 7 in [9] we find b ∈ Diff1(Ω) ∩ Diff0(Ω̄) such
that {

detDu0(b(x))detDb(x) = detDu(x) in Ω,
b(x) = x on ∂Ω.

(106)

Define the maps

v := uo ◦ b, s := u ◦ v−1.

Clearly {
detDv = detDu in Ω,
v(x) = uo(x) on ∂Ω.

(107)

We have that

s(Λ) = u(b−1[u−1
o (Λ)]) = u(Ω) = Λ

and s is measure-preserving in the sense that∫
Λ

G(s(y))dy =

∫
Λ

G(x)dx

for all G ∈ Co(R
d).

Step 2. Since Λ is convex and bounded, there exists a map T ∈ Diff1(Λ, (0, 1)d)∩
Diff0(Λ̄, [0, 1]d). One can choose T , for instance, to be the optimal map that rear-
ranges χΛ

|Λ|dx onto χ[0,1]ddx in the Monge problem, where optimality is measured

against the cost function c(x − y) = |x − y|2. Using T we deduce that the following
known result for [0, 1]d (see, for instance, [2] and [30]) holds for any convex, bounded
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set Λ: there exists a sequence (sn) ⊂ C1(Λ)d ∩C(Λ̄)d of maps from Λ̄ onto Λ̄ that are
one-to-one on Λ, that converge pointwise almost everywhere in Λ to s such that{

detDsn = 1 in Λ,
sn(y) = y on ∂Λ

(108)

for n = 1, 2, . . . . Define

un(x) := sn(v(x)) (x ∈ Ω̄).

By (107) and (108) we deduce that (un) satisfies the conclusions of Proposition
C.1.

Appendix D. Background on the Monge problem. In this section we
present a brief description of the Monge problem, a theory which has attracted a
lot of attention. Throughout this section we keep our focus only on the case that is
relevant to the study of solid crystals, the case studied by [3], [19], etc. Let µ = fdx,
ν = gdx be finite measures on Rd with equal total mass. Let O1, O2 ⊂ Rd be two
open sets such that Ō1 is the support of µ and Ō2 is the support of ν. The Monge mass
transport problem consists of finding an optimal way of rearranging µ onto ν against
a cost function which we choose here to be c(x − y) = |x − y|2. The corresponding
variational problem is to minimize the total work

K[T ] :=

∫
Rd

|x − Tx|2dµ(x)

over the set T of all Borel maps T : Rd → Rd that push µ forward to ν. Define

K ′[S] :=

∫
Rd

|y − Sy|2dν(y)

and let S be the set of all Borel maps S : Rd → Rd that push ν forward to µ. The
following results are known in a setting more general than the one herein.

Proposition D.1 (general theorem).
(i) Existence and uniqueness of optimal maps: there exists a unique To minimizing

K over T . Likewise, there exists a unique So minimizing K ′ over S. We have that
So(To(x)) = x for µ-almost every x ∈ Rd, To(So(y)) = y for ν-almost every y ∈ Rd.

(ii) Characterization of optimal maps: a map To is a minimizer of K over T if
and only if To ∈ T and To is the gradient of a convex function ψo : Rd → R∪{+∞}.
Similarly, a map So is a minimizer of K ′ over S if and only if So ∈ S and So is the
gradient of a convex function φo : Rd → R ∪ {+∞}.

(iii) The sets To(O1) and O2 coincide up to a set of zero measure.
Proof. We refer the reader to [19].
Proposition D.2 (smoothness of optimal maps). Assume that O1, O2 are

bounded, |∂O1| = |∂O2| = 0, f + 1/f ∈ L∞(O1), g + 1/g ∈ L∞(O2), O2 is con-
vex, and ψo, φo are the convex functions obtained in Proposition D.1. Then we have
the following:

(i) ψo ∈ C1,s(O1) for some 0 < s < 1, and ψo is strictly convex in O1.
(ii) If in addition O1 is convex, then ψo ∈ C1,s(Ō1)

d for some 0 < s < 1.
(iii) If O1 is convex and in addition f ∈ C0,s̄(O1), g ∈ C0,s̄(O2), then Dψo ∈

C1,s(O1)
d ∩C0,s̄(Ō1)

d, Dφo ∈ C1,s(O2)
d ∩C0,s̄(Ō2)

d for all 0 < s < s̄. We have that
Dψo ∈ Diff0(Ō1, Ō2).
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Proof. Smoothness properties of ψo and φo as stated in (i), (ii), and (iii) are
established in [4], [5], and [6]. If Dψo ∈ C0,s̄(Ō1)

d and Dφo ∈ C0,s̄(Ō2)
d, then by

Proposition D.1 we have that Dψo ∈ Diff0(Ō1, Ō2).
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