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Abstract

A classical problem of transporting mass due to Monge and Kantorovich
is solved. Given measures µ and ν on Rd, we find the measure-preserving
map y(x) between them with minimal cost — where cost is measured against
h(x − y) with h strictly convex, or a strictly concave function of |x − y|. This
map is unique: it is characterized by the formula y(x) = x − (∇h)−1(∇ψ(x))
and geometrical restrictions on ψ. Connections with mathematical economics,
numerical computations, and the Monge-Ampère equation are sketched.
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Introduction

In 1781, Monge [30] formulated a question which occurs naturally in economics: Given
two sets U, V ⊂ Rd of equal volume, find the optimal volume-preserving map between
them, where optimality is measured against a cost function c(x,y) ≥ 0. One views
the first set as being uniformly filled with mass, and c(x,y) as being the cost per unit
mass for transporting material from x ∈ U to y ∈ V ; the optimal map minimizes
the total cost of redistributing the mass of U through V . Monge took the Euclidean
distance c(x,y) = |x − y| to be his cost function, but even for this special case,
two centuries elapsed before Sudakov [42] showed that such a map exists. In the
meantime, Monge’s problem turned out to be the prototype for a class of questions
arising in differential geometry, infinite dimensional linear programming, functional
analysis, mathematical economics and in probability and statistics — for references
see [31, 26]; the Academy of Paris offered a prize for its solution [16], which was
claimed by Appell [5], while Kantorovich received a Nobel prize for related work in
economics [23].

What must have been apparent from the beginning was that the solution would
not be unique [5, 21]. Even on the line the reason is clear: in order to shift a row of
books one place to the right on a bookshelf, two equally efficient algorithms present
themselves (i) shift each book one place to the right; (ii) move the leftmost book to the
right hand side, leaving the remaining books fixed. More recently, two separate lines of
authors — including Brenier on the one hand and Knott and Smith, Cuesta-Albertos,
Matrán and Tuero-Dı́az, Rüschendorf and Rachev, and Abdellaoui and Heinich on
the other — have realized that for the distance squared c(x,y) = |x − y|2, not only
does an optimal map exist which is unique [7, 11, 8, 2, 13], but it is characterized
as the gradient of a convex function [25, 7, 40, 38, 8]. Founded on the Kantorovich
approach, their methods apply equally well to non-uniform distributions of mass
throughout Rd, as to uniform distributions on U and V ; all that matters is that the
total masses be equal. The novelty of this result is that, like Riemann’s mapping
theorem in the plane, it singles out a map with preferred geometry between U and V ;
a polar factorization theorem for vector fields [7] and Brunn-Minkowski inequality for
measures [27] are among its consequences. In the wake of these discoveries, many
fundamental questions stand exposed: What features of the cost function determine
existence and uniqueness of optimal maps? What geometrical properties characterize
the maps for other costs? Can this geometry be exploited fruitfully in applications?
Finally, we note that concave functions of the distance |x−y| form the most interesting
class of costs: from an economic point of view, they represent shipping costs which
increase with the distance, even while the cost per mile shipped goes down.

Here these questions are resolved for costs from two important classes: c(x,y) =
h(x − y) with h strictly convex, or c(x,y) = `(|x − y|) with ` ≥ 0 strictly concave.
For convex costs, a theory parallel to that for distance squared has been developed:
the optimal map exists and is uniquely characterized by its geometry. This map (5)
depends explicitly on the gradient of the cost, or rather on its inverse map (∇h)−1,
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which indicates why strict convexity or concavity should be essential for uniqueness.
Although explicit solutions are more awkward to obtain, we have no reason to believe
that they should be any worse behaved than those for distance squared; (see e.g. the
regularity theory developed by Caffarelli [9] when c(x,y) = |x − y|2).

For concave functions of the distance, the picture which emerges is rather different.
Here the optimal maps will not be smooth, but display an intricate structure which
— for us — was unexpected; it seems equally fascinating from the mathematical and
the economic point of view. A separate paper explores this structure fully on the line
[28], where the situation is already far from simple and our conclusions yield some
striking implications. To describe one effect in economic terms: the concavity of the
cost function favors a long trip and a short trip over two trips of average length; as
a result, it can be efficient for two trucks carrying the same commodity to pass each
other traveling opposite directions on the highway: one truck must be a local supplier,
the other on a longer haul. In optimal solutions, such ‘pathologies’ may nest on many
scales, leading to a natural hierarchy among regions of supply (and of demand). For
the present we are content to prove existence and uniqueness results, both on the
line and in higher dimensions, which characterize the solutions geometrically. As for
convex costs, the results are obtained through constructive geometrical arguments
requiring only minimal hypotheses on the mass distributions.

To state the problem more precisely requires a bit of notation. Let M(Rd) denote
the space of non-negative Borel measures on Rd with finite total mass, and P(Rd)
the subset of probability measures — measures for which µ[Rd] = 1.

Definition 0.1 A measure µ ∈ M(Rd) and Borel map s : Ω ⊂ Rd −→ Rn induce a
(Borel) measure s#µ on Rn — called the push-forward of µ through s — and defined
by s#µ[V ] := µ[s−1(V )] for Borel V ⊂ Rn.

One says that s pushes µ forward to s#µ. If s is defined µ-almost everywhere, one
may also say s is measure-preserving between µ and s#µ; then the push-forward s#µ
will be a probability measure if µ is. It is worth pointing out that s# maps M(Rd)
linearly to M(Rn). For a Borel function f on Rn, the change of variables theorem
states when either integral is defined,∫

Rn
f d(s#µ) =

∫
Ω⊂Rd

f(s(x)) dµ(x). (1)

Monge’s problem generalizes thus: Given two measures µ, ν ∈ P(Rd), is the
infimum

inf
s#µ=ν

∫
c(x, s(x)) dµ(x) (2)

attained among mappings s which push µ forward to ν, and, if so, what is the optimal
map? Here the measures µ and ν, which need not be discrete, might represent the
distributions for production and consumption of some commodity. The problem is
to decide which producer should supply each consumer for total transportation costs
to be minimized. Although Monge and his successors had deep insights into (2), this
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problem remained unsolved due to its non-linearity in s, and intractability of the set
of mappings pushing forward µ to ν.

In 1942, a breakthrough was achieved by Kantorovich [21, 22], who formulated a
relaxed version of the problem as a linear optimization on a convex domain. Instead
of minimizing over maps which push µ forward to ν, he considered joint measures
γ ∈ P(Rd × Rd) which have µ and ν as their marginals: µ[U ] = γ[U × Rd] and
γ[Rd × U ] = ν[U ] for Borel U ⊂ Rd. The set of such measures, denoted Γ(µ, ν),
forms a convex subset of P(Rd × Rd). Kantorovich’s problem was to minimize the
transport cost

C(γ) :=
∫
c(x,y) dγ(x,y) (3)

among joint measures γ in Γ(µ, ν), to obtain

inf
γ∈Γ(µ,ν)

C(γ). (4)

Linearity makes the Kantorovich problem radically simpler than that of Monge; a
continuity-compactness argument at least guarantees that the infimum (4) will be
attained. Moreover, the Kantorovich minimum provides a lower bound for that of
Monge: whenever s#µ = ν, the map on Rd taking x to (x, s(x)) ∈ Rd × Rd pushes
µ forward to (id × s)#µ ∈ Γ(µ, ν); a change of variables (1) shows that the Kan-
torovich cost C((id × s)#µ) coincides with the Monge cost of the mapping s. Thus
Kantorovich’s infimum encompasses a larger class of objects than that of Monge.

Rephrasing our questions in this framework: Can a mapping s which solves the
Monge problem be recovered from a Kantorovich solution γ — i.e., will a minimizer γ
for C( · ) be of the form (id×s)#µ? Under what conditions will solutions s and γ to the
Monge and Kantorovich problems be unique? Can the optimal maps be characterized
geometrically? Is there a qualitative (but rigorous) theory of their features?

For strictly convex cost functions c(x,y) = h(x − y) (satisfying a condition at
infinity) our results will be as follows: Assuming µ is absolutely continuous with
respect to Lebesgue, it is true that the optimal solution γ to the Kantorovich problem
is unique. Moreover γ = (id × s)#µ, so the Monge problem is solved as well. The
optimal map is of the form

s(x) = x −∇h−1(∇ψ(x)), (5)

and it is uniquely characterized by a geometrical condition known as c-concavity of
the potential ψ : Rd −→ R ∪ {−∞}. This characterization adapts the work of
Rüschendorf [34, 35, esp. (73)] from the Kantorovich setting (with general costs) to
that of Monge. Discovered independently by us [20] and Caffarelli [10], it encompasses
both recent progress in this direction [41, 14, 36, 37] and the earlier work of Brenier
and others on the cost h(x) = |x|2/2 — which is special in that is has the identity
map ∇h = id as its gradient; the optimal map s(x) = x − ∇ψ(x) turns out to be
pure gradient for this cost. When µ fails to be absolutely continuous but the cost is
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a derivative smoother, our conclusions persist as long as µ vanishes on any rectifiable
set of dimension d− 1.

For the economically relevant costs — c(x,y) a strictly concave function of the
distance |x− y| — the Kantorovich minimizer γ need not be of the form (id× s)#µ
unless the measures µ and ν are disjointly supported. Rather, because c is a metric
on Rd, the mass which is common to µ and ν must not be moved; it can be subtracted
from the diagonal of γ. What remains will be a joint measure γo having the positive
and negative parts of µ − ν for marginals. If the mass of µo := [µ − ν]+ and νo :=
[ν−µ]+ is not too densely interwoven, and µo vanishes on rectifiable sets of dimension
d − 1, then γ will be unique and γo = (id × s)#µo. The optimal mapping s can be
quite complex — as a one-dimensional analysis indicates — but it is derived from
a potential ψ through (5) (see Figure 1) in any case. However, a slightly stronger
condition than c-concavity of ψ characterizes the solution.

Regarding the hypothesis on µ we mention the following: certainly µ cannot
concentrate on sets which are too small if it is to be pushed forward to every possible
measure ν. But how small is too small? For costs which norm Rd, Sudakov proposed
dimension d−1 as a quantitative condition to ensure existence of an optimal map [42].
When c(x,y) = |x − y|2, McCann verified sufficiency of this condition both for
existence and uniqueness of optimal maps [29]. A more precise relationship between
µ and c was formulated by Cuesta-Albertos and Tuero-Dı́az; it implies existence
and uniqueness results for quite general costs when the target measure ν is discrete:
ν :=

∑
i λiδxi [12, 2, 1].

Before concluding this introduction, there are two further issues which cannot go
unmentioned: our methods of proof, and the duality theory which — in the past — has
been the principle tool for investigating the Monge-Kantorovich problem. The spirit
of our proof can be apprehended in the context (already well understood [15, 19]) of
strictly convex costs on the line. Let µ, ν ∈ P(R) be measures on the real line, the
first without atoms, µ[{x}] = 0, and consider the optimal joint measure γ ∈ Γ(µ, ν)
corresponding to a cost c(x, y). Any two points (x, y) and (x′, y′) from the support
of γ, meaning the smallest closed set in R × R which carries the full mass of γ, will
satisfy the inequality

c(x, y) + c(x′, y′) ≤ c(x, y′) + c(x′, y); (6)

otherwise it would be more efficient to move mass from x to y′ and x′ to y. For
c(x, y) = h(x− y), strict convexity of h and (6) imply (x′ − x)(y′ − y) ≥ 0; in other
words, spt γ will be a monotone subset of the plane. Apart from vertical segments —
of which there can only be countably many — such a set is contained in the graph
of a non-decreasing function s : R −→ R. This function is the optimal map. The
fact that µ has no atoms means that none of its mass concentrates under vertical
segments in spt γ, and is used to verify ν = s#µ. It is not hard to show that only
one non-decreasing map pushes µ forward to ν, so s is uniquely determined µ-almost
everywhere.



7

The generalization of this argument to higher dimensions was explored in [29]
to sharpen results for the cost c(x,y) = |x − y|2; our proof follows the strategy
there. At the same time, we build on many ideas introduced to the transportation
problem by other authors. The connection of c-concavity with mass transport was
first explored by Rüschendorf [35], who used it to characterize the optimal measures γ
of Kantorovich; he later constructed certain unique optimal maps for convex costs [36,
Section 3]. The related notion of c-cyclical monotonicity is also essential; formulated
by Smith and Knott [41] in analogy with a classical notion of Rockafellar [32], it
supplements inequality (6). One fact that continues to amaze us is that — for the
costs c(x,y) we deal with — not a single desirable property of concave functions
has failed to have a serviceable analog among c-concave functions. Even the kernel
of Aleksandrov’s uniqueness proof [4] for surfaces of prescribed integral curvature is
preserved in our uniqueness argument. A non-negligible part of our effort in this
paper has been devoted to developing the theory of c-concave functions as a general
tool, and we hope that this theory may prove useful in other applications.

Because the literature on the Monge-Kantorovich problem is vast and fragmented
[31], we have endeavoured to present a treatment which is largely self-contained. In
the background section and appendices, we have therefore collected together some
results which could also be found elsewhere. Absent from the discussion is any ref-
erence to the maximization problem dual to (4), discovered by Kantorovich [21] for
cost functions which metrize Rd. Subsequently developed by many authors, duality
theory flourished into a powerful tool for exploring mass transport and similar prob-
lems; quite general Monge-Kantorovich duality relations were obtained by Kellerer in
[24], and further references are there given. Our results are not predicated on that
theory, but rather, imply duality as a result. One advantage of this approach is that
the main theorems and their proofs are seen to be purely geometrical — they require
few assumptions, and do not rely even on finiteness of the infimum (4). However,
the potential ψ that we construct can generally be shown to be the maximizer for
a suitable dual problem. This fact is clearer from our work in [20], where many
of these results were first announced; a completely different approach, based on the
Euler-Lagrange equation for the dual problem, is given there. A main conclusion,
both there and here, is that for the cost functions we deal with the potential ψ(x) —
whether constructed geometrically or extracted as a solution to some dual problem
— specifies both which direction and how far to move the mass of µ which sits near x.
If the cost is not strictly convex — so that ∇h is not one-to-one — uniqueness may
fail, and further information be required to determine an optimal mapping; for radial
costs c(x,y) = `(|x − y|), the potential specifies the direction of transport but not
the distance — cf. [42, 18] and Figure 1.

The remainder of this paper is organized as follows: The first section provides a
summary of our main theorems, preceded by the necessary definitions and followed
by a continuation of the discussion, while the second section recounts background
results from the literature which apply to general cost functions and measure spaces.
The narrative then splits into two parallel parts, which treat strictly convex costs and
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strictly concave functions of the distance separately. Each part in turn divides into
two sections, which focus on the construction of a map s from the optimal measure γ,
and the unique characterization of this map as a geometrical object. Three appendices
are also provided. The first reviews some facts of life concerning Legendre transforms
and conjugate costs, while the second provides a few examples of c-concave potentials.
The last appendix is technical: it develops the structure and regularity properties
which are required of c-concave potentials (infimal convolutions with h(x)).

It is a pleasure to express our gratitude to L. Craig Evans and Jill Pipher for
their continuing encouragement and support. Fruitful discussions were also provided
by Stephen Semmes and Jan-Philip Solovej, while the figures were drawn by Marie-
Claude Vergne. We thank Giovanni Alberti and Ludger Rüschendorf for references,
and note that this work had essentially been completed when we learned of Caffarelli’s
concurrent discovery [10] of similar results concerning convex costs.

1 Summary of Main Results

To begin, we recall the definition of c-concavity. It adapts the notion of a concave
function — i.e., an infimum of affine functions — to the geometry of the cost c(x,y),
and will play a vital role. Except as noted, the cost functions considered here will be
of the form c(x,y) = h(x − y) where h is continuous on Rd.

Definition 1.1 A function ψ : Rd −→ R∪ {−∞}, not identically −∞, is said to be
c-concave if it is the infimum of a family of translates and shifts of h(x): i.e., there
is a set A ⊂ Rd ×R such that

ψ(x) := inf
(y,λ)∈A

c(x,y) + λ. (7)

Without further structure on h, c-concavity has limited utility [6, 35], but for
suitable costs it will become a powerful tool. For the quadratic cost h(x) = |x|2/2,
c-concavity of ψ turns out to be equivalent to convexity of x2/2 − ψ(x) in the usual
sense through the identity c(x,y) = h(x)−〈x, y〉+h(y). More generally, we consider
convex costs c(x,y) = h(x − y) for which:

(H1) h : Rd −→ [0,∞) is strictly convex.

To handle measures with unbounded support, we also assume that the cost grows
superlinearly at large |x| while the curvature of its level sets decays:

(H2) given height r <∞ and angle θ ∈ (0, π): whenever p ∈ Rd is far enough from
the origin, one can find a cone

K(r, θ, ẑ,p) :=
{
x ∈ Rd

∣∣∣ |x − p||z| cos(θ/2) ≤ 〈 z, x − p〉 ≤ r|z|
}

(8)

with vertex at p (and z ∈ Rd \ {0}) on which h(x) assumes its maximum at p;
(H3) limh(x)/|x| = +∞ as |x| → ∞.
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Cost functions satisfying (H1–H3) include all quadratic costs h(x) = 〈x, Px〉 with
P positive definite, and radial costs h(x) = `(|x|) which grow faster than linearly.
Occasionally, we relax strict convexity or require additional smoothness:

(H4) h : Rd −→ R is convex;
(H5) h(x) is differentiable and its gradient is locally Lipschitz: h ∈ C1,1

loc (R
d).

For these costs, c-concavity generalizes concavity in the usual sense, but we shall
show that it is almost as strong a notion. In particular, except for a set of dimension
d − 1, a c-concave function ψ will be differentiable where it is finite; it will be twice
differentiable almost everywhere in the sense of Aleksandrov [39, notes to §1.5].

With some final definitions, our first main theorem is stated. We say that a
joint measure γ ∈ P(Rd × Rd) is optimal if it minimizes C(γ) among the measures
Γ(µ, ν) which share its marginals, µ and ν. Since differentiability of the cost is
not assumed, we define (∇h)−1 := ∇h∗ through the Legendre transform (10) in its
absence. As before, id denotes the identity mapping id(x) = x on Rd, while ◦ denotes
composition.

Theorem 1.2 (for Strictly Convex Costs)
Fix c(x,y) = h(x−y) with h strictly convex satisfying (H1–H3), and Borel probability
measures µ and ν on Rd. If µ is absolutely continuous with respect to Lebesgue then
(i) there is a c-concave function ψ on Rd for which the map s := id− (∇h)−1 ◦ ∇ψ

pushes µ forward to ν;
(ii) this map s(x) is uniquely determined (µ-almost everywhere) by (i);
(iii) the joint measure γ := (id × s)#µ is optimal;
(iv) γ is the only optimal measure in Γ(µ, ν) — except (trivially) when C(γ) = ∞.
If µ fails to be absolutely continuous with respect to Lebesgue but vanishes on rectifiable
sets of dimension d− 1, then (i)–(iv) continue to hold provided h ∈ C1,1

loc (R
d).

Here a rectifiable set of dimension d − 1 refers to any Borel set U ⊂ Rd which may
be covered using countably many (d− 1)-dimensional Lipschitz submanifolds of Rd.

To illustrate the theorem in an elementary context, we verify the optimality of
t(x) = λx − z when µ and ν are translated dilates of each other: ν := t#µ [14].
For λ ≥ 0, z ∈ Rd and convex costs c(x,y) = h(x − y), observe the c-concavity
of ψ(x) := (1 − λ)−1h(x(1 − λ) + z) proved in Lemma B.1(iv)-(vi); (if λ = 1 take
ψ(x) := 〈x, ∇h(z)〉). This potential ψ induces the map s = t through (5). Since t
pushes forward µ to ν, it must be the unique map of Theorem 1.2.

Motivated by economics, we now turn to costs of the form c(x,y) = `(|x − y|),
where ` : [0,∞) −→ [0,∞) is strictly concave. The optimal solutions for these costs
respect different symmetries. It will often be convenient to assume continuity of the
cost (at the origin) and `(0) = 0, but these additional restrictions are not required
for Theorem 1.4. With a few caveats, our results could also be extended to strictly
concave functions ` which increase from `(0) = −∞, but we restrict our attention to
` ≥ 0 instead. For these costs, ` will be strictly increasing as a consequence of its
concavity.
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With this second class of costs come two new complications. Since c(x,y) induces
a metric on Rd, any mass which is shared between µ, ν ∈ P(Rd) must not be moved
by a transportation plan γ that purports to be optimal. This mass is defined through
the Jordan decomposition of µ−ν into its unique representation µo−νo as a difference
of two non-negative mutually singular measures: µo := [µ − ν]+ and νo := [ν − µ]+.
The shared mass µ ∧ ν := µ − µo = ν − νo is the maximal measure in M(Rd) to
be dominated by both µ and ν. Since one expects to find this mass on the diagonal
subspace D := {(x,x) | x ∈ Rd} of Rd × Rd under γ, it is convenient to denote the
restriction of γ to the diagonal by γd[S] := γ[S

⋂
D]. The off-diagonal restriction γo

is then given by γo = γ − γd.
The second complication is the singularity in c(x,y) at x = y, which renders

c-concavity too feeble to characterize the optimal map uniquely. For this reason, a
refinement must be introduced to monitor the location V ⊂ Rd of the singularity:

Definition 1.3 Let V ⊂ Rd. A c-concave function ψ on Rd is said to be the c-
transform of a function on V if (7) holds with A ⊂ V × R.

A moment’s reflection reveals the existence of some function φ : V −→ R ∪ {−∞}
for which

ψ(x) = inf
y∈V

c(x,y) − φ(y) (9)

whenever the definition is satisfied.
Finally, as with convex costs, it is a vital feature of h(x) = `(|x|) that the gradient

map ∇h be invertible on its image. This follows from strict concavity of ` ≥ 0 since
`′(λ) ≥ 0 will be one-to-one. Should differentiability of ` fail, we define (∇h)−1 := ∇h∗
using (11) this time. The support sptµ of a measure µ ∈ M(Rd) refers to the smallest
closed set U ⊂ Rd of full mass: µ[U ] = µ[Rd].

Theorem 1.4 (for Strictly Concave Cost as a Function of Distance)
Use ` : [0,∞) −→ [0,∞) strictly concave to define c(x,y) := h(x − y) := `(|x − y|).
Let µ and ν be Borel probability measures on Rd and define µo := [µ − ν]+ and
νo := [ν−µ]+. If µo vanishes on spt νo and on rectifiable sets of dimension d−1 then
(i) the c-transform ψ : Rd −→ R of some function on spt νo induces a map

s := id− (∇h)−1 ◦ ∇ψ which pushes µo forward to νo;
(ii) the map s(x) is uniquely determined µo-almost everywhere by (i);
(iii) there is a unique optimal measure γ in Γ(µ, ν) — except when C(γ) = ∞;
(iv) the restriction of γ to the diagonal is given by γd = (id× id)#(µ− µo);
(v) the off-diagonal part of γ = γd + γo is given by γo = (id× s)#µo.

The hypotheses of this theorem are satisfied when µ and ν are given by continuous
densities f, g ∈ C(Rd) with respect to Lebesgue: dµ(x) = f(x)dx and dν(y) =
g(y)dy. Alternately, if f(x) = χU(x) and g(y) = χV (y) are characteristic functions
of two equal volume sets — an open set U and a closed set V — then Theorem 1.4
yields an optimal map given by s(x) = x on U

⋂
V .
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As for convex costs, explicit solutions may be computed to problems with appro-
priate symmetry. For concave functions of the distance, suitable symmetries include
reflection through a sphere or through a plane (for details refer to Appendix B):

Example 1.5 (Reflections) Take c and µ from Theorem 1.4. If µ is supported on
the unit ball, then the spherical inversion s(x) := x/|x|2 will be the optimal map
between µ and s#µ. If µ vanishes on the half-space x1 > 0 in Rd, then reflection
through the plane x1 = 0 will be the optimal map between µ and its mirror image.

Explicit solutions may also be obtained whenever the target measure ν concen-
trates on finitely many points: spt ν = {y1,y2, . . . ,yk}. The initial measure µ is
arbitrary provided it vanishes on small enough sets. For convex costs, we also need
Remark 4.6: the potential ψ of Theorem 1.2 may be assumed to be the c-transform
of a function on spt ν.

Example 1.6 (Target Measures of Finite Support)
Take µ, ν, c and h from Theorem 1.2 or 1.4. If spt ν = {y1,y2, . . . ,yk} ⊂ Rd then
the optimal map is of the form s(x) = x −∇h∗(∇ψ(x)), where ψ is the c-transform
of a function on spt ν. In view of (9),

ψ(x) = inf
j=1,...,k

c(x,yj) + λj .

From this family of maps, the unique solution is selected by finding any k constants
λj ∈ R consistent with the mass constraints µ[s−1(yj)] = ν[yj ], j = 1, . . . , k.

The constants λj should be easy to compute numerically; indeed, we speculate
that flowing along the vector field vj(λ1, . . . , λk) := µ[s−1(yj)]−ν[yj ] through Rk will
always lead to a solution. When k = 2, the optimal map is given by:

s(x) :=

{
y1 where c(x,y1) + λ1 < c(x,y2) + λ2

y2 elsewhere.

A sketch (Figure 2) of level sets for c(x,y1)− c(x,y2) illustrates these domains in the
plane. Shading indicates the region that s(x) maps to y1; its size is adjusted with
λ2−λ1 to yield the right amount ν[y1] of mass for µ, and this is the only way in which
the measure µ affects the optimal map. The shape of these domains plays a key role
even when spt ν contains more than two points: then the complicated regions s−1(yj)
of Example 1.6 arise as the intersection of k − 1 two-point domains. Unboundedness
of both domains distinguishes convex costs from strictly concave functions ` ≥ 0 of
the distance, while half-spaces are characteristic of the special cost c(x,y) = |x−y|2
or λ1 = λ2. Finally, Figure 2 also shows why vanishing of µ on submanifolds of
dimension d− 1 should be required to guarantee a unique map.

For both convex and concave costs c(x,y) = h(x − y), the inverse map to ∇h is
the gradient ∇h∗ of a dual function h∗(y) known as the Legendre transform. As an



12

example, h(x) = |x|p/p implies h∗(y) = |y|q/q with p−1 + q−1 = 1; here p ∈ R but
p 6= 0, 1. More generally, if the cost is convex then h∗ : Rd −→ R∪{+∞} is given by

h∗(y) := sup
x∈Rd

〈x, y〉 − h(x). (10)

Strict convexity of h(x) combines with (H3) to imply continuous differentiability of
the convex function h∗(y) throughout Rd (see Corollary A.2 of the appendix).

The dual h∗ to a concave function h(x) = `(|x|) of the distance is defined instead
by

h∗(y) := −k∗(−|y|), (11)

where the convex function k(λ) = −`(λ) is extended to λ < 0 by setting k := ∞,
before computing k∗ using (10). From Proposition A.6, one has h∗(y) = −∞ on some
ball centered at the origin, but elsewhere h∗(y) is continuously differentiable by strict
concavity of `(λ).

For either class of cost, when (ν, µ) satisfies the same hypotheses as (µ, ν), then
the map s(x) of our main theorems will be invertible. The inverse map t = s−1

pushes ν forward to µ; it will be optimal with respect to the cost function c(y,x).
Now, consider measures µ and ν which are absolutely continuous with respect to
Lebesgue — dµ(x) = f(x)dx and dν(y) = g(y)dy. Take each to vanish on the
other’s support if the cost is concave. Then the transformation y = s(x) represents a
change of variables (1) between µ and ν, so — formally at least (neglecting regularity
issues) — its Jacobian determinant Ds(x) satisfies g(s(x)) |detDs(x)| = f(x). The
potential ψ(x) satisfies the partial differential equation

g
(
x −∇h∗(∇ψ(x))

)
det

[
I − D2h∗(∇ψ(x))D2ψ(x)

]
= ±f(x). (12)

Our main theorems may be interpreted as providing existence and uniqueness results
concerning c-concave solutions to (12) in a measure theoretic (i.e., very weak) sense.
The plus sign corresponds to convex costs, and the minus sign to concave functions
h(x) = `(|x|) of the distance, reflecting the local behaviour of the optimal map:
orientation preserving in the former (convex) case and orientation reversing in the
latter case. As Caffarelli pointed out to us, this may be seen by expressing the
Jacobian Ds(x) = D2h∗(∇ψ(x))(D2h(x − s(x)) − D2ψ(x)) as the product of D2h∗

with a non-negative matrix. The second factor is positive semi-definite by the c-
concavity1 of ψ (see Figure 1), while the first factor D2h∗ has either no negative
eigenvalues or one negative eigenvalue, depending on the convexity of h and h∗, or
their concavity as increasing functions of |x|. If h(x) = |x|2/2, then D2h∗ = I and
equation (12) reduces to the Monge-Ampère equation [7]; Caffarelli has developed a
regularity theory [9] which justifies the formal discussion in this case. However, the
discontinuities in ∇ψ — and points where ∇ψ = 0 when the cost is concave — are
also of interest: they divide spt µ into the regions on which one may hope for smooth
transport. We close with a summary of our notation:

1Which implies (x, s(x)) ∈ ∂cψ in Definition 2.6 through Proposition 3.4(ii) or 6.1.
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Notation Meaning Definition
∂·ψ, ∂·ψ super- and subdifferentials Definition 2.5
∂cψ c-superdifferential Definition 2.6
∂c
◦ψ its off-diagonal restriction before Lemma 5.2

Γ(µ, ν) joint measures with marginals µ and ν before (3)
(H1–H5) hypotheses on convex costs after Definition 1.1
h∗(x) Legendre transform of the cost (10)–(11)
id the identity map before Theorem 1.2

M(Rd) non-negative Borel measures on Rd before Definition 0.1
[µ− ν]+ positive part of µ− ν before Definition 2.8
µ ∧ ν common mass to µ and ν before Definition 2.8
P(Rd) Borel probability measures on Rd before Definition 0.1
spt γ (closed) support of the measure γ before Theorem 1.4
s#µ the push-forward of µ through s Definition 0.1
x̂ the unit vector x̂ := x/|x| before Theorem A.1.

2 Background on Optimal Measures

In this section, we review some background material germane to our further devel-
opments. Principally, this involves recounting connections between optimal mass
transport, c-concave functions and c-cyclically monotone sets established in the work
of Rüschendorf [34, 35] and Smith and Knott [41].

To emphasize the generality of the arguments, this section alone is formulated not
in the Euclidean space Rd, but on a pair of locally compact, σ-compact Hausdorff
spaces X and Y. The Borel probability measures on X are denoted by P(X), while the
mass transport problem becomes: Find the measure γ which minimizes the integral
of a continuous cost function c(x,y) ≥ 0 on X × Y, among the joint measures
Γ(µ, ν) ⊂ P(X×Y) with µ ∈ P(X) and ν ∈ P(Y) as their marginals. Definitions for
the transport cost C(γ), optimal joint measures, push-forward, support, c-concavity
and c-transforms must be modified in the obvious way — by replacing each occurrence
of Rd with X or with Y. Some notions from non-smooth analysis — super- and
subdifferentials — are also introduced.

For the record, our discussion begins with the standard continuity-compactness
result which assures the existence of an optimal measure γ in Γ(µ, ν); its well-known
proof may be found e.g. in [24, Theorem 2.19]. The section closes with some results
on the structure of γ when the cost is a metric on X = Y.

Proposition 2.1 (Existence of an Optimal Measure [24])
Fix c ≥ 0 lower semi-continuous on X × Y and measures µ ∈ P(X) and ν ∈ P(Y).
There is at least one optimal measure γ ∈ P(X × Y) with marginals µ and ν.

The optimal measures in P(X×Y) can be characterized [41] through Smith and
Knott’s notion of c-cyclical monotonicity, defined just below for a relation S ⊂ X×Y.
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The ensuing theory generalizes classical results of convex analysis which pertain to the
Euclidean inner product c(x,y) = 〈x, y〉 on X = Y = Rd; there c-concavity reduces
to concavity in the usual sense, while after changing a sign, c-cyclical monotonicity
is reduced to the cyclical monotonicity of Rockafellar by the observation that any
permutation can be expressed as a product of commuting cycles [32].

Definition 2.2 A subset S ⊂ X×Y is called c-cyclically monotone if for any finite
number of points (xj ,yj) ∈ S, j = 1 . . . n, and permutation σ on n-letters,

n∑
j=1

c(xj ,yj) ≤
n∑

j=1

c(xσ(j),yj). (13)

For finite sets S, c-cyclical monotonicity means that the points of origin x and destina-
tions y related by (x,y) ∈ S have been paired so as to minimize the total transporta-
tion cost

∑
S c(x,y). This intrepretation motivates the following theorem, first derived

by Smith and Knott from the duality-based characterization of Rüschendorf [35]. The
proof given here uses a direct argument of Abdellaoui and Heinich [2] instead; it shows
that c-cyclically monotone support plays the role of an Euler-Lagrange condition for
optimal measures on X× Y.

Theorem 2.3 (Optimal Measures have c-Cyclically Monotone Support)
Fix a continuous function c(x,y) ≥ 0 on X × Y. If the measure γ ∈ P(X × Y) is
optimal and C(γ) <∞ then γ has c-cyclically monotone support.

Proof: Before beginning the proof, a useful perspective from probability theory
is recalled: Given a collection of measures µj ∈ P(X) (j = 1, . . . , n), there exists a
probability space (Ω,B, η) such that each µj can be represented as the push-forward of
η through a (Borel) map πj : Ω −→ X. The demonstration is easy: let η := µ1× . . .×
µn be product measure on the Borel subsets of Ω := Xn, and take πj(x1, . . . ,xn) := xj

to be projection onto the j-th copy of X. Also, recall that if U ⊂ X is a Borel set
of mass λ := µ[U ] > 0, one can define the normalized restriction of µ to U : it is the
probability measure assigning mass λ−1µ[V ∩ U ] to V ⊂ X.

Now, suppose γ is optimal; i.e., minimizes C( · ) among the measures in P(X×Y)
sharing its marginals. Unless γ has c-cyclically monotone support, there is an integer
n and permutation σ on n letters such that the function

f(x1, . . . ,xn;y1, . . . ,yn) :=
n∑

j=1

c(xσ(j),yj) − c(xj,yj)

takes a negative value at some points (x1,y1), . . . , (xn,yn) ∈ spt γ. These points
can be used to construct a more efficient perturbation of γ as follows. Since f is
continuous, there exist (compact) neighbourhoods Uj ⊂ X of xj and Vj ⊂ Y of yj

such that f(u1, . . . ,un;v1, . . . ,vn) < 0 whenever uj ∈ Uj and vj ∈ Vj . Moreover,
λ := infj γ[Uj × Vj] will be positive because (xj,yj) ∈ spt γ. Let γj ∈ P(X × Y)
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denote the normalized restriction of γ to Uj × Vj. Introducing a factor of n lest the
γj fail to be disjointly supported, one can subtract

∑
j λγj/n from γ and be left with

a positive measure.
For each j, choose a Borel map ω −→ (uj(ω),vj(ω)) from Ω to X × Y such that

γj = (uj × vj)#η; this map takes its values in the compact set Uj × Vj. Define the
positive measure

γ′ := γ + λn−1
n∑

j=1

(uσ(j) × vj)#η − (uj × vj)#η.

Then γ′ ∈ P(X × Y) shares the marginals of γ, while using (1) to compute its cost
contradicts the optimality of γ: since the integrand f will be negative,

C(γ′) − C(γ) = λn−1
∫
Ω

n∑
j=1

c(uσ(j),vj) − c(uj ,vj) dη < 0

Thus γ must have c-cyclically monotone support. QED.

A more powerful reformulation exploits convexity to show that all of the optimal
measures in Γ(µ, ν) have support on the same c-cyclically monotone set.

Corollary 2.4 Fix µ ∈ P(X), ν ∈ P(Y) and a continuous function c(x,y) ≥ 0 on
X × Y. Unless C( · ) = ∞ throughout Γ(µ, ν), there is a c-cyclically monotone set
S ⊂ X× Y containing the supports of all optimal measures γ in Γ(µ, ν).

Proof: Let S :=
⋃

spt γ, where the union is over the optimal measures γ in Γ(µ, ν).
We shall show S to be c-cyclically monotone by verifying (13). Therefore, choose any
finite number of points (xj,yj) ∈ S indexed by j = 1, . . . , n and a permutation σ on
n letters. For each j, the definition of S guarantees an optimal measure γj ∈ Γ(µ, ν)
with (xj ,yj) ∈ spt γj. Define the convex combination γ := (1/n)

∑
j γj. Since Γ(µ, ν)

is a convex set and C( · ) is a linear functional, γ ∈ Γ(µ, ν) and C(γ) = C(γj); thus γ
is also optimal. By Theorem 2.3, spt γ is c-cyclically monotone. But spt γ contains
spt γj for each j, and in particular the points (xj ,yj), so (13) is implied. QED.

Rockafellar’s main result in [32] exposed the connection between gradients of con-
cave functions and cyclically monotone sets: it showed that a concave potential could
be constructed from any cyclically monotone set. Smith and Knott observed that this
relationship extends to c-concave functions and c-cyclically monotone sets. To state
the theorem precisely requires some generalized notions of gradient, which continue
to be useful throughout:

Definition 2.5 A function ψ : Rd −→ R ∪ {±∞} is superdifferentiable at x ∈ Rd

if ψ(x) is finite and there exists y ∈ Rd such that

ψ(x + v) ≤ ψ(x) + 〈v, y〉 + o(|v|) (14)

for small v ∈ Rd; here o(λ)/λ must tend to zero with λ.
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A pair (x,y) belongs to the superdifferential ∂·ψ ⊂ Rd × Rd of ψ if ψ(x) is finite
and (14) holds, in which case y is called a supergradient of ψ at x; such supergradients
y comprise the set ∂·ψ(x) ⊂ Rd, while for V ⊂ Rd we define ∂·ψ(V ) :=

⋃
x∈V ∂

·ψ(x).
The analogous notions of subdifferentiability, subgradients, and the subdifferential ∂·ψ
are defined for by reversing inequality (14). It is not hard to see that a real-valued
function will be differentiable at x precisely when it is both super- and subdifferen-
tiable there; then ∂·ψ(x) = ∂·ψ(x) = {∇ψ(x)}.

A function ψ : Rd −→ R ∪ {−∞} is said to be concave if λ ∈ (0, 1) implies
ψ((1 − λ)x + λy) ≥ (1 − λ)ψ(x) + λψ(y) whenever the latter is finite. The function
ψ := −∞ is excluded by convention. For concave functions the error term will vanish
in (14): the inequality ψ(x + v) ≤ ψ(x) + 〈v, y〉 holds for all (x,y) ∈ ∂·ψ, and the
supergradients of ψ parameterize supporting hyperplanes of graph(ψ) at (x, ψ(x)).
To provide a notion analogous to supporting hyperplanes in the context of c-concave
functions, a c-superdifferential is defined in the following way [35] (cf. Figure 1):

Definition 2.6 The c-superdifferential ∂cψ of ψ : X −→ R ∪ {−∞} consists of the
pairs (x,y) ∈ X× Y for which ψ(v) ≤ ψ(x) + c(v,y) − c(x,y) if v ∈ X.

Alternately, (x,y) ∈ ∂cψ means c(v,y) − ψ(v) assumes its minimum at v = x. We
define ∂cψ(x) ⊂ Y to consist of those y for which (x,y) ∈ ∂cψ, while ∂cψ(V ) :=⋃

x∈V ∂
cψ(x) for V ⊂ X.

In our applications c(x,y) is continuous, so a c-concave potential ψ will be upper
semi-continuous from its definition. As a consequence, ∂cψ will be a closed subset of
X × Y — an observation which will be useful later. With this notation, Smith and
Knott’s generalization [41] of the Rockafellar theorem [32] can be stated:

Theorem 2.7 (c-Concave Potentials from c-Cylically Monotone Sets [37])
For S ⊂ X×Y to be c-cyclically monotone, it is necessary and sufficient that S ⊂ ∂cψ
for some c-concave ψ : X −→ R ∪ {−∞}.
The proof [37, Lemma 2.1] that we cite employs a slightly different definition of
c-cyclical monotonicity than (13); their equivalence can once again be seen by de-
composing σ into commuting cycles. In addition, we require a corollary obtained by
setting Ω1 := X but Ω2 := π′(S) in [37]:

Corollary 2.8 Let S ⊂ X × Y be c-cyclically monotone, and let π′(S) denote the
projection of S onto Y through the map π′(x,y) := y. Then S ⊂ ∂cψ for the c-
transform ψ : X −→ R ∪ {−∞} of a function on π′(S).

Combining Theorems 2.3 and 2.7 makes it clear that if a measure γ solves the Kan-
torovich problem on Γ(µ, ν) it will necessarily be supported in the c-supergradient of a
c-concave potential ψ. Indeed, this fact was already appreciated by Rüschendorf, who
recognized that its converse (sufficiency) also holds true [35]. Our main conclusions
will be recovered from an analysis of ψ and ∂cψ when X = Y = Rd. Before embark-
ing on that analysis, we conclude this review by casting into the present framework a
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few variants on well-known results which apply when c(x,y) is a metric and X = Y.
We assume c(x,y) satisfies the triangle inequality strictly:

c(x,y) < c(x,p) + c(p,y) (15)

unless p = x or p = y. In this case, any mass which is common to µ and ν will stay
in its place, and can be subtracted from the diagonal of any optimal measure γ.

Proposition 2.9 (Any Mass Stays in Place if it Can)
Let µ, ν ∈ P(X) and denote their shared mass by µ∧ν := µ−[µ−ν]+. The restriction
γd of any joint measure γ ∈ Γ(µ, ν) to the diagonal D := {(x,x) | x ∈ X} satisfies

γd ≤ (id× id)#(µ ∧ ν). (16)

When c(x,y) is a metric on X satisfying the strict triangle inequality (15) and γ has
c-cyclically monotone support, then (16) becomes an equality.

Proof: Let π(x,y) := x and π′(x,y) := y denote projections from X × X to X,
and decompose γ = γd + γo into its diagonal and off-diagonal parts, so that γd is
supported on D and coincides with γ there. From spt γd ⊂ D it is easily verified
that the marginals of γd coincide: denote them by β := π#γd = π′

#γd. Moreover
γd = (id× id)#β. Defining µo := π#γo and νo := π′

#γo, linearity π#γ = π#γo + π#γd

makes it is clear that µ = µo + β and ν = νo + β. These measures are all non-
negative, so β ≤ µ ∧ ν is established and implies (16). Assume therefore that γ has
c-cyclically monotone support. It remains to show only that µo and νo are mutually
singular measures, so that µo − νo gives the Jordan decomposition of µ − ν. Then
µ ∧ ν := µ− µo = β and (16) becomes an equality.

To prove µo and νo are mutually singular requires a set U of full measure for µo

with zero measure for νo. Define S = spt γ \ D and take U := π(S); both sets are
σ-compact, hence Borel. Since S is a set of full measure for γo, U has full measure for
µo = π#γo. Similarly, V = π′(S) has full measure for νo. We argue by contradiction
that U and V are disjoint, thereby establishing the proposition. Suppose p ∈ U ∩ V ,
meaning that there exist x,y ∈ X, both different from p, such that (x,p) and (p,y)
lie in spt γ. Applying the two-point inequality (n=2) for c-cyclically monotonicity
(13) to spt γ yields

c(x,p) + c(p,y) ≤ c(x,y) + c(p,p).

Since c(p,p) = 0, the strict triangle inequality (15) is violated. The only conclusion
is that U and V are disjoint and the proof is complete. QED.

Corollary 2.10 (Metric Costs with Fixed-Penalty for Transport)
Fix a continuous metric c(x,y) on X satisfying the triangle inequality strictly, and
define a discontinuous cost by c̃(x,y) := c(x,y) for x 6= y and c(x,x) = −λ < 0. A
joint measure γ ∈ P(X × X) is optimal for c̃ if and only if it is optimal for c.
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Proof: Follows easily from Theorems 2.3, 2.9 and C̃(γ) = C(γ) − λγ[D]. QED.

As the last proposition suggests, when c(x,y) is a metric the diagonal D ⊂ X×X
plays a distinguished role among c-cyclically monotone sets. A final lemma shows
that D is contained in the c-superdifferential of every c-concave function ψ. Equiva-
lently, D can be added to any c-cyclically monotone set without spoiling the c-cyclical
monotonicity. Finiteness of ψ is a useful corollary, while Kantorovich’s observation
that ψ will be Lipschitz continuous relative to the metric c is also deduced; cf. [21].

Lemma 2.11 (c-Concavity and the Diagonal for Metrics)
Let c(x,y) be a metric on X and ψ : X −→ R ∪ {−∞} be c-concave. Then
(i) ψ is real-valued and Lipschitz with constant 1 relative to c(x,y);
(ii) for every p ∈ X one has (p,p) ∈ ∂cψ.

Proof: (ii) Let x,y,p ∈ X and λ ∈ R. The triangle inequality implies

c(x,y) + λ ≤ c(x,p) + c(p,y) + λ. (17)

Recalling the definition (7) of c-concavity, an infimum of (17) over (y, λ) ∈ A yields

ψ(x) ≤ c(x,p) + ψ(p). (18)

Since c(p,p) = 0 and p was arbitrary, (p,p) ∈ ∂cψ by Definition 2.6.
(i) Since ψ is c-concave, it takes a finite value ψ(x) > −∞ somewhere by as-

sumption. For any p ∈ X the preceding argument yields one direction (18) of the
Lipschitz bound and also implies ψ(p) > −∞. The latter observation shows that
x ∈ X was arbitrary, so the argument is symmetrical under interchange of x with
p. Thus (18) also yields ψ(p) − ψ(x) ≤ c(p,x). Since c(p,x) = c(x,p) the claim
|ψ(x) − ψ(p)| ≤ c(x,p) is established. QED.

Part I

Strictly Convex Costs

3 Existence and Uniqueness of Optimal Maps

The goal of this section is to prove the existence of a solution s to the Monge problem
for convex costs c(x,y) = h(x − y). That is, given two measures µ and ν on Rd

with the same total mass, one seeks to show that the infimum (2) is attained by
some measure-preserving map s between µ and ν. When h(x) is strictly convex and
satisfies (H1–H3), this will indeed be the case provided µ is absolutely continuous with
respect to Lebesgue. Uniqueness of this solution to both the Monge and Kantorovich
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problems follows as a corollary to the proof. For smooth costs it is enough that no
mass of µ concentrate on sets of dimension d − 1, but this observation is relegated
to Remark 4.7 for simplicity. The starting point of our analysis will be the potential
function ψ of Theorem 2.7, or rather its c-superdifferential ∂cψ. Our key observation
is that apart from a set of measure zero, ∂cψ — and indeed any c-cyclically monotone
relation S ⊂ Rd × Rd — must lie in the graph of a function x −→ s(x) on Rd. This
function is the optimal map.

The first lemma is basic. Illustrated by Figure 1, it asserts a matching condition
between the gradients of the cost and potential whenever (x,y) ∈ ∂cψ, cf. [35, (73)],
and indicates why injectivity of ∇h determines y as a function of x. The lemma is
formulated for general costs of the form c(x,y) = h(x − y).

Lemma 3.1 (Relating c-Differentials to Subdifferentials)
Let h : Rd −→ R and ψ : Rd −→ R∪{−∞}. If c(x,y) = h(x−y) then (x,y) ∈ ∂cψ
implies ∂·ψ(x) ⊂ ∂·h(x − y); when h and ψ are differentiable, ∇ψ(x) = ∇h(x − y).

Proof: Let (x,y) ∈ ∂cψ. Assume ψ(x) > −∞, since otherwise ∂·ψ(x) is empty and
there is nothing to prove. If z ∈ ∂·ψ(x), then sub- and c-superdifferentiability of ψ
yield

ψ(x) + 〈v, z〉 + o(|v|) ≤ ψ(x + v)

≤ ψ(x) + h(x + v − y) − h(x − y)

for small v ∈ Rd. In other words, z ∈ ∂·h(x − y). The first claim is proved.
Differentiability implies the second claim because then ∂·ψ(x) = {∇ψ(x)} while
∂·h(x − y) = {∇h(x − y)}. QED.

In view of this lemma, the business at hand is to prove some differentiability
result for the potential ψ. Strict convexity of h(x) ensures the invertibility of ∇h.
The next theorem — proved in Appendix C — asserts that a c-concave potential ψ is
locally Lipschitz. If the cost is a derivative smoother, then ψ satisfies a local property
known as semi-concavity; introduced by Douglis [17] to select unique solutions for the
Hamilton-Jacobi equation, it implies all the smoothness enjoyed by concave functions.

Definition 3.2 A function ψ : Rd −→ R ∪ {−∞} is said to be locally semi-concave
at p ∈ Rd if there is a constant λ < ∞ which makes ψ(x) − λx2 concave on some
(small) open ball centered at p.

Theorem 3.3 (Regularity of c-Concave Potentials)
Let ψ : Rd −→ R ∪ {−∞} be c-concave for some convex c(x,y) = h(x − y) with
h satisfying (H2–H4). Then there is a convex set K ⊂ Rd with interior Ω := intK
such that Ω ⊂ {x | ψ(x) > −∞} ⊂ K. Moreover, ψ is locally Lipschitz on Ω and, if
h ∈ C1,1

loc (R
d) then ψ will be locally semi-concave on Ω.
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Proof: Proposition C.3 yields the convex set K with interior Ω such that Ω ⊂ {ψ >
−∞} ⊂ K. Moreover, ψ is locally bounded on Ω. Thus ψ is locally Lipschitz on Ω
by Corollary C.5, and locally semi-concave if h ∈ C1,1

loc (R
d). QED.

We use convexity of K only to know that outside of Ω, the set where ψ is finite
has zero volume (indeed, is contained in a Lipschitz submanifold of dimension d− 1).
Inside Ω, Rademacher’s theorem shows the gradient ∇ψ is defined almost everywhere.
When ψ is locally semi-concave, results of Zaj́ıček [43] (or Alberti [3]) imply that the
subset of Ω where differentiability fails is rectifiable of dimension d− 1.

The next lemma and its corollary verify that any c-cyclically monotone set will
lie in the graph of a map. The facts we exploit concerning the Legendre transform
h∗(y) of a convex cost (10) are summarized in Appendix A.

Proposition 3.4 (c-Superdifferentials Lie in the Graph of a Map)
Fix c(x,y) = h(x − y) satisfying (H1–H3) and a c-concave ψ on Rd. Let domψ and
dom∇ψ denote the respective sets in Rd on which ψ is finite, and differentiable. Then

(i) s(x) := x −∇h∗(∇ψ(x)) defines a Borel map from dom∇ψ to Rd;
(ii) ∂cψ(x) = {s(x)} whenever x ∈ dom∇ψ;

(iii) ∂cψ(x) is empty unless x ∈ domψ;
(iv) the set domψ \ dom∇ψ has Lebesgue measure zero.

Proof: (i) Theorem 3.3 shows that ψ is continuous on the interior Ω of domψ. Since
its gradient is obtained as the pointwise limit of a sequence of continuous approxi-
mants (finite differences), ∇ψ is Borel measurable on the (Borel) subset dom∇ψ ⊂ Ω
where it can be defined. Since ∇h∗ is continuous by Corollary A.2, the measurability
of s(x) is established.

(ii) Since ψ is differentiable at x ∈ dom∇ψ it is bounded nearby, so from Propo-
sition C.4 we conclude that ∂cψ(x) is non-empty. Choosing y ∈ ∂cψ(x), Lemma 3.1
yields ∇ψ(x) ∈ ∂·h(x − y). Corollary A.2 then shows x − y = ∇h∗(∇ψ(x)) — or
equivalently y = s(x) — and establishes ∂cψ(x) = {s(x)}.

(iii) Part of the definition for c-concavity of ψ : Rn −→ R∪{−∞} asserts finiteness
of ψ(v) for some v ∈ Rd. Since (x,y) ∈ ∂cψ implies ψ(v) ≤ ψ(x) + c(v,y)− c(x,y),
one has x ∈ domψ whenever ∂cψ(x) is non-empty.

(iv) Theorem 3.3 shows ψ to be locally Lipschitz on the interior of domψ, while
the boundary of domψ lies in the boundary of a convex subset of Rd and hence has
Lebesgue measure zero. In the interior, Rademacher’s theorem yields ψ differentiable
almost everywhere, whence domψ \ dom∇ψ has Lebesgue measure zero. QED.

Corollary 3.5 (c-Cyclically Monotone Sets Lie in the Graph of a Map)
Let c(x,y) = h(x − y) satisfy (H1–H3) and S ⊂ Rd ×Rd be c-cyclically monotone.
Then there is a (Borel) set N ⊂ Rd of zero measure for which (x,y) and (x, z) in S
with y 6= z implies x ∈ N .
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Proof: Let S ⊂ Rd ×Rd be c-cyclically monotone. Theorem 2.7, due to Smith and
Knott, asserts the existence of a c-concave function ψ with S ⊂ ∂cψ. Proposition 3.4
provides a Borel set N := domψ\dom∇ψ of zero measure for which (x,y) and (x, z)
in S ⊂ ∂cψ but x 6∈ N imply y = z = x −∇h∗(∇ψ(x)). QED.

Armed with this knowledge, we are ready to derive a measure-preserving map
from existence of the corresponding potential. The argument generalizes [29, Propo-
sition 10].

Proposition 3.6 (Measure-preserving Maps from c-Concave Potentials)
Let c(x,y) = h(x−y) satisfy (H1–H3), and suppose a joint measure γ ∈ P(Rd × Rd)
has support in ∂cψ for some c-concave function ψ on Rd. Let µ and ν denote the
marginals of γ ∈ Γ(µ, ν). If ψ is differentiable µ-almost everywhere, then s(x) :=
x −∇h∗(∇ψ(x)) pushes µ forward to ν. In fact γ = (id× s)#µ.

Proof: To begin, we observe from Proposition 3.4(i) that s(x) is a Borel map defined
µ almost everywhere: the (Borel) set dom∇ψ where ψ is differentiable carries the full
mass of µ by hypothesis. It remains to check (id × s)#µ = γ, from which s#µ = ν
follows immediately.

To complete the proof, it suffices to show that the measure (id × s)#µ coincides
with γ on products U ×V of Borel sets U, V ⊂ Rd; the semi-algebra of such products
generates all Borel sets in Rd × Rd. Therefore, define S := {(x,y) ∈ ∂cψ | x ∈
dom∇ψ}. For (x,y) ∈ S, Proposition 3.4(ii) implies y = s(x) so

(U × V ) ∩ S =
(
(U ∩ s−1(V )) ×Rd

)
∩ S. (19)

Being the intersection of two sets having full measure for γ — the closed set ∂cψ
and the Borel set dom∇ψ × Rd — the set S is Borel with full measure. Thus
γ[Z ∩ S] = γ[Z] for Z ⊂ Rd × Rd. Applied to (19), this yields

γ [U × V ] = γ
[(
U ∩ s−1(V )

)
×Rd

]
= µ

[
U ∩ s−1(V )

]
= (id × s)#µ [U × V ] .

γ ∈ Γ(µ, ν) implies the second equation; Definition 0.1 implies the third. QED.

These two propositions combine with results of Section 2 to yield the existence
and uniqueness of optimal solutions to the Monge and Kantorovich problems with
strictly convex cost:

Theorem 3.7 (Existence and Uniqueness of Optimal Maps)
Fix a cost c(x,y) = h(x − y), where h strictly convex satisfies (H1–H3), and two
Borel probability measures µ and ν on Rd. If µ is absolutely continuous with respect
to Lebesgue and (4) is finite, then there is a unique optimal measure γ in Γ(µ, ν).
The optimal γ = (id × s)#µ is given by a map s(x) = x − ∇h∗(∇ψ(x)) pushing µ
forward to ν, through a c-concave potential ψ on Rd.
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Proof: Our Corollary 2.4 to Smith and Knott’s theorem yields a c-cyclically mono-
tone set S ⊂ Rd × Rd which contains the supports of all optimal measures in Γ(µ, ν).
A c-concave function ψ on Rd with S ⊂ ∂cψ is provided by Smith and Knott’s next
observation — Theorem 2.7. Now suppose γ ∈ Γ(µ, ν) is optimal; there is at least
one such measure by Proposition 2.1. Then spt γ ⊂ ∂cψ. The map π(x,y) = x
on Rd ×Rd pushes γ forward to µ = π#γ, while projecting the closed set ∂cψ to a
σ-compact set of full measure for µ. Proposition 3.4(iii)–(iv) shows π(∂cψ) ⊂ domψ
and combines with absolute continuity of µ to ensure that ψ is differentiable µ-almost
everywhere. Proposition 3.6 then shows that s(x) pushes µ forward to ν while γ co-
incides with the measure (id × s)#µ. This measure is completely determined by µ
and ψ, so it must be the only optimal measure in Γ(µ, ν). QED.

4 Characterization of the Optimal Map

For cost functions c(x,y) = h(x − y) with h strictly convex, the last section showed
that when γ ∈ Γ(µ, ν) is optimal — or indeed if γ has c-cyclically monotone support
— then it is determined by a map s(x) = x −∇h∗(∇ψ(x)) which solves the Monge
problem. The potential ψ will be c-concave and γ = (id × s)#µ. The results of
the present section show that only one measure in Γ(µ, ν) has c-cyclically monotone
support, while only one mapping s = id − ∇h∗ ◦ ∇ψ can push µ forward to ν and
also have ψ c-concave: this geometry is characteristic of γ. As in [29], the argument
avoids integrability issues by relying on geometric ideas which can be traced further
back to Aleksandrov’s uniqueness proof for convex surfaces with prescribed Gaussian
curvature [4]. The same assumptions are required that lead to existence of s: the left
marginal of γ must vanish on sets of measure zero or dimension d− 1, depending on
the smoothness of h.

The idea of the proof is that if another map t = id − ∇h∗ ◦ ∇φ is induced by
some c-concave φ, then unless s = t holds µ-almost everywere, a set ∂cφ(U) can be
constructed to have less mass for s#µ than for t#ν. We begin with two lemmas con-
cerning c-superdifferentials and c-concave functions which generalize Aleksandrov’s
observations about supporting hyperplanes for concave functions. The idea is to
start by supposing that c(x,y)+λ dominates the function φ(x) but fails to dominate
ψ(x), and then increase λ until c(x,y) + λ is tangent to ψ(x). At the point of tan-
gency, it is obvious that ψ dominates φ. In what follows, ∂cψ−1(V ) denotes the set
of x ∈ Rd for which ∂cψ(x) intersects V ⊂ Rd.

Lemma 4.1 Let c : Rd × Rd −→ R, and suppose φ and ψ map Rd into R∪ {−∞}.
Define U := {x | ψ(x) > φ(x)} and X := ∂cψ−1(∂cφ(U)). Then X ⊂ U .

Proof: Let x ∈ X. Then there is an u ∈ U with y ∈ ∂cφ(u) such that (x,y) ∈ ∂cψ.
For all v ∈ Rd, the definition of ∂cφ and ∂cψ yields

φ(v) ≤ φ(u) + c(v,y) − c(u,y)
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ψ(u) ≤ ψ(x) + c(u,y) − c(x,y).

Noting φ(u) < ψ(u) these inequalities imply

φ(v) < ψ(x) + c(v,y) − c(x,y). (20)

Evaluating at v = x yields x ∈ U . Since x ∈ X was arbitrary, X ⊂ U . QED.

Remark 4.2 If c(x,y) = h(x − y) satisfies (H1–H3) while φ and ψ are both differ-
entiable and c-concave, then by Proposition 3.4(ii), the last lemma shows that when
x −∇h∗(∇ψ(x)) = u−∇h∗(∇φ(u)) and ψ(u) > φ(u) then ψ(x) > φ(x).

Lemma 4.3 Take φ, ψ, U and X as in Lemma 4.1 while c(x,y) = h(x−y) satisfies
(H1–H3). Let ψ be c-concave on Rd, and continuous at p ∈ Rd with ψ(p) = φ(p) = 0.
If ∂cψ(p) and ∂cφ(p) are disjoint then p lies a positive distance from X.

Proof: To produce a contradiction, suppose a sequence xn ∈ X converges to p. Then
there exist un ∈ U with yn ∈ ∂cφ(un) such that (xn,yn) ∈ ∂cψ. Proposition C.4
guarantees that the yn are bounded since xn → p. A subsequence must converge to
a limit point yn → yo, and (p,yo) lies in the closed set ∂cψ. The hypotheses then
yield yo 6∈ ∂cφ(p) and φ(p) = 0, so there is some v ∈ Rd for which

φ(v) > c(v,yo) − c(p,yo). (21)

On the other hand, the same logic which led to (20) yields

φ(v) < ψ(xn) + c(v,yn) − c(xn,yn).

Since ψ is continuous at ψ(p) = 0, the large n limit xn → p and yn → yo contradicts
(21):

φ(v) ≤ c(v,yo) − c(p,yo).

QED.

Theorem 4.4 (Geometrical Characterization of the Optimal Map)
Fix a cost c(x,y) = h(x−y) where h strictly convex satisfies (H1–H3), and measures
µ, ν ∈ P(Rd). If µ is absolutely continuous with respect to Lebesgue then a map s
pushing µ forward to ν is uniquely determined µ-almost everywhere by the requirement
that it be of the form s(x) = x −∇h∗(∇ψ(x)) for some c-concave ψ on Rd.

Proof: Suppose that in addition to ψ and s, a second c-concave potential φ exists
for which t(x) := x −∇h∗(∇φ(x)) pushes µ forward to t#µ = s#µ = ν. In any case
t and s are defined µ-almost everywhere, and unless they coincide there exists some
p ∈ Rd at which both
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(i) ψ and φ are differentiable but s(p) 6= t(p), and
(ii) p is a Lebesgue point for dµ(x) = f(x)dx with positive density f(p) > 0.
Here f ∈ L1(Rd) is the Radon-Nikodym derivative of µ with respect to Lebesgue.

Subtracting constants from both potentials yields ψ(p) = φ(p) = 0 without af-
fecting the maps t and s. From (i) it is clear that ∇φ(p) 6= ∇ψ(p), so motivated by
the lemmas we define U := {x ∈ int domψ | ψ(x) > φ(x)}. Here int domψ denotes
the interior of the set on which ψ is finite; on it ψ is continuous (by Theorem 3.3)
while φ is upper semi-continuous, being an infimum of translates and shifts of h(x).
A contradiction will be derived by showing that the push-forwards s#µ and t#µ —
alleged to coincide — must differ on V := ∂cφ(U):

µ[s−1(V )] < µ[U ] ≤ µ[t−1(V )]. (22)

This set V is Borel — in fact σ-compact — since U is open while ∂cφ is closed.
The second inequality is easy: t(x) is defined for µ-almost every x ∈ U , while

Proposition 3.4(ii) implies {t(x)} = ∂cφ(x) ⊂ V , or equivalently x ∈ t−1(V ). Thus
µ[U ] ≤ µ[t−1(V )].

To prove the first inequality, observe that s−1(V ) ⊂ ∂cψ−1(V ) follows from the
same proposition. Since s−1(V ) ⊂ int domψ, Lemma 4.1 implies s−1(V ) ⊂ U and
thus µ[s−1(V )] ≤ µ[U ]. Strict inequality is not yet apparent, but it will be derived
from Lemma 4.3. Indeed ∂cψ(p) = {s(p)} 6= {t(p)} = ∂cφ(p), so the lemma provides
a neighbourhood Ω of p that is disjoint from s−1(V ) ⊂ ∂cψ−1(V ). It remains to verify
that a little bit of the mass of µ in U lies in Ω, which will imply strict inequality in
(22) and complete the proof.

This follows from our choice of p. Translate µ, ψ and φ so that p = 0 and consider
the cone C := {x | 〈x, ∇ψ(p)−∇ψ(p)〉 ≥ |x|/2}. Differentiability (i) of ψ and φ at
p = 0 yields

ψ(x) − φ(x) = 〈x, ∇ψ(p) −∇φ(p)〉 + o(|x|).
Thus x ∈ C sufficiently small implies x ∈ U . Since p is a Lebesgue point (ii), the
average value of f(x) over C

⋂
Br(p) must converge to f(p) > 0 as r shrinks to zero.

For small r, this set lies both in U and in Ω, so µ[U
⋂

Ω] > 0 and (22) is established.
QED.

Summarizing our results for convex costs:

Main Theorem 4.5 (Strictly Convex Costs)
Fix c(x,y) = h(x−y) where h strictly convex satisfies (H1–H3), and Borel probability
measures µ and ν on Rd. If µ is absolutely continuous with respect to Lebesgue, then
(i) there is a c-concave function ψ on Rd such that the map s(x) := x−∇h∗(∇ψ(x))

pushes µ forward to ν;
(ii) the map s(x) is unique — up to a set of measure zero for µ;
(iii) γ := (id×s)#µ is the only measure in Γ(µ, ν) with c-cyclically monotone support.
If the target measure ν satisfies the same hypothesis as µ, then
(iv) γ = (t× id)#ν for some inverse map t : Rd −→ Rd and
(v) t(s(x)) = x a.e. with respect to µ while s(t(y)) = y a.e. with respect to ν.
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Proof: (i) For any µ, ν ∈ P(Rd), there is a joint measure γ ∈ Γ(µ, ν) with c-
cyclically monotone support: when (4) is finite this follows from Theorem 2.3 with
Proposition 2.1, while more generally γ may be constructed as in [29, Theorem 12].
Smith and Knott’s result — Theorem 2.7 — guarantees the existence of a c-concave
potential ψ on Rd with ∂cψ ⊃ spt γ. The map π(x,y) = x on Rd ×Rd pushes γ
forward to µ = π#γ, while projecting the closed set ∂cψ to a σ-compact set π(∂cψ) of
full measure for µ. Proposition 3.4 shows that ψ is differentiable µ-almost everywhere
on π(∂cψ), while Proposition 3.6 shows that s(x) := x−∇h∗(∇ψ(x)) pushes µ forward
to ν; it also expresses γ in terms of s and µ.

(ii)–(iii) There is only one such map s by Theorem 4.4. Thus γ = (id × s)#µ is
uniquely determined by µ, ν and c-cyclical monotonicity of its support.

(iv) Define c̃(x,y) := c(y,x) and γ̃ ∈ Γ(ν, µ) by γ̃[V × U ] := γ[U × V ]. Then
γ̃ has c̃-cyclically monotone support. The result (i) just established provides a map
t(y) such that γ̃ = (id × t)#ν, or equivalently γ = (t × id)#ν.

(v) Since γ = (id × s)#µ = (t × id)#ν, there are sets U, V ⊂ Rd of full mass
µ[U ] = 1 and ν[V ] = 1 such that x ∈ U implies (x, s(x)) ∈ spt γ while y ∈ V implies
(t(y),y) ∈ spt γ. Moreover, spt γ is c-cyclically monotone: Corollary 3.5 yields a set
N ⊂ Rd of zero measure for µ such that (x,y) and (x, z) in spt γ with y 6= z imply
x ∈ N . Choose y from the set V

⋂
t−1(U \ N) which has full mass for ν. On one

hand (t(y),y) ∈ spt γ, while on the other (t(y), s(t(y)) ∈ spt γ. Since t(y) 6∈ N one
concludes s(t(y)) = y. By symmetry t(s(x)) = x holds on a set of full measure for µ.
QED.

Remark 4.6 In fact, one may even assume the potential ψ of the theorem to be the
c-transform (9) of a function on spt ν. This is clear from the proof of part (i), where
we can appeal to Corollary 2.8 instead of Theorem 2.7.

Remark 4.7 (Results for More Concentrated Measures)
If the convex cost c(x,y) = h(x − y) is a derivative smoother than Lipschitz, h ∈
C1,1

loc (R
d), then all our results — Theorems 3.7, 4.4 and 4.5 — extend to measures

which fail to be absolutely continuous with respect to Lebesgue, provided µ vanishes
on Lipschitz submanifolds of dimension d−1 and hence on rectifiable sets. Of course,
the cost must still satisfy (H1–H3).

The existence part of this assertion is clear: in the proof of Theorem 3.7 absolute
continuity was used only to know that finiteness implies differentiability µ-almost
everywhere for c-concave potentials ψ on Rd:

µ[domψ \ dom∇ψ] = 0 (23)

was a consequence of Proposition 3.4(iv). Now if h ∈ C1,1
loc (R

d), then Theorem 3.3
shows ψ to be locally semi-concave on the interior of domψ, where by Proposition C.6
its differentiability can fail only on a rectifiable set of dimension d − 1. The same
theorem shows the boundary of domψ is contained in the boundary of a convex set
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— hence a Lipschitz submanifold of dimension d − 1. Thus (23) holds provided µ
vanishes on rectifiable sets of dimension d− 1.

On the other hand, to prove the uniqueness result of Theorem 4.4, it was necessary
to find a point where (i) both φ and ψ are differentiable, with φ(p) = ψ(p) but
s(p) 6= t(p), and (ii) each neighbourhood of p intersects {φ 6= ψ} in a set carrying
positive mass under µ. When µ was absolutely continuous with respect to Lebesgue,
the second condition was fulfilled by choosing a Lebesgue point of µ with positive
density. However, when φ and ψ are locally semi-concave and µ vanishes on sets of
dimension d − 1, then (ii) follows from (i) for any p ∈ sptµ. This can be deduced
from a version of the implicit function theorem [29, Theorem 17] which shows that
near a point where ∇ψ(p) 6= ∇φ(p), the set {φ = ψ} is given by a Lipschitz function
of d− 1 variables. The full argument may be found in the proof of Theorem 6.3.

Proof of Theorem 1.2: Our argument uses results proved for µ absolutely continu-
ous with respect to Lebesgue, which Remark 4.7 extends to the case where µ merely
vanishes on rectifiable sets of dimension d− 1 but h ∈ C1,1

loc (R
d).

(i)–(ii) are already asserted by Theorem 4.5.
(iii)–(iv) By Proposition 2.1, there is a measure γ which minimizes C( · ) on Γ(µ, ν).

If C(γ) = ∞, there is nothing further to prove. If C(γ) < ∞ then γ has c-cyclically
monotone support by Abdellaoui and Heinich’s argument in Theorem 2.3. Thus γ
coincides with the unique measure of Theorem 4.5, and the results (iii)–(iv) follow
immediately.

Two points deserve further comment. A standard measure theoretic argument
shows that if (id × s)#µ = (id × t)#µ, then s(x) = t(x) holds µ-almost everywhere.
Thus the optimal map is unique. Finally, when h(x) is differentiable, Corollary A.2
establishes the identity (∇h)−1 = ∇h∗. QED.

Part II

Costs which are Strictly Concave
as a Function of Distance

5 The Role of Optimal Maps

At this point, we return to the economically natural costs c(x,y) = `(|x − y|) given
by strictly concave functions ` ≥ 0 of the distance. For these costs, an optimal
measure γ for Kantorovich’s problem does not generally lead to a solution s of the
Monge problem unless its marginals µ, ν ∈ P(Rd) are disjointly supported. The
main difference stems from the fact that the cost gives a metric on Rd, which satisfies
the strict triangle inequality (15). The results summarized in Section 2 therefore
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imply that any mass which is common to µ and ν will stay in its place; it can be
subtracted from the diagonal of γ. After doing so, what remains will be a measure of
the form (id × s)#[µ − ν]+ under suitable hypotheses on µ − ν. The map s is given
by s(x) = x − ∇h∗(∇ψ(x)) where the potential ψ is the c-transform of a function
on spt [ν − µ]+. The main goal of this section is to confirm this description of γ by
demonstrating the existence of s.

We begin by verifying that c(x,y) is a metric on Rd and satisfies the triangle
inequality strictly. This elementary lemma combines with the results of Section 2 to
put fundamental limitations on the geometry of c-cyclically monotone sets.

Lemma 5.1 (Concave Costs Metrize Rd)
If ` : [0,∞) −→ [0,∞) is strictly concave and `(0) = 0, then c(x,y) := `(|x − y|)
defines a metric on Rd and c(x,y) < c(x,p) + c(p,y) unless p = x or p = y.

Proof: Since `(λ) is strictly concave on [0,∞) and yet remains positive, it must
increase strictly. Thus c(x,y) = 0 precisely when x = y. Symmetry is obvious under
x ↔ y, so the only thing to verify is the strict triangle inequality. Therefore, let
x,y,p ∈ Rd with p different from both x and y. Define λ := |x−p|+ |p−y|. Then
|x − p| = (1 − t)λ and |p − y| = tλ for some t ∈ (0, 1). Since λ 6= 0, invoking strict
concavity of ` together with `(0) = 0 yields c(x,p) = `( (1 − t)λ + t0 ) > (1 − t)`(λ)
and c(p,y) = `( (1− t)0 + tλ ) > t`(λ). These inequalities sum to c(x,p) + c(p,y) >
`(λ). On the other hand, the usual triangle inequality states that λ ≥ |x − y|, so
monotonicity of ` implies `(λ) ≥ `(|x − y|) = c(x,y). QED.

For any optimal measure γ ∈ Γ(µ, ν), Proposition 2.9 can now be invoked to
conclude that any mass common to µ, ν ∈ P(Rd) will be located on the diagonal
D := {(x,x)} in Rd × Rd. Here we proceed by assuming µ and ν have no mass
in common, to develop a theory which parallels the convex case, before returning
to full generality in our main theorem. Since D ⊂ ∂cψ whenever ψ is c-concave
(Lemma 2.11), it will be convenient to restrict our attention to the off-diagonal part
∂c
◦ψ := {(x,y) ∈ ∂cψ | x 6= y} of the c-superdifferential; ∂c

◦ψ(x) := ∂cψ(x) \ {x} and
∂c
◦ψ(V ) :=

⋃
x∈V ∂

c
◦ψ(x) are defined in the obvious way. As for convex costs, a lemma

will be required relating differentiability to c-superdifferentiability through h∗ (11).

Lemma 5.2 (The c-Superdifferential Lies in the Graph of a Map)
Let c(x,y) := h(x−y) := `(|x−y|) be continuous with `(λ) ≥ 0 strictly concave, and
suppose ψ : Rd −→ R is differentiable at some x ∈ Rd. Then y ∈ ∂c

◦ψ(x) implies h∗

is differentiable at ∇ψ(x) and y = x −∇h∗(∇ψ(x)).

Proof: Let y ∈ ∂c
◦ψ(x). Then Lemma 3.1 yields the subgradient ∇ψ(x) ∈ ∂·h(x−y).

Since x 6= y, the cost h is also superdifferentiable at x − y by Corollary A.5, hence
differentiable with ∇h(x − y) = ∇ψ(x). This gradient does not vanish since h(x) =
`(|x|) with `(λ) ≥ 0 strictly concave and hence strictly increasing. Proposition A.6(ii–
iii) implies both (∇ψ(x),x − y) ∈ ∂·h∗ and differentiability of h∗ at ∇ψ(x), whence
∇h∗(∇ψ(x)) = x − y. QED.
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For the c-transform ψ of a function on a closed set V ⊂ Rd, a converse is provided
in the next section. Our present priority is a regularity result for ψ outside of V :

Proposition 5.3 (Local Semi-Concavity for c-Transforms)
Take V ⊂ Rd to be closed and define c(x,y) := h(x − y) := `(|x − y|) on Rd, where
` : [0,∞) −→ R is concave non-decreasing. Then the c-transform ψ of any function
on V will be locally semi-concave on Rd \ V .

Proof: Let p ∈ Rd be separated from V by a distance greater than ε > 0. We
shall show local semi-concavity of ψ at p. Define ξ ≥ 0 using the right derivative
2εξ := `′(ε+) of ` at ε. Then the function `ε(λ) = `(λ) − ξλ2 is concave on [ε,∞),
and non-increasing since `′ε(ε

+) = 0. Extend this function to λ ≤ ε by making `ε(λ)
constant-valued there. Then hε(x) := `ε(|x|) will be concave on Rd: taking x,y ∈ Rd

and 0 < t < 1 implies

hε((1 − t)x + ty) ≥ `ε((1 − t)|x| + t|y|)
≥ (1 − t)hε(x) + thε(y).

Note that h(x) = hε(x)+ ξx2 whenever |x| ≥ ε. For a small enough ball U around p,
taking x ∈ U and y ∈ V implies |x − y| > ε. Then (7) yields

ψ(x) − ξx2 = inf
(y,α)∈A

hε(x − y) − 2ξ〈x, y〉 + ξy2 + α,

where A ⊂ V ×R since ψ is the c-transform of a function on V . Thus ψ(x) − ξx2 is
manifestly concave on U : it is the infimum of a family of concave functions of x ∈ U .
Local semi-concavity of ψ is established at p. QED.

Proposition 5.4 (A Map Between Marginals with Disjoint Support)
Fix c(x,y) := h(x − y) := `(|x − y|) continuous with `(λ) ≥ 0 strictly concave, and
measures µ, ν ∈ P(Rd). Suppose a joint measure γ ∈ Γ(µ, ν) is supported on ∂cψ ⊃
spt γ, where ψ : Rd −→ R is the c-transform of a function on spt ν. If µ vanishes on
spt ν and on rectifiable sets of dimension d−1, then the map s(x) := x−∇h∗(∇ψ(x))
pushes µ forward to ν. In fact, γ = (id × s)#µ.

Proof: To begin, one would like to know that the map s(x) is Borel and defined
µ-almost everywhere. Proposition 5.3 shows ψ to be locally semi-concave on the
open set Ω := Rd \ spt ν, so differentiability of ψ can only fail on a rectifiable set
of dimension d − 1 in Ω by Proposition C.6. The hypotheses on µ ensure µ[Ω] = 1,
and that the map ∇ψ is defined µ-almost everywhere. Moreover, Ω × spt ν is a
set of full measure for γ. Since it is disjoint from the diagonal D ⊂ Rd × Rd, one
obtains γ[∂c

◦ψ] = 1 because spt γ is contained in the closed set ∂cψ. Therefore, define
S := {(x,y) ∈ ∂c

◦ψ | x ∈ dom∇ψ}, where dom∇ψ denotes the subset of Ω on which
ψ is differentiable. For (x,y) ∈ S, Lemma 5.2 implies that s is defined at x and
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y = s(x). Thus s is defined on the projection of S onto Rd by π(x,y) = x; it is a
Borel map since Propositions C.6 and A.6 show that ∇ψ and ∇h∗ are. Moreover, the
set π(S) is Borel and has full measure for µ: both ∂c

◦ψ and π(∂c
◦ψ) are σ-compact, so

π(S) = π(∂c
◦ψ) ∩ dom∇ψ is the intersection of two Borel sets with full measure.

The verification that (id × s)#µ = γ and s#µ = ν proceeds as in the proof of
Proposition 3.6: we have just seen that y = s(x) if (x,y) ∈ S, from which (19) is
immediate; the remainder of the proof is identical. QED.

At this point, an argument parallel to the proof of Theorem 3.7 would lead to the
analogous results for costs c(x,y) = `(|x − y|) given by concave functions ` ≥ 0 of
the distance. Since existence and uniqueness of optimal maps for the Monge problem
follow from our main theorem in any case, we proceed toward its demonstration.

6 Uniqueness of Optimal Solutions

The goal of this final section is to prove the uniqueness of measures γ on Rd × Rd

with fixed marginals µ, ν ∈ P(Rd) and c-cyclically monotone support. Here the
cost c(x,y) = `(|x− y|) is given by a strictly concave function ` ≥ 0 of the distance.
Preceding developments reduce this problem to the case in which µ and ν are mutually
singular, and one would then like to know that there is a unique map s(x) = x −
∇h∗(∇ψ(x)) pushing µ forward to ν derived from the c-transform ψ of a function on
spt ν. As it turns out, this will be the case provided µ concentrates no mass on the
closed set spt ν, nor on sets of dimension d− 1.

The proof parallels the development for convex costs in Section 4, but this time
attention is focused on the off-diagonal part ∂c

◦ψ := {(x,y) ∈ ∂cψ | x 6= y} of the
c-superdifferential of ψ. For V ⊂ Rd, we define ∂c

◦ψ
−1(V ) ⊂ Rd to consist of those x

which are related to some y ∈ V by (x,y) ∈ ∂c
◦ψ. For c-concave ψ, Lemmas 2.11

(and 5.1) show that the diagonal part of ∂cψ carries no information about ψ. The next
proposition characterizes ∂c

◦ψ at points where s(x) is defined. It provides a converse
to Lemma 5.2.

Proposition 6.1 (c-Superdifferentiability of c-Transforms)
Fix c(x,y) := h(x − y) := `(|x − y|) continuous with `(λ) ≥ 0 strictly concave, and
a closed set V ⊂ Rd. Let ψ : Rd −→ R be the c-transform of a function on V and
suppose s(x) := x − ∇h∗(∇ψ(x)) can be defined at some p ∈ Rd \ V ; (i.e., ψ is
differentiable at p, and h∗ at ∇ψ(p)). Then ∂c

◦ψ(p) = {s(p)}.
Proof: From Lemma 5.2 it is already clear that ∂c

◦ψ(p) ⊂ {s(p)}. One need only
prove that ∂c

◦ψ(p) is non-empty. Therefore, assume that s(p) is defined at some
p ∈ Rd \ V . Because ψ is the c-transform of a function on V , there is a sequence
(yn, αn) ∈ A ⊂ V ×R such that

ψ(p) = lim
n

c(p,yn) + αn. (24)
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As is shown below, the |yn| must be bounded. We first assume this bound to complete
the proof. Since the |yn| are bounded, a subsequence must converge to a limit yn → y
in the closed set V . Certainly y 6= p since p is outside of V . On the other hand,
y ∈ ∂c

◦ψ(p), since for all x ∈ Rd (7) and (24) imply

ψ(x) ≤ inf
n
c(x,yn) + αn (25)

≤ c(x,y) + ψ(p) − c(p,y). (26)

It remains only to bound the |yn|. To produce a contradiction, suppose a subse-
quence diverges in a direction ŷn → ŷ. Then |p − yn| is bounded away from zero
by δ > 0. Corollary A.5 shows that there is a supergradient wn ∈ ∂·c(p − yn) for
each n, while Lemma A.4 shows that the wn must be bounded: the right derivative
of ` is positive decreasing, so `′(δ+) ≥ |wn|. The |yn| can only diverge if |wn| tends
to `′(∞) := infλ `

′(λ+). Taking a subsequence if necessary ensures the wn converge
to a limit w ∈ Rd. The uniform superdifferentiability of h in Corollary A.5 gives

h(p − yn + x) ≤ h(p− yn) + 〈x, wn〉 +Oδ(x
2)

for arbitrary x ∈ Rd and Oδ(x
2) independent of n. Combined with (25) this yields

ψ(p + x) ≤ ψ(p) + 〈x, w〉 +Oδ(x
2),

where the large n limit has been taken using (24). Thus w ∈ ∂·ψ(p). On the other
hand, differentiability of ψ at p implies ∂·ψ(p) = {∇ψ(p)}, whence w = ∇ψ(p).
Now (w,p − s(p)) ∈ ∂·h∗ follows from the definition of s(p). Since |w| ≤ `′(δ+) <
supλ>0 `

′(λ) one cannot have s(p) = p without contradicting Proposition A.6(iv).
Thus s(p) 6= p and the same corollary yields (p − s(p),w) ∈ ∂·h. Lemma A.4 gives
(|p− s(p)|, |w|) ∈ ∂·`. Since `(λ) is strictly concave, |w| > `′(∞) whence the yn are
bounded. QED.

Lemma 6.2 Let c(x,y) := h(x−y) := `(|x−y|) be continuous with `(λ) ≥ 0 strictly
concave. Take both φ, ψ : Rd −→ R to vanish at a point p ∈ Rd where ψ is locally
semi-concave. If U := {x | ψ(x) > φ(x)} and X := ∂c

◦ψ
−1(∂cφ(U)) then X ⊂ U .

Moreover, if p − ∇h∗(∇ψ(p)) is defined but is not in ∂cφ(p), then p lies a positive
distance from X.

Proof: Lemma 4.1, which was proved for all costs, yields X ⊂ U immediately from
∂c
◦ψ ⊂ ∂cψ; the only thing to prove is that p is not from the closure of X. To produce

a contradiction, suppose xn ∈ X converges to p. Then there exist un ∈ U with
yn ∈ ∂cφ(un) such that (xn,yn) ∈ ∂c

◦ψ. Corollary C.8 implies that the yn converge
to yo := p − ∇h∗(∇ψ(p)). Since yo 6∈ ∂cφ(p) and φ(p) = 0, (21) holds for some
v ∈ Rd. A contradiction is derived by the remainder of the argument which proved
Lemma 4.3. QED.
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Theorem 6.3 (Uniqueness of Optimal Maps)
Fix c(x,y) := h(x − y) := `(|x − y|) continuous with `(λ) ≥ 0 strictly concave, and
measures µ, ν ∈ P(Rd). Let µ vanish on a closed set Y ⊇ spt ν and on rectifiable sets
of dimension d − 1. A map of the form s(x) = x −∇h∗(∇ψ(x)) with ψ : Rd −→ R
the c-transform of a function on Y is uniquely determined µ-a.e. by the requirement
that s#µ = ν.

Proof: Suppose that φ : Rd −→ R satisfies the same hypotheses as ψ, and that
both t(x) := x − ∇h∗(∇φ(x)) and s(x) push µ forward to ν. Then both t and s
must be defined µ-almost everywhere, while Proposition 5.3 shows φ and ψ to be
locally semi-concave on the open set Ω := Rd \ Y . This set has full mass µ[Ω] = 1 by
hypothesis. As in the proof of Theorem 4.4, a contradiction will be derived if there is
any point p ∈ Ω∩ sptµ at which both t(p) and s(p) are defined but do not coincide.
Then ∇φ(p) 6= ∇ψ(p) though both gradients exist, while subtracting constants from
each potential yields φ(p) = ψ(p) = 0 without changing the map t or s. By the local
semi-concavity at p, one can express φ−ψ as the difference of two concave functions
φ(x) − λx2 and ψ(x) − λx2 near p. Then a non-smooth implicit function theorem
[29, Theorem 17] applies: since φ− ψ vanishes at p but has non-zero gradient, there
is a neighbourhood of p on which φ = ψ occurs precisely on the graph of a Lipschitz
function of d − 1 variables. This set has zero measure for µ. On the other hand, all
of the neighbourhoods of p ∈ sptµ must have positive measure for µ. Exchanging
the roles of ψ and φ if necessary, U := {x ∈ Rd | ψ(x) > φ(x)} intersects each such
neighbourhood B in a set with positive µ-measure.

The continuity of φ and ψ shown in Lemma 2.11 ensures U is open and ∂cφ is
closed, whence V := ∂cφ(U) is σ-compact. As before, the contradiction is obtained
by showing the push-forwards s#µ and t#µ disagree on V :

µ[s−1(V )] < µ[U ] ≤ µ[t−1(V )]. (27)

This is derived from t(p) 6= s(p) in the following way:
One knows s(p) 6= p and also s(p) 6∈ ∂c

◦φ(p) = {t(p)} from Proposition 6.1.
Thus the hypotheses of Lemma 6.2 are satisfied. As a consequence, ∂c

◦ψ
−1(V ) ⊂ U

but excludes a neighbourhood B of p ∈ sptµ. Now µ[B ∩ U ] > 0 by construction,
whence µ[∂c

◦ψ
−1(V )] < µ[U ]. The strict inequality (27) is derived by noting that

µ[s−1(V )] = µ[Ω∩s−1(V )], while Ω∩s−1(V ) ⊂ ∂c
◦ψ

−1(V ) follows from Proposition 6.1.
The second inequality in (27) is established by observing that U and {x ∈ U ∩Ω |

t(x) is defined} have the same mass for µ; the latter set is seen to be contained in
t−1(V ) by applying Proposition 6.1 to φ. QED.

Our conclusions for costs which are strictly concave as a function of distance are
summarized by the following theorem. It assumes continuity of the cost function
c(x,y) — but this assumption can be relaxed through Corollary 2.10 to allow a
discontinuous drop at the origin. Such a drop represents a fixed penalty (per unit
mass) for initiating motion — a “loading cost” in economics.
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Main Theorem 6.4 (Strictly Concave Cost as a Function of Distance)
Fix c(x,y) := h(x − y) := `(|x − y|) continuous with `(λ) ≥ 0 strictly concave and
`(0) = 0. Given two measures µ, ν ∈ P(Rd), define µo := [µ−ν]+ and νo := [ν−µ]+,
and assume µo vanishes on spt νo and on rectifiable sets of dimension d− 1. Then
(i) there is a unique measure γ ∈ Γ(µ, ν) with c-cyclically monotone support;
(ii) its restriction to the diagonal is given by γd = (id × id)#(µ− µo);
(iii) the c-transform ψ : Rd −→ R of some function on spt νo induces a map

s := id− (∇h)∗ ◦ ∇ψ which pushes µo forward to νo;
(iv) the map s(x) of (iii) is unique — up to a set of zero measure for µo;
(v) the off-diagonal part of γ = γd + γo is given by γo = (id× s)#µo.

If νo also vanishes on sptµo and on rectifiable sets of dimension d− 1, then
(vi) there exists an inverse map t(y) such that γo = (t × id)#νo and
(vii) t(s(x)) = x a.e. with respect to µo while s(t(y)) = y a.e. with respect to νo.

Proof: (i) Once again, the existence of a joint measure γ ∈ Γ(µ, ν) with c-cyclically
monotone support follows either from Theorem 2.3 and Proposition 2.1 (when C(γ) <
∞) or from [29, Theorem 12] otherwise. Denote the restriction of γ to the diagonal
by γd, and the off-diagonal remainder by γo = γ − γd. If we succeed in establishing
the rest of this theorem, uniqueness of γ is an immediate corollary: the off-diagonal
part γo = (id×s)#µo will be uniquely determined by µ and ν through (iii)–(v), while
(ii) gives the restriction of γ to the diagonal.

(ii) Propositions 2.9 and 5.1 verify that γd = (id× id)#(µ− µo).
(iii)–(v) On the other hand γo ∈ Γ(µo, νo) and, like γ, has c-cyclically monotone

support. Noting spt γo ⊂ sptµo × spt νo, Corollary 2.8 yields spt γo ⊂ ∂cψ, where
ψ : Rd −→ R ∪ {−∞} is the c-transform of a function on spt νo. In fact, ψ is finite
valued by Lemma 2.11. In general, γo will have mass λ−1 := γo[R

d × Rd] less than
one, but λγo is a probability measure with the same support as γo; otherwise γo = 0
and there is nothing to prove. Moreover, λγo ∈ Γ(λµo, λνo) so Proposition 5.4 shows
that λγo = (id × s)#λµo. Linearity of (id × s)# completes the proof of (v) and of
(iii).

(iv) Since the map s in (iii) pushes λµo forward to λνo, it is uniquely determined
µo-almost everywhere in view of Theorem 6.3.

(vi) Let c̃(x,y) := c(y,x), and let γ̃ ∈ Γ(ν, µ) denote the measure defined by
γ̃[U × V ] = γ[V × U ]. Then γ̃ has c̃-cyclically monotone support. If νo vanishes on
sptµo and on rectifiable sets of dimension d − 1, (iii)–(v) guarantee the c̃-transform
φ on a function on sptµo for which the map t(y) := y + ∇h∗(−∇φ) yields γ̃o =
(id× t)#νo. This is equivalent to (vi).

(vii) Since µo[spt νo] = νo[sptµo] = 0, (vi) implies a set V ⊂ Rd \ sptµo of full
measure for νo, on which y ∈ V implies t(y) 6∈ spt νo but (y, t(y)) ∈ spt γ̃o. Let
U ⊂ Rd be the (Borel) set on which s(x) is defined. Then µo[U ] = 1, which with
µo = t#νo implies t−1(U) must carry the full mass of νo. Now assume y ∈ t−1(U)

⋂
V .

Then s is defined at t(y) ∈ Rd \ spt νo while (t(y),y) ∈ spt γo ⊂ ∂cψ. Proposition
6.1 yields t(y) 6= y when applied to φ, and y = s(t(y)) when applied to ψ. Thus
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y = s(t(y)) holds on a set of full measure for νo. The other half of (vii) follows by
symmetry. QED.

Proof of Theorem 1.4: Assume first that the cost c(x,y) is continuous and vanishes
when x = y. Then (i)–(ii) are asserted by Theorem 6.4.

(iii)–(v) Proposition 2.1 yields an optimal measure γ in Γ(µ, ν). If C(γ) = ∞,
there is nothing more to prove. Otherwise, γ has c-cyclically monotone support by
Theorem 2.3 so it coincides with the unique measure of Theorem 6.4. Results (iii)–(v)
follow immediately.

Of course, the fact that c(0) = 0 is completely irrelevant: none of the assertions
in the theorem are sensitive to the addition of an overall constant to c(x,y); for
probability measures γ the only effect is to shift C(γ) by the same constant, while
the class of c-concave functions is not modified. We therefore proceed to the case of
discontinuous costs.

Any strictly concave function `(λ) ≥ 0 of λ ≥ 0 must increase with λ; it must
also be continuous except at λ = 0. Thus there is a continuous function c̃(x,y) which
agrees with c(x,y) := `(|x − y|) except that c̃(0) ≥ c(0). Apart from an irrelevant
additive constant, c̃ is a continuous metric on Rd which by Lemma 5.1 satisfies the
triangle inequality strictly. Corollary 2.10 then asserts that the optimal measures for
c and c̃ coincide. Thus conclusions (i)–(v) are implied for the discontinuous cost c
by the statements already proved for c̃, and the observation that the c̃-transform and
c-transform of a function on spt νo coincide on Rd \ spt νo. QED.

Part III

Appendices

A Legendre Transforms and Conjugate Costs

This appendix begins by recalling basic properties of the Legendre transform for con-
vex functions, and proceeds to deduce the corresponding properties of the conjugate
h∗(y) to a cost function h(x) = `(|x|) given by a concave function ` ≥ 0 of the
distance. As usual, x̂ denotes the unit vector in the direction of x ∈ Rd \ {0}.

The first theorem summarizes Theorems 12.2, 26.1, 26.3 and Corollaries 23.5.1
and 25.5.1 of Rockafellar’s text [33]; in his language, h is assumed to be closed —
meaning lower semi-continuous — and proper — meaning finite somewhere, while the
assertion of (iii) is that h∗ be essentially smooth. By convention, we exclude h := ∞
from the class of convex functions. Implications for strictly convex costs h(x) which
grow superlinearly (H3) are summarized as a corollary.
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Theorem A.1 (Legendre Transforms [33])
Let h : Rd −→ R ∪ {+∞} be lower semi-continuous and convex, and define its
Legendre transform h∗(y) by (10). Then h∗ satisfies the same assumptions as h,
while
(i) (x,y) ∈ ∂·h if and only if (y,x) ∈ ∂·h∗;
(ii) the Legendre transform of h∗ is h; that is h = h∗∗;
(iii) strict convexity of h implies h∗ differentiable where it is subdifferentiable;
(iv) differentiability of h(x) on an open set Ω ⊂ Rd implies h ∈ C1(Ω).

Corollary A.2 (Inverting the Gradient of a Strictly Convex Cost)
If h(x) strictly convex satisfies (H1) and (H3), then its Legendre transform h∗(y) will
be continuouly differentiable on Rd. Moreover x = ∇h∗(y) if and only if y ∈ ∂·h(x).

Proof: The function h(x) was assumed to take non-negative real values through-
out Rd and be strictly convex by (H1); it is therefore continuous and Theorem A.1
applies. Thus h∗ : Rd −→ R ∪ {+∞} is convex, and claim (i) combines with claim
(iii) to show equivalence of (x,y) ∈ ∂·h with x = ∇h∗(y). It remains only to prove
h∗(y) <∞ on Rd: then h∗(y) will be subdifferentiable by its convexity, differentiable
everywhere in view of claim (iii), and continuously differentiable by claim (iv).

Suppose not: let h∗(y) = ∞. Then (10) yields a sequence xn ∈ Rd for which

0 ≤ 〈xn, y〉 − h(xn) (28)

increases without bound. Since h ≥ 0, the xn diverge to infinity, but a subsequence
can be extracted whose direction vectors x̂n converge to a limit x̂ on the unit sphere.
From (28), lim suph(xn)/|xn| ≤ 〈 x̂, y〉 < ∞. This contradicts (H3) and completes
the proof. QED.

To address concave functions of the distance, we restate Theorem A.1 after chang-
ing a sign, adding a remark about monotonicity.

Theorem A.3 (Concave Legendre Transforms on the Line)
Let ` : R −→ R ∪ {−∞} be upper semi-continuous and concave. Define its dual
function `◦(ξ) := −k∗(−ξ) through the Legendre transform (10) of k := −`. Then `◦

satisfies the same hypotheses as `, and
(i) (λ, ξ) ∈ ∂·` if and only if (ξ, λ) ∈ ∂·`◦;
(ii) the dual function of `◦ is `; that is, ` = `◦◦;
(iii) strict concavity of ` implies `◦ differentiable where it is superdifferentiable;
(iv) `◦(ξ) is non-decreasing if and only if `(λ) = −∞ for all λ < 0.

Proof: From its definition, one verifies `◦ to be the concave Legendre transform of `:

`◦(ξ) = inf
λ∈R

ξλ− `(λ).
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Then (i)–(iii) follow by a change of sign from the corresponding statements in The-
orem A.1. Assertion (iv) is easily proved: to verify the only if implication suppose
`(−λ) is finite at some λ > 0; we shall show `◦ decreases somewhere. Being concave,
` must be superdifferentiable at −λ (or some nearby point): (−λ, ξ) ∈ ∂·`. Then (i)
implies `◦ is finite at ξ and decreasing to its right: `◦(ξ + ε) ≤ `◦(ξ) − λε.

To prove the converse, suppose `◦ decreases somewhere. Then one has (ξ,−λ) ∈
∂·`◦ for some ξ ∈ R and λ > 0. Invoking (i) once again yields (−λ, ξ) ∈ ∂·`, from
which one concludes finiteness of `(−λ). QED.

An elementary lemma relates the superdifferential of h(x) := `(|x|) to that of `(λ).

Lemma A.4 (The Superdifferential of the Cost)
Let `(λ) be concave non-decreasing on λ ≥ 0 and define h(x) := `(|x|) on Rd. Unless
h is a constant: (x,y) ∈ ∂·h if and only if (|x|, |y|) ∈ ∂·` with y = |y|x̂ and x 6= 0.

Proof: Fix x ∈ Rd \ {0} and suppose `(λ) admits ξ as a superderivative at |x|:
(|x|, ξ) ∈ ∂·`. Since ` is concave non-decreasing, ξ ≥ 0, while for ε ∈ R,

`(|x| + ε) ≤ `(|x|) + ε ξ. (29)

Now h(x + v) = `(|x|+ ε) where ε = 〈v, x̂〉+ o(|v|); cf. (32). It follows immediately
from (29) that h is superdifferentiable at x with (x, ξx̂) ∈ ∂·h. On the other hand,
since `(λ) is concave, non-decreasing and non-constant, h cannot be superdifferen-
tiable at the origin: it grows linearly in every direction, or h(0) = −∞.

Now let (x,y) ∈ ∂·h, so x 6= 0, while for small v ∈ Rd,

h(x + v) ≤ h(x) + 〈v, y〉 + o(|v|).
Spherical symmetry of h forces y to be parallel to x: otherwise a slight rotation
x + v := x cos θ− ẑ|x| sin θ of x in the direction z := y− (〈y, x̂〉)x̂ would contradict
h(x + v) = h(x) for θ sufficiently small. Moreover, taking v := εx̂ yields (29),
with ξ := 〈 x̂, y〉 + o(1). Thus (|x|, 〈 x̂, y〉) ∈ ∂·`, which concludes the lemma:
|y| = ±〈 x̂, y〉 holds with a plus sign since ` cannot decrease. QED.

Corollary A.5 (Uniform Superdifferentiability of the Cost)
Let ` and h be real-valued in the lemma above. Then h(x) is superdifferentiable on
Rd \ {0}. Moreover, for δ > 0, there is a real function Oδ(λ) tending to zero linearly
with |λ|, such that |x| > δ, y ∈ ∂·h(x) and v ∈ Rd imply

h(x + v) ≤ h(x) + 〈v, y〉 +Oδ(v
2) (30)

Proof: For λ > 0, the concave function ` admits a supergradient ξ ∈ ∂·h(λ): for
example, take its left derivative ξ = `′(λ−). If |x| = λ, the lemma implies (x, ξx̂) ∈
∂·h, so h(x) is superdifferentiable at x.
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Now suppose (x,y) ∈ ∂·h. The opposite implication of the lemma yields y = ξx̂
with (|x|, ξ) ∈ ∂·` so (29) holds. Moreover, ξ ≥ 0. If v ∈ Rd, then h(x+v) = `(|x|+ε)
where

ε :=
√

x2 + 2〈x, v〉 + v2 − |x| (31)

≤ 〈 x̂, v〉 + v2/|2x|; (32)

the inequality follows from
√

1 + λ ≤ 1 + λ/2. By concavity of `, its left derivative
`′(λ−) is a non-increasing function of λ. Assume |x| > δ so that ξ ≤ `′(δ−). Together
with (29) and (32), this assumption yields (30):

h(x + v) ≤ h(x) + 〈 ξx̂, v〉 + v2`′(δ−)/2δ

QED.

Proposition A.6 (The Conjugate Cost)
Let h(x) := `(|x|) be continuous on Rd with `(λ) strictly concave increasing on λ ≥ 0.
Define the dual function h∗ : Rd −→ R ∪ {−∞} via (11). For some R ≥ 0,
(i) h∗(y) is continuously differentiable on |y| > R while h∗ = −∞ on |y| < R;
(ii) (y,x) ∈ ∂·h∗ with x 6= 0 if and only if (x,y) ∈ ∂·h with y 6= 0;
(iii) if (y,x) ∈ ∂·h∗ then x = ∇h∗(y);
(iv) if (y, 0) ∈ ∂·h∗ then |y| ≥ sup

λ>0
`′(λ).

Proof: Extend ` to R by defining `(λ) = −∞ for λ < 0. If `◦ is defined as in
Theorem A.3 then h∗(y) = `◦(|y|); moreover, `◦ : R −→ R ∪ {−∞} is itself upper
semi-continuous and concave non-decreasing with `◦(ξ) = −∞ where ξ < 0.

(ii) Let (x,y) ∈ ∂·h with y 6= 0. Then h cannot be constant. Lemma A.4 yields
x 6= 0, but x = |x|ŷ and (|x|, |y|) ∈ ∂·`. Then Theorem A.3(i) implies (|y|, |x|) ∈ ∂·`◦.
Since |x| and |y| do not vanish, h∗ cannot be constant and the the reverse implication
of Lemma A.4 yields (y,x) ∈ ∂·h∗. This proves the if part of the claim. Since we
have not used strict concavity of `(λ), the only if statement follows immediately from
the duality between ` and `◦ expressed in Theorem A.3(ii).

(i) Since `◦(λ) is non-decreasing and not identically −∞, there is some R ∈ R
such that `◦(λ) = −∞ for λ < R while `◦ is finite valued for λ > R. By concavity,
`◦ is continuous and superdifferentiable on λ > R; Theorem A.3(iii) shows `◦ is
differentiable where superdifferentiable, which combines with Theorem A.1(iv) to
yield continuous differentiability on λ > R. Thus h∗(y) is continuously differentiable
on |y| > R while h∗(y) = ∞ on |y| < R.

(iii) As has just been noted, `◦ is differentiable where superdifferentiable. The
same holds true for h∗(y) = `◦(|y|) in view of Lemma A.4.

(iv) Finally, assume (y, 0) ∈ ∂·h∗. If h∗ is non-constant, Lemma A.4 yields
(|y|, 0) ∈ ∂·`◦ — a result which is obvious when h∗ is constant. Thus (0, |y|) ∈ ∂·` by
Theorem A.3(i). Since the derivative of ` cannot increase, |y| ≥ `′(λ) whenever ` is
differentiable at λ > 0. QED.
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B Examples of c-Concave Potentials

In this appendix we do nothing more than present a few examples of c-concave po-
tentials. For strictly convex costs or concave functions ` ≥ 0 of the distance, they
verify the claims made in Section 1 about the respective optimality of translations
and dilations, or reflections, of Rd.

Lemma B.1 (Examples of c-Concave Potentials)
Let c(x,y) = h(x − y) convex satisfy (H3–H4). Fix z ∈ Rd, r ∈ R and a c-concave
function φ(x) on Rd. Then the following functions ψ are also c-concave on Rd:
(i) ψ(x) = h(x);
(ii) the infimum ψ of a family of c-concave functions (except ψ := −∞);
(iii) the shifted translate ψ(x) := φ(x − z) + r;
(iv) the dilation ψ(x) := rφ(x/r) by a factor r ≥ 1;
(v) the linear function ψ(x) := 〈x, z〉;
(vi) any (upper semi-) continuous concave function ψ : Rd −→ R ∪ {−∞}.

Proof: (i)–(iii) The first three claims are apparent from the definition (7) of c-
concavity; they require no special features of the cost function h(x).

(iv) First suppose φ = h and let λ := r−1. Then 0 < λ ≤ 1, so for x,y ∈ Rd

convexity of the cost h implies

h(λx) ≤ λ h(x − (1 − λ)y) + (1 − λ) h(λy).

Equality holds if x = y. Thus

h(λx)/λ = inf
y∈Rd

c(x, (1 − λ)y) + (1 − λ)λ−1h(λy) (33)

is manifestly c-concave. For a general c-concave φ, one obtains

φ(λx)/λ = inf
(λy,α)∈A

λ−1h(λ(x − y)) + λ−1α (34)

from (7). The c-concavity of φ(λx)/λ follows from (ii)–(iii) and (33).
(v) In view of (H3), the continuous function h(x) − 〈x, z〉 assumes its minimum

at some x = p in Rd:

h(p) − 〈p, z〉 ≤ h(x − y) − 〈x − y, z〉
for x,y ∈ Rd, with equality when x − y = p. Thus

〈x, z〉 = inf
y∈Rd

c(x,y) + 〈y + p, z〉 − h(p); (35)

its c-concavity (7) as a function of x is manifest.
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(vi) Any upper semi-continuous concave function ψ can be represented as an infi-
mum of affine functions (as in Theorem A.1(ii) for example); its c-concavity therefore
follows from (ii)–(iii) and (v). QED.

For strictly convex costs, this lemma was invoked to check optimality of transla-
tions and dilations on Rd. In this context claim (vi) is equivalent to an observation
of Smith and Knott [41]; see also Rüschendorf [36, 37].

To verify optimality for the reflections of Example 1.5 when the cost is a strictly
concave function ` ≥ 0 of the distance, our argument will be less direct. It relies on
a simple observation about the transportation problem on the line [27]: if the full
mass of µ ∈ P(R) lies to the left of spt ν, then the optimal map of µ onto ν will be
orientation reversing. Indeed, it will be the unique non-increasing map s : R → R
pushing µ forward to ν ∈ P(R), which exists whenever µ is free from point masses.
Taking Lebesgue measure on [0, 1] for µ, and its image under the inversion s(x) = 1/x
for ν, one concludes that the map s is optimal between µ and s#µ. (Better yet, replace
Lebesgue measure by dµ(x) := (x/2)dx to avoid infinite transport cost.) In view of
Theorem 1.4 this means s can be expressed in the form s(x) = x − (`′)−1(φ′(x)),
where φ is the c-transform of a function on [1,∞). (Here `(λ) := `(|λ|) for λ < 0.)
Defining ψ(x) := φ(|x|) on Rd, it follows that ψ is the c-transform of a function on the
complement Rd \B of the unit ball. Invoking Theorem 1.4 again with h(x) := `(|x|)
establishes Example 1.5: s(x) := x − ∇h∗(∇ψ(x)) = x/|x|2 must be the optimal
map between any measure µ and its spherical reflection s#µ provided spt µ = B. If
sptµ ⊂ B, a slight refinement is required: the optimal map will still be given by the
c-transform of a function on Rd \ B, and coincides with s(x) = x/|x|2 in view of
Theorem 6.3.

The same analysis adapts easily to the case of reflection through a hyperplane
instead of a sphere. Instead of Lebesgue measure on the unit interval, one considers
the reflection s(x) := −x of some measure µ which has a first moment, and is given
by a non-vanishing density throughout sptµ = (−∞, 0].

C Regularity of c-Concave Potentials

This appendix explores the extent to which a c-concave potential ψ inherits structure
and smoothness from a convex cost c(x,y) = h(x − y). Its primary purpose is to
assemble the necessary machinery to prove Theorem 3.3, which was central to the
analysis in Sections 3 and 4. When h ∈ C1,1

loc (R
d) the potential will be locally semi-

concave, and therefore share all the regularity enjoyed by concave functions — e.g.
two derivatives almost everywhere — as a consequence. Otherwise ψ will be locally
Lipschitz where finite. The proof is divided into three main propositions; it is here
that the technical restrictions (H2–H4) on convex costs play a role.

We begin by recalling a standard estimate showing the c-transform ψ : Rd −→
R∪{−∞} of any function on a bounded set V to be locally Lipschitz throughout Rd.
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Lemma C.1 (Locally Lipschitz)
Suppose c : Rd × Rd −→ R to be locally Lipschitz. Then the c-transform ψ of any
function on a bounded set V ⊂ Rd will be locally Lipschitz on Rd.

Remark on proof: Fixing any ball U ⊂ Rd, c(x,y) satisfies a global Lipshitz bound
on U ×V . Thus ψ(x) is an infimum (9) of functions c(x,y)−φ(y) indexed by y ∈ V
and satisfying a uniform Lipschitz bound on U . By assumption ψ is finite somewhere,
and it is then well known that ψ satisfies the same Lipschitz condition on U . QED.

When the cost is a derivative smoother — c(x,y) in C1,1
loc (R

d × Rd) — a more
novel estimate yields local semi-concavity of ψ. For notational simplicity only, the
proof here is restricted to costs taking the form c(x,y) = h(x − y).

Proposition C.2 (Locally Semi-Concave)
Let c(x,y) = h(x − y) with h ∈ C1,1

loc (R
d). Then the c-transform ψ of any function

on a bounded set V ⊂ Rd will be locally semi-concave on Rd.

Proof: We first check that the cost h(x) itself is semi-concave on any open ball
Ω ⊂ Rd: that is, for λ < ∞ sufficiently large, the function hλ(x) := h(x) − λx2

should be concave on Ω. To see this is true, let 2λ be the Lipschitz bound for ∇h
on Ω. Since x,y ∈ Ω imply |∇h(x) −∇h(y)| ≤ 2λ|x − y|, one obtains

0 ≥ 〈∇h(x) −∇h(y), x − y〉 − 2λ|x − y|2
= 〈∇hλ(x) −∇hλ(y), x − y〉.

This monotonicity relation and differentiability of hλ(x) imply that hλ(x) is concave
on Ω [39, Theorem 1.5.9].

Now, consider the c-transform ψ of a function on V : it will be of the form (7)
with A ⊂ V × R. Let U be an open ball around x ∈ Rd, and let Ω be large enough
to contain U − V := {x − y | x ∈ U, y ∈ V }. Taking λ large enough to ensure hλ

concave on Ω, one has

ψ(x) − λx2 = inf
(y,ξ)∈A

hλ(x − y) − 2λ〈x, y〉 + λy2 + ξ.

The infimum is over a family of concave functions of x ∈ U , whence ψ(x) − λx2/2
itself is concave on U . Thus local semi-concavity of ψ is established at arbitrary
x ∈ Rd. QED.

As the first lemma shows, the c-transform ψ of a function on a bounded set V ⊂ Rd

will be finite throughout Rd. Thus the smoothness results alone imply Theorem 3.3
in this case. The remainder of this appendix exploits (H2–H3) to extend the theorem
to the c-concave potentials arising when spt ν is unbounded. The intuitions derive
from Figure 1.

Recall that ψ is locally bounded at p ∈ Rd if there exists R < ∞ such that
|ψ(x)| ≤ R holds on a neighbourhood of p.
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Proposition C.3 (Locally Bounded on a Convex Domain)
Let c(x,y) = h(x − y) continuous satisfy (H2) and fix a c-concave ψ on Rd. Define
the convex hull K of the set where ψ is finite. Then ψ is locally bounded throughout
the interior of K.

Proof: Suppose ψ fails to be locally bounded at p ∈ Rd. We shall show that p
lies on the boundary of an open half-space Hẑ(p) := {x | 〈 ẑ, x − p〉 > 0} in which
ψ(x) = −∞. Then {x | ψ(x) > −∞} will be disjoint from Hẑ(p), so its convex hull
K will be disjoint as well. Since p cannot lie in the interior of K, the proposition will
have been established.

To prove ψ = −∞ on some open half-space, recall that any c-concave ψ must
be finite at some v ∈ Rd. Thus A ⊂ Rd × R is non-empty in (7), and it follows
immediately that ψ is bounded above by a shifted translate of the continuous function
h(x) on Rd. On the other hand, ψ can certainly fail to be bounded below in each
neighbourhood of p. In this case there is a sequence pn → p with ψ(pn) < −n.
Recalling the definition (7) of ψ(pn), there is a sequence (yn, λn) ∈ A such that

c(pn,yn) + λn ≤ −n. (36)

Applied at v, where ψ is finite, the same definition couples with (36) to yield

ψ(v) ≤ c(v,yn) − c(pn,yn) − n.

Since c(x,y) is continuous and pn → p, certainly |yn| → ∞ to avoid contradicting
ψ(v) > −∞. For each n, choose the height rn and direction ẑn of the largest cone (8)
with vertex pn−yn such thatK(rn, π/(1+r−1

n ), ẑn,pn−yn) ⊂ {x | h(x) ≤ h(pn−yn)};
we allow 0 ≤ rn ≤ ∞. Since |pn − yn| diverges with n, the curvature condition (H2)
on level sets of h implies rn → ∞ with n. Extracting a subsequence if necessary
ensures that the unit vectors ẑn converge to a limit ẑ ∈ Rd on the unit sphere.

Now, suppose x ∈ Hẑ(p) so 〈 ẑ, x − p〉 > 0. Taking n sufficiently large ensures

|x − pn| cos

(
π

2
· 1

1 + 1/rn

)
< 〈 ẑn, x − pn〉 < rn,

since the left and right bounds have zero and infinity as their limits. Thus x ∈
K(rn, π/(1 + r−1

n ), ẑn,pn) follows from (8), and c(x,yn) ≤ c(pn,yn) from our con-
struction. Combining (7) with (36) yields

ψ(x) ≤ c(x,yn) + λn ≤ −n.
Since n can be arbitrarily large, ψ(x) = −∞. Because x ∈ Hẑ(p) was arbitrary, the
proposition is proved. QED.
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Proposition C.4 (Local Boundedness of c-Superdifferentials)
Let c(x,y) = h(x − y) convex satisfy (H3–H4), and fix a c-concave ψ on Rd. If ψ is
bounded on some neighbourhood of a compact, non-empty set U ⊂ Rd, then ∂cψ(U)
is bounded and non-empty.

Proof: The proposition consists of two claims to be established in parallel: c-
superdifferentiability of ψ on U and boundedness of ∂cψ(U). Since ψ is bounded
on a neighbourhood of the compact set U , there is a 0 < δ < 1 and R <∞ such that
|ψ(x)| < R whenever |x− p| < δ and p ∈ U . Suppose a sequence (yn, λn) ∈ Rd ×R
satisfies

ψ(x) ≤ c(x,yn) + λn, (37)

for all x ∈ Rd while
c(xn,yn) + λn < R (38)

holds for each n and some xn ∈ U . The last paragraph shows that the |yn| are
bounded; for the moment, we assume this bound to complete the proof.

Fix p ∈ U . By the c-concavity (7) of ψ, there is a sequence (yn, λn) such that
c(p,yn)+λn converges to ψ(p) < R; it may be taken to satisfy (37–38) with xn := p.
Since the yn are bounded, a limit point yn → y may be extracted after replacing
the (yn, λn) with a subsequence. The λn will converge to λ := ψ(p) − c(p − y).
The large n limit of (37) shows that y is a c-supergradient of ψ at p ∈ U . Thus
∂cψ(U) ⊃ {y} cannot be empty. On the other hand, any sequence yn ∈ ∂cψ(xn) for
which xn ∈ U satisfies (37–38) with λn = ψ(xn)− c(xn,yn) by definition. The bound
on |yn| therefore shows that ∂cψ(U) must be bounded.

It remains to show that (37–38) imply a bound on the yn ∈ Rd. If not, some
subsequence |yn| → ∞ escapes to infinity; setting vn := xn − yn, we may assume
|vn| > 1 since all the xn lie in a bounded set U . Use the δ > 0 above to define a
sequence ξn := 1 − δ|vn|−1 which converges to 1. Evaluated at x = xn + (ξn − 1)vn,
(37–38) combine with the lower bound −R < ψ(x) to yield

2R ≥ h(vn) − h(ξnvn).

Since h is convex, this difference may be bounded using a subgradient zn ∈ ∂·h(ξnvn):

2R ≥ 〈 (1 − ξn)vn, zn〉 (39)

= δ〈vn/|vn|, zn〉. (40)

On the other hand, being a subgradient also implies

h(0) ≥ h(ξnvn) + 〈 zn, 0 − ξnvn〉.
Since the ξn > 1 − δ > 0 are bounded away from zero and |vn| → ∞, dividing
by |ξnvn| → ∞ yields lim inf〈 zn, vn〉/|vn| ≥ lim inf h(ξvn)/|ξvn|. Assumption (H3)
ensures that both of these limits diverge, yielding a contradiction with (40). The only
conclusion must be that the yn were bounded. QED.
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Corollary C.5 Let c(x,y) = h(x − y) convex satisfy (H3–H4), and ψ be c-concave
on Rd. Then ψ is locally Lipschitz wherever it is locally bounded. Moreover, if h ∈
C1,1

loc (R
d), then ψ is locally semi-concave wherever it is locally bounded.

Proof: If ψ is locally bounded at p ∈ Rd, it is possible to choose a compact neigh-
bourhood U of p with ψ bounded in a neighbourhood of U . Since a single point u
forms a bounded set by itself, Proposition C.4 implies c-superdifferentiability of ψ at
u ∈ U . It follows that equality holds in

ψ(x) ≤ inf
y∈∂cψ(u)

u∈U

c(x,y) − c(u,y) + ψ(u) (41)

for all x ∈ U . This infimum is manifestly the c-transform of a function on ∂cψ(U).
Proposition C.4 implies ∂cψ(U) is bounded. Since any convex function h will be
locally Lipschitz, Lemma C.1 implies the infimum in (41) to be a locally Lipschitz
function of x ∈ Rd. If h ∈ C1,1

loc (R
d) then Proposition C.2 implies this infimum to be

locally semi-concave on Rd. Since ψ coincides with this infimum throughout U , it is
locally Lipschitz or semi-concave at p, according to the smoothness of h. QED.

As a proposition without proof, we summarize the differentiability properties of
semi-concave potentials. Such potentials differ from concave functions locally by
something smooth (Definition 3.2), so they immediately inherit all the (i) continuity
[39, §1.5], (ii) differentiability [43, Theorem 1] or [3], (iii) continuous differentiability
[33, §24.5], and (iv) second differentiability [39, Notes to §1.5] of concave functions.
Measurability of ∇ψ follows from continuity of ψ as in Proposition 3.4(i).

Proposition C.6 (Differentiability of Semi-Concave Potentials)
Let ψ : Ω −→ R be locally semi-concave on an open set Ω ⊂ Rd. Then
(i) ψ is continuous on Ω, so ∇ψ is a Borel map on the set where it can be defined;
(ii) differentiability of ψ fails only on a rectifiable set of dimension d− 1;
(iii) if (xn,yn) ∈ ∂·ψ is a sequence with xn → p in Ω, then the yn accumulate on

∂·ψ(p); in particular, if ψ is differentiable at x then yn → ∇ψ(x);
(iv) the map ∇ψ is differentiable a.e. on Ω in the sense of Aleksandrov [39, §1.5].

Finally, to close the circle of ideas, a companion lemma to 3.1 is provided. It
allows us to derive a c-differential continuity result for c-transforms which facilitates
the uniqueness proof.

Lemma C.7 (Relating c-Differentials to Superdifferentials)
Let both h and ψ map Rd to R while c(x,y) := h(x − y). If (x,y) ∈ ∂cψ then
∂·h(x − y) ⊂ ∂·ψ(x).

Proof: Let (x,y) ∈ ∂cψ. If h fails to be superdifferentiable at x−y, there is nothing
to prove. Therefore, assume z ∈ ∂·h(x − y). Combined with c-superdifferentiability
of ψ this yields

ψ(x + v) ≤ ψ(x) + h(x + v − y) − h(x − y)

≤ ψ(x) + 〈v, z〉 + o(|v|)
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for small v ∈ Rd. Thus z ∈ ∂·ψ(x). QED.

Corollary C.8 (c-Differential Continuity)
Fix c(x,y) := h(x − y) := `(|x − y|) continuous with `(λ) ≥ 0 strictly concave, and
let ψ : Rd −→ R be locally semi-concave at p ∈ Rd. Assume s(x) := x−∇h∗(∇ψ(x))
is defined at p. Then (xn,yn) ∈ ∂c

◦ψ with xn → p implies yn → s(p).

Proof: Let (xn,yn) ∈ ∂c
◦ψ with xn → p. Since xn 6= yn, Corollary A.5 provides

supergradients wn ∈ ∂·h(xn − yn), which by Lemma C.7 also lie in wn ∈ ∂·ψ(xn).
Since ψ was assumed to be differentiable at p = limxn and locally semi-concave,
Proposition C.6 yields wn → ∇ψ(p). On the other hand, Proposition A.6 provides a
conjugate cost h∗, continuously differentiable at ∇ψ(p), for which xn−yn = ∇h∗(wn).
Thus the yn converge to p −∇h∗(∇ψ(p)) = s(p). QED.
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