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Abstract

Existence of weak solutions to the 3-D semi-geostrophic equations
with rigid boundaries was proved by Benamou and Brenier [3], using
Monge transport theory. This paper extends the results to a free surface
boundary condition, which is more physically appropriate. This extension
is at present for the 2-D shallow water case only. In addition, we establish
stronger time regularity than was possible in [3].
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1 Introduction

We study the so-called semi-geostrophic shallow water system, a variant of the
semi-geostrophic system. This system is used by meteorologists to model how
fronts arise in large scale weather patterns. The shallow water variant provides
a simpler context in which to develop the theory for the 3-D system. It is also
physically important in its own right in describing the dynamics of layers of
shallow fluid which do not fill the available domain and so have a free bound-
ary. See [4] for an example. The semi-geostrophic system is a 3-D free boundary
problem which is an approximation of the 3-D Euler equations of incompress-
ible fluid in a rotating coordinate frame around the Ozs-axis where the effects
of rotation dominate. It was first introduced by Eliassen [9] in 1948 and re-
discovered by Hoskins [13] in 1975. Hoskins showed that the semi-geostrophic
system could be solved in particular cases by a coordinate transformation which
then allowed analytic solutions to be obtained. In particular, the mechanisms
for the formation of fronts in the atmosphere could be modelled analytically.
Cullen and Purser showed in [5], and [6] that the equations could be given a
geometrical interpretation. This interpretation allowed the equations to be used
to describe a variety of phenomena in the atmosphere, such as the way fronts
interact with mountains. It also appeared, in principle, that the equations could
be solved for large times, without recourse to viscosity or turbulence models.
This means that closed, though simplified, solutions for atmospheric behavior
could be obtained. These solutions would describe aspects of the atmosphere
that were controlled by large-scale behavior, and therefore highly predictable.
An example is shown in [7].
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Benamou and Brenier [3] showed that the existence of weak solutions of the
semi-geostrophic system could be proved, using a rigid-wall boundary condition,
thus verifying the conjectures in [6]. In this paper, we use a more physically
appropriate free boundary condition. However, we simplify the full 3-D system
to give the semi-geostrophic shallow water system by assuming that the poten-
tial temperature is constant. This yields that the pressure assumes a special
form so that the original 3-dimensional equations (7) can be reduced to the
2-dimensional system (14). We denote points in the plane by z := (21, x2) and
for that reason we write elements of R? as 7 = (21, T2, x3) € R?. The unknowns
in the original 3-dimensional equations are:

v, = (Vg1, Vg2, 0) = geostrophic wind velocity
Ve = (Val, Va2, Va3) = ageostrophic wind velocity
p = pressure

@ = potential temperature,

defined on [0, +00) x O(t). The domain O(t) is the region occupied by the fluid
at time ¢. Since the height of the fluid is to be determined and depends on the
time ¢, then O(t) is a time-dependent region in R®. We set

V =V, + V, = total wind velocity.

We define the convective derivatives

Dt ot oz | Por, | oz Dt ot om | 20wy

and the two-dimensional and three-dimensional gradients

o 0 _ o o0 0
= (—7—)7 D = (—7—7—)'
0x1 O0xs O0xy Oz’ Ox3
Following Hoskins [13], we comment on how to derive the semi-geostrophic

equations from the well-known Boussinesq equations. The Boussinesq equations
describe the evolution of an incompressible fluid in a reference configuration in
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rotation about the 0xs3-axis.

(i)%;’ + fes x v=—Dp

(it1)vy =e3 x Dp/f

(iii)div(v) =0, 22— (1)

Dt

(i) 22 = g6/0,

Do __
Here, f is the constant given by the Coriolis force. We currently choose to
omit the boundary condition going along with these equations. Using (1) (i) we
deduce that the horizontal component of the velocity is given by

€3 (S Dv

v=—XDp+— X —. 2

7 Dpt Xy (2)
Recall that according to our notation the horizontal component of an arbitrary
vector a € R? is denoted by a. We apply D% to both sides of (2) to obtain

Dv  Dv, e3 D?

Dt Dt T F X De )

We combine (2) and (3) to deduce that

es Dv, 1D?

—v b S 2e S 4
vV =v,+ 7 Dt 7 Di? (4)
Let 7 be the time scale for change in the velocity following a fluid particle. As in
Hoskins [13], we assume that 7 is much larger than 1/f, and so, € := # << 1
Set t = t/7. We rewrite (4) in the adimensional form in time:
Dv, ,D%*
V:Vg—l—eegxﬁ—er. (5)

Because € << 1 the last term in (5) is neglected. This yields new equations for
v given by
Dv es Dv
v:vg—l—eegxﬁfg:vgﬁ—?x Dtg' (6)
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We replace (i) in (1) by (6) to obtain the semigeostrophic system. More precisely,
the semi-geostrophic equations are:

(i)2¥2 + fey x v = —Dp,

(ti)vy-e3 =0
(i13)div(v) =0 (7)

(iv)Dp = —fez x v, + g0/0,e3

()20 = 0.

n [0,400) x O(t), along with the boundary condition
v - v := normal speed of the boundary,

on [0,400) x 00(t). (See [3], [15] and the review paper by Evans [10] when the
region O(t) = 0(0).) A derivation of (7), accessible to mathematicians, can be
found in [1].

Among all solutions of (7) we are interested in those that are stable. To
define the concept of stability, let us introduce the functional

I[X] == f2 /O(t)<|$1 — X,(7)] X |29 — Xo(Z)? _ .’L'ng(i'))di‘, (8)

2 2

and the map
X(Z) ;=2 + Dp(t,z)/f* = (v1,75,0) + Dp(t,z)/ f>.

Recall that the push-forward of Xo(t)’}-ﬁ by the map X is the measure Xt# (XO(t)H3)
defined by B B

X (xorH?)[B] = H’[X;H(B)],
for all B C R? Borel sets. Let X(t) be the set of all Borel maps X : O(t) — R?

such that B B
X (xowH?) = Xu(xonm M)

In [8] it was shown that geostrophic and hydrostatic states (i.e. states which
satisfy (7)) correspond to critical points of the integral (8) over the set X(t).
Critical points which are not minima correspond to geostrophic and hydrostatic
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states which are unstable to small perturbations evolving under the 3D Euler
equations. The subsequent evolution of these states cannot be described by
the semi-geostrophic approximation. Therefore, we seek for solutions of (7)
satisfying the minimization principle

I1X,] < IX]

for all X € X(t). Following the terminology of [3] we refer to this principle as the
Cullen-Purser stability condition. Observe that the Cullen-Purser stability con-
dition implies that X, is the optimal transport map in the Monge-Kantorovich
mass transport problem that transports xo(;) onto Xt#XO(t), where optimality
is measured against the cost function c¢(z — ) = |z — y|>. Let us recall briefly
what is meant by the Monge-Kantorovich mass transport problem. For details
and a complete reference on the topic, we refer the reader to the recent book
by Rachev and Riischendorf [18].
Consider the cost function ¢ : R? — [0, +00), given by

c(z) = |2I"/p, (2 €RY),

where 0 < p < 4+00. Here, ¢(z—y) represents the cost of moving a unit mass from
a point z to a point y. Denote by P(R?) the set of all probability Borel measures
on RY. Assume that p, and « are two Borel probability density functions on R?
that represents mass distributions on R?. Let I'(p,a) be the set of all Borel
measures on R x R? having p and o as marginals:

/ p(x)dr = y[B xR and ~[R? x B :/ a(y)dy

B B

for each Borel set B C RY The p-Monge-Kantorovich problem consists in
finding the cheapest way for rearranging p onto «, where optimality is measured
against the cost c. More precisely, the problem consists in finding =, € I'(p, ),
the minimizer of

Wy (p,a) ;== inf c(z —y) dy(z,y). (9)

v€l(p,2) JRIxRA

It is well-known that (9) admits a unique minimizer ~,. Furthermore, there
exists a unique map t that is the gradient of a convex function P such that ~,
is the push forward of p by id x t. Consequently, t minimizes

r— /Rd c(x —r(x))p(z)d
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other the set of all maps that pushes p forward to a. (See [2], and [12]). We refer
to W;’(p, «) as the total work required to transport p onto «a. It is well-known
that for p > 1, W, is a metric on P(R?), whereas for 0 < p < 1, it is WP which
is a metric on P(R4).

Note that the Cullen-Purser stability condition gives that X, is the gradient
of a convex function, i.e., T — |x[*/2 + p(t,z)/f? is convex. The geostrophic
energy is defined to be )

VP gy,
— d
/O(t)[ 2 0, ldz
which is 1[X,].

In this paper we study the shallow water model, where the fluid is within a
region € in the (z1, z5)—plane but the height p of the surface above the reference
level is unknown and can vary

O(t) = {(z1, T2, 23) € R? | (21,22) €Q, 0< 123 < p(t,z1,79)}.

The rigid bottom is defined by the surface x3 = 0. The rotation axis of the fluid
coincides with the z3—axis in the model and the condition at the top boundary
of the fluid is:

p(t;xlax%p(xl;x?)) = Do, (10)

where p, is a constant.

A

>

X3=p(X;, Xp)
X3

147(2
X

Figure 1: A typical cross-section of the solution of the shallow water model
illustrating the notation in the text, and showing that the water need not fill
the whole of (2.

Q

The semi-geostrophic equations are only a valid approximation to the Euler
equations if the Rossby number U/fL is small ( where U, L are velocity and
length scales). In the shallow water model we additionally assume that 6 is
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uniform and so, the following approximation can be made: the pressure is of
the form

p(t, w1, 12, 13) = gas + A(t, 21, 22). (11)
(See [17]) where ¢ is the Newton’s constant. Due to the orientation of the
vertical axis, g is negative. In what follow, we set in the sequel that ¢ = —1.

Combining (11) and (10) we deduce that

p=(p—x3) + Po. (12)

Note that (12) implies that the horizontal pressure gradient is independent of
x3 so that the horizontal accelerations must be independent of x3. It is therefore
consistent to assume that

the horizontal velocities remain z3 independent (13)

if they are so initially. In the case (12) and (13) hold, (7) becomes a 2-
dimensional system called the semi-geostrophic shallow water equations. Given
p° find v := (v!, v?), and p defined on [0, +00) x € such that

(i) 2vy+ Dvy-v+ fJv=—Dp in [0,+00) x
(i1) & +div(pv) =0,  (iii) vy =%Dp  in [0,+00) x Q (14)

(vi)v-m=0 in [0,400)x 0, p(0,-)=p° in €,

where n denotes the outward unit normal to 0€2. The third component of the
velocity v can be recovered by using that div(v) = 0 and that the expression
g—g + g—zz does not depend on z3. We have

To obtain (14) (i) we have used (7) (i) and the relation between p and p given
in (12). Now, (14) (ii) expresses the fact that on

{($1,$2,£E3) | T3 = p(t7m17532)}7

which is the top of the fluid, the normal velocity v - v = w3 coincides with the
convective derivative of p.

The interpretation of the reduction of the 3—-D system to the 2-D system is
that in the shallow water model the 3—D fluid moves as a set of columns oriented
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parallel to the x3—axis. During the stretching or contraction of each column the
relative position of a fluid element in the column is unchanged. The position
at time ¢ of the fluid element that was initially at (zi,z2,x3) is completely
determined by z3, the height of the fluid at (x1,x2) at time 0 and ¢.

Following Cullen & Purser ([5] and [6]) we introduce the generalized geopo-
tential function, defined on [0, +00) x © by

P(t,x) = |z /2 + p(t, x)/ 2.
Define
X,(z) = — §vg(t, 2) = DP(t, ),

0 -1
where J = (1 0

defined on 2. In 2D, Cullen-Purser stability condition means that at each time
t, the pair (p(t,-), X;) minimizes

) . Let P(€2) be the set of all probability density functions

Iln, X] := 1/2/Q(f2|$ = X(2)I*n(z) + n*(z))da. (15)

The minimization is performed over the set of all pairs (n, X) satisfying n €
Pe(Q2), and Xyn = a(t, -), where

alt, ) = Xp(t, ). (16)

The 2D geostrophic energy up to a multiplicative constant is

£l =5 [(Dplp+ 1247 (17)

In [13], p(t, DP*(t,y))/a(t,y) is interpreted as the geostrophic vorticity. Ob-
serve that as in the 3D case, X; is the optimal map of the Monge-Kantorovich
problem which consists in rearranging p(¢,-) onto «(t,-), where optimality is
measured against the cost function c¢(x — y) = |z — y|*. Since X; = DP(t,-) we
deduce that P(t,-) is convex. Let W5 be the Wasserstein distance introduced in
Appendix A, and let P2¢(R?) be the set of all Borel probability density functions
on R?. Note that if @ € P*(R?) then by Lemmas A.4, and A.5, the map

n— W@ n) +1/2 | n'(e)d

is strictly convex and lower semicontinuous on P%(£2). Hence, it admits a unique
minimizer L£[a] in P*(Q).
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Definition 1.1 We define L to be the functional that maps a € P*(R?) to
L[a], the unique minimizer over P* () of

n— fPW5(a,n) + 1/2/9772dx.

Observe that
Lla(t, )] := p(t, ). (18)

As shown by (26) the velocity v can be expressed in terms of

DP, 2DP, D?P*,
ot
One of the difficulties encountered when trying to solve (14) is that v may not be
smooth enough. In other words, either functions DP, %DP, or D?P* may not
be smooth enough. In fact, we could not even prove that v is locally integrable.
Let us fix a time interval [0,7"] on which we study (14). Following Hoskins
[13], we substitute (14) by the system (25), which turns out to be easier to
handle for reasons which will soon be apparent. Formally, (14) and (25) are
equivalent in the following sense. Assume that v is smooth and write (14) using

Lagrangian coordinates. More precisely, introduce the flow

92t z) =v(t, Z(t,x reQtel0,T
{ 8t( Z)(O’x)(: x( )) € . 6%[ ] (19)
Combining (i) and (iii) in (14), we have that
g[DP(t, Z(t,x)) = fJ[DP(t, Z(t,x)) — Z(t, x)]. (20)

ot

In view of (20), it is natural to introduce the velocity that produces the flow
in (20). We use the change of variables y = DP(t,z) to define the so-called
geostrophic velocity in dual variables

w(t,y) == vy(t, DP*(t,y)) = fJ[y — DP*(t,y)], (21)

and the flow
M(t,y) == DP(t, Z(t, DP*(0,y))).

Now, in these new variables, (20) reads

£ M(y) = wlt, M) 2
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The density corresponding to p in the new variables is
In the light of (14) (ii) and the definition of Z we have that
Z(t7 )#p(07 ) = p(ta )
This, combined with (23) implies that
M(t7 ')#OZ(O, ) = Oé(t, ) (24)

Combining (21), (23) and (24), we deduce that the so-called semigeostrophic
system wn dual variables can be written as:

(i) %+ div (aw) =0  in the weak sense in [0,7] x R?

(i) Wit.y) = fJ(y— DP*(t,y)), in [0,7] x R?

(i) Pl2) = [o/2 + p(t2) /% i [0.7] x O (25)
(ZU) Oé(t, ) = DP(t7 ')#pa te [O7T]

(v) «@(0,-)=a’ in R2Z

We have formally shown that (14) implies (25). We next comment on properties
of the geostrophic velocity in dual variables. Because P*(t,-) is convex, we have
that w(t,-) is locally of bounded variations. In fact, only the restriction of
w(t,-) to spt(a(t,-)) is relevant in our study. Assume that at time ¢ = 0 we
have that

spt(a(0,-)) C Bs.

Here Bg is the open ball of center 0 and radius S. We show that spt(a(t,-)) is
contained in a ball whose radius evolves in time with a speed less than or equal
to Sf. By symmetry (25) (iv) reads off

DP*(t, -)#Oz(t, )= p(t,).

Since spt(p(t,-)) C Q, we may then assume without loss of generality that
DP*(t,-) maps R? into the convex hull of Q. Therefore, the restriction of w(t, -)
to spt(a(t,-)) is of class L™. These properties of w are exploited in the present
work.

It remains to formally show that (25) implies (14). Assume that p, P, «,
and w satisfy (25). Set

J o J
v(t,z) := D*P*(t, DP(t, x))(vg + ?%), and v, := ?Dp. (26)
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Straightforward calculations show that p, P, v, and v, satisfy (14).

The aim of this paper is to show that (25) has a stable solution (a, p). At the
present time we do not know whether or not stable solutions (c, p) in (25) are
unique. We hope to address this issue in the future. We hereafter summarize
our main result:

Theorem 1.2 Assume that T > 0, that 1 < r < +o0o, and that Q C R? is
open and connected. Assume that a® € L"(R?), p° € L*(Q) are two probability
density functions. Assume that spt(a®),Q C Bg. Here, By is the ball of center
0, and radius S. Set P°(x) := |z|*/2 + p°(x)/f?, and assume that P° can be
extended into a convex function defined on R?. Assume that (a°, p°) satisfies
the compatibility condition o® = DP3p°. Then,

(i) the system (25) has a stable solution (a, p).
(i)

Wi(a(sy, ), a(s1, ) < Op|sy — so|
for all s1,55 € [0,T]; here, Cp := Sf(2+ fT)||a°||11(r2)-

(i11) If w is the semigeostrophic velocity in (25), then
1w (t,) = fIYllLsptaceyy < FS, IIw(E, ) = FIyllBvispacy) < FOSR(R+1),

for all 0 <t <T; here, R:= S(1+ fT).

() p € C([0,T]; WH5(Q)) for all 1 < s < 00, and p € L*((0,T); W->(Q)).

Throughout all this study the stability lemma proved in Lemma 3.6 plays an
important role. It asserts the following. If the sequence {a;}%2, C P*(B)
converges weakly to v as j tends to +oo, then the sequence {L[a;]}52, converges
uniformly to L]e] in 2 as j tends to +00. A consequence of the stability lemma
is that since t — a(t, ) is Lipschitz continuous with respect to the W;-distance
we have that p(-,z) := L[a](-, z) € C[0,T]. This implies a time regularity of the
pressure
p(t, 1, 22, 23) = p(t,x) — 23 + Po-

This time regularity is stronger than the regularity proved by Benamou and
Brenier [3] for the 3-D semi-geostrophic equations. Our solutions may require
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the height of the fluid p to vanish in part of the domain €2, and can thus describe
the free boundary case. This situation does not arise in the 3-D problem solved
in [3] because of their choice of boundary conditions. Future work will study
the 3-D problem with a free boundary.

In a work in progress, N. Georgy shows that the energy E[p(t, -)] defined in (17)
is conserved in time for the solutions constructed in the present work. His proof
is similar to the one in [15].

It is a pleasure to thank L.C. Evans for making suggestions for improvement
in the exposition of the original version of this manuscript. Fruitful discussions
were also provided by F. Otto. We thank N. Georgy for pointing out misspellings
in the original version of this manuscript.

2 Definitions and notation

Definition 2.1 Suppose t : R — R™ is a Borel map.
(i) If v is a Borel probability measure on R?, then typ is the Borel probability
measure on R™ defined by

t4ulB] == ult~\(B)]

for all B C R™ Borel. We say that typ is the push-forward of p by t, or t
pushes p forward to tup.
(ii) Assume that p is a Borel probability function on R?, and that

dz =0
/tl(N)p(x) x

whenever N C R™ satisfies H*[N] = 0. We define typ to be the unique Borel
probability function o on R™ such that [;—p p(z)dz = [ a(y)dy for all B C
R™. We say that t4p is the push-forward of p by t. We sometimes write

a(t(z))detDt(x) = p(x) inQ
in the weak sense, where oo 1= typ.

Definition 2.2 Assume that T > 0, that o € L'((0,T) x R?), and that k €
LY((0,T) x R?). Assume that a® € L'(R?). We say that
Oa

o Tdiv () =0, a(t)=a (27)
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in the weak sense, in [0,T) x R?, if

/ ozogody+/ dt/ o2 L k. Dody =0
R? 0 r2 Ot
for all o € CX([0,T) x R?).

Definition 2.3 We say that (o, p) is a stable solution of (25) if (a, p) satisfies
(25) and the function P(t,-) in (25) (iii) can be extended into a convez function
on conv(£2).

Notation

For the convenience of the reader we collect together some of the notation
introduced throughout the text.

e 7% denotes d-dimensional Hausdorff measure on the Borel o-algebra of
sets.

o If A C RY P,.(A) is the set of all Borel probability density functions on
A.

o If O C R? then Q denotes the closure, Q° := R?\ Q the complement, and
conv(2) the convex hull of €2, meaning the smallest convex set containing 2.

o If A C R? we denote by x4 the characteristic function of A.

o If P: R* » RU {+00} is not identically +oo, the Legendre-Fenchel
transform of P is the convex, lower semicontinuous function P* : R? -+ R U
{400} defined by

P*(y) := sup{z -y — P(x)}.
z€R?

Hence P** is the greatest lower semicontinuous convex function dominated by
P. If P is a Lipschitz function we denote by Lip(P) the smallest constant R
such that |P(z) — P(y)| < R|z — y| for all z,y.

e The set where P is finite is denoted by dom(P) C R?, and the set where
P is differentiable is denoted by dom(DP) C R?.

e The subdifferential of a convex function P : R? — R U {+o00} is the set
OP C R? x R? consisting of all (z,y) satisfying

P(z)— P(z) > y-(z —x), (Vz € R?).

If (z,y) € OP we may also write y € OP(x) and for A C R? we define dP(A) to
be {y € R? | 3z € R?, (z,y) € OP}. Recall z € OP*(y) whenever y € OP(z),
while the converse also holds true if P is convex lower semicontinuous.
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e The support of a nonnegative function p defined on R? is spt p, the inter-
section of all closed set K C R? such that [. p(z)dz = 0.

e We denote the identity map id(x) = x by id.

o If p and « are two Borel probability density functions on R?, I'(p, o) stands
for the set of all Borel measures on R? x R? having pdH? and adH? as their
marginals: [5 p(z)dz = v[B x R?] and y[R? x B] = [ a(y)dy for all Borel sets
B C R%

e J is the rotation matrix of angle 7/2 :

0 —1
J = (1 0 ) )
3 The geostrophic energy

Throughout this section we assume that Bg, and B are open balls in R? centered
at the origin. The radius of Bg is S. We assume that « is a probability density
function of support A and that Q ¢ Bg, A C B.

Consider (p(t,-), a(t,-)) a solution of (25) at time t. Then Proposition 3.4
shows that at time t the geostrophic energy defined in (17) is the infimum of
the functional

(1. X) = Ef1,X] := 1/2 [ (£lo = X(@)*n(x) +n*(x))de

over the set of all pairs (7, X) such that n € P*¢(Q) and Xyun = a(t, ).

The aim of this section is to characterize minimizers of E. More precisely,
assume that we are given a probability density function o whose support is
bounded. We give a necessary and sufficient condition for (p,X,) to minimize
E over the set of all pairs (7, X) such that n € P*(Q) and X1 = .

Remark 3.1 We show in Lemma A.4 that n — Wi(a,n) is weakly lower
semicontinuous on P*(Q) C LY(Q), thus I is weakly lower semicontinuous on
Pee(Q) € LYQ) as the sum of two weakly lower semicontinuous functionals.

The functional n — [on*(x)dx is strictly convex on P*(Q) and so, by Lemma
Ab

Iin— fWia,m) + [ o*/2(a)ds

is also strictly convex on P*(Q). Consequently, I admits a unique minimizer
over any subset of P*(S)) which is precompact for the weak L'-topology.

The following Lemma was proved by Otto in [16] when A = .
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Lemma 3.2 Assume that Q2 C A, 0 < §; < § < 1 are two real numbers, and

that o satisfies 6 < a < 1/§ on A. Then I admits a unique minimizer p over
the set {n € P*(Q) : & < n < 1/6; on Q}. Furthermore, H*(E) = 0 where
E={zecQ : p(x)<d}.

Proof: 1. Existence and uniqueness of a minimizer p of I over the set {n €
Px(Q) = 01 <n <1/ on Q} follows from Remark 3.1.

2. We next prove that H?*(E) = 0. Assume on the contrary that H?*(E) > 0.
Proposition A.2 gives existence of a convex v : R> — R such that t := D
is the optimal map that pushes a forward to p, where optimality is measured
against the cost function c(z) = |2]?/2. We have

Wi(ap) = 1/2 [ |o = t(z)a(a)dr. (28)
Note that H*[E N t~!(E°)] = 0 implies
OH[E] < plE] = plE N t7H(E)] < plt™(B)] = v[E] < 0H*[E],
which yields a contradiction and so,

HAEN t1(E%)] > 0. (29)

3. We next introduce density functions
€o ‘= XENnt—1(Ee) * &,

e1:=tye, = Xpgen t(E) P,
pe = p+ele, —eq).

Clearly, p. € P*(2). Note that for € € (0,6), the function a—ee, is nonnegative.
We define on R? x R? the measure 7, given

Ve := (id X t)x(a — €e,) + €(id x id) ze,.
Observe that . has o and p, as its marginals and so, using (28) we have
W) < [ Jo—yPdrle,y)
R2xR2
- / lz — t(2)2a(z)dz — e/A 2z — t(2)[2es (2)dx
A
— 2W2(a,p) — € / lz — t(2)[2a(z)dz. (30)

Ent—1(E°)
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The convexity of t — 2 and the fact that both p and p. are probability density
functions yield

12 [ (7= p)da = [ plp—p)de = [ (o= 0)p—pdz.  (31)

Simple computations show that

/ﬂ(p6—5)(p—p6)dx = G[E((S—p)eodx+e/Ec(p—é)eldx—62/Q(eo—el)2dx. (32)

But by definition of the set E, the first and second terms in (32) are nonnegative
and so,

(0= 8)(p = pdz =~ [ (60— e1)? (3)
Next we combine (30), (31) and (33) to obtain that

Ilpd = 11p] < —ce/2 [

Ent—1(Ec

o = t(x)Pa(e)dr + ¢ /Q(eo —en)2da. (34)

In the light of (29), the factor of € in (34) is positive and so,

Ilpe] < Ipl, (35)

for € > 0 small enough. Since d; < p < 1/6; (35) is at a variance with the fact
that p minimizes I over the sets P*(Q2) N {n : & <n < 1/4;}. Consequently,
H2[E] = 0. QED.

Lemma 3.3 ( Euler-Lagrange equations I'(p) =0 ) Assume that Q C A,
and that for a positive number 6 € (0,1), we have that § < o <1/§ on A. Then
I admits a minimizer p over P*(QY) (which in turn is unique since I is strictly
convez). Furthermore the following hold:

(i) p > on Q.

(i) If in addition it is assumed that S is connected, then
P(z) = |z*/2+ p(x)/f*  (z€Q)

has a convex extension to Bg (still denoted by P) and dom(P) = Bg, OP(Bs) C
B, and DPyp = a.

(ii) || P||lwee(Bg)s ||pllwie(0) and || Dpl|y () are bounded by a constant that
depends only on S, B and f.
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Proof: 1. By Lemma 3.2, I admits a unique minimizer p, over P*(f), :=
{n € P*(Q) : 1/n <n <n}. That minimizer satisfies

5 <p, onf. (36)
For n large enough the nonnegative function %?7) belongs to P(£2),, and so,
oy XQ
Ldx < Ip,| <1 <
J, e < Tloa] < Tgies] < o0

We deduce that {p,}>2,; is weakly precompact in L?*(2). So, there exist an

increasing sequence {n;}°; C N and a function p € L*(Q) such that {p,, }32,
converges weakly to p in L*(2) as ¢ tends to +oo. By (36) we have

5 < p. (37)

2. We claim that p minimizes I over P*((Q).
Proof : Let n € P*(Q) N L*(Q2). Choose, 1,, € P*(Q),,, (i =1,2,---) such
that {n,,}3°, converges to n strongly in L*(2) as ¢ tends to +oo. We have

W) + [ 722 < PWE 0w + [ 02 /2a)de. (38)
o ™ '™
Lemma A.4 says that
0 — Wy (1)
is weakly lower semicontinuous on P%(Q) N L*(Q). Hence, I is weakly lower
semicontinuous on P (Q) N L*(Q). So, letting n; goes to co in (38) we deduce

that
Ilp] < Ifn).

Since n € P*(Q) N L*(Q) is arbitrary we conclude that p minimizes I over
Pac(Q)'

3. We next write Euler-Lagrange equations for p. Let £ € C°(Q). Consider the
one-parameter family {U(r,-)} of diffeomorphisms given by

or(r2) = &(¥(r2)
{‘I’(O,x) = . (39)

Let p, be the push forward of p through ¥(r,-) i.e.

p-(U(7,x))det DV (T, x) = p(x). (40)
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The smoothness of £ and (39) yield that

sup [¥(7, ) — x — 7¢(x)| = o(7), (41)
€N
and
sup |detD¥ (7, z) — 1 — 7div £(z)| = o(T). (42)
x€eQ)
We use (40) and (42) to obtain that
. pra) —p*x) 1
Jm [ EEEE e = i [ 5@ (e~ Vi
S /Q P2 (x)div £(z)dz. (43)

Proposition A.2 guarantees existence of an optimal map that pushes p forward
to «, where optimality is measured against the cost function ¢(z) = |z|?. This
map is the gradient of a convex function P. By symmetry D P* pushes a forward
to p, and

Wi(a,p) = 1/2 [ Iy = DP*(y)Pa(y)dy. (44)
Also, we may assume that
dom(P) = Bg, dom(P*) =R? 0P(Bs) C B, 0P*(R*) C Bs. (45)

We can readily check that y — W (7, DP*(y)) pushes « forward to p, and deduce
that

Wilap(r, ) < 1/2 [ ly = W(r, DP*(y) Paly)dy. (46)
We combine (41), (44) and (46) to deduce that

2 _ 2
lim sup W2 (Oé, pT) W2 ((l/, p)

T—07F T

_DP*(y) — ¥(r, DP*(y))

< liinj)ljp A(y — DP*(y)) - a(y)dy
= [(DP'(y) =) - &DP'()aly)dy. (47)
Since p minimizes I over P%(R2), (43) and (47) imply
0 < lm I [pT]T— I1p]
< T/:;Q(DP*(y) —y) - E&(DP*(y))a(y)dy — 1/2/Qpiodiv Edr.  (48)
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Because ¢ is arbitrary in (48) we deduce that in fact

72 [ (DP*(y) = y) - €DP W)aly)dy — 1/2 [ p'div g =0.  (49)

We exploit in (49) the fact that DP pushes p forward to « to obtain that
£ [ (= DP()) - §@)ple)de = 1/2 | p*(@)div §(a)dz =0, (50)

for all £ € C°(Q). By (45), the subgradient of P being contained in B we
conclude that P € Wh>(Q) with Lip(P) < diam(B)/2. This, together with
(50) and the fact that p € L?(Q) implies that

1/2D(p*) = f*(DP —id)p. (51)

Because (37) gives that p > 0, we can divide both sides of (51) by p to obtain
that
Dp = f*(DP —id). (52)

So, p € WhH>(Q). Since 2 is connected and open, (52) yields that
p(z) = f*(P(z) — |=[*/2)

up to an additive constant which we set to be 0 since P is determined up to an
additive constant. Also,

J 1Pl =12 [ fa? +1/2 <1/2 [ ol +1/5°

is bounded by a constant that depends only on S and f. So, ||p||w1.eeq), and
|| P||w1.ee(Bs) are bounded by a constant that depends only on S, B and f.
Since in addition P is convex, and 2 CC Bg, we use ||P||y1.0(5,) to control
||DP||sv(a)- (See [11]). We find that || DP||py () is bounded by a constant that
depends only on S, B and f.

Proposition 3.4 (Characterisation of minimizers ) Suppose that Q is con-
nected, that o € P*(B), and that p € P*(Q). Then the following are equivalent:

(i) p is a minimizer of I over P ().

(ii) The function P : x — |z|?/2 + p(x)/f? can be estended to Bg into a
convex function such that DPyp = «, and P = +o0 on the complement of Bg.
Consequently, OP*(R?) C Bs.

In either case ||p||wi=), ||DP||Bva), and ||P|lwi.pg) are bounded by a
constant that depends only on S, B and f.



MC/WG /Semigeostrophic Shallow water/January 9, 2001 21

Proof: 1. We first show that (i) implies (ii). Assume that p is a minimizer of
I over P*(Q2). Choose, {a,,}5°, C P*(B) such that

I/n<a,<n  onB, (53)
for n large enough, and
|y — ||y gy = 0 as n — +o0. (54)

By Lemma 3.3 the unique minimizer p, of

2
I, :n — fPW3 (o, n) + /Q %dm

is such that P, :  — |z|*/2+ p,(z)/f? can be extended into a convex function
defined on Bg. This function satisfies

DP,yp, = an, (55)
and

IDP.[[ vy, [[Pallwiess) < e, (56)

where ¢ is a constant that depends only on S, B and f. By (56) there exists a
sequence {n;};2; C N such that as 7 tends to 400, {pn, }i2, converges uniformly
in Q to some p, {P,,}°, converges uniformly in Bg to some P. Furthermore,

P(z) = |z|*/2 4 p(x)/ f?, (57)
in 2, and
[[DP|[sv(a), [|Pllwiess) < e (58)
We have that
In[pn] < In[n]

for all n € P*(§2). This, together with (54) and the fact that by Lemma A.4
Wy is weakly continuous on P%(Q2) x P*(B) shows that p minimizes I over
P(Q). Remark 3.1 asserts uniqueness of minimizer of I over P*(f2) and so,
p = p. Combining the fact that p = p with (57) we conclude that

P(z) = [z|*/2+ p(z)/ f*

in 2. We can now use (55) and Lemma A.3 to conclude that DPyp = a. Note
that we may extend P to the complement of Bg by setting

P(z) = +o0,
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for ¢ Bg. This proves (ii). In the light of (58) we have that ||p||w1.c(q), and
||DP||pv(q) are bounded by a constant that depends only on S, B and f.

2. Conversely, assume that P : z — |z|?/2 + p(z)/f? can be extended from
Q) to Bs into a convex function such that DPyp = a. Let n € P%(£) and let
r : A — Q be a Borel map that pushes a forward to . The convexity of P
implies

/A[P(r(y)) — P(DP*(y))]a(y)dy > /Ay - (r(y) — DP*(y))a(y)dy.

We use the fact that, by symmetry, DP* is the unique optimal map that pushes
« forward to p, where optimality is measured against the cost function ¢(z) =
|z|2. We rewrite the above inequality as

2 [ P@n(@)ds —2 [ P@)pa)dz > [ ly— DP(y)Pa(y)dy
[y~ xt)Paty)dy
+ [ (@) - IDP* () Pay)dy (59

Observe that (59) is equivalent to

712 [y =rw)Paw)y = 112 [ Iy DP(y)Paly)dy
+ [ p@)(plx) = n(a))da,
which can be read as
Bly,x) = Elp, DP'] + 1/2 [ (p(z) — n(x))?da. (60)

By (60), we have
El,x] > Elp, DP, (61)

and equality holds if and only if r = DP* and n = p. Note that
I[n} = inf Eln, r],

where the infimum is performed over the set of all Borel maps r : A — () that
push «a forward to 7. So, using (61) we conclude that I[n] > I[p]. QED.
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Remark 3.5 Let £ be the functional introduced in Definition 1.1. Assume
that o € P*(R?) has its support contained in B, and let p := L[a]. Then, by
Proposition 3.4, p € W(Q), and ||pl .=y, |[Pllws=as) are bounded by a
constant with depends only on S, B, and f. Furthermore, we may assume that
Lip(P*) < S. Here, x — |z|?/2 + p(z)/f? has a convex extension on Bs we
denote by P.

Lemma 3.6 (Stability: strong compactness of o — p) Suppose that
{aj}52, € LY(B) NP*(B) converges weakly in L'(B) to « as j tends to 4-o0.
Then, {L[a;]}52, converges to Lla] in W*(Q), for all 1 < s < +o0. Further-
more, {L[a;]}32, converges uniformly to Lla] on Q.

Proof: Set

pi = Llag],  Pi(z) = |z]/2+ p;(2)/f*, p:=La].

By Proposition 3.4, P; can be extended on Bg into a convex function we still
denote P;, such that

Pllwre(Bs)s [[DPjllBviy, and [[pjllwie@) < e,
where, ¢, is a constant that depends only on S, B, and f. Furthermore,
DPjypj = aj. (62)

Let {Pj,}32; be an arbitrary subsequence of {P;}52,. We make use of the fact
that {P;, }32, a subsequence of convex functions that is bounded in W>(Byg).
Hence, we may extract from {F;, };2, a subsequence {F;, }7°; which converges
strongly in W'#(Bg) to a convex function P, as [ tends to +00. We may assume
that {P;, }{2; converges uniformly to P on Bg, as [ tends to +oco. Using (62)
and Lemma A.3 we conclude that

DPyp = a, (63)

where

p(z) = f*(P(z) — |a]*/2). (64)
In the light of Proposition 3.4, (63) and (64) we deduce that p = L]a] in Q. Let us
summarize a byproduct of what we have proved. If {p;, }72, is any subsequence
of {p;}22,, then we can extract a subsequence {p;, }32; which converges to £[a]
in W#(Q) and in C(Q). The limit L[] being independent of the subsequence
{pj. }72:1, we conclude the proof of Lemma 3.6. QED.
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4 Existence of Stable Solutions in Dual Vari-
ables

Throughout this section we assume that 2 C R? is an open, bounded, connected
set, and 2 C Bg. Here, By is the open ball of center 0, and radius .S. We assume
that p°® € P*(Q2), and that

z — P°(z) := |z*/2 + p°(2)/ f*

can be extended into a convex function on Bg. We assume that a® > 0 is a
probability density function, spt(a®) C Bg, and that the compatibility condition

DPLp° = a®

is satisfied. Here, f > 0 is a constant occuring as the Coriolis force.

The aim of this section is to prove that (25) admits a stable solution («, p)
for all times ¢ in (0,+00). Let 7" > 0 be an arbitrary integer and denote by B
the ball of center 0 and radius

R:=S2+ fT).

The first part of this section consists in discretizing (25) in time to construct
approximate solutions. Fix a time step size h > 0 such that n, := T'/h is an
integer. Assume that the density functions «f, and pf, are given. For k integer,
we shall inductively determine of, pf, approximate solutions of (25) in the time
interval [kh, (k+ 1)h). While discretizing (25) we need to smooth out functions.
Let us introduce the standard mollifiers j; : R?* — [0, +00) defined by

i) =53 ()

Here j : R? — [0, +00) is of class C*, is symmetric, has its support equal to
the closed ball of center 0 and radius 1, and [g» j(y)dy = 1. Set

o .__ - o

Given af, we use the functional £ of Definition 1.1 to define on € the functions

{ o= Llaf]

Pi(z) = |z2/2+ pk(z)/f> (65)
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We define on R? the functions

Qp = Jn * (P)*
wi(y) = fJ(y—D(Fy)*(y)) (66)
wi(y) = fJ(y— DQi(y))
By Remark 3.5 we may assume that
Lip(Fy)" < 8, (67)
and so,
|IDQ} | 1o (r2) < S (68)

Step 1. Use uf and the transport equation to determine af™ by solving

(69)

%+ div [opuf] =0 in [kh, (k+ DA] x R>
an(kh,y) = af(y) in R,

in the weak sense. We define
ayt(y) == an((k + 1)h, y).

Lemma 4.1 shows that
spt(af™) C Bg,,,.

Step 2. Inductively, we use af ™, (65), and (66) to define pi™' PF™ QFf

wiT and uf

Step 3. We introduce the following functions that depend on the time and
space variables. Note first of all that «y, is well-defined over [0,7] x R?. As in
(65) we define

pult) = Lloa(t,)
{ Pu(t,z) = |z|?/2+ pu(t, )/ [f?, (70)

for all t € [0, 7] and all € Q2. We define

{ Qn(t,) = Jn * (Pr)*(t,-)
wi(t,y) = [fJ(y— D(F)*(ty)) (71)
uh(t7y) = fJ(y_DQh(t7y))7
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forallt € [0,7] and all y € R.. Similarly, we define the following functions which
are stepwise constant in the time variable.

(aen = A
P(t,z) = PX

8

) = pn(kh, x)
) = Pikh. o) (72)

8

)

for t € [kh,(k 4+ 1)h) and x € Q. We define

an(t,y) = a(y) = an(kh,y)
{wh(t’y) = wi(y) = wi(kh,y) (73)
un(t,y) = ui(y) = un(kh,y),

for t € [kh, (k + 1)h) and y € R?. We next start listing useful properties of the
functions defined above.

Lemma 4.1 Assume that v € [1,+00], and that ||af||r@m2) < +00. Assume
that spt(af) C Bs,, where Sy, := S(1+ fhk), and that ||of||1r®2) = ||| - ®2)-
Let ay, be the unique solution of (69) over [kh, (k+ 1)h] x R?, and suppose that
kh <T. Then we have that

an(t, )orwe) = llafll-@e), (€ [kh, (k+ 1)A)). (74)
spt(an(t,-)) C By, (¢ € [kh, (k+1)h]). (75)
Wl(ah(s% ')? ah(slﬂ )) < CT|S2 - 81|, (81, Sz € [kh, (k + 1)h]), (76)

where Cp =S f(2+ fT)||a°|| 11 m2)-

Proof: We introduce the characteristic system associated with (69) by defining
the flow N satisfying

&Y (t,y) = up(N(t,y)) € R?
{ ’ J\gf/(k‘h,y) =y ’ 56 R?. (77)

Since uf is divergence free and belongs to C*°(R?), the classical theory of ODEs
tells us that N € C°°([kh, (k + 1)h] x R?), N(t,-) is a diffeomorphism and

detDN(t,-) = 1, (78)

for t € [kh, (k + 1)h]. Tt is well-known that the unique solution «y of (69) over
[kh, (k + 1)h] x R? is given by

ah(t? N(ta y)) = alli(kh? y)? (79)
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for (t,y) € [kh, (k + 1)h] x R2. Using the definition of uf, (68), (77), we have

ON| N N N
ot 8t W _f Qh( ) |N| Sfa
for all ¢ € [kh, (k + 1)h]. So,
[N, y)| < lyl+ fS(t — k), (80)

for all t € [kh, (k + 1)h]. Using that spt(af) C Bs,, (79) and (80) we conclude
that

spt(an(t,-)) C Bs,,,-

)
for all t € [kh, (k+1)h]. This proves (75). We obtain (74) as a direct consequence

of (78), (79), and the fact that ||04h||L (R = ||| rm2)-
Now, assume that kh < s; < sy < (k+ 1)h. From (68), and (75) we have

an(t,y)|ug(y)| < S F(2+ fT)]an(t, )], (81)
for all t € [kh, (k + 1)h]. Let ¢ € C>°(R?). We have

/ ¢(y)(ah(527 ) - Oéh S1,Y dy = / /
R R2 Js;
This, together with (69) yields

/R2 o(y)(an(s2,y) — an(s1,9)) /R2 /Sl y)div(an(s, y)uk(y))dyds. (82)

We use (74), (81) and integrate by parts the right handside of (82) to obtain
that

6ah (s,y)dyds.

[, ) (@n(s2) — an(s1,9))dy < CrLip(6)|s2 = 5] (83)

In the light of (83), and the dual representation of Wi (o, (sg, ), an(s1,+)) given
by Proposition A.1, we deduce (76). QED.

Corollary 4.2 Assume that 1 < r < 400, and that a® € P*(Bg) N L"(Bg),
has its support strictly included in Bg. Assume that h > 0 is small enough, say
0 < h < h, and set Cr == f(2+ fT)||a°||11(Bg)- Let Br be the open ball of
center 0, and radius R := S(1+ fT). Then,

{ don 1 div [aptp] =0 in  [0,7] x R? (84)

an(0,y) = of(y)  in R?.
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We have that
e (t, )|rw2) = [log] [ m2), (85)
for allt € [0,T]. Also,

DPh(t, -)#ph(t, ) = Oéh(t, '), Dph(t, -)#ﬁh(t, ) = @h(t, '), (86)

1Dt )[zes  [|1DQA(E, )|z < S, [[P(E;-) = Qnlt, )| < hS,  (87)
for all t € [0,T]. We have that

spt(an(t, ) C Br, (88)

for allt € [0,T]. Hence, there exists a constant ¢, depending only on S, Bgr, and
f, such that

[[on(t; wie@) < e, (89)
for all t € [0,T). Furthermore,

Wi(an(s2,-), an(s1,+)) < Crlsy — s1], (90)
for all s1,s5 € [0,T].

Proof: We obtain (84) as a direct consequence of (69). Lemma 4.1 yields
(85). Proposition 3.4, and (70) imply (86) and the first two inequalities in (87).
Because jj, x P(t,-) = Qx(t, ), we obtain the second inequality in (87). We use
(75) to deduce (88).

Recall that by (70) we have py(t,-) := L[ax(t,)]. Using (88), and Remark
3.5, we conclude (89). Since W is a distance, we use Lemma 4.1 to obtain (90).
QED.

We next state a general result in partial differential equations which is needed
in this work.

Ifl<r<+4oo,r :=7r/(r—1),ac L'((0,T) x B), and ¢ € W' (B), we
define

<aip> ()= [ altyey)y.
Lemma 4.3 Suppose that 1 < r < 400, that T > 0 is an integer, and that

B C R? is an open bounded ball. Suppose that {ca}ns0 C W((0,T) x B), and
that {kp}r=0 C L"((0,T") x B) satisfy, in the weak sense,

0 .
% + div (ky) = 0, (91)
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in [0,T] x R2, using the convention that oy, and ky, are defined to be 0 outside
B. Suppose that there exists a constant C' > 0 such that

sup ||an(t)l[ermy,  sup  [|kn(t,)]|ors) < C. (92)
t€[0,T],h>0 t€[0,T],h>0

Then, there exists a sequence {h;}52, C (0,1) converging to 0 as j tends to
+00, there exist o € L"((0,T) x B), and a map k € L"((0,7) x B) such that
the following hold.

(i) {an, }52, converges weakly to o in L™ ((0,T) x B) , {kp, }52, converges weakly
tok in L"((0,T) x B), as j tends to +oc.

(i3) {an,(t,-)}32, converges weakly to a(t,-) in L"(B) for every t € [0,T], as j
tends to +oo.

Proof: 1. The existence of a sequence {h;}32, C (0,1) converging to 0, as
J tends to 400, and the existence of a function v € L"((0,7) x B), a map
k € L"((0,T) x B) such that {as,}32, converges weakly to a in L"((0,T) x
B), {ks,;}%2, converges weakly to k in L"((0,7) x B) as j tends to +oo is
straightforward to obtain. This concludes the proof of (i).

One can readily check that (92) implies that

sup ||a(t, )|z < C. (93)
te[0,7

Combining (91) and (92) we deduce that
0 dy| = ki, - Dpdy| < C||D 94
57 [ anedyl = [ K- Dody| < ClIDl| s, (94)
in [0, 7, and for all ¢ € W' (B). Also,
| [ anpdyl < Cligllr s, (95)
in [0,7] and for all ¢ € L™ (B).
2. Let {3}, € CY(B) be a dense subset of L' (B) and W' (B). In the
light of (94) and (95) we find that for each k£ € N the sequence of real functions

{< an, s b >}32, is bounded in W">(0,T) and that

sz(< Qp; - (v >) < C||D¢k||LT/(B) (96)
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Consequently, we may extract from {h;}22, a subsequence we still label {h;}52,
such that for each k € N

< ap, :1Pp > converges uniformly to a(¢y) in C[0,T], (97)

< ap, : ¢ > converges weak * to a(yy) in WH(0,T), (98)

as j tends to +oo0, for some a(vy;) € WH(0,T). Now, using (95), (97) and the
fact that {1 }22, is dense in L' (B) we deduce that for each ¢ € L™ (B),

{<an 9>},
is a Cauchy sequence in C[0,T]. Thus, there exists a(y) € C[0,T] such that
< ap, : ¢ > converges uniformly to a(y) in C[0,T7, (99)
as j tends to +o0o. By (95)
la(@) |20y < Clll| 1 (5)- (100)

Combining (99) and (100) we deduce that for each t € [0, 7] there exists 3(¢,-) €
L7 (B) such that

/ B(t,y)e(y)dy, (101)

and
1B, |rm) < C. (102)

Using the fact that {ap,}52, converges weakly to o in L"((0,T) x B) as j tends
to 400, and using (95), and (99) we deduce that for each w € C[0,T] and each
k € N we have

/O " wt)dt /B B(t, y)n(y)dy = /O "t /B alt, y)vn(y)dy. (103)
In the light of (103) there exists a set N C [0, 7] such that H'(N) = 0 and
[ Bt yyun@dy = [ at.yyuny)dy, (104)

for all ¢ € [0,T]\ N. Since {43}, is dense in L (B), using (93), (102) and
(104) we have that

[ Btew)dy = [ alt.yey)dy, (105
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for all t € [0,7]\ N, and all ¢ € L"(B). Define the function

_ | oalty) it te€]0,T]\N,yeB
alty) = { B(t,y) if teN, yx B. (106)

Clearly, @ and @ coincide H? a.e. in [0,7] x B, and by (101), (105) we have
that

a(@)t) = [ at.y)ev)dy. (107)

for every t € [0,7] and every ¢ € L™ (B). From (106), and (107) we assume
that

B, (108)

«

«

on [0,T] x B.
Combining (99), (101), and (108) we conclude the proof of (ii). QED.

Theorem 4.4 (Main existence result) Assume that 1 < r < 400, and that
a® € P*(Bg) N L"(Bs) has its support strictly contained in Bg. Define Cr :=
Sf(2 + fT)||a®||L1(r2), and let Br be the ball of center 0, and radius R :=
S(1 + fT). Then there exist two functions p € L>((0,T);Wh>(Q)), a €
L>((0,T); L"(R?)), such that (c, p) is a stable solution of (25). In addition,
the following hold.

(i) a(t,-) € P*(Bg), and ||a(t, )| rsg) < |[a°lLr55)-

(i1) spt(a(t,-) C Bg.

(iii)

Wi(a(ss, ), a(s1, ) < Crlsy — saf, (109)

for all s1,s5 € [0, 7).

(iv) There exists a universal constant C' such that w, the geostrophic velocity
in dual variables satisfies

(IW(t,) = fIYlloesry < £S5, Nw(t-) = FIyllBvsr) < FOSR(R +1).

(v) p(t,-) € P*(Q), for allt € [0,T]. Furthermore, p € L>=((0,T); W->*(Q)),
and p € C([0,T); Wh5(Q)) for each 1 < s < +o0.

Proof: 1. Let oy be as in (69), let Py, pn be as in (70), let @), be as in (71),
and let 1y, be as in (73). Recall that Corollary 4.2 gives that

lan(t, )zrwe) < lle?l|zr @), (110)
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and
IDP; (¢, )|ro(Br)y,  1DQn(t, )|LeBr) < S, (111)

for all t € [0,7] and all h > 0. So, in the light of Lemma 4.3, we conclude
that there exists a sequence {h;}32, C (0,+o00) converging to 0, there exists
a € L"((0,T) x Bg), and there exists k € L"((0,7T) x Bg) such that the following
hold: as j tends to +o00, we have that

ap, ~a inL'((0,T)xR?), apty —k inL((0,T) x R?) (112)
and
Qh; (tu ) - Oé(t, ) in LT(R2)7 (113)

for each ¢t € [0,7]. Thanks to (110), (113), and the fact that the L"-norm
is weakly lower semicontinuous, we conclude the proof of (i). Using (88) in
Corollary 4.2, and (113) we deduce (ii).

Observe that by Corollary 4.2

Wi(amn, (s2,°), an;(s1,°)) < Crlsy — s1l, (114)

for s1, 52 € [0, 7. Letting ¢ tends to +o0, using (113), (114), and that by Lemma
A.4, W is continuous for the weak * topology, we concludes the proof of (iii).

2. Set
p(t,-) = L(a(t,-), P(t,x):=[z*/2+ p(t,x)/f*. (115)

Recall that (i) gives that spt (a(t,-)) C Bs, and by assumption @ C Bg. So,
the definition of £, and Proposition 3.4 yield that the function z — P(t,x) :=
|z|?/2 + p(t, z)/f? can be extended into a convex function on Bg, such that

Also, we may assume without loss of generality that
OP*(t,-)(R*) C Bs, (116)

for all ¢ € [0, 7).

We claim that as j tends to +o0, {an, (t,)}32, converges weakly in L?(R?) to
a(t,-), for each t € [0,T]. Indeed, Using (114), and that a,(kh, ) = an,(kh, )
for all k, we conclude that

Wi(an, (t,-), an, (t,-)) < Crh;. (117)
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for each t € [0, 7). Combining (113), and (117) we conclude that
lim Wi(an,(t,-), a(t,-)) = 0. (118)

Jj—+oo
But, (118) reads off {ap, (,)};2, converges weakly to a(t,-) in L"(R?), for each
€ [0,T]. (See Rachev and Riischendorf [18]). We use the stability result in
Lemma 3.6 to deduce that

pn,;(t,+) = p(t,-), Py,(t,-) — P(t,-) in C(Q), (119)

for each t € [0,T]. Recall that dom(P(t,-)) = Bg, and so, by (119) we have
that ~ ~
PI;kj (ta ) - P*(t7 ) in C(BR)7 (120)

for each ¢ € [0,7]. Combining (111), (120), and using the fact that P,;“j (t,-) is
convex, we deduce that

[l (&, )| pe By < 2F R, (121)
and
ay, (t,-) — fJ(id — DP*(t,-)), (122)
almost everywhere in Bg, and for each t € [0, T]. Define
w = fJ(id — DP*) (123)

By (112), (121), and (122) we have that
oy, — aw in L'((0,T) x R?). (124)

Since {ay }r~o converges to a° in L"(R?) as h tends to 0, combining (84), (112),
and (124) we deduce that

da . _ . 2
{ 5 Tdivjaw] =0 in [0,7] xR (125)

a(0,) =a° in R?

in the weak sense. Thanks to (115), (123), (125) we conclude that (o, p) is a
stable solution of (25).

3. Since P* is convex, D?P* is a Radon measure. Hence, the totale varia-
tion of D?P* on Bp is bounded by a multiple of the totale variation of AP* on
Bpg. But, Green’s formula gives that

AP (y)dy= |  DP*(y)- ﬁdy-

Br dBR
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Since in addition by (116), ||[DP*|| < S, and w — fJy = —fJDP* we deduce
that

[[w(t,-) = fIylleer) < £S5, [|W(t, ) = fIyllBvr) < FOSR(R+1).

Here, C' is a universal constant. (See [11]).

4. In Corollary 4.2, (89) gives that p € L>((0,T); WH>(£2)). We use (109),
the stability Lemma given in 3.6, and the fact that p(t,-) = Lla(t, )] to obtain
that p € C([0, T]; W1(Q)) for each 1 < s < +o00. Also, p(t,-) € P*(Q), for all
t € [0,T]. This concludes the proof of Theorem 4.4. QED.

A Background on the Wasserstein distance

Throughout this section we assume that Q CC Bg, A CC B are two open
sets, where Bg, and B are open balls in R%. We identify p € P%(Q) with its
restriction to 2.

Assume that p, that o are two Borel probability density functions on R2
and that c(z) = |2|P/p, for 2 € R?. Recall that if 1 < p < +o0, the quantity

Wy (p,a) = R Y - c(z —y) dy(z,y), (126)
was introduced in Section 1 as the p-Monge-Kantorovich distance to the power
p. We sometimes refer to the 2-Monge-Kantorovich distance as the Wasserstein
distance. We recall results on the Monge-Kantorovich mass transport theory in
special cases that are relevant in this work.

Proposition A.1 (Duality) Assume that 0 < p < +oo, that spt(p) C B,
and that spt(a) C B. Then we have

()
Wip.a)i=sup{ [ p@u@)de+ [ a@pmdy}, — (21)
where the supremum is performed over the set of all pairs (u,v) such that u :

Bs — R,v: B — R, and u(z) +v(y) < c(x —y) for allz € Bg, and all y € B.
(i) If in addition B = Bg, and 0 < p <1 then

W2(pa) = sup{ [ (p(x) = a())u(z)da}. (128)

where the supremum is performed over the set of all u : B — R such that
u(z) —u(y) < c(z—y) forall x,y € B.
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Proof: The proof can be found in [14]. We also refer the reader to [12]. QED.

Proposition A.2 Assume that p = 2, that spt(p) C Bg, and that spt(a) C B.
Then

(i) (126) admits a minimizer. Furthermore, v, € I'(p, @) is a minimizer
of (126) if and only if there ewists a convex function i, :_R2 — R such that
dom(1),) = Bg, O,(Bs) C B, dom () = R?, dv:(R?) C B, and

/RngQ:c.yd%(x,y) = /R2 1/Jop(x)dx+/R2 Yra(y)dy.

In that case,

W2(p, :/ 2 /9 d—/ Cy dve(z, ). 129
Hpa)= [ o /2ole) +ale)dz — [ wydy(ey).  (129)

(11) Dio(x) exists for p-almost every x € R?, and D1, is the unique Borel
map minimizing [g2(|z — v(x)|?)/2p(x)dx over the set of all Borel maps r :
R? — R? that push p forward to c.

Proof: Since I'(p,a) is a set of probability measures, closed under weak
convergence, existence of a minimizer in (129) is a direct consequence of the
Banach-Alaoglu theorem. We refer the reader to [12] for a detailed proof of the
Proposition. QED.

Lemma A.3 Let ¢, : B — R (n =1,2,---), be a collection of convex func-
tions satisfying [g|on|de < Ry, Lip(¢,) < Ry for some constant Ry > 0.
Assume that as n tends to +o00, {a,}5°, C P*(Bs) converges weakly in L'(B)
to a € P*(Bg), and that {p,}>>, C P*(Bs) converges weakly in L'(B) to
p € P*(Bs). Suppose that Do,ya, = p,. For F € C(R? x R?), define

(1) Then there exists a convex function ¢ : B — R such that {a, - Fy, }024
converges weakly in L'(B) to ap - Fy as n tends to +oo. Here, Fy(z) :=
Pz, Do(z)).

(11) Furthermore, Dpyo = p.

Proof: The set S := {¢ : B - R : [g|¢(z)|de < Ry, Lip(¢) < R} is
equicontinuous on B, and so, by Ascoli-Arzela theorem it is precompact in C'(B).
Let {n;}°, C N be any arbitrary sequence. We may extract a subsequence we
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still label {n;}$°, such that as i tends to +o0, {¢n, }3°, converges uniformly on
B to a convex function ¢ € S, and {Dg,, }3°, converges H?-almost everywhere
to D¢ on B. (See [19]). Thus, {F, }32, converges H*-almost everywhere to F,
on B as i tends to +o00. Since B is a bounded set, and the sequence {Fy, }7%
is bounded in L>*(B) we deduce that {c,, - Fs, }32; converges weakly in L'(B)
to a - Fy. In particular for g € C(B) we have

| 9Dé(@)a@)dz = lm_[ g(Dg,,(@))ar,(z)da

i—+o0 JA

= lim [ g(y)pn,(y)dy

= [ 9ely)ay.

thus, D¢ pushes « forward to p.

Note that in the light of Proposition A.2, D¢ is uniquely determined by p,
and «a. Since {n;}°, is an arbitrary subsequence of N we deduce that {a,, -
Fy, 35, converges weakly in L'(B) to ar - Fy as n tends to +oo. QED.

Lemma A.4 (Weak x semicontinuity of W7 and W5.) Assume that
{pn},, and {a,}22, are two sequences of probability Borel density functions
on R2, that spt (p,) C , and that spt (o) C B. Assume that {p, }>°, converges
weak * to p, and that {a, }2 | converges weak * to o in the sense that

lim [ g@)pa(e)dz = [ g(@)p(x)da.

n—+oo JR2 2

for all g € C,(R?). Then the sequence of real numbers {Ws(pn, )}, con-
verges to Wa(p, @), as n tends to +oo. Similarly, {Wi(pn,on)}52, converges to
Wi(p,a), as n tends to +oo.

Proof: We first prove that {Ws(p,, )32, converges to Wa(p, a). It suffices
to show that from any subsequence {Wy(pn,,am,)}52; of {Wa(pn,an)}se, we
may extract a subsequence {Ws(py,, , i, ) 172, Which converges to Wa(p, @). By
Proposition A.2 there exists a measure v, on R? x R? that has p, and «,, as its
marginals, and such that

Wi (pn an) = [ (o = yf*)/2 dvale,y),

R2ZxR?2

Furthermore, there exists convex functions v, : Bs — R such that dv,(Bg) C
B, 8¢;(R2) C Bg, and

/2 Ty dyn(z,y) = / . Yopn(z)dr + / , ran(y)dy. (130)
R2xR R R
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Hence,

2 2

Wi pwon) = [ 2P /200u(@) + (@) = [ @y du(ey). (13D
We assume without loss of generality that ¢,(0) = 0. Clearly, {1,}2, is
equicontinuous on Bg, and so, from any subsequence {t,,}32, of {1, }>, we
may extract another subsequence we still label {1, }2°; such that {1y, }2; con-
verges uniformly to a convex function 1 : B¢ — R, on Bg as i goes to 400.
One can readily check that {7 }$°, converges uniformly to 1* on B as i goes
to +00. Since {7,,}32, is a sequence of probability measures on R? x R? whose
supports are in B x B we may as well assume that {v,,}32, converges weak x
to some  which is necessarily in I'(p, «). We substitute n by n; in (130), and
let n; go to +00 to deduce that

-d,:/od/*d, 132
Lo aydiey) = [ dop@)de+ [ wialy)dy (132)
and so, in the light of Proposition A.2
Wi(p,0) = [ |oP/20p@) + a(@)de — [ w-ydy(ey).  (133)
R?2 R2xR?

Using (131), (132), and (133) we deduce that

: 2 _ : 2 — .
dim Wipnsan) = tim [ o200 @) +an)@)de = [ @y do(ay)
- 2/9 d —/ yd
L, eP/206@) + aaNda— [ @y dy(a,y)
= Wi(p, ).

Since {Wa(pn,, an,) }52, is an arbitrary subsequence of {Ws(py,, a,)}o2; we con-
clude that the sequence {Wa(p,, an)}5%, converges to Wa(p, ), as n tends to
+00.

The proof of the convergence of {W;(pn,an)}e, to Wi(p, a) is similar to
the above proof. QED.

Lemma A.5 Let o € P(R?). Then the map p — Wi(p,a) is convez over the
set P(R?).
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Proof: Let p,, p1 be two Borel probability measures on R?, and let ¢ € (0,1). If
Yo € T'(po, @) : =T, and 71 € T'(p1, @) := T then v, := (1 =)y, +tn € ['(pr, @),
where p; = (1 — t)p, + tp1. Consequently,

(1 - t)Wg(po, (l/) + tW;(plﬂ (l/)

= wf [ =0 - P2y + ik [ e =y /2)dn(y)
> inf{| |z —yl*/2dn(y) : % €Tom T}
> inf{ [z —yl?/2dv(z,y) © v €T m)}
= W5(pr, ).
This concludes the proof of the Lemma. QED.
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