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Abstract

Existence of weak solutions to the 3-D semi-geostrophic equations
with rigid boundaries was proved by Benamou and Brenier [3], using
Monge transport theory. This paper extends the results to a free surface
boundary condition, which is more physically appropriate. This extension
is at present for the 2-D shallow water case only. In addition, we establish
stronger time regularity than was possible in [3].
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1 Introduction

We study the so-called semi-geostrophic shallow water system, a variant of the
semi-geostrophic system. This system is used by meteorologists to model how
fronts arise in large scale weather patterns. The shallow water variant provides
a simpler context in which to develop the theory for the 3-D system. It is also
physically important in its own right in describing the dynamics of layers of
shallow fluid which do not fill the available domain and so have a free bound-
ary. See [4] for an example. The semi-geostrophic system is a 3-D free boundary
problem which is an approximation of the 3-D Euler equations of incompress-
ible fluid in a rotating coordinate frame around the Ox3-axis where the effects
of rotation dominate. It was first introduced by Eliassen [9] in 1948 and re-
discovered by Hoskins [13] in 1975. Hoskins showed that the semi-geostrophic
system could be solved in particular cases by a coordinate transformation which
then allowed analytic solutions to be obtained. In particular, the mechanisms
for the formation of fronts in the atmosphere could be modelled analytically.
Cullen and Purser showed in [5], and [6] that the equations could be given a
geometrical interpretation. This interpretation allowed the equations to be used
to describe a variety of phenomena in the atmosphere, such as the way fronts
interact with mountains. It also appeared, in principle, that the equations could
be solved for large times, without recourse to viscosity or turbulence models.
This means that closed, though simplified, solutions for atmospheric behavior
could be obtained. These solutions would describe aspects of the atmosphere
that were controlled by large-scale behavior, and therefore highly predictable.
An example is shown in [7].
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Benamou and Brenier [3] showed that the existence of weak solutions of the
semi-geostrophic system could be proved, using a rigid-wall boundary condition,
thus verifying the conjectures in [6]. In this paper, we use a more physically
appropriate free boundary condition. However, we simplify the full 3-D system
to give the semi-geostrophic shallow water system by assuming that the poten-
tial temperature is constant. This yields that the pressure assumes a special
form so that the original 3-dimensional equations (7) can be reduced to the
2-dimensional system (14). We denote points in the plane by x := (x1, x2) and
for that reason we write elements of R3 as x̄ = (x1, x2, x3) ∈ R3. The unknowns
in the original 3-dimensional equations are:

v̄g = (vg1, vg2, 0) = geostrophic wind velocity
v̄a = (va1, va2, va3) = ageostrophic wind velocity
p = pressure
θ = potential temperature,

defined on [0,+∞)×O(t). The domain O(t) is the region occupied by the fluid
at time t. Since the height of the fluid is to be determined and depends on the
time t, then O(t) is a time-dependent region in R3. We set

v̄ := v̄g + v̄a = total wind velocity.

We define the convective derivatives

D̄

Dt
:=

∂

∂t
+ v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3
,

D

Dt
:=

∂

∂t
+ v1

∂

∂x1
+ v2

∂

∂x2
,

and the two-dimensional and three-dimensional gradients

D := (
∂

∂x1

,
∂

∂x2

), D̄ := (
∂

∂x1

,
∂

∂x2

,
∂

∂x3

).

Following Hoskins [13], we comment on how to derive the semi-geostrophic
equations from the well-known Boussinesq equations. The Boussinesq equations
describe the evolution of an incompressible fluid in a reference configuration in
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rotation about the 0x3-axis.

(i)Dv
Dt

+ fe3 × v = −Dp

(ii)vg = e3 ×Dp/f

(iii)div(v̄) = 0, D̄θ
Dt

= 0

(iv) ∂p
∂x3

= gθ/θo

(v) D̄θ
Dt

= 0.

(1)

Here, f is the constant given by the Coriolis force. We currently choose to
omit the boundary condition going along with these equations. Using (1) (i) we
deduce that the horizontal component of the velocity is given by

v =
e3

f
×Dp+

e3

f
×
Dv

Dt
. (2)

Recall that according to our notation the horizontal component of an arbitrary
vector ā ∈ R3 is denoted by a. We apply D

Dt
to both sides of (2) to obtain

Dv

Dt
=
Dvg
Dt

+
e3

f
×
D2v

Dt2
. (3)

We combine (2) and (3) to deduce that

v = vg +
e3

f
×
Dvg
Dt
−

1

f

D2v

Dt2
. (4)

Let τ be the time scale for change in the velocity following a fluid particle. As in
Hoskins [13], we assume that τ is much larger than 1/f, and so, ε := 1

fτ
<< 1.

Set t̄ = t/τ. We rewrite (4) in the adimensional form in time:

v = vg + ε e3 ×
Dvg
Dt̄
− ε2

D2v

Dt̄2
. (5)

Because ε << 1 the last term in (5) is neglected. This yields new equations for
v given by

v = vg + ε e3 ×
Dvg
Dt̄

= vg +
e3

f
×
Dvg
Dt

. (6)
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We replace (i) in (1) by (6) to obtain the semigeostrophic system. More precisely,
the semi-geostrophic equations are:

(i)Dvg
Dt

+ fe3 × v = −Dp,

(ii)vg · e3 ≡ 0

(iii)div(v̄) = 0

(iv)D̄p = −fe3 × vg + gθ/θoe3

(v) D̄θ
Dt

= 0.

(7)

in [0,+∞)×O(t), along with the boundary condition

v̄ · ν := normal speed of the boundary,

on [0,+∞)× ∂O(t). (See [3], [15] and the review paper by Evans [10] when the
region O(t) ≡ O(0).) A derivation of (7), accessible to mathematicians, can be
found in [1].

Among all solutions of (7) we are interested in those that are stable. To
define the concept of stability, let us introduce the functional

Ī[X̄] := f 2
∫
O(t)

(
|x1 −X1(x̄)|2

2
+
|x2 −X2(x̄)|2

2
− x3X3(x̄)

)
dx̄, (8)

and the map

X̄t(x̄) := x+ D̄p(t, x̄)/f 2 = (x1, x2, 0) + D̄p(t, x̄)/f 2.

Recall that the push-forward of χO(t)H3 by the map X̄t is the measure X̄t#(χO(t)H3)
defined by

X̄t#(χO(t)H
3)[B] := H3[X̄−1

t (B)],

for all B ⊂ R3 Borel sets. Let X̄ (t) be the set of all Borel maps X̄ : O(t)→ R3

such that
X̄t#(χO(t)H

3) = X̄#(χO(t)H
3).

In [8] it was shown that geostrophic and hydrostatic states (i.e. states which
satisfy (7)) correspond to critical points of the integral (8) over the set X̄ (t).
Critical points which are not minima correspond to geostrophic and hydrostatic
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states which are unstable to small perturbations evolving under the 3D Euler
equations. The subsequent evolution of these states cannot be described by
the semi-geostrophic approximation. Therefore, we seek for solutions of (7)
satisfying the minimization principle

Ī[X̄t] ≤ Ī[X̄]

for all X̄ ∈ X̄ (t). Following the terminology of [3] we refer to this principle as the
Cullen-Purser stability condition. Observe that the Cullen-Purser stability con-
dition implies that X̄t is the optimal transport map in the Monge-Kantorovich
mass transport problem that transports χO(t) onto X̄t#χO(t), where optimality
is measured against the cost function c(x̄ − ȳ) = |x̄ − ȳ|2. Let us recall briefly
what is meant by the Monge-Kantorovich mass transport problem. For details
and a complete reference on the topic, we refer the reader to the recent book
by Rachev and Rüschendorf [18].

Consider the cost function c : Rd → [0,+∞), given by

c(z) = |z|p/p, (z ∈ Rd),

where 0 < p < +∞.Here, c(x−y) represents the cost of moving a unit mass from
a point x to a point y. Denote by P(Rd) the set of all probability Borel measures
on Rd. Assume that ρ, and α are two Borel probability density functions on Rd

that represents mass distributions on Rd. Let Γ(ρ, α) be the set of all Borel
measures on Rd ×Rd having ρ and α as marginals:∫

B
ρ(x)dx = γ[B ×Rd] and γ[Rd ×B] =

∫
B
α(y)dy

for each Borel set B ⊂ Rd. The p-Monge-Kantorovich problem consists in
finding the cheapest way for rearranging ρ onto α, where optimality is measured
against the cost c. More precisely, the problem consists in finding γo ∈ Γ(ρ, α),
the minimizer of

W p
p (ρ, α) := inf

γ∈Γ(ρ,α)

∫
Rd×Rd

c(x− y) dγ(x, y). (9)

It is well-known that (9) admits a unique minimizer γo. Furthermore, there
exists a unique map t that is the gradient of a convex function P such that γo
is the push forward of ρ by id× t. Consequently, t minimizes

r→
∫

Rd
c(x− r(x))ρ(x)dx
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other the set of all maps that pushes ρ forward to α. (See [2], and [12]). We refer
to W p

p (ρ, α) as the total work required to transport ρ onto α. It is well-known

that for p ≥ 1, Wp is a metric on P(Rd), whereas for 0 ≤ p ≤ 1, it is W p
p which

is a metric on P(Rd).
Note that the Cullen-Purser stability condition gives that X̄t is the gradient

of a convex function, i.e., x̄ → |x|2/2 + p(t, x̄)/f 2 is convex. The geostrophic
energy is defined to be ∫

O(t)
[
|vg|2

2
−
gθx3

θo
]dx̄

which is Ī[X̄t].
In this paper we study the shallow water model, where the fluid is within a

region Ω in the (x1, x2)–plane but the height ρ of the surface above the reference
level is unknown and can vary

O(t) = {(x1, x2, x3) ∈ R3 | (x1, x2) ∈ Ω, 0 ≤ x3 ≤ ρ(t, x1, x2)}.

The rigid bottom is defined by the surface x3 = 0. The rotation axis of the fluid
coincides with the x3–axis in the model and the condition at the top boundary
of the fluid is:

p(t, x1, x2, ρ(x1, x2)) = po, (10)

where po is a constant.

Figure 1: A typical cross-section of the solution of the shallow water model
illustrating the notation in the text, and showing that the water need not fill
the whole of Ω.

The semi-geostrophic equations are only a valid approximation to the Euler
equations if the Rossby number U/fL is small ( where U,L are velocity and
length scales). In the shallow water model we additionally assume that θ is
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uniform and so, the following approximation can be made: the pressure is of
the form

p(t, x1, x2, x3) = gx3 +A(t, x1, x2). (11)

(See [17]) where g is the Newton’s constant. Due to the orientation of the
vertical axis, g is negative. In what follow, we set in the sequel that g = −1.

Combining (11) and (10) we deduce that

p = (ρ− x3) + po. (12)

Note that (12) implies that the horizontal pressure gradient is independent of
x3 so that the horizontal accelerations must be independent of x3. It is therefore
consistent to assume that

the horizontal velocities remain x3 independent (13)

if they are so initially. In the case (12) and (13) hold, (7) becomes a 2-
dimensional system called the semi-geostrophic shallow water equations. Given
ρo find v := (v1,v2), and ρ defined on [0,+∞)×Ω such that

(i) ∂
∂t

vg +Dvg · v + fJv = −Dρ in [0,+∞)× Ω

(ii) ∂ρ
∂t

+ div(ρv) = 0, (iii) vg = J
f
Dρ in [0,+∞)×Ω

(vi) v · n = 0 in [0,+∞)× ∂Ω, ρ(0, ·) = ρo in Ω,

(14)

where n denotes the outward unit normal to ∂Ω. The third component of the
velocity v3 can be recovered by using that div(v̄) = 0 and that the expression
∂v1

∂x1
+ ∂v2

∂x2
does not depend on x3. We have

v3 = −x3(
∂v1

∂x1

+
∂v2

∂x2

).

To obtain (14) (i) we have used (7) (i) and the relation between ρ and p given
in (12). Now, (14) (ii) expresses the fact that on

{(x1, x2, x3) | x3 = ρ(t, x1, x2)},

which is the top of the fluid, the normal velocity v · ν = v3 coincides with the
convective derivative of ρ.

The interpretation of the reduction of the 3–D system to the 2–D system is
that in the shallow water model the 3–D fluid moves as a set of columns oriented
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parallel to the x3–axis. During the stretching or contraction of each column the
relative position of a fluid element in the column is unchanged. The position
at time t of the fluid element that was initially at (x1, x2, x3) is completely
determined by x3, the height of the fluid at (x1, x2) at time 0 and t.

Following Cullen & Purser ([5] and [6]) we introduce the generalized geopo-
tential function, defined on [0,+∞)×Ω by

P (t, x) = |x|2/2 + ρ(t, x)/f 2.

Define

Xt(x) := x−
J

f
vg(t, x) = DP (t, x),

where J =
(

0 −1
1 0

)
. Let Pac(Ω) be the set of all probability density functions

defined on Ω. In 2D, Cullen-Purser stability condition means that at each time
t, the pair (ρ(t, ·),Xt) minimizes

I[η,X] := 1/2
∫

Ω
(f 2|x−X(x)|2η(x) + η2(x))dx. (15)

The minimization is performed over the set of all pairs (η,X) satisfying η ∈
Pac(Ω), and X#η = α(t, ·), where

α(t, ·) := Xt#ρ(t, ·). (16)

The 2D geostrophic energy up to a multiplicative constant is

E [ρ] =
1

2

∫
Ω
(|Dρ|2ρ+ f 2ρ2)dx. (17)

In [13], ρ(t,DP ∗(t, y))/α(t, y) is interpreted as the geostrophic vorticity. Ob-
serve that as in the 3D case, Xt is the optimal map of the Monge-Kantorovich
problem which consists in rearranging ρ(t, ·) onto α(t, ·), where optimality is
measured against the cost function c(x− y) = |x− y|2. Since Xt = DP (t, ·) we
deduce that P (t, ·) is convex. Let W2 be the Wasserstein distance introduced in
Appendix A, and let Pac(R2) be the set of all Borel probability density functions
on R2. Note that if ᾱ ∈ Pac(R2) then by Lemmas A.4, and A.5, the map

η → f 2W 2
2 (ᾱ, η) + 1/2

∫
Ω
η2(x)dx

is strictly convex and lower semicontinuous on Pac(Ω). Hence, it admits a unique
minimizer L[ᾱ] in Pac(Ω).
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Definition 1.1 We define L to be the functional that maps ᾱ ∈ Pac(R2) to
L[ᾱ], the unique minimizer over Pac(Ω) of

η → f 2W 2
2 (ᾱ, η) + 1/2

∫
Ω
η2dx.

Observe that
L[α(t, ·)] := ρ(t, ·). (18)

As shown by (26) the velocity v can be expressed in terms of

DP,
∂

∂t
DP, D2P ∗.

One of the difficulties encountered when trying to solve (14) is that v may not be
smooth enough. In other words, either functions DP, ∂

∂t
DP , or D2P ∗ may not

be smooth enough. In fact, we could not even prove that v is locally integrable.
Let us fix a time interval [0, T ] on which we study (14). Following Hoskins

[13], we substitute (14) by the system (25), which turns out to be easier to
handle for reasons which will soon be apparent. Formally, (14) and (25) are
equivalent in the following sense. Assume that v is smooth and write (14) using
Lagrangian coordinates. More precisely, introduce the flow{

∂Z
∂t

(t, x) = v(t, Z(t, x)) x ∈ Ω, t ∈ [0, T ]
Z(0, x) = x x ∈ Ω.

(19)

Combining (i) and (iii) in (14), we have that

∂

∂t
[DP (t, Z(t, x))] = fJ [DP (t, Z(t, x))− Z(t, x)]. (20)

In view of (20), it is natural to introduce the velocity that produces the flow
in (20). We use the change of variables y = DP (t, x) to define the so-called
geostrophic velocity in dual variables

w(t, y) := vg(t,DP
∗(t, y)) = fJ [y −DP ∗(t, y)], (21)

and the flow
M(t, y) := DP (t, Z(t,DP ∗(0, y))).

Now, in these new variables, (20) reads

∂

∂t
M(t, y) = w(t,M(t, y)). (22)
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The density corresponding to ρ in the new variables is

α := DP (t, ·)#ρ(t, ·). (23)

In the light of (14) (ii) and the definition of Z we have that

Z(t, ·)#ρ(0, ·) = ρ(t, ·).

This, combined with (23) implies that

M(t, ·)#α(0, ·) = α(t, ·). (24)

Combining (21), (23) and (24), we deduce that the so-called semigeostrophic
system in dual variables can be written as:

(i) ∂α
∂t

+ div (αw) = 0 in the weak sense in [0, T ]×R2

(ii) w(t, y) := fJ(y −DP ∗(t, y)), in [0, T ]×R2

(iii) P (t, x) := |x|2/2 + ρ(t, x)/f 2, in [0, T ]×Ω
(iv) α(t, ·) := DP (t, ·)#ρ, t ∈ [0, T ]
(v) α(0, ·) = αo in R2.

(25)

We have formally shown that (14) implies (25). We next comment on properties
of the geostrophic velocity in dual variables. Because P ∗(t, ·) is convex, we have
that w(t, ·) is locally of bounded variations. In fact, only the restriction of
w(t, ·) to spt(α(t, ·)) is relevant in our study. Assume that at time t = 0 we
have that

spt(α(0, ·)) ⊂ BS.

Here BS is the open ball of center 0 and radius S. We show that spt(α(t, ·)) is
contained in a ball whose radius evolves in time with a speed less than or equal
to Sf. By symmetry (25) (iv) reads off

DP ∗(t, ·)#α(t, ·) = ρ(t, ·).

Since spt(ρ(t, ·)) ⊂ Ω̄, we may then assume without loss of generality that
DP ∗(t, ·) maps R2 into the convex hull of Ω̄. Therefore, the restriction of w(t, ·)
to spt(α(t, ·)) is of class L∞. These properties of w are exploited in the present
work.

It remains to formally show that (25) implies (14). Assume that ρ, P, α,
and w satisfy (25). Set

v(t, x) := D2P ∗(t,DP (t, x))
(
vg +

J

f

∂vg
∂t

)
, and vg :=

J

f
Dρ. (26)
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Straightforward calculations show that ρ, P, v, and vg satisfy (14).

The aim of this paper is to show that (25) has a stable solution (α, ρ). At the
present time we do not know whether or not stable solutions (α, ρ) in (25) are
unique. We hope to address this issue in the future. We hereafter summarize
our main result:

Theorem 1.2 Assume that T > 0, that 1 < r < +∞, and that Ω ⊂ R2 is
open and connected. Assume that αo ∈ Lr(R2), ρo ∈ L1(Ω) are two probability
density functions. Assume that spt(αo), Ω̄ ⊂ BS. Here, BS is the ball of center
0, and radius S. Set P o(x) := |x|2/2 + ρo(x)/f 2, and assume that P o can be
extended into a convex function defined on R2. Assume that (αo, ρo) satisfies
the compatibility condition αo = DP o

#ρ
o. Then,

(i) the system (25) has a stable solution (α, ρ).

(ii)
W1(α(s2, ·), α(s1, ·)) ≤ CT |s1 − s2|

for all s1, s2 ∈ [0, T ]; here, CT := Sf(2 + fT )||αo||L1(R2).

(iii) If w is the semigeostrophic velocity in (25), then

||w(t, ·)−fJy||L∞(spt(α(t,·)) ≤ fS, ||w(t, ·)−fJy||BV (spt(α(t,·)) ≤ fCSR(R+1),

for all 0 ≤ t ≤ T ; here, R := S(1 + fT ).

(iv) ρ ∈ C([0, T ];W 1,s(Ω)) for all 1 ≤ s < +∞, and ρ ∈ L∞((0, T );W 1,∞(Ω)).

Throughout all this study the stability lemma proved in Lemma 3.6 plays an
important role. It asserts the following. If the sequence {αj}∞j=1 ⊂ P

ac(B)
converges weakly to α as j tends to +∞, then the sequence {L[αj ]}∞j=1 converges
uniformly to L[α] in Ω as j tends to +∞. A consequence of the stability lemma
is that since t→ α(t, ·) is Lipschitz continuous with respect to the W1-distance
we have that ρ(·, x) := L[α](·, x) ∈ C[0, T ]. This implies a time regularity of the
pressure

p(t, x1, x2, x3) = ρ(t, x)− x3 + po.

This time regularity is stronger than the regularity proved by Benamou and
Brenier [3] for the 3-D semi-geostrophic equations. Our solutions may require
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the height of the fluid ρ to vanish in part of the domain Ω, and can thus describe
the free boundary case. This situation does not arise in the 3-D problem solved
in [3] because of their choice of boundary conditions. Future work will study
the 3-D problem with a free boundary.

In a work in progress, N. Georgy shows that the energy E [ρ(t, ·)] defined in (17)
is conserved in time for the solutions constructed in the present work. His proof
is similar to the one in [15].

It is a pleasure to thank L.C. Evans for making suggestions for improvement
in the exposition of the original version of this manuscript. Fruitful discussions
were also provided by F. Otto. We thank N. Georgy for pointing out misspellings
in the original version of this manuscript.

2 Definitions and notation

Definition 2.1 Suppose t : Rd → Rm is a Borel map.
(i) If µ is a Borel probability measure on Rd, then t#µ is the Borel probability

measure on Rm defined by

t#µ[B] := µ[t−1(B)]

for all B ⊂ Rm Borel. We say that t#µ is the push-forward of µ by t, or t
pushes µ forward to t#µ.

(ii) Assume that ρ is a Borel probability function on Rd, and that∫
t−1(N)

ρ(x)dx = 0

whenever N ⊂ Rm satisfies H2[N ] = 0. We define t#ρ to be the unique Borel
probability function α on Rm such that

∫
t−1[B] ρ(x)dx =

∫
B α(y)dy for all B ⊂

Rm. We say that t#ρ is the push-forward of ρ by t. We sometimes write

α(t(x))detDt(x) = ρ(x) in Ω

in the weak sense, where α := t#ρ.

Definition 2.2 Assume that T > 0, that α ∈ L1((0, T ) × R2), and that k ∈
L1((0, T )×R2). Assume that αo ∈ L1(R2). We say that

∂α

∂t
+ div (k) = 0, α(t, ·) = αo, (27)
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in the weak sense, in [0, T )×R2, if∫
R2
αoϕdy +

∫ T

0
dt
∫

R2
α
∂ϕ

∂t
+ k ·Dϕdy = 0

for all ϕ ∈ C1
o ([0, T )×R2).

Definition 2.3 We say that (α, ρ) is a stable solution of (25) if (α, ρ) satisfies
(25) and the function P (t, ·) in (25) (iii) can be extended into a convex function
on conv(Ω).

Notation

For the convenience of the reader we collect together some of the notation
introduced throughout the text.
• Hd denotes d-dimensional Hausdorff measure on the Borel σ-algebra of

sets.
• If A ⊂ Rd, Pac(A) is the set of all Borel probability density functions on

A.
• If Ω ⊂ R2 then Ω denotes the closure, Ωc := R2 \ Ω the complement, and

conv(Ω) the convex hull of Ω, meaning the smallest convex set containing Ω.
• If A ⊂ R2 we denote by χA the characteristic function of A.
• If P : R2 → R ∪ {+∞} is not identically +∞, the Legendre-Fenchel

transform of P is the convex, lower semicontinuous function P ∗ : R2 → R ∪
{+∞} defined by

P ∗(y) := sup
x∈R2

{x · y − P (x)}.

Hence P ∗∗ is the greatest lower semicontinuous convex function dominated by
P . If P is a Lipschitz function we denote by Lip(P ) the smallest constant R
such that |P (x)− P (y)| ≤ R|x− y| for all x, y.
• The set where P is finite is denoted by dom(P ) ⊂ R2, and the set where

P is differentiable is denoted by dom(DP ) ⊂ R2.
• The subdifferential of a convex function P : R2 → R ∪ {+∞} is the set

∂P ⊂ R2 ×R2 consisting of all (x, y) satisfying

P (z)− P (x) ≥ y · (z− x), (∀ z ∈ R2).

If (x, y) ∈ ∂P we may also write y ∈ ∂P (x) and for A ⊂ R2 we define ∂P (A) to
be {y ∈ R2 | ∃x ∈ R2, (x, y) ∈ ∂P}. Recall x ∈ ∂P ∗(y) whenever y ∈ ∂P (x),
while the converse also holds true if P is convex lower semicontinuous.
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• The support of a nonnegative function ρ defined on R2 is spt ρ, the inter-
section of all closed set K ⊂ R2 such that

∫
Kc ρ(x)dx = 0.

• We denote the identity map id(x) = x by id.
• If ρ and α are two Borel probability density functions on R2, Γ(ρ, α) stands

for the set of all Borel measures on R2 × R2 having ρdH2 and αdH2 as their
marginals:

∫
B ρ(x)dx = γ[B ×R2] and γ[R2×B] =

∫
B α(y)dy for all Borel sets

B ⊂ R2.
• J is the rotation matrix of angle π/2 :

J :=
(

0 −1
1 0

)
.

3 The geostrophic energy

Throughout this section we assume that BS, and B are open balls in R2 centered
at the origin. The radius of BS is S. We assume that α is a probability density
function of support Λ̄ and that Ω̄ ⊂ BS, Λ̄ ⊂ B.

Consider (ρ̄(t, ·), ᾱ(t, ·)) a solution of (25) at time t. Then Proposition 3.4
shows that at time t the geostrophic energy defined in (17) is the infimum of
the functional

(η,X)→ E[η,X] := 1/2
∫

Ω
(f 2|x−X(x)|2η(x) + η2(x))dx

over the set of all pairs (η,X) such that η ∈ Pac(Ω) and X#η = α(t, ·).
The aim of this section is to characterize minimizers of E. More precisely,

assume that we are given a probability density function α whose support is
bounded. We give a necessary and sufficient condition for (ρ,Xo) to minimize
E over the set of all pairs (η,X) such that η ∈ Pac(Ω) and X#η = α.

Remark 3.1 We show in Lemma A.4 that η → W 2
2 (α, η) is weakly lower

semicontinuous on Pac(Ω) ⊂ L1(Ω), thus I is weakly lower semicontinuous on
Pac(Ω) ⊂ L1(Ω) as the sum of two weakly lower semicontinuous functionals.
The functional η →

∫
Ω η

2(x)dx is strictly convex on Pac(Ω) and so, by Lemma
A.5

I : η → f 2W 2
2 (α, η) +

∫
Ω
η2/2(x)dx

is also strictly convex on Pac(Ω). Consequently, I admits a unique minimizer
over any subset of Pac(Ω) which is precompact for the weak L1-topology.

The following Lemma was proved by Otto in [16] when Λ = Ω.
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Lemma 3.2 Assume that Ω ⊂ Λ, 0 < δ1 < δ < 1 are two real numbers, and
that α satisfies δ ≤ α ≤ 1/δ on Λ. Then I admits a unique minimizer ρ over
the set {η ∈ Pac(Ω) : δ1 ≤ η ≤ 1/δ1 on Ω}. Furthermore, H2(E) = 0 where
E := {x ∈ Ω : ρ(x) < δ}.

Proof: 1. Existence and uniqueness of a minimizer ρ of I over the set {η ∈
Pac(Ω) : δ1 ≤ η ≤ 1/δ1 on Ω} follows from Remark 3.1.
2. We next prove that H2(E) = 0. Assume on the contrary that H2(E) > 0.
Proposition A.2 gives existence of a convex ψ : R2 → R such that t := Dψ
is the optimal map that pushes α forward to ρ, where optimality is measured
against the cost function c(z) = |z|2/2. We have

W 2
2 (α, ρ) = 1/2

∫
Λ
|x− t(x)|2α(x)dx. (28)

Note that H2[E ∩ t−1(Ec)] = 0 implies

δH2[E] ≤ µ[E] = µ[E ∩ t−1(E)] ≤ µ[t−1(E)] = ν[E] < δH2[E],

which yields a contradiction and so,

H2[E ∩ t−1(Ec)] > 0. (29)

3. We next introduce density functions

eo := χE∩ t−1(Ec) · α,

e1 := t#eo = χEc∩ t(E) · ρ,

ρε := ρ+ ε(eo − e1).

Clearly, ρε ∈ Pac(Ω). Note that for ε ∈ (0, δ), the function α−εeo is nonnegative.
We define on R2 ×R2 the measure γε given

γε := (id× t)#(α− εeo) + ε(id× id)#eo.

Observe that γε has α and ρε as its marginals and so, using (28) we have

2W 2
2 (α, ρε) ≤

∫
R2×R2

|x− y|2dγε(x, y)

=
∫

Λ
|x− t(x)|2α(x)dx− ε

∫
Λ
|x− t(x)|2eo(x)dx

= 2W 2
2 (α, ρ)− ε

∫
E∩ t−1(Ec)

|x− t(x)|2α(x)dx. (30)
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The convexity of t→ t2 and the fact that both ρ and ρε are probability density
functions yield

1/2
∫

Ω
(ρ2 − ρ2

ε)dx ≥
∫

Ω
ρε(ρ− ρε)dx =

∫
Ω
(ρε − δ)(ρ− ρε)dx. (31)

Simple computations show that∫
Ω
(ρε−δ)(ρ−ρε)dx = ε

∫
E
(δ−ρ)eodx+ε

∫
Ec

(ρ−δ)e1dx−ε
2
∫

Ω
(eo−e1)

2dx. (32)

But by definition of the set E, the first and second terms in (32) are nonnegative
and so, ∫

Ω
(ρε − δ)(ρ− ρε)dx ≥ −ε

2
∫

Ω
(eo − e1)

2. (33)

Next we combine (30), (31) and (33) to obtain that

I[ρε]− I[ρ] ≤ −cε/2
∫
E∩ t−1(Ec)

|x− t(x)|2α(x)dx+ ε2
∫

Ω
(eo − e1)

2dx. (34)

In the light of (29), the factor of ε in (34) is positive and so,

I[ρε] < I[ρ], (35)

for ε > 0 small enough. Since δ1 ≤ ρ ≤ 1/δ1 (35) is at a variance with the fact
that ρ minimizes I over the sets Pac(Ω) ∩ {η : δ1 ≤ η ≤ 1/δ1}. Consequently,
H2[E] = 0. QED.

Lemma 3.3 ( Euler-Lagrange equations I ′(ρ) = 0 ) Assume that Ω ⊂ Λ,
and that for a positive number δ ∈ (0, 1), we have that δ ≤ α ≤ 1/δ on Λ. Then
I admits a minimizer ρ over Pac(Ω) (which in turn is unique since I is strictly
convex). Furthermore the following hold:

(i) ρ ≥ δ on Ω.
(ii) If in addition it is assumed that Ω is connected, then

P (x) := |x|2/2 + ρ(x)/f 2 (x ∈ Ω)

has a convex extension to BS (still denoted by P ) and dom(P ) = B̄S, ∂P (BS) ⊂
B̄, and DP#ρ = α.

(iii) ||P ||W 1,∞(BS), ||ρ||W 1,∞(Ω) and ||Dρ||BV (Ω) are bounded by a constant that
depends only on S, B and f.
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Proof: 1. By Lemma 3.2, I admits a unique minimizer ρn over Pac(Ω)n :=
{η ∈ Pac(Ω) : 1/n ≤ η ≤ n}. That minimizer satisfies

δ ≤ ρn on Ω. (36)

For n large enough the nonnegative function χΩ

H2(Ω)
belongs to Pac(Ω)n and so,

∫
Ω

ρ2
n

2
dx ≤ I[ρn] ≤ I[

χΩ

H2(Ω)
] <∞.

We deduce that {ρn}∞n=1 is weakly precompact in L2(Ω). So, there exist an
increasing sequence {ni}∞i=1 ⊂ N and a function ρ ∈ L2(Ω) such that {ρni}

∞
i=1

converges weakly to ρ in L2(Ω) as i tends to +∞. By (36) we have

δ ≤ ρ. (37)

2. We claim that ρ minimizes I over Pac(Ω).
Proof : Let η ∈ Pac(Ω) ∩ L2(Ω). Choose, ηni ∈ P

ac(Ω)ni , (i = 1, 2, · · ·) such
that {ηni}

∞
i=1 converges to η strongly in L2(Ω) as i tends to +∞. We have

f 2W 2
2 (α, ρni) +

∫
Ω
ρ2
ni
/2dx ≤ f 2W 2

2 (α, ηni) +
∫

Ω
η2
ni
/2(x)dx. (38)

Lemma A.4 says that
η̄ → W 2

2 (α, η̄)

is weakly lower semicontinuous on Pac(Ω) ∩ L2(Ω). Hence, I is weakly lower
semicontinuous on Pac(Ω) ∩ L2(Ω). So, letting ni goes to ∞ in (38) we deduce
that

I[ρ] ≤ I[η].

Since η ∈ Pac(Ω) ∩ L2(Ω) is arbitrary we conclude that ρ minimizes I over
Pac(Ω).

3. We next write Euler-Lagrange equations for ρ. Let ξ ∈ C∞o (Ω). Consider the
one-parameter family {Ψ(τ, ·)} of diffeomorphisms given by{ ∂Ψ

∂τ
(τ, x) = ξ(Ψ(τ, x))

Ψ(0, x) = x.
(39)

Let ρτ be the push forward of ρ through Ψ(τ, ·) i.e.

ρτ (Ψ(τ, x))detDΨ(τ, x) = ρ(x). (40)
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The smoothness of ξ and (39) yield that

sup
x∈Ω
|Ψ(τ, x)− x− τξ(x)| = o(τ), (41)

and
sup
x∈Ω
|detDΨ(τ, x)− 1− τdiv ξ(x)| = o(τ). (42)

We use (40) and (42) to obtain that

lim
τ→0+

∫
Ω

ρ2
τ (x)− ρ

2(x)

τ
dx = lim

τ→0+

∫
Ω
ρ2(x)(

1

detDΨ(τ, x)
− 1)dx

= −
∫

Ω
ρ2(x)div ξ(x)dx. (43)

Proposition A.2 guarantees existence of an optimal map that pushes ρ forward
to α, where optimality is measured against the cost function c(z) = |z|2. This
map is the gradient of a convex function P . By symmetry DP ∗ pushes α forward
to ρ, and

W 2
2 (α, ρ) = 1/2

∫
Λ
|y −DP ∗(y)|2α(y)dy. (44)

Also, we may assume that

dom(P ) = B̄S, dom(P ∗) = R2, ∂P (BS) ⊂ B̄, ∂P ∗(R2) ⊂ BS. (45)

We can readily check that y → Ψ(τ,DP ∗(y)) pushes α forward to ρτ and deduce
that

W 2
2 (α, ρ(τ, ·)) ≤ 1/2

∫
Λ
|y −Ψ(τ,DP ∗(y))|2α(y)dy. (46)

We combine (41), (44) and (46) to deduce that

lim sup
τ→0+

W 2
2 (α, ρτ )−W 2

2 (α, ρ)

τ

≤ lim sup
τ→0+

∫
Λ
(y −DP ∗(y)) ·

DP ∗(y)−Ψ(τ,DP ∗(y))

τ
α(y)dy

=
∫

Λ
(DP ∗(y)− y) · ξ(DP ∗(y)))α(y)dy. (47)

Since ρ minimizes I over Pac(Ω), (43) and (47) imply

0 ≤ lim
τ→0+

I[ρτ ]− I[ρ]

τ

≤
∫

Λ
f 2(DP ∗(y)− y) · ξ(DP ∗(y))α(y)dy− 1/2

∫
Ω
ρ2
∞div ξdx. (48)
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Because ξ is arbitrary in (48) we deduce that in fact

f 2
∫

Λ
(DP ∗(y)− y) · ξ(DP ∗(y))α(y)dy− 1/2

∫
Ω
ρ2div ξdx = 0. (49)

We exploit in (49) the fact that DP pushes ρ forward to α to obtain that

f 2
∫

Ω
(x−DP (x)) · ξ(x))ρ(x)dx− 1/2

∫
Ω
ρ2(x)div ξ(x)dx = 0, (50)

for all ξ ∈ C∞o (Ω). By (45), the subgradient of P being contained in B̄ we
conclude that P ∈ W 1,∞(Ω) with Lip(P ) ≤ diam(B)/2. This, together with
(50) and the fact that ρ ∈ L2(Ω) implies that

1/2D(ρ2) = f 2(DP − id)ρ. (51)

Because (37) gives that ρ > 0, we can divide both sides of (51) by ρ to obtain
that

Dρ = f2(DP − id). (52)

So, ρ ∈W 1,∞(Ω). Since Ω is connected and open, (52) yields that

ρ(x) = f 2(P (x)− |x|2/2)

up to an additive constant which we set to be 0 since P is determined up to an
additive constant. Also,∫

Ω
|P |dx = 1/2

∫
Ω
|x|2 + 1/f 2 ≤ 1/2

∫
BS

|x|2 + 1/f 2

is bounded by a constant that depends only on S and f. So, ||ρ||W 1,∞(Ω), and
||P ||W 1,∞(BS) are bounded by a constant that depends only on S, B and f.
Since in addition P is convex, and Ω ⊂⊂ BS, we use ||P ||W 1,∞(BS) to control
||DP ||BV (Ω). (See [11]). We find that ||DP ||BV (Ω) is bounded by a constant that
depends only on S, B and f.

Proposition 3.4 (Characterisation of minimizers ) Suppose that Ω is con-
nected, that α ∈ Pac(B), and that ρ ∈ Pac(Ω). Then the following are equivalent:

(i) ρ is a minimizer of I over Pac(Ω).
(ii) The function P : x → |x|2/2 + ρ(x)/f 2 can be extended to B̄S into a

convex function such that DP#ρ = α, and P ≡ +∞ on the complement of B̄S.
Consequently, ∂P ∗(R2) ⊂ B̄S.

In either case ||ρ||W 1,∞(Ω), ||DP ||BV (Ω), and ||P ||W 1,∞(BS) are bounded by a
constant that depends only on S, B and f.
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Proof: 1. We first show that (i) implies (ii). Assume that ρ is a minimizer of
I over Pac(Ω). Choose, {αn}∞n=1 ⊂ P

ac(B) such that

1/n ≤ αn ≤ n on B, (53)

for n large enough, and

||αn − α||L1(B) → 0 as n→ +∞. (54)

By Lemma 3.3 the unique minimizer ρn of

In : η → f 2W 2
2 (αn, η) +

∫
Ω

η2

2
dx

is such that Pn : x→ |x|2/2 + ρn(x)/f
2 can be extended into a convex function

defined on B̄S. This function satisfies

DPn#ρn = αn, (55)

and
||DPn||BV (Ω), ||Pn||W 1,∞(BS) ≤ c1, (56)

where c1 is a constant that depends only on S, B and f. By (56) there exists a
sequence {ni}∞i=1 ⊂ N such that as i tends to +∞, {ρni}

∞
i=1 converges uniformly

in Ω to some ρ̄, {Pni}
∞
i=1 converges uniformly in B̄S to some P. Furthermore,

P (x) = |x|2/2 + ρ̄(x)/f 2, (57)

in Ω, and
||DP ||BV (Ω), ||P ||W 1,∞(BS) ≤ c1. (58)

We have that
In[ρn] ≤ In[η]

for all η ∈ Pac(Ω). This, together with (54) and the fact that by Lemma A.4
W2 is weakly continuous on Pac(Ω) × Pac(B) shows that ρ̄ minimizes I over
Pac(Ω). Remark 3.1 asserts uniqueness of minimizer of I over Pac(Ω) and so,
ρ̄ = ρ. Combining the fact that ρ̄ = ρ with (57) we conclude that

P (x) = |x|2/2 + ρ(x)/f 2

in Ω. We can now use (55) and Lemma A.3 to conclude that DP#ρ = α. Note
that we may extend P to the complement of B̄S by setting

P (x) = +∞,
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for x 6∈ B̄S. This proves (ii). In the light of (58) we have that ||ρ||W 1,∞(Ω), and
||DP ||BV (Ω) are bounded by a constant that depends only on S, B and f.

2. Conversely, assume that P : x → |x|2/2 + ρ(x)/f 2 can be extended from
Ω to B̄S into a convex function such that DP#ρ = α. Let η ∈ Pac(Ω) and let
r : Λ → Ω be a Borel map that pushes α forward to η. The convexity of P
implies∫

Λ
[P (r(y))− P (DP ∗(y))]α(y)dy ≥

∫
Λ
y · (r(y)−DP ∗(y))α(y)dy.

We use the fact that, by symmetry, DP ∗ is the unique optimal map that pushes
α forward to ρ, where optimality is measured against the cost function c(z) =
|z|2. We rewrite the above inequality as

2
∫

Ω
P (x)η(x)dx− 2

∫
Ω
P (x)ρ(x)dx ≥

∫
Λ
|y −DP ∗(y)|2α(y)dy

−
∫

Λ
|y − r(y)|2α(y)dy

+
∫

Λ
(|r(y)|2 − |DP ∗(y)|2)α(y)dy.(59)

Observe that (59) is equivalent to

f 2/2
∫

Λ
|y − r(y)|2α(y)dy ≥ f 2/2

∫
Λ
|y −DP ∗(y)|2α(y)dy

+
∫

Ω
ρ(x)(ρ(x)− η(x))dx,

which can be read as

E[η, r] ≥ E[ρ,DP ∗] + 1/2
∫

Ω
(ρ(x)− η(x))2dx. (60)

By (60), we have
E[η, r] ≥ E[ρ,DP ∗], (61)

and equality holds if and only if r = DP ∗ and η = ρ. Note that

I[η] = inf
r
E[η, r],

where the infimum is performed over the set of all Borel maps r : Λ → Ω that
push α forward to η. So, using (61) we conclude that I[η] ≥ I[ρ]. QED.
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Remark 3.5 Let L be the functional introduced in Definition 1.1. Assume
that α ∈ Pac(R2) has its support contained in B, and let ρ := L[α]. Then, by
Proposition 3.4, ρ ∈ W 1,∞(Ω), and ||ρ||W 1,∞(Ω), ||P ||W 1,∞(BS) are bounded by a
constant with depends only on S, B, and f. Furthermore, we may assume that
Lip(P ∗) ≤ S. Here, x → |x|2/2 + ρ(x)/f 2 has a convex extension on B̄S we
denote by P.

Lemma 3.6 (Stability: strong compactness of α→ ρ) Suppose that
{αj}∞j=1 ⊂ L1(B) ∩ Pac(B) converges weakly in L1(B) to α as j tends to +∞.
Then, {L[αj]}∞j=1 converges to L[α] in W 1,s(Ω), for all 1 ≤ s < +∞. Further-
more, {L[αj]}∞j=1 converges uniformly to L[α] on Ω.

Proof: Set

ρj := L[αj], Pj(x) = |x|/2 + ρj(x)/f
2, ρ := L[α].

By Proposition 3.4, Pj can be extended on B̄S into a convex function we still
denote Pj , such that

||Pj||W 1,∞(BS), ||DPj||BV (Ω), and ||ρj||W 1,∞(Ω) ≤ c1,

where, c1 is a constant that depends only on S, B, and f. Furthermore,

DPj#ρj = αj . (62)

Let {Pjk}
∞
k=1 be an arbitrary subsequence of {Pj}∞j=1. We make use of the fact

that {Pjk}
∞
k=1 a subsequence of convex functions that is bounded in W 1,∞(BS).

Hence, we may extract from {Pjk}
∞
k=1 a subsequence {Pjkl}

∞
l=1 which converges

strongly in W 1,s(BS) to a convex function P, as l tends to +∞. We may assume
that {Pjkl}

∞
l=1 converges uniformly to P on BS, as l tends to +∞. Using (62)

and Lemma A.3 we conclude that

DP#ρ = α, (63)

where
ρ(x) = f 2(P (x)− |x|2/2). (64)

In the light of Proposition 3.4, (63) and (64) we deduce that ρ = L[α] in Ω. Let us
summarize a byproduct of what we have proved. If {ρjk}

∞
k=1 is any subsequence

of {ρj}∞j=1, then we can extract a subsequence {ρjk}
∞
k=1 which converges to L[α]

in W 1,s(Ω) and in C(Ω̄). The limit L[α] being independent of the subsequence
{ρjk}

∞
k=1, we conclude the proof of Lemma 3.6. QED.
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4 Existence of Stable Solutions in Dual Vari-

ables

Throughout this section we assume that Ω ⊂ R2 is an open, bounded, connected
set, and Ω̄ ⊂ BS. Here, BS is the open ball of center 0, and radius S. We assume
that ρo ∈ Pac(Ω), and that

x→ P o(x) := |x|2/2 + ρo(x)/f 2

can be extended into a convex function on BS. We assume that αo ≥ 0 is a
probability density function, spt(αo) ⊂ BS, and that the compatibility condition

DP o
#ρ

o = αo

is satisfied. Here, f > 0 is a constant occuring as the Coriolis force.
The aim of this section is to prove that (25) admits a stable solution (α, ρ)

for all times t in (0,+∞). Let T > 0 be an arbitrary integer and denote by B
the ball of center 0 and radius

R := S(2 + fT ).

The first part of this section consists in discretizing (25) in time to construct
approximate solutions. Fix a time step size h > 0 such that nh := T/h is an
integer. Assume that the density functions αoh, and ρoh are given. For k integer,
we shall inductively determine αkh, ρ

k
h, approximate solutions of (25) in the time

interval [kh, (k+1)h). While discretizing (25) we need to smooth out functions.
Let us introduce the standard mollifiers jh : R2 → [0,+∞) defined by

jh(y) :=
1

h2
j(
y

h
).

Here j : R2 → [0,+∞) is of class C∞, is symmetric, has its support equal to
the closed ball of center 0 and radius 1, and

∫
R2 j(y)dy = 1. Set

αoh := jh ∗ α
o.

Given αkh, we use the functional L of Definition 1.1 to define on Ω the functions{
ρkh := L[αkh]

P k
h (x) := |x|2/2 + ρkh(x)/f

2.
(65)
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We define on R2 the functions
Qk
h := jh ∗ (P k

h )∗

wk
h(y) := fJ(y −D(P k

h )∗(y))
ukh(y) := fJ(y −DQk

h(y))
(66)

By Remark 3.5 we may assume that

Lip(P k
h )∗ ≤ S, (67)

and so,
||DQk

h||L∞(R2) ≤ S. (68)

Step 1. Use ukh and the transport equation to determine αk+1
h by solving{

∂αh
∂t

+ div [αhu
k
h] = 0 in [kh, (k + 1)h]×R2

αh(kh, y) = αkh(y) in R2,
(69)

in the weak sense. We define

αk+1
h (y) := αh((k + 1)h, y).

Lemma 4.1 shows that
spt(αk+1

h ) ⊂ BSk+1
.

Step 2. Inductively, we use αk+1
h , (65), and (66) to define ρk+1

h , P k+1
h , Qk+1

h ,
wk+1
h , and uk+1

h .

Step 3. We introduce the following functions that depend on the time and
space variables. Note first of all that αh is well-defined over [0, T ]×R2. As in
(65) we define {

ρh(t, ·) := L[αh(t, ·)]
Ph(t, x) := |x|2/2 + ρh(t, x)/f

2,
(70)

for all t ∈ [0, T ] and all x ∈ Ω. We define
Qh(t, ·) := jh ∗ (Ph)

∗(t, ·)
wh(t, y) := fJ(y −D(Ph)

∗(t, y))
uh(t, y) := fJ(y −DQh(t, y)),

(71)
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for all t ∈ [0, T ] and all y ∈ R. Similarly, we define the following functions which
are stepwise constant in the time variable.{

ρ̄h(t, x) := ρkh(x) = ρh(kh, x)
P̄h(t, x) := P k

h (x) = Ph(kh, x),
(72)

for t ∈ [kh, (k + 1)h) and x ∈ Ω. We define
ᾱh(t, y) := αkh(y) = αh(kh, y)
w̄h(t, y) := wk

h(y) = wh(kh, y)
ūh(t, y) := ukh(y) = uh(kh, y),

(73)

for t ∈ [kh, (k + 1)h) and y ∈ R2. We next start listing useful properties of the
functions defined above.

Lemma 4.1 Assume that r ∈ [1,+∞], and that ||αoh||Lr(R2) < +∞. Assume
that spt(αkh) ⊂ BSk , where Sk := S(1+fhk), and that ||αkh||Lr(R2) = ||αoh||Lr(R2).
Let αh be the unique solution of (69) over [kh, (k+ 1)h]×R2, and suppose that
kh < T. Then we have that

||αh(t, ·)||Lr(R2) = ||αoh||Lr(R2), (t ∈ [kh, (k + 1)h]). (74)

spt(αh(t, ·)) ⊂ BSk+1
, (t ∈ [kh, (k + 1)h]). (75)

W1(αh(s2, ·), αh(s1, ·)) ≤ CT |s2 − s1|, (s1, s2 ∈ [kh, (k + 1)h]), (76)

where CT := S f(2 + fT )||αo||L1(R2).

Proof: We introduce the characteristic system associated with (69) by defining
the flow N satisfying{

∂N
∂t

(t, y) = ukh(N(t, y)) y ∈ R2

N(kh, y) = y y ∈ R2.
(77)

Since ukh is divergence free and belongs to C∞(R2), the classical theory of ODEs
tells us that N ∈ C∞([kh, (k + 1)h]×R2), N(t, ·) is a diffeomorphism and

detDN(t, ·) ≡ 1, (78)

for t ∈ [kh, (k + 1)h]. It is well-known that the unique solution αh of (69) over
[kh, (k + 1)h]×R2 is given by

αh(t, N(t, y)) ≡ αkh(kh, y), (79)
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for (t, y) ∈ [kh, (k + 1)h]×R2. Using the definition of ukh, (68), (77), we have

∂|N |

∂t
=
∂N

∂t
·
N

|N |
= −fJDQk

h(N) ·
N

|N |
≤ Sf,

for all t ∈ [kh, (k + 1)h]. So,

|N(t, y)| ≤ |y|+ fS(t− kh), (80)

for all t ∈ [kh, (k + 1)h]. Using that spt(αkh) ⊂ BSk , (79) and (80) we conclude
that

spt(αh(t, ·)) ⊂ BSk+1
.

for all t ∈ [kh, (k+1)h]. This proves (75). We obtain (74) as a direct consequence
of (78), (79), and the fact that ||αkh||Lr(R2) = ||αoh||Lr(R2).

Now, assume that kh ≤ s1 < s2 ≤ (k + 1)h. From (68), and (75) we have

αh(t, y)|u
k
h(y)| ≤ S f(2 + fT )|αh(t, y)|, (81)

for all t ∈ [kh, (k + 1)h]. Let φ ∈ C∞o (R2). We have∫
R2
φ(y)(αh(s2, y)− αh(s1, y))dy =

∫
R2

∫ s2

s1

φ(y)
∂αh
∂s

(s, y)dyds.

This, together with (69) yields∫
R2
φ(y)(αh(s2, y)− αh(s1, y))dy = −

∫
R2

∫ s2

s1
φ(y)div(αh(s, y)u

k
h(y))dyds. (82)

We use (74), (81) and integrate by parts the right handside of (82) to obtain
that ∫

R2
φ(y)(αh(s2, y)− αh(s1, y))dy ≤ CTLip(φ)|s2 − s1|. (83)

In the light of (83), and the dual representation of W1(αh(s2, ·), αh(s1, ·)) given
by Proposition A.1, we deduce (76). QED.

Corollary 4.2 Assume that 1 ≤ r ≤ +∞, and that αo ∈ Pac(BS) ∩ Lr(BS),
has its support strictly included in BS. Assume that h > 0 is small enough, say
0 < h < h̄, and set CT := f(2 + fT )||αo||L1(BS). Let BR be the open ball of
center 0, and radius R := S(1 + fT ). Then,{

∂αh
∂t

+ div [αhūh] = 0 in [0, T ]×R2

αh(0, y) = αoh(y) in R2.
(84)
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We have that
||αh(t, ·)||Lr(R2) = ||αoh||Lr(R2), (85)

for all t ∈ [0, T ]. Also,

DPh(t, ·)#ρh(t, ·) = αh(t, ·), DP̄h(t, ·)#ρ̄h(t, ·) = ᾱh(t, ·), (86)

||DP ∗h(t, ·)||L∞, ||DQh(t, ·)||L∞ ≤ S, ||P ∗h (t, ·)−Qh(t, ·)||L∞ ≤ hS, (87)

for all t ∈ [0, T ]. We have that

spt(αh(t, ·)) ⊂ BR, (88)

for all t ∈ [0, T ]. Hence, there exists a constant c1 depending only on S, BR, and
f, such that

||ρh(t, ·)||W 1,∞(Ω) ≤ c1, (89)

for all t ∈ [0, T ]. Furthermore,

W1(αh(s2, ·), αh(s1, ·)) ≤ CT |s2 − s1|, (90)

for all s1, s2 ∈ [0, T ].

Proof: We obtain (84) as a direct consequence of (69). Lemma 4.1 yields
(85). Proposition 3.4, and (70) imply (86) and the first two inequalities in (87).
Because jh ∗P ∗h (t, ·) = Qh(t, ·), we obtain the second inequality in (87). We use
(75) to deduce (88).

Recall that by (70) we have ρh(t, ·) := L[αh(t, ·)]. Using (88), and Remark
3.5, we conclude (89). Since W1 is a distance, we use Lemma 4.1 to obtain (90).
QED.

We next state a general result in partial differential equations which is needed
in this work.

If 1 < r < +∞, r′ := r/(r − 1), α ∈ Lr((0, T )× B), and ϕ ∈ W 1,r′(B), we
define

< α : ϕ > (t) :=
∫
B
α(t, y)ϕ(y)dy.

Lemma 4.3 Suppose that 1 < r < +∞, that T > 0 is an integer, and that
B ⊂ R2 is an open bounded ball. Suppose that {αh}h>0 ⊂ W 1((0, T )× B̄), and
that {kh}h>0 ⊂ Lr((0, T )×B) satisfy, in the weak sense,

∂αh
∂t

+ div (kh) = 0, (91)
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in [0, T ]×R2, using the convention that αh and kh are defined to be 0 outside
B̄. Suppose that there exists a constant C > 0 such that

sup
t∈[0,T ],h>0

||αh(t, ·)||Lr(B), sup
t∈[0,T ],h>0

||kh(t, ·)||Lr(B) ≤ C. (92)

Then, there exists a sequence {hj}∞j=1 ⊂ (0, 1) converging to 0 as j tends to
+∞, there exist α ∈ Lr((0, T ) × B), and a map k ∈ Lr((0, T ) × B) such that
the following hold.

(i) {αhj}
∞
j=1 converges weakly to α in Lr((0, T )×B) , {khj}

∞
j=1 converges weakly

to k in Lr((0, T )×B), as j tends to +∞.

(ii) {αhj(t, ·)}
∞
j=1 converges weakly to α(t, ·) in Lr(B) for every t ∈ [0, T ], as j

tends to +∞.

Proof: 1. The existence of a sequence {hj}∞j=1 ⊂ (0, 1) converging to 0, as
j tends to +∞, and the existence of a function α ∈ Lr((0, T ) × B), a map
k ∈ Lr((0, T ) × B) such that {αhj}

∞
j=1 converges weakly to α in Lr((0, T ) ×

B), {khj}
∞
j=1 converges weakly to k in Lr((0, T ) × B) as j tends to +∞ is

straightforward to obtain. This concludes the proof of (i).
One can readily check that (92) implies that

sup
t∈[0,T ]

||α(t, ·)||Lr(B) ≤ C. (93)

Combining (91) and (92) we deduce that

|
∂

∂t

∫
B
αhϕdy| = |

∫
B

kh ·Dϕdy| ≤ C||Dϕ||Lr′(B), (94)

in [0, T ], and for all ϕ ∈W 1,r′(B). Also,

|
∫
B
αhϕdy| ≤ C||ϕ||Lr′(B), (95)

in [0, T ] and for all ϕ ∈ Lr
′
(B).

2. Let {ψk}∞k=1 ⊂ C1(B̄) be a dense subset of Lr
′
(B) and W 1,r′(B). In the

light of (94) and (95) we find that for each k ∈ N the sequence of real functions
{< αhj : ψk >}∞j=1 is bounded in W 1,∞(0, T ) and that

Lip(< αhj : ψk >) ≤ C||Dψk||Lr′(B). (96)
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Consequently, we may extract from {hj}∞j=1 a subsequence we still label {hj}∞j=1

such that for each k ∈ N

< αhj : ψk > converges uniformly to a(ψk) in C[0, T ], (97)

< αhj : ψk > converges weak ∗ to a(ψk) in W 1,∞(0, T ), (98)

as j tends to +∞, for some a(ψk) ∈W 1,∞(0, T ). Now, using (95), (97) and the
fact that {ψk}∞k=1 is dense in Lr

′
(B) we deduce that for each ϕ ∈ Lr

′
(B),

{< αhj : ϕ >}∞j=1

is a Cauchy sequence in C[0, T ]. Thus, there exists a(ϕ) ∈ C[0, T ] such that

< αhj : ϕ > converges uniformly to a(ϕ) in C[0, T ], (99)

as j tends to +∞. By (95)

|a(ϕ)|L∞(0,T ) ≤ C||ϕ||Lr′(B). (100)

Combining (99) and (100) we deduce that for each t ∈ [0, T ] there exists β(t, ·) ∈
Lr(B) such that

a(ϕ)(t) =
∫
B
β(t, y)ϕ(y)dy, (101)

and
||β(t, ·)||Lr(B) ≤ C. (102)

Using the fact that {αhj}
∞
j=1 converges weakly to α in Lr((0, T )×B) as j tends

to +∞, and using (95), and (99) we deduce that for each ω ∈ C[0, T ] and each
k ∈ N we have∫ T

0
ω(t)dt

∫
B
β(t, y)ψk(y)dy =

∫ T

0
ω(t)dt

∫
B
α(t, y)ψk(y)dy. (103)

In the light of (103) there exists a set N ⊂ [0, T ] such that H1(N) = 0 and∫
B
β(t, y)ψk(y)dy =

∫
B
α(t, y)ψk(y)dy, (104)

for all t ∈ [0, T ] \ N. Since {ψk}∞k=1 is dense in Lr
′
(B), using (93), (102) and

(104) we have that ∫
B
β(t, y)ϕ(y)dy =

∫
B
α(t, y)ϕ(y)dy, (105)
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for all t ∈ [0, T ] \N, and all ϕ ∈ Lr
′
(B). Define the function

ᾱ(t, y) :=

{
α(t, y) if t ∈ [0, T ] \N, y ∈ B
β(t, y) if t ∈ N, y ×B.

(106)

Clearly, α and ᾱ coincide H3 a.e. in [0, T ] × B, and by (101), (105) we have
that

a(ϕ)(t) =
∫
B
ᾱ(t, y)ϕ(y)dy, (107)

for every t ∈ [0, T ] and every ϕ ∈ Lr
′
(B). From (106), and (107) we assume

that
α ≡ ᾱ ≡ β, (108)

on [0, T ]×B.
Combining (99), (101), and (108) we conclude the proof of (ii). QED.

Theorem 4.4 (Main existence result) Assume that 1 < r < +∞, and that
αo ∈ Pac(BS) ∩ Lr(BS) has its support strictly contained in BS. Define CT :=
Sf(2 + fT )||αo||L1(R2), and let BR be the ball of center 0, and radius R :=
S(1 + fT ). Then there exist two functions ρ ∈ L∞((0, T );W 1,∞(Ω)), α ∈
L∞((0, T );Lr(R2)), such that (α, ρ) is a stable solution of (25). In addition,
the following hold.

(i) α(t, ·) ∈ Pac(BR), and ||α(t, ·)||Lr(BR) ≤ ||αo||Lr(BR).
(ii) spt(α(t, ·) ⊂ B̄R.
(iii)

W1(α(s2, ·), α(s1, ·)) ≤ CT |s1 − s2|, (109)

for all s1, s2 ∈ [0, T ].
(iv) There exists a universal constant C such that w, the geostrophic velocity

in dual variables satisfies

||w(t, ·)− fJy||L∞(BR) ≤ fS, ||w(t, ·)− fJy||BV (BR) ≤ fCSR(R+ 1).

(v) ρ(t, ·) ∈ Pac(Ω), for all t ∈ [0, T ]. Furthermore, ρ ∈ L∞((0, T );W 1,∞(Ω)),
and ρ ∈ C([0, T ];W 1,s(Ω)) for each 1 ≤ s < +∞.

Proof: 1. Let αh be as in (69), let Ph, ρh be as in (70), let Qh be as in (71),
and let ūh be as in (73). Recall that Corollary 4.2 gives that

||αh(t, ·)||Lr(R2) ≤ ||α
o||Lr(R2), (110)
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and
||DP ∗h(t, ·)||L∞(BR), ||DQh(t, ·)||L∞(BR) ≤ S, (111)

for all t ∈ [0, T ] and all h > 0. So, in the light of Lemma 4.3, we conclude
that there exists a sequence {hj}∞j=1 ⊂ (0,+∞) converging to 0, there exists
α ∈ Lr((0, T )×BR), and there exists k ∈ Lr((0, T )×BR) such that the following
hold: as j tends to +∞, we have that

αhj ⇀ α in Lr((0, T )×R2), αhj ūhj ⇀ k in Lr((0, T )×R2) (112)

and
αhj(t, ·) ⇀ α(t, ·) in Lr(R2), (113)

for each t ∈ [0, T ]. Thanks to (110), (113), and the fact that the Lr-norm
is weakly lower semicontinuous, we conclude the proof of (i). Using (88) in
Corollary 4.2, and (113) we deduce (ii).

Observe that by Corollary 4.2

W1(αhj(s2, ·), αhj(s1, ·)) ≤ CT |s2 − s1|, (114)

for s1, s2 ∈ [0, T ]. Letting i tends to +∞, using (113), (114), and that by Lemma
A.4, W1 is continuous for the weak ∗ topology, we concludes the proof of (iii).

2. Set
ρ(t, ·) := L(α(t, ·)), P (t, x) := |x|2/2 + ρ(t, x)/f 2. (115)

Recall that (ii) gives that spt (α(t, ·)) ⊂ B̄S, and by assumption Ω̄ ⊂ BS. So,
the definition of L, and Proposition 3.4 yield that the function x→ P (t, x) :=
|x|2/2 + ρ(t, x)/f 2 can be extended into a convex function on BS, such that

DP (t, ·)#ρ(t, ·) = α(t, ·).

Also, we may assume without loss of generality that

∂P ∗(t, ·)(R2) ⊂ B̄S, (116)

for all t ∈ [0, T ].
We claim that as j tends to +∞, {ᾱhj(t, ·)}

∞
j=1 converges weakly in L2(R2) to

α(t, ·), for each t ∈ [0, T ]. Indeed, Using (114), and that ᾱhj(kh, ·) = αhj(kh, ·)
for all k, we conclude that

W1(αhj(t, ·), ᾱhj(t, ·)) ≤ CThj . (117)
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for each t ∈ [0, T ]. Combining (113), and (117) we conclude that

lim
j→+∞

W1(ᾱhj(t, ·), α(t, ·)) = 0. (118)

But, (118) reads off {ᾱhj(t, ·)}
∞
j=1 converges weakly to α(t, ·) in Lr(R2), for each

t ∈ [0, T ]. (See Rachev and Rüschendorf [18]). We use the stability result in
Lemma 3.6 to deduce that

ρ̄hj(t, ·)→ ρ(t, ·), P̄hj(t, ·)→ P (t, ·) in C(Ω̄), (119)

for each t ∈ [0, T ]. Recall that dom(Ph(t, ·)) = B̄S, and so, by (119) we have
that

P̄ ∗hj(t, ·)→ P ∗(t, ·) in C(B̄R), (120)

for each t ∈ [0, T ]. Combining (111), (120), and using the fact that P̄ ∗hj(t, ·) is
convex, we deduce that

||ūhj(t, ·)||L∞(BR) ≤ 2fR, (121)

and
ūhj(t, ·)→ fJ(id−DP ∗(t, ·)), (122)

almost everywhere in BR, and for each t ∈ [0, T ]. Define

w := fJ(id−DP ∗) (123)

By (112), (121), and (122) we have that

αhj ūhj ⇀ αw in Lr((0, T )×R2). (124)

Since {αoh}h>0 converges to αo in Lr(R2) as h tends to 0, combining (84), (112),
and (124) we deduce that{

∂α
∂t

+ div [αw] = 0 in [0, T ]×R2

α(0, ·) = αo in R2,
(125)

in the weak sense. Thanks to (115), (123), (125) we conclude that (α, ρ) is a
stable solution of (25).

3. Since P ∗ is convex, D2P ∗ is a Radon measure. Hence, the totale varia-
tion of D2P ∗ on BR is bounded by a multiple of the totale variation of 4P ∗ on
BR. But, Green’s formula gives that∫

BR

4P ∗(y)dy =
∫
∂BR

DP ∗(y) ·
y

||y||
dy.
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Since in addition by (116), ||DP ∗|| ≤ S, and w − fJy = −fJDP ∗ we deduce
that

||w(t, ·)− fJy||L∞(BR) ≤ fS, ||w(t, ·)− fJy||BV (BR) ≤ fCSR(R+ 1).

Here, C is a universal constant. (See [11]).

4. In Corollary 4.2, (89) gives that ρ ∈ L∞((0, T );W 1,∞(Ω)). We use (109),
the stability Lemma given in 3.6, and the fact that ρ(t, ·) = L[α(t, ·)] to obtain
that ρ ∈ C([0, T ];W 1,s(Ω)) for each 1 ≤ s < +∞. Also, ρ(t, ·) ∈ Pac(Ω), for all
t ∈ [0, T ]. This concludes the proof of Theorem 4.4. QED.

A Background on the Wasserstein distance

Throughout this section we assume that Ω ⊂⊂ B̄S, Λ ⊂⊂ B̄ are two open
sets, where BS, and B are open balls in R2. We identify ρ ∈ Pac(Ω) with its
restriction to Ω.

Assume that ρ, that α are two Borel probability density functions on R2,
and that c(z) = |z|p/p, for z ∈ R2. Recall that if 1 ≤ p < +∞, the quantity

W p
p (ρ, α) := inf

γ∈Γ(ρ,α)

∫
R2×R2

c(x− y) dγ(x, y), (126)

was introduced in Section 1 as the p-Monge-Kantorovich distance to the power
p. We sometimes refer to the 2-Monge-Kantorovich distance as the Wasserstein
distance. We recall results on the Monge-Kantorovich mass transport theory in
special cases that are relevant in this work.

Proposition A.1 (Duality) Assume that 0 < p < +∞, that spt(ρ) ⊂ B̄S,
and that spt(α) ⊂ B̄. Then we have

(i)

W p
p (ρ, α) := sup

u,v
{
∫

R2
ρ(x)u(x)dx+

∫
R2
α(y)v(y)dy}, (127)

where the supremum is performed over the set of all pairs (u, v) such that u :
BS → R, v : B → R, and u(x) + v(y) ≤ c(x− y) for all x ∈ B̄S, and all y ∈ B̄.

(ii) If in addition B = BS, and 0 < p ≤ 1 then

W p
p (ρ, α) := sup

u
{
∫

R2
(ρ(x)− α(x))u(x)dx}. (128)

where the supremum is performed over the set of all u : B → R such that
u(x)− u(y) ≤ c(x− y) for all x, y ∈ B̄.
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Proof: The proof can be found in [14]. We also refer the reader to [12]. QED.

Proposition A.2 Assume that p = 2, that spt(ρ) ⊂ B̄S, and that spt(α) ⊂ B̄.
Then

(i) (126) admits a minimizer. Furthermore, γo ∈ Γ(ρ, α) is a minimizer
of (126) if and only if there exists a convex function ψo : R2 → R such that
dom(ψo) = B̄S, ∂ψo(BS) ⊂ B̄, dom(ψ∗o) = R2, ∂ψ∗o(R

2) ⊂ B̄, and∫
R2×R2

x · y dγo(x, y) =
∫

R2
ψoρ(x)dx+

∫
R2
ψ∗oα(y)dy.

In that case,

W 2
2 (ρ, α) =

∫
R2
|x|2/2(ρ(x) + α(x))dx−

∫
R2×R2

x · y dγo(x, y). (129)

(ii) Dψo(x) exists for ρ-almost every x ∈ R2, and Dψo is the unique Borel
map minimizing

∫
R2(|x − r(x)|2)/2ρ(x)dx over the set of all Borel maps r :

R2 → R2 that push ρ forward to α.

Proof: Since Γ(ρ, α) is a set of probability measures, closed under weak ∗
convergence, existence of a minimizer in (129) is a direct consequence of the
Banach-Alaoglu theorem. We refer the reader to [12] for a detailed proof of the
Proposition. QED.

Lemma A.3 Let φn : B → R (n = 1, 2, · · ·), be a collection of convex func-
tions satisfying

∫
B |φn|dx ≤ R1, Lip(φn) ≤ R1 for some constant R1 > 0.

Assume that as n tends to +∞, {αn}∞n=1 ⊂ P
ac(BS) converges weakly in L1(B)

to α ∈ Pac(BS), and that {ρn}∞n=1 ⊂ P
ac(BS) converges weakly in L1(B) to

ρ ∈ Pac(BS). Suppose that Dφn#αn = ρn. For F ∈ C(R2 × R2), define
Fφn(x) := F (x,Dφn(x)).

(i) Then there exists a convex function φ : B → R such that {αn · Fφn}
∞
n=1

converges weakly in L1(B) to αF · Fφ as n tends to +∞. Here, Fφ(x) :=
F (x,Dφ(x)).

(ii) Furthermore, Dφ#α = ρ.

Proof: The set S := {φ : B̄ → R :
∫
B |φ(x)|dx ≤ R1, Lip(φ) ≤ R} is

equicontinuous on B̄, and so, by Ascoli-Arzela theorem it is precompact in C(B̄).
Let {ni}∞i=1 ⊂ N be any arbitrary sequence. We may extract a subsequence we
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still label {ni}∞i=1 such that as i tends to +∞, {φni}
∞
i=1 converges uniformly on

B to a convex function φ ∈ S, and {Dφni}
∞
i=1 converges H2-almost everywhere

to Dφ on B. (See [19]). Thus, {Fφni}
∞
i=1 converges H2-almost everywhere to Fφ

on B as i tends to +∞. Since B is a bounded set, and the sequence {Fφni}
∞
i=1

is bounded in L∞(B) we deduce that {αni ·Fφni}
∞
i=1 converges weakly in L1(B)

to α · Fφ. In particular for g ∈ C(B) we have∫
B
g(Dφ(x))α(x)dx = lim

i→+∞

∫
Λ
g(Dφni(x))αni(x)dx

= lim
i→+∞

∫
Ω
g(y)ρni(y)dy

=
∫

Ω
g(y)ρ(y)dy,

thus, Dφ pushes α forward to ρ.
Note that in the light of Proposition A.2, Dφ is uniquely determined by ρ,

and α. Since {ni}∞i=1 is an arbitrary subsequence of N we deduce that {αn ·
Fφn}

∞
n=1 converges weakly in L1(B) to αF · Fφ as n tends to +∞. QED.

Lemma A.4 (Weak ∗ semicontinuity of W1 and W2.) Assume that
{ρn}∞n=1, and {αn}∞n=1 are two sequences of probability Borel density functions
on R2, that spt (ρn) ⊂ Ω̄, and that spt (αn) ⊂ B̄. Assume that {ρn}∞n=1 converges
weak ∗ to ρ, and that {αn}∞n=1 converges weak ∗ to α in the sense that

lim
n→+∞

∫
R2
g(x)ρn(x)dx =

∫
R2
g(x)ρ(x)dx,

for all g ∈ Co(R
2). Then the sequence of real numbers {W2(ρn, αn)}∞n=1 con-

verges to W2(ρ, α), as n tends to +∞. Similarly, {W1(ρn, αn)}∞n=1 converges to
W1(ρ, α), as n tends to +∞.

Proof: We first prove that {W2(ρn, αn)}∞n=1 converges to W2(ρ, α). It suffices
to show that from any subsequence {W2(ρni , αni)}

∞
i=1 of {W2(ρn, αn)}∞n=1 we

may extract a subsequence {W2(ρnik , αnik )}
∞
k=1 which converges to W2(ρ, α). By

Proposition A.2 there exists a measure γn on R2×R2 that has ρn and αn as its
marginals, and such that

W 2
2 (ρn, αn) :=

∫
R2×R2

(|x− y|2)/2 dγn(x, y).

Furthermore, there exists convex functions ψn : B̄S → R such that ∂ψn(BS) ⊂
B̄, ∂ψ∗n(R

2) ⊂ B̄S, and∫
R2×R2

x · y dγn(x, y) =
∫

R2
ψoρn(x)dx+

∫
R2
ψ∗oαn(y)dy. (130)
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Hence,

W 2
2 (ρn, αn) =

∫
R2
|x|2/2(ρn(x) + αn(x))−

∫
R2×R2

x · y dγn(x, y). (131)

We assume without loss of generality that ψn(0) = 0. Clearly, {ψn}∞n=1 is
equicontinuous on B̄S, and so, from any subsequence {ψni}

∞
i=1 of {ψn}∞n=1 we

may extract another subsequence we still label {ψni}
∞
i=1 such that {ψni}

∞
i=1 con-

verges uniformly to a convex function ψ : B̄S → R, on B̄S as i goes to +∞.
One can readily check that {ψ∗ni}

∞
i=1 converges uniformly to ψ∗ on B̄ as i goes

to +∞. Since {γni}
∞
i=1 is a sequence of probability measures on R2×R2 whose

supports are in B̄ × B̄ we may as well assume that {γni}
∞
i=1 converges weak ∗

to some γ which is necessarily in Γ(ρ, α). We substitute n by ni in (130), and
let ni go to +∞ to deduce that∫

R2×R2
x · y dγ(x, y) =

∫
R2
ψoρ(x)dx+

∫
R2
ψ∗oα(y)dy, (132)

and so, in the light of Proposition A.2

W 2
2 (ρ, α) =

∫
R2
|x|2/2(ρ(x) + α(x))dx−

∫
R2×R2

x · y dγ(x, y). (133)

Using (131), (132), and (133) we deduce that

lim
i→+∞

W 2
2 (ρni, αni) = lim

i→+∞

∫
R2
|x|2/2(ρni(x) + αni)(x))dx−

∫
R2×R2

x · y dγni(x, y)

=
∫

R2
|x|2/2(ρ(x) + α(x))dx−

∫
R2×R2

x · y dγ(x, y)

= W 2
2 (ρ, α).

Since {W2(ρni , αni)}
∞
i=1 is an arbitrary subsequence of {W2(ρn, αn)}∞n=1 we con-

clude that the sequence {W2(ρn, αn)}∞n=1 converges to W2(ρ, α), as n tends to
+∞.

The proof of the convergence of {W1(ρn, αn)}∞n=1 to W1(ρ, α) is similar to
the above proof. QED.

Lemma A.5 Let α ∈ P(R2). Then the map ρ → W 2
2 (ρ, α) is convex over the

set P(R2).
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Proof: Let ρo, ρ1 be two Borel probability measures on R2, and let t ∈ (0, 1). If
γo ∈ Γ(ρo, α) := Γo and γ1 ∈ Γ(ρ1, α) := Γ1 then γt := (1− t)γo+ tγ1 ∈ Γ(ρt, α),
where ρt = (1− t)ρo + tρ1. Consequently,

(1− t)W 2
2 (ρo, α) + tW 2

2 (ρ1, α)

= inf
γo∈Γo

∫
R2×R2

(1− t)(|x− y|2/2)dγo(x, y) + inf
γ1∈Γ1

∫
R2×R2

t(|x− y|2/2)dγ1(x, y)

≥ inf
γo,γ1
{
∫

R2×R2
|x− y|2/2dγt(x, y) : γo ∈ Γo, γ1 ∈ Γ1}

≥ inf
γ
{
∫

R2×R2
|x− y|2/2dγ(x, y) : γ ∈ Γ(µ, νt)}

= W 2
2 (ρt, α).

This concludes the proof of the Lemma. QED.
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