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Abstract
We unify Kantorovich and Young’s theory by formulating the

Monge mass transfer problem as a variational problem involv-
ing Young measures. This is done thanks to the disintegration
theorem and a density result on the set of all Borel measures on
Rd ×Rd with fixed marginals. We mention applications, such
as Bernoulli convolution.
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Introduction

We present two main results on existence of optimal maps for the Monge
mass transfer problem. The first one was obtained by Sudakov [27]
and the second one by Evans and Gangbo [14]. We write the Monge-
Kantorovich problem as a relaxation of the Monge problem by using
Young measures generated by measure-preserving maps. This observa-
tion is based on the fact that given two Borel probability measures µ+

and µ− on Rd that have no atoms the set M of all Borel measures on
Rd×Rd that have µ± as their marginals is the closure of the set of all
p inM whose support lies in the graph of a one-to-one map of Rd into
Rd.

The original Monge problem consists of finding the optimal way
for rearranging a Borel probability measure µ+ on Rd onto a Borel
probability measure µ− on Rd against the cost function c(z) = ||z||. The
physical interpretation given by Monge ([24]) is that we are dealing with
a pile of soil with a given mass distribution which we want to transport
to an excavation, with a given distribution. The work involved by a
particle of mass dµ+(x) moving from a point x to a point r(x) along a
smooth path t→ g(t,x) between time 0 and 1 is∫ 1

0
||ġ(t,x)||dtdµ+(x).

Hence, the total work involved by all particles is

L[g] :=
∫

Rd

∫ 1

0
||ġ(t,x)||dtdµ+(x),

where r satisfies the mass conservation condition

µ+[r−1(A)] = µ−[A], (1)

for all A ⊂ Rd Borel. As observed by Monge for g satisfying (1), if we
define ḡ(t,x) := (1−t)x+ tr(x) then L[ḡ] ≤ L[g] (Jensen’s inequality).
The Monge problem reduces then to the variational problem

min
r∈A

I[r], (2)

where

I[r] :=
∫

Rd
||x− r(x)||dµ+(x),

and A is the set of all Borel maps r : Rd → Rd satisfying (1).
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The setA on which we minimize the convex function I is not convex.
Using the canonical imbedding i defined in (4) we can consider A as a
subset of M, the set of all Borel measures q on Rd ×Rd satisfying

q[A×Rd] = µ+[A], q[Rd × A] = µ−[A],

for all A ⊂ Rd Borel. Define J :M→ [0,+∞] by

J [q] :=
∫

Rd×Rd
||x− y||dq(x,y), (q ∈M).

Then
I[r] = J [i(r)], (r ∈ A), (3)

where i : A →M is the canonical imbedding defined by

i(r)[E] := µ+{x ∈ Rd : (x, r(x)) ∈ E}, (4)

forE ⊂ Rd×Rd Borel. Let us observe thatM is a subset of P(Rd×Rd),
the set of all Borel probability measures on Rd ×Rd, which is itself a
subset of the topological dual space to Co(R

d×Rd). Here Co(R
d×Rd)

denotes the set of all continuous functions on Rd × Rd which vanish
at infinity under the sup norm. We say that a sequence (qn)n ⊂ M
converges weak ∗ to q ∈M if

lim
n→+∞

∫
Rd×Rd

F (x,y)dqn(x,y) =
∫

Rd×Rd
F (x,y)dq(x,y),

for all F ∈ Co(Rd ×Rd). We prove that the set i(A) is a dense subset
of M endowed with the weak ∗ topology (Proposition A.3).

Monge conjectured that I admits a minimiser s ∈ A and there exists
a potential u : Rd → R with Lipschitz constant less than or equal to 1
such that

u(x)− u(s(x)) = ||x− s(x)||, (x ∈ Rd), (5)

provided that the measures µ± have compact supports and are abso-
lutely continuous with respect to the Lebesgue measure.

For the reader’s convenience we recall two definitions needed in the
sequel.

Definition 0.1 Let X be a metric space and let µ be a positive, finite
Borel measure on X. The support of µ is the smallest closed set spt(µ) ⊂
X such that µ(spt(µ)) = µ(X).

Definition 0.2 We say that M ⊂ Rd is a (d − 1)-rectifiable set if
M is a countable union of C1 (d − 1)-hypersurfaces and sets of zero
(d− 1)-dimensional Hausdorff measure.
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Young measures and Kantorovich approach. The first rigorous
proof on the existence of a potential u associated to the Monge problem
was given by Kantorovich when he introduced the following variational
problem ([18], [19]) which is referred to as the Monge-Kantorovich prob-
lem: find p ∈M such that

J [p] = min
q∈M

J [q] := dW (µ+, µ−). (6)

Kantorovich’s formulation is similar to Young’s when he introduced the
generalized functions (or parametrized Young measures [30]), a concept
which is very useful in the Calculus of Variations, Partial Differential
Equations ([28]) etc... For each q ∈ M we may find a family (qx)x∈Rd

of probability measures on Rd such that∫
Rd×Rd

Fdq =
∫

Rd
[
∫

Rd
F (x,y)dqx(y)]dµ+(x), (7)

for all Borel q-summable functions F : Rd × Rd → [−∞,+∞]. Using
that q ∈M we deduce that

µ−[A] =
∫

Rd
qx[A]dµ+(x), (8)

for all A ⊂ Rd Borel. Conversely, one can readily check that given a
family (qx)x∈Rd of probability measures on Rd satisfying (8) the mea-
sure q defined by (7) is an element of M.

The function dW in (6), which is a metric on the set of probabil-
ity measures (see [11]) and known as the Wasserstein-Rubinstein dis-
tance has been of great use in various fields such as Partial Differential
Equations ([7]), Material Sciences ([6]), Probability ([25]), Functional
Analysis ([1], ([20]), etc...

Writing (6) as an infinite dimensional linear programming minimiza-
tion problem under the assumption that the measures µ± have compact
supports Kantorovich obtained a dual problem

max
w∈L

K[w], (9)

where,

K[w] :=
∫

Rd
wdµ+ −

∫
Rd
wdµ−,

and,

L := {w : Rd → R : Lip(w) := sup
x6=y

|w(x)− w(y)|

||x− y||
≤ 1}. (10)
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Since µ+[Rd] = µ−[Rd] the supremum of K over L coincides with the
supremum of K over the subset of all w ∈ L satisfying w(0) = 0. One
can readily deduce that (9) admits a maximizer u ∈ L. Observe that
the duality relation between (6) and (9) implies

||x− y|| = u(x)− u(y), for p a.e. (x,y) ∈ Rd ×Rd (11)

where p is any minimiser of (6). It is a known fact that existence of a
minimiser of (6), a maximizer for (9), the duality between (6) and (9)
still hold even if we don’t impose that the supports of µ± are compact
but, assume that the first moments of the measures are bounded i.e.∫

Rd
||x||dµ+(x),

∫
Rd
||x||dµ−(x) < +∞, (12)

(see [21] and [25]). Note that (12) implies that J takes only finite values
onM.

If µ± have no atoms then i(A) is dense inM (see Proposition A.3),
and using (3) and (12) we obtain

min
r∈A

I[r] = min
q∈M

J [q]. (13)

The Monge-Kantorovich problem is then obtained as a relaxation of
the Monge problem.

Extreme points of M. Since J is a linear functional its minimum
overM is achieved at an extreme point of the compact (with respect to
the weak ∗ topology) convex set M. If the supports of µ± have both n
elements then by the well-known Birkhoff–von Neumann theorem the
set of extreme points ofM is i(A) and so, J achieves its minimum at
some point i(s). Clearly, s is a minimiser of the Monge problem. But, if
µ± have no atoms i(A) is strictly included in the set of extreme points
of M (see Remark C.2 and Corollary C.3).

Geometry of supports of optimal Young measures. Assume
that the Borel probability measures µ± have bounded, disjoint sup-
ports and denote by X := sptµ+, Y := sptµ−. Assume that ∂X and
∂Y are smooth. Then a maximizer u for (9) can be chosen to satisfy

u(x) = inf
y∈Y
{||x− y||+ u(y)}, (x ∈ OX), (14)

u(x) = sup
x∈X
{u(x)− ||x− y||}, (x ∈ OY ), (15)
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where OX a neighborhood of X and OY a neighborhood of Y , and so,
u is semiconcave on X, semiconvex on Y. Thus, u is differentiable at
every point of X ∪Y except may be on a set which is (d−1)-rectifiable
and

Du(xo) =
xo − yo
||xo − yo||

, (16)

whenever Du(xo) exists and u(xo) = ||xo − yo|| + u(yo). Let p be a
minimiser of the Monge-Kantorovich problem (6) and let (px)x∈Rd the
Young measures associated to p as in (7). If in addition we assume
that µ± vanish on (d− 1)-rectifiable sets then (16) implies that sptpx

is contained in a line segment through x, parallel to Du(x), i.e.,

spt px ⊂ Rx := {x− λDu(x) : λ ∈ [λo(x), λ1(x)]}, (17)

for µ+-almost every x ∈ Rd. We call Rx the transport ray through x,
which is nothing but, the set {y ∈ Rd : |u(x)−u(y)| = ||x−y||}, and
is a line segment for µ+-almost every x ∈ Rd. Conversely, if a family
(px)x∈Rd of probability measures on Rd satisfies (8) and (17) then p
defined in (7) is a minimiser of the Monge-Kantorovich problem (6).

In [14] when the Borel measures are absolutely continuous with
respect to the d-dimensional Lebesgue measure, µ± = f±dx, f± are
Lipschitz and positive on the interior of their compact supports, an
ODE {

ġδ(t,x) = vδ(t, gδ(t,x))
gδ(0,x) = x,

(18)

was identified such that gδ(t,x) belongs to the transport ray Rx, for
µ+-almost every x ∈ Rd,

gδ(1,x) pushes (µ+ + δ)dx forward to (µ− + δ)dx, (19)

and the limiting map

s(x) := lim
δ→0+

gδ(1,x)

exists. We have s(x) ∈ Rx for µ+-almost every x ∈ Rd and by (19)
pushes µ+dx forward to µ−dx. Consequently, s is a minimiser of the
Monge problem. To obtain (19) we introduce the following approximate
variational problem:

sup
w∈W 1,p

o (BR)

Kp[w], (20)
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where BR is an open ball of center 0 and radius R > 0, large enough
to contain the supports of µ±, p > 1 and

Kp[w] := K[w]−
1

p
||Dw||pLp(BR).

Clearly, (20) admits a unique maximizer up, solution to the p-Laplacian
equation {

−div(||Dup||p−2Dup) = f+ − f− in BR

up = 0 on ∂BR,
(21)

in the weak sense. The sequence (up)p≥d+1 is bounded in W 1,d+1
o (BR)

and so, we may extract a subsequence (upk) converging uniformly to
some u ∈ W 1,d+1

o (BR). It is straightforward that u ∈ L and is a maxi-
mizer for (9). Using that f± are Lipschitz functions, bounded below by
a positive constant on their compact supports a careful analysis yields
the sequence (||Dup||p−2) is bounded in L∞(BR), converges to some
a ∈ L∞(BR) weak ∗, and letting p go to infinity in (21) yields{

−div(aDu) = f+ − f− in BR

u = 0 on ∂BR,
(22)

We may interpret the density function a as a Lagrange multiplier for
(9). Note that (22) is a continuity equation of the form

∂ρ

∂t
+ div(ρv) = 0, (23)

where
ρ(t, z) = (1− t)f+(z) + tf−(z)

and

v(t, z) =
−a(z)Du(z)

(1− t)f+(z) + tf−(z)
(24)

is defined for γ-almost every (t, z) ∈ [0, 1] × Rd, γ being the measure
on [0, 1]×Rd defined by

γ[B] =
∫
B
ρ(t, z)dtdz,

for all Borel sets B ⊂ [0, 1] ×Rd. We approximate v by velocities vδ,
(δ > 0)

vδ(t, z) =
−a(z)Du(z)

(1− t)f+(z) + tf−(z) + δ
,
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and ρ by densities

ρδ(t, z) = (1− t)f+(z) + tf−(z) + δ.

Note that the following continuity equation holds:

∂ρδ

∂t
+ div(ρδvδ) = 0.

If aDu is smooth then the flow gδ defined in (18) is such that sδ :=
g(1, ·) pushes (µ+ + δ)dx forward to (µ− + δ)dx. Also, for any point x
where u is differentiable Du is constant along the ray Rx and so, the
solution in (18) is unique once we impose that g(t, x) ∈ Rx. Observe
that a ≥ 0 implies (sδ(x))0<δ<1 is monotonically rearranged along Rx

and s(x) := limδ→0+ sδ(x) exists. It is straightforward to check that s
pushes µ+dx forward to µ−dx, and s(x) ∈ Rx i.e.

u(x)− u(s(x)) = ||x− s(x)|| for µ+ − a.e. x ∈ Rd. (25)

Using (25) and the fact that (2) and (6) are dual we obtain that s is a
minimiser of the Monge problem (2). Unfortunately, aDu is not known
to be smooth and we must approximate aDu, f+, and f− by smooth
functions (aDu)ε, f

+
ε , and f−ε such that

−div(aDu)ε = f+
ε − f

−
ε .

Accordingly, we introduce the velocities

vδ,ε(t, z) =
(aDu)ε(z)

(1− t)f+
ε (z) + tf−ε (z) + δ

,

and the flow

ġδ,ε(t,x) = vδ,ε(t, gδ,ε(t,x)), gδ,ε(0,x) = x

which satisfies sδ,ε := gδ,ε(1, ·) pushes (f+
ε +δ)dx forward to (f−ε +δ)dx.

Proving that sδ,ε(x) converges for µ+-almost every x to sδ(x) as ε goes to
0 requires that we know fine properties of the restriction of the functions
a and u to the neighborhood of transport rays. By (14) and (15) u is
semiconcave in a neighborhood of X, semiconvex in a neighborhood of
Y and so D2u is a Radon measure on X ∪Y. Using (22) we obtain that
for almost every x ∈ X the restriction of a to the transport ray Rx is
locally Lipstchitz and satisfies

−(an + a[4u]ac) = f+ − f− H1a.e. on X (26)
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−(an + a[4u]ac) = f+ − f− H1a.e. on Y (27)

where n = Du(x), H1 stands for the one-dimensional Hausdorff mea-
sure, and [4u]ac for the trace of the absolutely continuous part of D2u
(see [14]). We may interpret (26) and (27) as −(Da ·Du+ a[4u]ac) =
f+ − f− which is a formal way of writing (22). Both (26) and (27) are
used to prove that a vanishes at the endpoints of transport rays Rx for
µ+-almost every x ∈ Rd.

The remainder of the paper is organized as follows. In section 1
we describe how the dual problem (9) is obtained via the p-Laplacian
and recall properties of the density function a occuring as a Lagrange
multiplier for (9) and the potential function u maximizer in (9). In
section 2 we state Sudakov’s result ([27]) and construct a minimiser
of (2) as done in [14]. In section 3 we use the Wasserstein-Rubinstein
distance to study Bernoulli’s convolution. In this paper we include an
appendix consisting of three parts. In Appendix A we prove that if X
and Y are two uncountable complete metric spaces, µ+, is a finite Borel
measure on X, µ− is a finite Borel measure on Y , µ± have no atoms and
µ+[X] = µ−[Y ] > 0 then every Borel measure γ on X×Y having µ± as
their marginals can be obtained as the weak ∗ limit of a sequence of the
form {i(rn)} where rn : X → Y are Borel maps that push µ+ forward
to µ− and are one-to-one. Here i(r)[E] := µ+{x ∈ Rd : (x, r(x)) ∈ E},
for E ⊂ X × Y Borel set. In Appendix B we obtain a generalization of
Fubini’s theorem as a straightforward application of the disintegration
of measures, a very useful tool in ergodic theory which goes back to
von Neumann. In the last Appendix C we prove that in general the
extreme points of the set of all Borel measures that have µ± as their
marginal is wider than i(A) where A is the set of all Borel maps that
push µ+ forward to µ−.

The author would like to thank M. Milman and the organisers of the
CBM-NSF conference The Monge-Ampère Equation: Application to
Geometry and Optimisation for their hospitality and financial support.
He thanks the referee for stylistic improvement of the manuscript. He
would like also to thank C. Heil, C. Houdré for references, and A. Swiech
for comments on the paper.

1 Duality

In this section we study a linear maximization problem dual to the
Monge problem. A detailed proof of the results stated in this section
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can be found in [14]. Given f ∈ L∞(Rd)

f compactly supported (28)

find u ∈ L solving
K[u] = max

w∈L
K[w], (29)

where,

K[w] :=
∫

Rd
fwdx,

and L is the subset of Lipschitz functions defined in (10). To ensure
that the supremum in (29) is finite we impose that∫

Rd
fdx = 0. (30)

Since (30) implies
K[w + c] = K[w], (31)

for all w ∈ L and all c ∈ R, we deduce that if we choose S > 0, such
that

B(0, S) contains the support of f, (32)

then
max
w∈L

K[w] = max
w∈W 1,∞

o (B(0,R))
K[w], (33)

for allR > 2S. We next consider a family of variational problems related
to (29): find up ∈W 1,p

o (B(0, R)) such that

Kp[up] = max
w∈W 1,p

o (B(0,R))
Kp[w], (34)

where

Kp[w] := K[w]−
||Dw||pp

p
.

Note that

lim
p→+∞

Kp[w] =
{
K[w] if w ∈ L
−∞ if w 6∈ L,

(35)

up is the unique solution to the PDE{
−div(||Dup||p−2Dup) = f in B(0, R)

up = 0 on ∂B(0, R),
(36)

in the weak sense. In addition up ∈ C1,α(B(0, R)) for some α ≡ α(p),
according to [23] and [29]. Since

−div(||Dup||
p−2Dup) = 0 in B(0, R) \B(0, S) (37)
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we deduce that there exists xo ∈ ∂B(0, S) such that

up(xo) = 0. (38)

Multiplying (36) by up−
1

|B(0,S)|

∫
B(0,S) updx, integrating by parts, using

(30) and Poincaré-Wirtinger’s inequality on B(0, S) we deduce that
(||Dup||p) is bounded in L1(B(0, R)) by a constant which depends only
on ||f ||∞ and S. This, together with (38) and Sobolev’s Imbedding
Theorem implies

max
B(0,S)

|up| ≤ C1, (39)

where C1 is a constant depending only on ||f ||∞ and S. Thanks to
the maximum principle (37) and (39) imply C1 is a bound for up over
B(0, R). To have a better estimate on ||Dup|| useful for the Monge
problem we assume in addition that

f is a Lipschitz function (40)

to obtain the following conclusions.

Lemma 1.1 Assume (28), (30) and (40) hold. Then there exist a
constant C > 0 and a large radius R > 0 such that

max
B(0,R)

|up| ≤ C

and
max
B(0,R)

||Dup||
p ≤ C

for d+ 1 ≤ p < +∞.

In light of Lemma 1.1 we can extract a subsequence pk → +∞ so that

upk → u uniformly in B(0, R), (41)

Dupk → Du weak ∗ in B(0, R), (42)

||Dupk||
pk−2 → a weak ∗ in B(0, R), (43)

where u ∈ W 1,∞
o (B(0, R)) ∩ L, a ∈ L∞(B(0, R)) and a ≥ 0. The first

main result of this section is obtained using (41)–(43).
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Theorem 1.2 Assume (28), (30) and (40) hold. Then there exists a
radius R > 0 large enough such that

(i)
−div(aDu) = f in B(0, R)

in the weak sense,

for a.e.x ∈ B(0, R) a(x) > 0 implies ||Du(x)|| = 1.

(ii)
K[u] = max

w∈L
K[w].

For technical reasons we assume henceforth that R > 0 is large enough
and 

X ∩ Y = ∅
∂X, ∂Y are smooth
f 6= 0 in the interior of its support,

(44)

where X is the support of f+ := max{0, f} and Y is the support of
f− := max{0,−f}. We introduce the transport set which is a compact
set containing X ∪ Y.

T := {z ∈ B(0, R) : u∗(z) = u(z) = u∗(z)},

where
u∗(z) := max

x∈X
{u(x)− ||z− x||} (z ∈ B(0, R))

and
u∗(z) := min

y∈Y
{u(y) + ||z− y||} (z ∈ B(0, R)).

Since ||Du||∞ ≤ 1 we have u∗ ≤ u ≤ u∗ on B(0, R). Using that u is
a maximizer for (29), f+ > 0 on Xo, f− > 0 on Y o, we deduce that
u∗ = u = u∗ on X ∪ Y. The transport set T is made of transport rays

Rzo := {z ∈ B(0, R) : |u(zo)− u(z)| = ||zo − z||}. (45)

These transport rays Rzo are line segments with endpoints ao(zo) ∈ X,
bo(zo) ∈ Y (see (14)–(17)) whenever Du(zo) exists and zo ∈ T.

Proposition 1.3 Assume (28), (30), (40) and (44) hold. Then, a ≡ 0
on B(0, R) \ T.
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For zo ∈ T such thatRzo is a line segment with endpoints ao(zo), bo(zo)
we define

Rσ
zo := Rzo \ [B(ao(zo), σ) ∪B(bo(zo), σ)], (σ > 0).

The restriction of the function u to such a transport ray grows with
rate one and so Du is constant along the ray. The following theorem
improves the smoothness property of Du is a neighborhood of Rσ

zo .

Proposition 1.4 Assume (28), (30), (40) and (44) hold. Then, for
each transport ray Rzo such that u is differentiable at zo ∈ T and σ > 0
there exists a constant Cσ > 0 and a tubular neighborhood N of Rσ

zo

such that
||Du(z)−Du(ẑ)|| ≤ Cσ||z− ẑ||

for each z ∈ N∩T at which Du(z) exists. Here, ẑ denotes the projection
of z onto Rzo .

Proposition 1.4 is also used to obtain the following result.

Proposition 1.5 Assume (28), (30), (40) and (44) hold. Then, for
a.e.zo ∈ T

(i) a|Rzo
is locally Lipschitz along Rzo .

(ii) a|Rzo∩X
o and a|Rzo∩Y

o are both strictly positive and vanish at the
endpoints of Rzo .

Let E be the set of all z ∈ X ∪ Y such that z is an endpoint for some
transport ray.

Proposition 1.6 Assume (28), and (40) hold. Then, |E| = 0 i.e. the
d-dimensional Lebesgue measure of E is zero.

2 Existence of Optimal Maps

Throughout this section we assume that µ± are Borel probability mea-
sures on Rd

spt (µ±) ⊂ B(0, S), (46)
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µ± are absolutely continuous with respect to the d-dimensional Lebesgue
measure

µ± = f±dx, (47)

and we define
f := f+ − f−.

We recall that X is the support of µ+ and Y is the support of µ−. The
first main result of this section is the existence of an optimal map for
the Monge problem under (46) and (47). The second main result is the
identification of an ODE to construct an optimal solution when (46),
(47) hold and f± are smooth. Using the same notations as in section
1 we recall that S > 0 is chosen so that (32) holds and R > 2S is large
enough.

Theorem 2.1 [Sudakov] Take µ± so that (46) and (47) hold. Then
there exists an optimal solution to the Monge problem (2).

Sketch of proof We refer the reader to [27] for details.
Clearly, the dual problem (9) admits a maximizer u ∈ L. For each
x ∈ Rd recall that the transport ray through x is

Rx = {y ∈ B(0, R) : |u(x)− u(y)| = ||x− y||}.

If u is differentiable at x, then Rx is either a single point or a line
segment. Except for x ∈M where M is a set of d-dimensional Lebesgue
measure zero, Rx is a convex set, and is contained in a level set of
Du. Thus (Rx)x∈B(0,R) is an affine decomposition of B(0, R), and so,
the conditional measures on Rx of µ± are absolutely continuous with
respect to the 1-dimensional Lebesgue measure on Rx. This reduces
the Monge problem to a transport problem on a straight line where
the measures involved are absolutely continuous with respect to the 1-
dimensional Lebesgue measure. The one-dimensional problem is known
to admit a solution. QED.

An alternative method to Sudakov’s is next presented. Let us re-
call that the transport set T introduced in section 1 is a compact set
and is the union of the transport rays Rx. A PDE is identified to
first reduce the Monge problem to one-dimensional transport problem
analogously to Sudakov’s decomposition of measures theory. Then an
ODE is identified to solve the one-dimensional transport problems. To
avoid technical difficulties we assume that f± are Lipschitz, ∂X, ∂Y are
smooth, X and Y don’t intersect. We also assume f does not vanish in
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the interior of its compact support X ∪ Y (see (44)). The first propo-
sition asserts that the conditional measures on Rx of µ± are absolutely
continuous with respect to the one-dimensional Hausdorff measure H1

for almost every x ∈ B(0, R).

Proposition 2.2 Take µ± so that f± are Lipschitz functions and as-
sume that (44) holds. Let N ⊂ B(0, R) be a set of d-dimensional
Lebesgue measure zero. Then H1(Rx ∩ N) = 0 for Hd- almost every
x ∈ B(0, R).

Proof: see [14] QED.

Theorem 2.3 [Evans & Gangbo] Take µ± so that (46), (47) hold and
f± are Lipschitz functions. Assume furthermore that (44) holds. Let
a and u be two functions as obtained in Theorem 1.2. Define the flow
(gδ) solution of the ODE{

ġδ(t,x) = bδ(t,gδ(t,x))
gδ(0,x) = x

where bδ(t, z) := a(z)n
(1−t)f+(z)+tf−(z)+δ

and n := −Du(x). Define sδ(x) :=

gδ(1,x). Then limδ→0+ sδ(x) := s(x) exists for Hd-almost every x ∈ X.
Futhermore s is an optimal solution to the Monge problem (2).

Sketch of proof We refer the reader to [14] for details.
1. If x ∈ T is such that Du(x) then u is differentiable at every point
in the relative interior of the ray Rx and Du is constant along Rx (see
(14), (16)). By Proposition 1.6 we may as well assume that x is not

an endpoint and so, thanks to Proposition 1.5 a and bδ(t, )̇ restricted
to Rx are Lipschitz functions in a neighborhood of x. Hence, the ODE
(22) is well-defined and gδ(t,x) is uniquely determined. Using Propo-
sition 1.5 again we obtain that a vanishes at the endpoint of Rx and
so, gδ(t,x) remains in T.

2. We approximate aDu, f+, and f− by smooth functions (aDu)ε,
f+
ε , and f−ε such that

−div(aDu)ε = f+
ε − f

−
ε .

Define

vδ,ε(t, z) :=
−(aDu)ε(z)

(1− t)f+
ε (z) + tf−ε (z) + δ
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and let gδ,ε solve the ODE{
ġδ,ε(t,x) = vδ,ε(t,gδ,ε(t,x))
gδ,ε(0,x) = x

Clearly, sδ,ε := gδ,ε(1, ·) pushes (f+
ε +δ)dx forward to (f−ε +δ)dx. Using

Proposition 1.3, 1.4 and the fact that (aDu)ε, f
+
ε , and f−ε converge to

aDu, f+, and f− almost everywhere as ε tends to 0 we deduce that
limε→0+ sδ,ε(x) exists and coincides with sδ(x) for almost every x ∈ T
and so, sδ pushes (f+ +δ)dx forward to (f−+δ)dx. Since a, f+, f− ≥ 0
we obtain that (sδ(x))0≤δ≤1 is monotonically arranged along Rx and
s(x) := limδ→0+ sδ(x) exists and belongs to Rx. Hence s pushes f+dx
forward to f−dx. Since in addition

u(x)− u(s(x)) = ||x− s(x)||

and (2) and (9) are dual we deduce that s is a minimiser of the Monge
problem. QED.

3 Bernoulli’s convolution

Given a probability measure ν on [0, 1], a Borel map m : [0, 1]×Rd →
Rd satisfying

sup
t∈spt (ν)

||m(t, 0)|| := K < +∞ (48)

and the Lipschitz condition

||m(t,x)−m(t,y)|| ≤ β||x−y||, (x,y ∈ Rd, ν a.e. t ∈ [0, 1]) (49)

for some β ∈ (0, 1), we prove existence and uniqueness of a Borel prob-
ability measure µ on Rd of compact support such that

µ[A] =
∫ 1

0
µ[m−1

t (A)]dν(t) (50)

for all bounded Borel sets A ⊂ Rd. Here mt := m(t, ·). A similar
statement can be found in [4] (page 356) and [17], where the measure
ν is a linear combination of dirac masses.

Let P1 be the set of all Borel probability measures on Rd having
bounded first moments. Define k from P1 into P1 by

k(µ)[A] :=
∫ 1

0
µ[m−1

t (A)]dν(t),
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for all Borel sets A ⊂ Rd. Note that µ satisfies (50) if and only if µ is a
fixed point of k. Our plan is to prove that k is a contraction map with
respect to the Wasserstein-Rubinstein distance dW introduced in (6).

Theorem 3.1 Under (48) and (49), k is a contraction map on P1 with
respect to the metric dW , and the equation k(µ) = µ admits a unique
solution µo ∈ P1. Furthermore, the support of µo is contained in the
closed ball of center 0 and radius Ro := K

1−β .

Proof: 1. We prove that k is a contraction. Using (49) and that (2)
and (9) are dual we obtain that if µ1, µ2 ∈ P1 and p is a measure on
Rd ×Rd having µ1 and µ2 as its marginals then

dW (k(µ1), k(µ2))

= sup
||Du||∞≤1

∫ 1

0
[
∫

Rd×Rd
[u(m(t,x))− [u(m(t,y))]dp(x,y)]dν(t)

≤ β
∫

Rd×Rd
||x− y||dp(x,y).

and so,
dW (k(µ1), k(µ2)) ≤ βdW (µ1, µ2). (51)

Thus, k is a contraction map.
2. Existence of an invariant measure. Assume µ1 ∈ P1 is of compact
support, say spt (µ1) ⊂ B(0, R), and define recursively

µn = k(µn−1), (n = 2, 3, · · ·).

Combining (48) and (49) we obtain inductively that the support of µn
is contained in the ball of center 0 and radius Rn := βn−1R+ 1−βn−1

1−β K.
Hence,

spt (µn) ⊂ B(0, R+
K

1− β
), (n = 2, 3, · · ·). (52)

Let (µnj) be a subsequence of (µn) converging weak ∗ to µo ∈ P1. The
sequence (dW (µnj , µo)) converges to 0 (see [11]) and by (51) and (52)
we deduce that in fact

lim
n→+∞

dW (µn, µo) = 0. (53)

Combining (51) and (53) we have

dW (k(µo), µo) ≤ lim inf
n→+∞

[βdW (µo, µn−1) + dW (µn, µo)] = 0.
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Hence,
k(µo) = µo.

3. Since by (51) k is a contraction map, µo is the unique solution of the
equation k(µ) = µ. Using that in (52) R > 0 is any arbitrary positive
number we deduce that the support of µo is contained in the closed ball
of center 0 and radius Ro := K

1−β . QED.

Remark 3.2 If µo is the invariant measure of Theorem 3.1 then λµo
is also an invariant measure in the sense that it satisfies (50) for all
λ > 0.

Example[Bernoulli’s convolution] Bernoulli’s convolution arises in spline
theory, in constructing wavelets of compact support, in constructing
fractals (see [4], [9], [10]). Assume we are given 2N + 1 real numbers
c1, · · · , cN > 0, β1, · · · , βN and α > 1 satisfying the compatibility con-
dition

∑N
i=1 ci = α. The problem is to determine whether or not there

exists a nonnegative function f ∈ L1(R) with compact support such
that

f(x) =
N∑
i=1

cif(αx− βi) (x ∈ R). (54)

Note that solving (54) is equivalent to proving that there exists a mea-
sure µo ∈ P1, which absolutely continuous with respect to the Lebesgue
measure and which is invariant in the sense that

µo[A] =
N∑
i=1

ci
α
µo[m

−1
i (A)] (55)

for all Borel sets A ⊂ R. Here, mi : R→ R are defined by

mi(x) =
x+ βi
α

.

Problem (54) is unsolved in general even in cases which appear simple
at a first glance. For instance, it is not known whether or not the
equation

f(x) =
3

4
f(

3x

2
) +

3

4
f(

3x

2
−

1

2
) (x ∈ R), (56)

admits a solution f ∈ L1(R) which is a nonnegative function with com-
pact support (see [12], [13]). Although we cannot answer that question,
using the Wasserstein-Rubinstein distance dW we can recover many re-
sults obtained by various authors (e.g. [12], [13]) which we next de-
scribe. Existence of a solution to (55) is given by Theorem 3.1. We
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next argue that the unique probability measure µo solution to (55) is
either absolutely continuous with respect to the Lebesgue measure or is
singular to the Lebesgue measure. Indeed, by Lebesgue decomposition
theorem

µo = fdx+ µs,

where µs is singular with respect to the Lebesgue measure. Since mi are
affine maps fdx satisfies (55) i.e., f is a solution to (54). Consequently,
µs = µo − fdx satisfies (55) too and so, fdx and µs must be colinear.
Thus, one of them must be the null measure.

A Density of the set of measure-preserving

mappings

The main result in this appendix is Proposition A.3. Its proof might
already exist in the literature but we could not find it. If X is a topo-
logical space we denote by B(X) the set of all Borel subsets of X.

Definition A.1 Assume that µ+ is a Borel measure on a topologi-
cal space X and µ− is a Borel measure on a topological space Y. We
say that (X,B(X), µ+) is isomorphic to (Y,B(Y ), µ−) if there exists a
one-to-one map T of X onto Y such that for all A ∈ B(X) we have
T (A) ∈ B(Y ) and µ+[A] = µ−[T (A)], and for all B ∈ B(Y ) we have
T−1(B) ∈ B(X) and µ+[T−1(B)] = µ−[B]. For brevity we say that µ+

is isomorphic to µ−.

Theorem A.2 Let µ+ be a finite Borel measure on a complete separa-
ble metric space X. Assume that µ+ has no atoms and µ+[X] = 1. Then
(X,B(X), µ+) is isomorphic to ([0, 1],B([0, 1]), λ1), where λ1 stands for
the one-dimensional Lebesgue measure on [0, 1].

Proof: We refer the reader to [26], Theorem 16. QED.

Define A(X, Y ) to be the set of all Borel maps r : X → Y that
push µ+ forward to µ− and define M(X, Y ) to be the set of all Borel
measures on X × Y that have µ+ and µ− as marginals. Let i be the
canonical imbedding i : A(X, Y )→M(X, Y ) defined by

i(r)[E] := µ+{x ∈ X : (x, r(x)) ∈ E}, (57)

for E ⊂ X × Y.
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Proposition A.3 Assume that X and Y are two complete, separable,
metric spaces. Assume that µ+ is a Borel measure on X with no atoms,
µ− is a Borel measure on Y with no atoms, and µ+[X] = µ−[Y ] = 1.
Then every γ ∈ A(X, Y ) can be approximated in the weak ∗ topology
by a sequence {i(rn)} where rn ∈ A is one-to-one, i.e.∫

X×Y
Fdγ = lim

n→+∞

∫
X
F (x, rn(x))dµ+(x),

for all bounded F ∈ C(X × Y ).

Proof: Denote by λ2 the 2-dimensional Lebesgue measure and set

Z := [0, 1]4.

Since by Theorem A.2 µ+ and µ− are isomorphic to λ2 we may assume
without loss of generality that

µ+ = µ− = λ2,

and
X = Y = [0, 1]2.

Note that γ has no atoms and so, using Theorem A.2 again we find
an isomorphism T = (T1, T2) of ([0, 1]2,B([0, 1]2), λ2) onto (Z,B(Z), γ).
Note that T1, T2 : [0, 1]2 → [0, 1]2 push λ2 forward to λ2, i.e.

λ2[T−1
i (A)] = λ2[A], (i = 1, 2) (58)

for all Borel A ⊂ [0, 1]2. Thanks to (58) we may find (see [5]) sequences

T n1 , T
n
2 : [0, 1]2 → [0, 1]2

of smooth, one-to-one measure measure-preserving diffeomorphisms such
that

lim
n→+∞

T ni (x) = Ti(x) (i = 1, 2) (59)

for λ2-almost every x ∈ [0, 1]2. The maps

rn := T n2 ◦ (T n1 )−1

are one-to-one, push λ2 forward to λ2 and satisfy∫
X×Y

Fdγ = lim
n→+∞

∫
X
F (x, rn(x))dµ+(x),

for all bounded F ∈ C(X × Y ). QED.
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Remark A.4 Note that there are only two smooth one-to-one maps T :
[0, 1]→ [0, 1] that push λ1 the 1-dimensional Lebesgue measure forward
to λ1. Consequently, we may not find smooth, one-to-one sequences
T n1 , T

n
2 : [0, 1] → [0, 1] satisfying (59) if we substitute [0, 1] to [0, 1]2 in

the proof of Theorem A.3.

B Disintegration theorem

Proposition B.1 [Fubini’s theorem for doubly stochastic measures]
Assume that µ+ is a finite Borel measure on Rd, µ− is a finite Borel
measure on RN and γ is a Borel measure on Rd ×RN having µ+ and
µ− as its marginals. Then there exists a family (µx)x∈Rd of probability
measures on RN such that for each S ⊂ Rd×RN Borel set x→ µx[Sx]
is µ+-measurable and

γ[S] =
∫

Rd
µx[Sx]dµ+(x),

where Sx := {y ∈ RN : (x,y) ∈ S}.

Proof: 1. Define the projection p : Rd ×RN → Rd by

p(x,y) = x ((x,y) ∈ Rd ×RN).

Then, γ is a σ-finite Borel measure on Rd ×RN and

γ[p−1(B)] = 0

for all B ⊂ Rd such that µ+[B] = 0. In light of the disintegration
of measures theorem ([16]) we deduce that there exists a collection
(γx)x∈Rd of Borel measures on Rd ×RN such that for every Borel set
S ⊂ Rd ×RN

(i) x→ γx[S] is a Borel map

(ii) γ[S] =
∫

Rd×RN
γx[S]dµ+(x),

and
(iii) γx[Rd ×RN \ {x} ×RN ] = 0.

2. Define the measures

µx[B] := γx[{x} ×B]



WG/The Original Monge Mass Transfer Problem/Dec 1997 22

for B ⊂ RN Borel. Let S ⊂ Rd ×RN be a Borel set. Since

S = [({x} × Sx) ∩ S] ∪ [({x}c ×RN) ∩ S]

using (iii) we obtain that

γx[S] ≤ γx[{x} × Sx] ≤ γx[S].

Thus, γx[S] = µx[Sx], which, together with (i) and (ii) yields x →
µx[Sx] is a Borel map and

γ[S] =
∫

Rd
µx[Sx]dµ+(x). (60)

3. Writing (60) for S = A ×RN where A ⊂ Rd is an arbitrary Borel
set we deduce that µx[Rd] = 1 for µ+-almost every x ∈ Rd. QED.

Corollary B.2 Take µ± and γ as in Proposition B.1. Then there ex-
ists a family (µx)x∈Rd of probability measures on RN such that for all
Borel maps F : Rd ×RN → [−∞,+∞] that are γ-summable we have
x→

∫
RN F (x,y)dµx(y) is µ+-integrable and∫

Rd×RN
Fdγ =

∫
Rd

[
∫

RN
F (x,y)dµx(y)]dµ+(x).

Remark B.3 If µ+ = χΩdx where Ω ⊂ Rd is an open bounded set
then (µx)x∈Rd coincides with the usual Young measures introduced in
[30] and used in [28], etc...

C Extremal measures

Recall that λ1 stands for the one-dimensional Lebesgue measure on
[0, 1]. Assume that

µ+ is a finite Borel measure on Rd, (61)

µ− is a finite Borel measure on RN . (62)

LetMdN be the set of all Borel measures on Rd×RN that have µ+ and
µ− as marginals. Denote byM11 the set of all Borel measures on [0, 1]2

that have λ1 and λ1 as marginals. For a Borel map L : Rd×RN → [0, 1]2

and a Borel measure γ on Rd × RN we denote the push forward of γ
through L by L]γ defined by

L]γ[B] = γ[L−1(B)].
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Proposition C.1 Take µ± so that (61) and (62) hold. Let T be an
isomorphism of µ+ onto λ1 and let T̄ be an isomorphism of µ− onto
λ1. Define L := (T, T̄ ), and let j be the map from the set of all finite
Borel measures on Rd ×RN to the set of all finite Borel measures on
[0, 1]2 defined by γ → L]γ. Then the following hold:

(i) the restriction j :MdN →M11 is one-to-one.
(ii) If γ is an extreme point of the convex set MdN then j(γ) is an

extreme point of the convex set M11.
(iii) The support of γ ∈ MdN lies in the graph of a Borel map

r : Rd → RN if and only if the support of j(γ) lies in the graph of the
Borel map T̄ ◦ r ◦ T−1 : [0, 1]→ [0, 1].

Proof: The first assertion is trivial and the inverse of j is γ̄ → L−1]γ̄.
Note that

j(tγ1 + (1− t)γ2) = tj(γ1) + (1− t)j(γ2), (63)

for all t ∈ (0, 1) and all γ1, γ2 ∈MdN . Combining (63) and (i) we obtain
(ii). Assume next that γ ∈MdN has its support contained in the graph
of a Borel map r : Rd → RN . By Proposition B.1

γ[S] = µ+{x ∈ Rd : (x, r(x)) ∈ S},

and so,

j(γ)[E] = λ1{s ∈ [0, 1] : (s, T̄ ◦ r ◦ T−1(s)) ∈ E}, (64)

for all E ⊂ [0, 1]2 Borel sets. Thus, the support of j(γ) lies in the graph
of the Borel map T̄ ◦ r ◦ T−1. Similarly, if the support j(γ) lies in the
graph of the Borel map r′ : [0, 1]→ [0, 1] then the support of γ lies in
the graph of r := T̄−1 ◦ r′ ◦ T. QED.

Remark C.2 Take µ± so that (61) and (62) hold. If the support of
γ ∈ MdN lies in the graph of a Borel map r : Rd → RN then γ is an
extreme point of MdN .

Proof: Assume that γ = tγ1 + (1− t)γ2 where γ1, γ2 ∈MdN . Then the
supports of γ1 and γ2 must be contained in the support of γ which is a
subset of the graph of r. Thus, By Proposition B.1

γ1[S] = µ+{x ∈ Rd : (x, r(x)) ∈ S} = γ2[S],

for all Borel S ⊂ Rd ×RN . Consequently, γ1 = γ2. QED.
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Corollary C.3 Take µ± and γ as in Proposition B.1. Then there ex-
ists an extreme point of MdN whose support does not lie in the graph
of a Borel map.

Proof: In light of Proposition C.1 we may assume without loss of
generality that X := [−1, 1] × {0}, µ+ is the restriction of λ1 to X,
Y := ([−1, 1]×{−1})∪ ([−1, 1]×{1}), and µ− is the restriction of 1

2
λ1

to Y. As observed in [27] one can readily check that the Monge problem
admits a unique minimiser p ∈MdN whose support is concentrated on
the segments {(t, 0, t, 1) : t ∈ [−1, 1]} and {(t, 0, t,−1) : t ∈ [−1, 1]}.
Clearly, p is not in i(A). More examples are provided in [15]

QED.
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