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This note discusses a rigorous mathematical formulation for the evation of the
Eliassen balanced vortex. It is first shown that a stable balanced voek of finite extent
can be embedded in an ambient fluid at rest, and that such a vortex exists f@rescribed
angular momentum and potential temperature on fluid parcels. This uses a methb
developed by Shutts, Booth and Norbury. This is a different way of viewingtie problem
from the normal methods, which analyse the stability of a prescribed vaex. The
stability of the vortex depends on the presence of background rotation and oihe
azimuthal velocity at the boundary of the vortex being less than that in the grrounding

ambient fluid. It is then shown that the evolution of this vortex under axisymnetric

forcing can be written as a conservation law for a potential pseudo-deiity in the

transformed coordinates introduced by Schubert and Hack. The stability of thevortex
to non-axisymmetric perturbations is also discussed.
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1. Introduction normally used in the literature, which analyse the stabiit a
prescribed vortex. Thus different insights can be expected

There is a very large literature on the structure of tropigalones ~ The condition that the square of thebsolute angular
and in particular dynamical mesoscale processes whichreatec momentum must increase with radius implies that, if theesort
asymmetries on the core region. A recent review is given lyyembedded in an ambient fluid at rest, there must be backdrou
Wang and Wu (2004. Despite the focus on the importance ofotation. Otherwise the ambient fluid would need to have more
asymmetries, however, there is still substantial intefesthe angular momentum about the centre of the vortex than any fluid
evolution of the axisymmetric flow, particularly the effeadf inside the vortex, which is not a realistic situation. If tnabient
axisymmetric forcing. Two recent examples are the papers fafid is at rest, then in the presence of positive backgrootation
Bell etal. (2012 andHuanget al. (2012. Dynamical theories the angular momentum condition implies that the azimuthal
of axisymmetric flow start from the classic&liassen (1951) velocity of a cyclonic vortex must decrease to zero or become
model of a balanced circular vortex. This shows how a vomex anticyclonic at the vortex boundary, or else the boundarthef
gradient wind balance evolves slowly under axisymmetricifig  vortex would be unstable. This is consistent with the obesgrv
of angular momentum and potential temperatuBeuttset al.  decrease of azimuthal velocity with radius outside the cegéeon
(1988 described this evolution as a sequence of minimum energfitropical cyclones.
states. Such a model can explain a significant fraction of theThe mathematical theory implies that such a vortex can
observed evolution of tropical cyclones, as demonstrated iniquely be constructed given a fluid with known angular meme
instance byBui et al. (2009. tum and potential temperature on fluid parce®huttset al.

In this paper we describe a mathematically rigoroyd988 demonstrated this by using a change of variables and an
formulation of the forced axisymmetric vortex problem deped explicit construction assuming piecewise constant datarder
by Cullen and Sedjro (2013. This builds on the results of to do this, the vortex had to be confined by rigid axisymmetric
Fjortoft (1946 and Eliassen and Kleinschmidi{1957 that a boundaries. In the present paper we prove that a uniquexvorte
stable balanced vortex represents a minimum energy stéte wiith a free boundary sitting in an ambient fluid at rest exists
respect to variations which conserve mass, angular mommentior continuous data. This is a suitable step towards the real
and potential temperature. In particular, this requirest tthe case where the vortex would be embedded in a time-dependent
square of the angular momentum must increase with radius amdbient flow. However, it is now necessary to show that the
the fluid be stably stratified. Thus, if the mass of fluid withveeg  boundary of the vortex also represents a minimum energygonfi
angular momentum and potential temperature is given, the flwration.Cullen and Sedjro(2013 assume that the ambient fluid
can then be uniquely rearranged into a stable axisymmetdriex. is neutrally stratified and that the potential temperaturenaaly
This is a different way of posing the problem from the methodsithin the vortex is strictly positive. Stability of the bodary

(© 2014 Royal Meteorological Society Prepared usingjjrms4.cls [Version: 2013/10/14 v1.1]



then requires that vortex is monotonically expanding wifght. variables are assumed to be independent dhe geopotential is
However, if insufficient mass is specified for the vortex,thetex . The potential temperature is written as the deviatibfrom
may not extend through the full depth of the physical domain, spatially uniform valu#,. The angular velocity of the system
but be confined to the upper part. This would not be physicaltgtation isQ2 and the acceleration due to gravitygisThe forcing
realistic, but we show that itis not likely to occur with aseaable is described by termsg, S which are also independent »f These
choice of data. The method could in principle be extended tocauld represent the averaged effecta eflependent disturbances
case with non-zero stratification in the ambient fluid, whehbuld to the vortex, or other external forcing.

also give more physically realistic results.

Note that the free boundary problem could also be obtained %, + 5 2= %F(E T, z),
by solving a problem with rigid boundaries solved over adarg % =S(t,r z2),
domain. In that case the characterisation of the free baynda L4 2Qu = %, @)
established in this paper will describe the geometry ofiternal %%(m) + ?Tf =0,
interface in the fluid which represents the boundary of théexo %f _ gg(’] -0

Using the methods ofraig (1997, it is then possible to ) ) ] o
show that the evolution of such a vortex under the action IN€ third of these equations is only validif— 0 asr —
of axisymmetric forcing can be described by an evolutiofr Following Shuttsetal. (198§, we therefore exclude a small
equation for a potential pseudo-density in isentropic amglgar €gion <o with u =0 from the problem, and assume that
momentum coordinates. It is interesting to note that Cregy, €duations ) define the flow in an isolated vortex occupying a
(33), shows that this problem can still be written in term&gionl’s defined by
of a potential vorticity. This represents the mass in sljtab _
transformed variables. This is to be expected because of the T = [0,2n] x [ro, (¢, 2)) > [0, H]. @
Hamiltonian derivation of the equations. Conditions fole thThe vortex is assumed to be sitting in an ambient fluid at rétst w
solution of this to be well-posed are derived. Such a modelcdco constant potential temperatutg. We assume that' > 0, so that
be considered to represent the axisymmetric part of thauiwal the potential temperature of the vortex is always greaten .
of an almost axisymmetric flow, where the forcing terms repré  These assumptions were introduced in Cullen and Sedjra3j201
the integrated effects of non-axisymmetric perturbationsthe to make the mathematics tractable. It is hoped that they ean b

basic vortex. relaxed in future workThe boundary conditions are
The physical applicability of axisymmetric vortex theory
presumes that such a vortex can be stable to non-axisynemetri w(t,r,0) = w(t,r, H) =0,
disturbances. liviontgomery and Shapir¢1995 this is analysed { v(t,ro,2) =0, 3)
using a balanced model, and necessary conditions for itistab w(t,s(t, 2),2) = 0.

are found that require the radial gradient of the potentighg |ast of these conditions is required to makeell-defined.
vorticity to change sign on an isentropic surface. Therelse a  The poundary condition(t, o, 2) = 0 is physically appro-
a bound_ary contribution. This analysis is strictly onlyi_dalk_)r priate if u(t, 7, z) > 0, because then the assumption= 0 for
small azimuthal wavenumbers as the balanced model is nidt vl ;. is consistent with stability of the vortex. Since imposing
otherwise. An alternative approach is suggested by th&gtrops exira condition makes the problem overdeterminedyjilies

axisymmetrisation observed in tropical cyclones and &®@aly 4 restriction on the choice of initial data which will be dissed
for instance, bySmith and Montgomery(1999. This suggests |gter.

that the end result of non-axisymmetric disturbances toreexo  The boundary- = <(t, z) is a material surface so that
would be regarded as a new axisymmetric vortex in which the

potential vorticity was a rearrangement of the originalemoial < + wﬁ — . 4)
vorticity allowing for mixing. The computations and anatys ot 0z

of Schuberetal. (1999 demonstrate in a two-dimensional physically relevant solutions will require this vortex ®dtable

vortex that an initial annular ring of vorticity is unstabte 1o internal axisymmetric perturbations. Similarly, we uég the
non-axisymmetric disturbances and then evolves towardsaa nyortex to retain its identity, so that there is no mixing beén

axisymmetric vortex with the vorticity concentrated at testre. the vortex and the surrounding fluid. This will require the

Mixing is clearly visible. Thus we could expect that a stablgoundaryr = < to be stable against perturbations also involving
vortex represents an extremum of the energy with respecttf@ surrounding fluid. Itis then possible to justify only sttering

axisymmetric rearrangements of potential vorticity whalow  the fluid in the vortex and ignoring the motion of the ambiemitfl
for mixing. Mathematically rigorous analyses like this wer

carried out forquasi-geostrophic vortices in a shear flow bR.2. Equations in new variables

Burton and Nycander (1999) and for straight geostrophic slow

by Cullen and Douglas(2003. In this paper we illustrate the In this section, we show how the equations for forced
approach for the two-dimensional case, and compare with m}@symmetric flows can be reformulated as a continuity égoat

results of Montgomery and Shapiro. in a set of transformed variables. A more thorough discussim
be found inCullen and Sedjrq2013. Lety be smooth and define

2. Governing equations wt(r,z) = p(t,r, z) for each fixedt. Use a similar convention for
other variables. Then, followinghuttset al. (1988, define a new

2.1. Physical space equations radial coordinates and a potentialP; defined in terms of this

_ ) _ _coordinate by
We start with the equations for the evolution under the actio

of forcing of an axisymmetric vortex introduced lBfiassen
(1957. The form of the equations follow€raig (1991) and
describe a hydrostatic rotating Boussinesq atmosphete ™ Tne domain occupied by the vortel,, defined in 2) written in
vertical coordinate: being a function of pressure. The equation@\7 s, z) coordinates is

are written in cylindrical polar coordinatés, r, z) with velocity

componentgu, v, w) in the coordinate directions. However, all D, =[0,27] x [0, p(t, 2)] x [0, H]. (6)

2,2

Pi(s,2) = @i(r,2) + with 2s = 7"0_2 —r72 (5)
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We can use the third and fifth equations d¥{o show that coordinatess, z) to angular momentum and potential temperature
) coordinategY, Z) is generated by P; and its inverse i& ¥;.
VP = <ugT2 + 2Qur? +92r4,g&). 7) We now _need to r_ecogni_se _tha_lt these two coordir_lates are
bo defined in different units, which is important when provirgt

) ) the transformation can be constructed and in generatinggbes.
The quantity (uer +Qr?) is the component of the angularry jjiystrate this, apply this transformation to a state estrin
momentum of the fluid in the direction of the rotation of th‘ﬁydrostatic balance, as consideredShuttset al. (1989. Eq.
coordinate system. The conditions for a minimum energ)estqtll) shows that this corresponds to choosig= Q%r4, while
given by Fjortoft (1949 andEliassen and Kleinschmid{1957) 7 can pe any positive function of. The definition ofs in (5)
are that the square of the angular momentum is monotonically,s that the domain < » < oo transforms to the finite domain

increasing inr and the potential temperature is monotonically - , « 1 put the associated steady state valuerofiill be

increasing inz, which means that . 213’ 5y ) i
in the domainQ“rg < T < co. Since we wish to show that a

VP is invertible (8) unique vortex with prescribed angular momentum and patenti
temperature can be constructed, it is necessary to restect
Shuttset al. (1989 show that this is equivalent to convexity ofvalues ofY to a finite range. Noting the requirement> 0 atr =

P,. The boundary condition satisfied byin (3) becomes ro discussed in sectich 1, we write this range a¥ € [Q%r(, T
for someY,,. We then map this into a finite physical region as in
0%r2 the definition 6) where the boundary has to be determined as

Pt(pt(z)az) = on {pt > 0}7 (9)

part of the solution.The definition efs) in (14) and the definition
of s in (5) show thate(s) = r*. Thus a state of rest corresponds to
where T = Q%e(p).

2pt = T‘JZ - <;2. (20)

If we assume that the angular momentymr + Qr?) >0, 2.3. Mass conservation
we can define new variables as introducedSisjpubert and Hack

(1983 andShuttset al. (1988 Since the mass in physical coordinates is represented by the
volume in pressure coordinates, and the fluid occupies thierre
QOR? = wr + Qr?, I'c defined in @), the mass in physical space can be represented
T =Q%R*, (11) as the integral ofxr_ (, ,)drdz, wherexr_ is the characteristic
7 - 93*2- function of I'c. Since the physical coordinate has been changed
¢ fromr to s, we need to write mass conservation in terms w$ing
Then (7) becomes the volume measuréd ). The mass then becomes the integral of
VP =(T,2). (12)
The monotonicity conditiond) means thafr' is monotonically e(s)xp,, dsdz, (18)

increasing in- and that”Z is monotonically increasing ig.
Writing the evolution equationsi) in these variables andwhere xp, is the characteristic function ab,,, the domain
(A, s, z) coordinates gives occupied by the fluid irgs, z) coordinates.
Next define the mass density(iif, Z) coordinates as;, where

2
% = Sy(r, 2), (13) 0tdYdZ = e(s)dsdz, (29)
e(18) %(e(s)v) + % —0, ince(Y, Z) = VP(s, z), we have usingl(9)
; ; - ; oY, Z) 2
wherew is the radial velocity ins coordinates, and the volume ot ) = or det(0°Py) = e(s), (20)
S,

measurerdrdz in (r, z) coordinates becomegs)dsdz in (s, z)

coordinates where 0 ] ]
whered” P, is the Hessian matrix af;.

e(s)=rg/(1—2sr8)> for 0<2rds<1. (14) Mathematically we represent mass densities as probability
measures, since these take non-negative values and have a
The boundary conditions become prescribed integral equal to the total mass. It is then coieve
to write (20) in the form
w(t,s,0) =w(t,s,H) =0,
{ U(t7 0, Z) =0, (15) ot = th#e(S)XDpf (21)
go(t,p(t,z),z) =0. !
# indicates the push forward of the measu(€x p,, in physical
where dp ) space by the mayp P which takes physical space(tﬁa?, Z) space.
ot + Wy, =Y (16) This concept is defined byillani (2003.
As VP is invertible with inverseV¥,, o is equivalently

Next introduce angular momentum and isentropic coord&'nat% fined b
The monotonicity condition8) means that these will be well- elined by
defined. Define 5

e(Or V) det(0°V) = oy VY¥(A) = Dy,, (22)
U (Y, Z)=sY +2Z — P;. a7
wheres = 9y = 9V /9T andA is the region oﬁ%i whereo; is
This means thatt (T, Z) is the Legendre transform d#.(s,z) non-zero. 22) can be written as
for eacht as defined byrockafellar (1970. Then it can be shown

that W, is also convex an& ¥, = (s, z). The map from physical VU #0r = e(s)xp (23)

Pt
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Conservation of mass then requires that free vortex boundary rather than a rigid boundary. A proet th
the energy minimiser is unique will show that a unique stable

%—‘; +V-(cV)=0 (0,T) x R? o4 axisymmetric vortex with a free boundary with suitably mrésed
oli—o = o0. (24) angular momentum and potential temperature on fluid pacegls
be embedded in an ambient isentropic fluid at rest.
whereV; is the velocity in(Y, Z) coordinates, so that The total energy to be minimised is
_ (DY Dz _ 1 15 gb;z
Vi = (ﬁ’ ﬁ) . (25) E= 2 I, <2ut 2 e(s)dMdsdz. (28)
Equations 1) give, using the definitionsl(l), The energy densityuf — %= can be rewritten usingL() as
L_DVY _ p (r, z),
2/ Dt t (26) r202 T
bz _ — 0 Y —2Z+ — — QVT. 29
{ 7 St(r, z). 21— 27'(2)3) s 27 + 21% VT (29)

Writing F; and S; as functions of(Y, Z), using the relation

VU, = (s, ) and the definition of from (5) gives We wish to minimise Z8) over maps fromA to D, for a

given o;. This type of constraint means that the problem is an
optimal transport problem, as described \fillani (2003. In
Vi = ( 2VTF, (T aq;) (27) order to solve it, it is necessary to solve a relaxed problated
\/1—2r 3 10z the Monge-Kantorovich problem. The relaxed problem dods no
require individual points im\ to be mapped to individual points
9, (TO aq;)) in D,, but only requires the mass in subsets\ofo be mapped to
fo AJ1—2 gg% 102 well-defined subsets db,. Thus instead of seeking a map from
A to Dy, and thus finding ab; such that(s, z) = V¥, we seek
Solving @6) requires calculatingl; given o;. If this can be a joint probability measure with marginalso: ande(s)xp,,
done, then Z3) determinesp; and (L7) is used to calculate’,. wherexp, isthe characteristic function d,,. This means that
Equation {) is then used to calculateandé’, giving a complete for any funCthﬂSﬁ(s 2), (Y, 2),
solution for the vortex. The radial and vertical velocities w)

can be determined by transformibigas defined inZ5) into (s, z) / (W(T, Z) + (s, 2))dy = (30)
coordinates using the map¥,, allowing for the time dependence AxD
of '

The result will correspond to a solution ol if U; is /Aw‘”deZJF/D ¢e(s)dsdz.

convex, since then the change of coordinates is valid. Tise fir

two equations of :(3) Correspond to the definition of; (27), This procedure is described Yallani (2003

the third equation corresponds to equatidi)( and the fourth |n general we write such a joint probability measure as

equation corresponds to equatid), The boundary equation

(16) corresponds to3) which determineg;. v € G(ot,e(s)xp,, ), (31)
In the next section, we show thé&t can be uniquely calculated ¢

for a given oy by minimising the energy subject to mass$, here

conservation. We show that the resultirg is convex. This will

then generate a solution d¢ff) for the reasons above.

G is the set of joint probability measures & x R%. In
the special case where this corresponds to a map &xdmbD,, (
31) reduces to

3. Solution of the free boundary problem 7 = oedl(s,2) = V], (32)

whereé denotes the Dirac delta function.
In this paper we show rigorously that the energy can be msgthi  \We now have to minimise2g) over choices of as in 31) and
under rearrangements of the fluid conserving angular mament choices ofy; which define the vortex domain,,, .
represented by, and potential temperatute This is equivalent  \yrite (28) using @9) in the form
to specifying the mass of the fluid in angular momentum and
isentropic coordinates and then minimising the energy with

respect from maps froniY, Z) to physical coordinatess, z) T
which conserve mass. In order to confirm the conditions fdund I(p,y) = /D Al sT =22+ o5 92 (33)
Fjortoft (1946 andEliassen and Kleinschmid1957), we need ! 0
to show that this minimising state is characterised by a Wép VT g2
. —QVT + 72 dy
with ¥, convex. 2(1 — 2r§s)
3.1. Energy minimisation We first assume a given valyeof p, and minimise §3) over

choices ofy. The result can be written as
Suppose that the mass (T, Z) is o, which is a probability

measure with suppork C Ri. We assume additionally that is

compact (i.e. closed and bounded). We now show that findieg th _ ]

map fromA to D, which conserves mass while minimising the [7t1(7) == [WGG(UJ_I;ES)XDA)] {/AxD. (=T — 22) d”} +
energy corresponds to finding an invertible nfey,, together ' ! 8

2,2
with a function p;(2) which defines the regiom,, in physical / (Qi’"%) e(s)dsdz + (34)
space occupied by the vortex. This corresponds to the energy Dy \2(1 — 2s7()
minimisation problem solved bghuttset al. (1988, but without T JT
making the assumption of piecewise constant data and using a / ig) — VY ) oy dYdZ.
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The second term irB@) depends only on the choice Df; and the Outside the physical domaip; = 0, so that §) implies using
third term depends only of. (11) that VP, = (2%%,0). In generalVP;, = (T, Z) = ((wr +
In order to prove that the first term i84) can be uniquely Qr?)2, ¢6;/6,). The assumption that the supportaf A; C Ri
minimised, we write it in a dual formulation, as discussed iis compact means thaf is less than somé& ', for all points
Villani (2003. It can be proved that in A;. Thus the vortex in physical space is boundedrby r,,
where Q?r}, = T,,. Sinced} has been chosen to be positive,
the invertibility of VP, atr = ¢, implies thats is monotonically
nondecreasing ia. It also implies thatp; > 0 within T'¢,. Thus
dpt/0r will be negative as- approaches;, which implies that
(Ean~be uniquely maximised over the set of continuous funstiow < 0. Thus the flow must become anticyclonic at the vortex
v, P such that boundary. This is an artificial restriction resulting fromieedding
. - the vortex in an ambient fluid at rest. More realistically, as
P(s,2) +¥(T,Z) > sT + 22 for all (36)  giscussed in the Introduction,; would be less cyclonic at the
((s,2),(Y,2)) € Dj x R%. boundary than the ambient flow.
We first illustrate the nature of a stable vortex with a free
At the solution the inequality in36) becomes an equality and thehoundary. Atz = 0 we construct a vortex with radiug0) = r;.

value is the value ofT + 27 to be used in the first term 084), Using (11), we chooseY = T; throughout the vortex, where
so thatl[o+](p) is defined for a givers. T, = Q%f. Then

. H rp(z)
/ —VodYdZ —|—/ / —P(s,z)e(s)dsdz, (35)
R2 0 0

The complete minimization problem can then be written as the w— lQ(T2 —r?) (39)
calculation of o A '
H.(o¢) = 1%f1[at](h). (37) Eq. @) gives
dp Q4 4
Using (34) and @5), we can write or 73(” =) (40)

Integrating this and using the boundary conditiBhdives

o(r,0) = 0 (r% - % (:‘;‘ - r2)) : (41)

H ,p(z) 02,2 B
inf / / (70 — P(s,z)) e(s)dsdz |. ) ) )
pers Jo Jo 2(1 — 2s7) Now extend this to a three-dimensional vortex by settihg:
g0’ /0y = g0’ z/H, whered' is a constant so that the static stability

Here, H, consists of all measurable functiors: [0, H] — s constant. Then
[0,1/(2r3)]. The supremum in3g) is taken over the same set of
continuous function®, P as is defined inJ6). o(r, 2) = (r,0) + lgé/ZQ/H Cofor r<r. (42)

It is proved inCullen and Sedjro(2013 that there is a unique 2
minimiser in @7). The proof is carried out by solving theysing @1), (42) and the boundary conditiop = 0 at r = ¢(z)
maximisation problem3g). Write p; for the minimiser in 87) gives
for a giveno: and Uy, P; for the functions that maximise3g).
It is proved that the maximiser corresponds to equality3),( o2 (2 1/ rt 5 g0’ o - 4
so that¥,, P, are Legendre transforms of each other as required (7’1 D) <§(Z)2 +4(2) )) 57 =0 (43)
at the end of sectior2.2. It is proved that¥; satisfies 22)
together with 9). It is also proved thatV;, P. are convex and which determines(z).
S0 Vs, P, is invertible almost everywhere. Provided thatis This solution is illustrated in Figl which shows plots of.
bounded, so that a finite amount of mass is not associated watsinstr ands againstz. r; is chosen to be 100km rather than
a single value of T, 2), the solutions satisfy2(l) and the inverse a more representative choice for the overall radius of ai¢adp
relation £3). This means that the mass of fluid specifiedi Zz) cyclone of 1000km. The solution at =0 shows azimuthal
coordinates completely fills the physical domdiy,. However, winds of about 50ms!. If 7 is chosen to be 1000km, then the
pt may be zero for some values ofc [0, H]. It is proved that maximum azimuthal wind is about 5000ms indicating that
p¢ is monotonically increasing in if the region A in which it is not necessary for the angular momentum from the outer
the mass is specified is contained4n> 0. This corresponds to part of the vortex to be brought into the centre in order to
the original assumptiod’ > 0 in (1). In the original coordinates explain observed tropical cyclone intensitie39)(shows thatu
(r,z) this means that the boundary= ¢(z) is monotonically will become increasingly negative in the outer part of thetex
increasing inz. The solution provides a rigorous solution of the: > r; asz increases. This is an artifact of the simple data used to
two-dimensional elliptic problem solved IGraig (1991), eq. (64) construct the illustration.

H. (o) = sup </R (i VT - \p> cdYdZ +  (38)

2
2rg

though Craig did not use the same boundary conditions. We now illustrate the solution procedure based on the
construction of a vortex where the massis given as a function
3.2. Properties of the solution of T andZ. We thus have to fing.(z). The total mass of the fluid

has to be the same in botif, Z) and physicalr, z) coordinates.
The mathematical problem that is solved in the precedir&ince the vortex fillsD, , this means that
subsections shows that, given the mass of fluid with given
bounded values of angular momentum and potential temperatu / o dYdZ = / rdrdz. (44)
the fluid can be uniquely arranged to give an axisymmetritexor Ay D

in an unbounded ambient fluid at rest. However, the vortex ma
not fill the depth of the domain. owever,c; may be zero for some values af

It is simplest to study the implications of the results using ~ Next consider the nature of The conditiony; = 0 applied at
original physical coordinate. First consider the implications of ” = <t(2) implies
the result at the boundary= ¢; of the physical domaii,. The
discussion above shows thatis monotonically increasing in.

St

Opt Ost | Oy
or 0z 0z
(© 2014 Royal Meteorological Society Prepared usingjjrms4.cls

—0. (45)



50 10

40} : : : : : 4 8l

height km

20 4 pAn

azimuthal velocity m/s

0 i i i i i i i i 0 i i i i
10 20 30 40 50 60 70 80 90 100 0 500 1000 1500 2000 2500

radius km radius km

Figure 1. Left: Azimuthal velocity profile (ms! at z = 0 given by Eq.39 with Q = 0.5E-4 s !,rrp = 10km,~; = 100km. Right: Vertical profile of (km) given by
Eq.43with additionally g=10 ms 2, H=10 km

Using (1) then gives momentum deficit compared to the rest state value at a radlius o
about 200km, means that the rate of increase of vortex dexmet
(ﬁ . 2Qw) Ot | gi{ —0 with height is very sensitive to the radius. The situationeven
St 0z 0o ’ the vortex does not reach the ground is illustrated. For aemor
) ] realistic choice of 100km for the bottom level radius a muiyér
This can be rewritten as value of the angular momentum deficit would be required wsall
1 5\ Og (49) to be golvgd. If a value corresponding to a 5% deficit at a
(gT - €t> s +Z=0. 500km radius is used, the radius at the top of the troposphere

becomes 330km. The vertical profile ofshown in Fig.2 is
quite different from that in the example of Fid. because the
assumption of uniformr is replaced by the assumption that the
0 _o Z angular momentum deficit’ is uniform with height.
92t T 2?‘ (46) These examples are limited by the need to choose a uniform
If ¢ increases with thenY’ has to be negative as expected frorf’ﬁ‘r‘gul"?‘r momgntum or gngular momerjtqm deficitin ordgrtmallo
the conditionu; < 0 atr = < as found above. ana!yt!c solu_tlon. Thls is not very realistic. In order tmla_te a
To illustrate the solution, choosg = ¢é’z/H and Y’ equal to realistic hurricane-like vortex which extends through veetical
a negative constant, and then _domaln, it is necessary to choose a sufficiently large totahs
illustrated above, and to choosgsmall for smallT so that large

At a state of restY = Q%r? so atr = ¢, write T/ = T — Q3.
Then

%_2 _ ct_Q(O) 49622 (Y H). (47) \C/)?Lues of the angular momentuthare mapped onto small values
Sinceg; has to be positive fob < z < H, (47) shows thatr’ In order to understand the implications further, consider t
has to be chosen to be sufficiently negative. Thegatisfies two-dimensional case where there is no variationzinThe
variational problem solved by Cullen and Sedjro becomeklyig
" , degenerate in this case as we illustrate. The angular moment
/ o dYdZ = 1/ < T'H > ds — lr(%H. is given byy/T. A stable vortex is given by choosingto be a
Ay 2Jo \Y'He %(0) + g22 2 monotonically increasing function of such thate(s)ds/0YT =

(48) o:. Suppose the maximum angular momentum of the fluid
Noting that ¢;(0) > o and Y’ < 0, «(0) can be found to specified to be in the vortex igT,,. The boundary of the vortex
ensure positivity of48) if —gH > T/TO_Q. The right hand side of is given byr = ¢, and so the area of the vortex will be given by
(48) can then be made arbitrarily large by letting0) approach %gf. This must be equal to the integral ®f over Ay = [0, Ty ].
\/—gH/Y’. Thus thes;(0) can be chosen to fit any desired valudhe angular momentum of the ambient fluidsis? for r > ;.
of the total mass on the left hand side provided that Applying the condition that the angular momentum increases
with r at the vortex boundary = ¢; implies that,, < Q%c,

H / 1
/ opdYdZ > 1/ <T2H> dz. (49) so thatg > Q 2T, If the specified total mass is too small,
Ay 2 Jo Y Hry~ + gz> theng; will be smaller than this. Sufficient additional mass from
If the total mass is smaller than the expression on the rightih the ambient fluid has then to be incorporated into the vortex s

1
side of ¢9), then we set thate, = Q2 T}, This imposes a restriction an which is not
present in the three-dimensional problem.

G =ro: 2<2z1, (50)
Y H 4. Solution of the evolution equations
St =\~ =2 S o R AL _
Y/ Hry =+ g(2? — 27) 4.1. Theoretical results
which is consistent with4®). We now solve equation24), (27) and @3) in time, given an

The effect of this is illustrated in Fig2. Choosingd’ = 0.1, initial mass distributionr in angular momentum and isentropic
which implies a potential temperature excess of 30K at tipe taoordinates. In order to solvé4) we have to calculat&; from o
of the troposphere, arf’=-2.5E12, which implies a 5% angularat eacht as described in sectich2.
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Figure 2. Vertical profiles of vortex radius(z) (km) given by Eq49 for various choices of total mass, settitg= 0.5E — 4 s, 0’ = 0.1 andY’ =-2.5E12nis~2.
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As noted in sectiof.1, phy§|ca! applicability requires chqosmg 3. 5 a2 >0,
oo So thatu > 0 atr = rg. This will be assured if the domaify,

whereo( is non-zero satisfies theno remains bounded as it evolves in time under the action of
the forcing termd” andsS.
Do =[(01,2): %5 <T < T < 00,0 < Z < Zy < 0, These restrictions are very artificial, for instance theyuiee
(51) that diabatic heating increases with height which is thensy
for someY.n, Zm. of the usual case. If these restrictions are not observeis, it

In Cullen and Sedjro (2013, equation 24) is solved for possible that Dirac masses will be created-jrcorresponding to
particular classes of angular momentum forcifigand thermal \ye|l-mixed layers of uniform potential temperature andcine
forcing S. The main difficulty is that the forcing terms aréangular momentum. This is definitely possible in the reatesys
specified as functions of physical space but, as showtvinliave anq is jllustrated in the computations Shuttset al. (1989)..
to be applied as functions of angular momentum and potentjglinis happens, then Cullen and Sedjro prove th2d) (can
temperatureY andZ. Since the mapping froril’, Z) to (r, 2) IS  stj|| be solved, and the solutions will respeé), if 7 and S
unknown until the problem has been solved, the results @fehhi are continuous, bounded and non-negative. However, the map
non-trivial. However, some types of physical forcing, fostance om (1, 7) to physical space will be multivalued. The artificial
those resulting from air-sea interaction, are naturalgcgfed in - | astrictions that, S > 0 are required because is an inherently

physical coordinates. The lack of prior knowledge of the pia@ ,qsitive quantity andz is assumed to be positive as discussed
leads to some severe restrictions on what can be provedeThgs,,e.

come.from the requirements thal is an mhe.rgntly POSItVe |1\ e results of Shuttst al. (1988), which showed an eyewall
qguantity and tha¥ has been assumed to be positive to d'Stmgu'Scnscontinuity and a strong low-level vortex, they started b
it from the ambient fluid. It is likely that the restriction ¢hcould defini : . . ) .
- efining a state of rest in hydrostatic balance in a fixed domai

be relaxed, though the proof of the results in secichwould De, = | ] x [0, H]. This corresponds to choosing — —
have to be modified, and the nature;¢f) would change. e = Mol 5 -1 P 9= JavT

Some types of forcing, such as latent heat release, could ®&" & domaindg = [2%rg, Y] x [0, H]. This was represented
more naturally imposed as a function Bfand Z. In that case discretely by assigning massesto points(;(0), Z;(0)) in Ao.
it is quite easy to solve2(d) becausd/; as defined inZ5) will be The results illustrated in their paper were obtained by ragldi
known explicitly from @7). single time increment to Z; at points; with small values of and

Equation p4) is solved under two different sets of assumptions SO thatZ;(t) = Z;(0) + 5. This gives a discrete solution of (24)
In the first case(0,-) is assumed to be bounded, so thavith F = 0 and withS > 0 for small values of andz. This choice
the results of sectior8.1 mean that Z3) holds, as well as is consistent with the second set of assumptions used bgiCull
(21). Essentially this means that the transformation betwe&fd Sedjro, though the smoothness assumption is not réfevan
physical coordinatess, z) and angular momentum and potentiafliscrete scheme. Mapping the solutiort Aack to physical space
temperature coordinatgd’, Z) is invertible. If o(0,-) contains Produced a low level vortex bounded by an eyewall discortiinu
Dirac masses, theiere will be values of Y, Z) where a single and an upper level anticyclonic lens representing the arfives
value of angular momentum and potential temperature is sdhpPutflow. A number of experiments were carried out with chsice
to a finite regionof physical space. Cullen and Sedjro prove thatf region with different aspect ratios whesewas non-zero, and
if also with regions wher& < 0 to represent evaporative cooling.

In the latter case, the values Sfwere chosen to ensure thzg
1. 0 < F, 45 < M for some positive constant, remained positive which is required for the results of Guiad
2. 98 _ 05 _ Sedijro to be valid.

0z — Or
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4.2. Stability of the solutions be obtained over the maximum region, giver- 0 atr = 0. This

is the solution found bidurton and Nycande(1999. Itis like the
The requirement thatbsoluteangular momentum increases withend state of the simulations chuberet al. (1999, though this
radius ensures that a vortex whose evolution is describéegys  state could not be reached because the energy would have been
stable to axisymmetric perturbations. In order for the etioh to |arger than the initial energy. The initial data used by St
be physically relevant, it is also necessary for the sohgtito be et al. and the vortex analysed Bmyth and McWilliams(1999
stable to non-axisymmetric disturbances. We thereforesiden do not satisfy this monotonicity condition. This is coneist
what distributions ofs; as a function off and Z correspond with the instability to non-axisymmetric disturbances riduby
to vortices which are stable to non-axisymmetric distudesn Smyth and McWilliams. The stability condition derived by
The study ofSchuberet al. (1999 shows that the evolution of Montgomery and Shapirq1995 for three-dimensional vortices
a barotropic vortex in a non-divergent rotating fluid fronitiad using linear theory reduces to the requirement @g is either
data consisting of an annulus of vorticity with a small azih@  monotonically increasing or decreasingrinwhich is consistent
perturbation goes towards a vortex concentrated at thenorigyith Burton and Nycander's result.
However, conservation of energy and angular momentummequi |, our case, the evolution is given by equation (24) whictesta

that some of the initial vorticity is left behind as filamenta that the mass distribution evolves as a function of the square of
structures outside the core vortex. This evolution wasusised e absolute angular momentufm We can writes as

in terms of either a minimum enstrophy hypothesis or a marimu
entropy hypothesis. or  10r2
Burton and Nycander (1999) analysed the nonlinear stabilit =TT T 297

of a three-dimensional quasi-geostrophic vortex to pbetions which follows from (L8 and @1). Mixing & as a function of
which rearranged and/or mixed the potential vorticity. Thg thus implies that- is a linear function ofY. If T =0 at

inclusion of mixing is necessary to make the extremisation_ 0, thenr2 will be proportional toY, which implies solid body

problem well posed. In the case Wherg there IS no baCkgro%s(tjation as found above. However, imposing angular monmentu
shear flow, the stable states are axisymmetric and represeit <o rvation will in general lead to a state witht 0 arr = rg

Maximisers (.)f the energy. I an axisymmetric Vortex IS gop hergt al. (1999's results do not suggest why there is
stable to axisymmetric perturbations, but unstable to no

. - o - '0%h ‘'eye’ with small relative vorticity at the centre of thertex,
axisymmetric perturbationd,is expected that non-axisymmetric,

bati " ilibri dth lution ol which would correspond to a vortex which was unstable to
perturbations will grow, equilibriate and the solution alolve non-axisymmetric perturbations. An eye was found in thedhr

to a new axisymmetric state with the vorticity mixed, ag; : . :

. - ; ' imensional vortex derived bghuttset al. (1988. The analysis
discused byS_mlth and Montgomery(lggg and_ illustrated in of Montgomery and Shapir¢1995 suggests that stability of such
the computations of Schubest al. Thus, in particular, a stablea vortex requires the potential vorticity to vary monotaig

state can be _character_lsed as an _extremu_m of the energy %H?w r on each isentropic surface. It would be desirable to extend
respect 10 axisymmeric perturbations which rearrange’oandthe nonlinear stability analysis discussed above to thés@sing

mix |V0rt'C'ty abnd_ co dnzer\ée ”total a(ljngular moomefntuBIm.HT]r potential vorticity instead of vorticity. However, thergmow the
results were obtained by Cullen and DougleXI03 for straight additional difficulty that the analysis would have to be mair

geostrophic frI]ows.h vsis i ival out with the full Euler equations, whose solutions cannot be
We now show how our analysis Is equivalent to Burton "’,“%mpletely described by the potential vorticity. In pautar, the

Nycander’s in the_ barotro_pic cas‘ﬁ_le assume that the vortex 'Sstability of an energy maximiser with respect to rearrangeis
(;,ot;erent, so that it occupies a regios: r < gwherng odY =~ of potential vorticity could be compromised by the radiatio
3¢~ The angular momentum conservation requirement is thgfenergy in inertio-gravity waves. This possibility is dissed
that 5 vTrdr is conserved. The absolute vorticitwhich is by schecter and Montgomery (2006), who derive conditions
assumed positives under which such radiation is inhibited. This requires megs

where there is a timescale separation between the evolation
19 (W + QT2> — 18\/7 perturbations to the vortex and the frequency of inertiavdy
ror T or and acoustic waves. Burton and Nycander (1999) state that th
iquasi-geostrophic analysis is only valid in regimes whédre t
quasi-geostrophic equations remain accurate for an estetite,
so that gravity wave radiation is small.

(53)

Rearranging or mixing absolute vorticity in an axisymmnetr

way thus corresponds to mixiné % allowing for mass
weighting. Thus if we mix two annular rings of vorticity atdia
r1 andrs, both with widthr, we will obtain a single ring with o
vorticity 5. Physical implications

1 7’2%»%57‘

(r1 + 72)0r [ Ll,%gr- (52)  The results stated in secti@nl mean that we can uniquely find an

axisymmetric vortex where the angular momentum and patenti
Sincev/T has to be monotonically increasing/inthe maximum temperature are given on fluid parcels that is embedded in an
and minimum values of/Y will not be changed by the mixing. ambient fluid at rest with specified potential temperaturiee T
However, imposing conservation of the total angular momment proof does not require any more physics than the originalli®s
will then require both to be changed by the same amounf. Fjortoft, Eliassen and Kleinschmidt. The stability cdiah
Complete mixing will give a profile wheré)/or(v/Y) is a requires the azimuthal velocity at the vortex boundary to be
constant. If we allow the mixing to include the regiern< ro, anticyclonic, though the bulk of the vortex can, of course, b
whereu = 0 as assumed in section 2.1, then we will have- 0 at  cyclonic. This boundary restriction is an artefact of bliexgdwo
r = 0 so thaty/Y is proportional tor, giving solid body rotation. different simple solutions together. It is likely that thigending
However, this will not in general be compatible with consgion  procedure could be used to insert a vortex into a less tiaige-
of total angular momentum. scale flow, stability of the boundary of the vortex would regua
A maximum energy state corresponding to a cyclonic vortex éyclonic discontinuity at the boundary.
obtained by rearranging the vorticity to be axisymmetricdd an It is then shown that the evolution of this vortex under
monotonically decreasing, which allows the largest vahfesto axisymmetric forcing is also well-posed, including casdwee
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the forcing creates well-mixed regions within the vorteXisl Shutts GJ, Booth MW, Norbury J. 1988. A geometric model of bz
will certainly happen in the presence of convection, whish i axisymmetric flow with embedded penetrative convectibrAtmos. Sci.
a key mechanism. If the axisymmetric forcing is regarded as o 2609-2621. ) o

representing the effect of non-axisymmetric features om tﬁm'th GB, I, Montgomery MT. 1995 Vortex axisymmetrization: [@ejplence

. - . . ) i on azimuthal wave-number or asymmetric radial structure claqgd. R.
axisymmetric flow, this supports the ideas that non-axisynio Meteorol. So¢.121: 1615—1650.

forcing is important for maintaining the observed axisynimee smyth WD, McWilliams JC. 1998 Instability of an Axisymmetric Vextin a
structure. The artificial restrictions in the proof couldreenoved Stably Stratified, Rotating Environmeiftheoret. Comput. Fluid Dynamics
if the forcing were specified as a function of angular momentu 11 305-322.
and potential temperature, which is probably more realistan Villani C 2003 Topics in Optimal TransportationAmer. Math. Soc.,
assuming that it is specified as a function of the physica} Providence, RI: 370pp. . )
. ang Y, Wu CC. 2004 Current understanding of tropical cyelsimucture and
coordinates. intensity changes - a revieMeteor. Atmos. Physic87: 257-278.
Before considering non-axisymmetric dynamics, it is worth
considering whether axisymmetric solutions are stable to
non-axisymmetric disturbances. We demonstrated for a two-
dimensional vortex that this would be true under a conditiat
the vortex was a maximum energy rearrangement of the alesolut
vorticity, as in the case studied tBurton and Nycande1999.
This also showed that a two-dimensional vortex with a céntra
eye would not be stable to non-axisymmetric disturbancses, a
found bySchuberet al. (1999. Itis likely that three-dimensional
effects are critical for the stability of observed tropicgiclone
vortices.
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