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This note discusses a rigorous mathematical formulation for the evolution of the
Eliassen balanced vortex. It is first shown that a stable balanced vortex of finite extent
can be embedded in an ambient fluid at rest, and that such a vortex exists forprescribed
angular momentum and potential temperature on fluid parcels. This uses a method
developed by Shutts, Booth and Norbury. This is a different way of viewing the problem
from the normal methods, which analyse the stability of a prescribed vortex. The
stability of the vortex depends on the presence of background rotation and onthe
azimuthal velocity at the boundary of the vortex being less than that in the surrounding
ambient fluid. It is then shown that the evolution of this vortex under axisymmetric
forcing can be written as a conservation law for a potential pseudo-density in the
transformed coordinates introduced by Schubert and Hack. The stability of thevortex
to non-axisymmetric perturbations is also discussed.
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1. Introduction

There is a very large literature on the structure of tropicalcyclones
and in particular dynamical mesoscale processes which can create
asymmetries on the core region. A recent review is given by
Wang and Wu (2004). Despite the focus on the importance of
asymmetries, however, there is still substantial interestin the
evolution of the axisymmetric flow, particularly the effects of
axisymmetric forcing. Two recent examples are the papers of
Bell et al. (2012) and Huanget al. (2012). Dynamical theories
of axisymmetric flow start from the classicalEliassen (1951)
model of a balanced circular vortex. This shows how a vortex in
gradient wind balance evolves slowly under axisymmetric forcing
of angular momentum and potential temperature.Shuttset al.
(1988) described this evolution as a sequence of minimum energy
states. Such a model can explain a significant fraction of the
observed evolution of tropical cyclones, as demonstrated for
instance byBui et al. (2009).

In this paper we describe a mathematically rigorous
formulation of the forced axisymmetric vortex problem developed
by Cullen and Sedjro (2013). This builds on the results of
Fjortoft (1946) and Eliassen and Kleinschmidt(1957) that a
stable balanced vortex represents a minimum energy state with
respect to variations which conserve mass, angular momentum
and potential temperature. In particular, this requires that the
square of the angular momentum must increase with radius and
the fluid be stably stratified. Thus, if the mass of fluid with a given
angular momentum and potential temperature is given, the fluid
can then be uniquely rearranged into a stable axisymmetric vortex.
This is a different way of posing the problem from the methods

normally used in the literature, which analyse the stability of a
prescribed vortex. Thus different insights can be expected.

The condition that the square of theabsolute angular
momentum must increase with radius implies that, if the vortex
is embedded in an ambient fluid at rest, there must be background
rotation. Otherwise the ambient fluid would need to have more
angular momentum about the centre of the vortex than any fluid
inside the vortex, which is not a realistic situation. If theambient
fluid is at rest, then in the presence of positive background rotation
the angular momentum condition implies that the azimuthal
velocity of a cyclonic vortex must decrease to zero or become
anticyclonic at the vortex boundary, or else the boundary ofthe
vortex would be unstable. This is consistent with the observed
decrease of azimuthal velocity with radius outside the coreregion
of tropical cyclones.

The mathematical theory implies that such a vortex can
uniquely be constructed given a fluid with known angular momen-
tum and potential temperature on fluid parcels.Shuttset al.
(1988) demonstrated this by using a change of variables and an
explicit construction assuming piecewise constant data. In order
to do this, the vortex had to be confined by rigid axisymmetric
boundaries. In the present paper we prove that a unique vortex
with a free boundary sitting in an ambient fluid at rest exists
for continuous data. This is a suitable step towards the real
case where the vortex would be embedded in a time-dependent
ambient flow. However, it is now necessary to show that the
boundary of the vortex also represents a minimum energy config-
uration.Cullen and Sedjro(2013) assume that the ambient fluid
is neutrally stratified and that the potential temperature anomaly
within the vortex is strictly positive. Stability of the boundary
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then requires that vortex is monotonically expanding with height.
However, if insufficient mass is specified for the vortex, thevortex
may not extend through the full depth of the physical domain,
but be confined to the upper part. This would not be physically
realistic, but we show that it is not likely to occur with a reasonable
choice of data. The method could in principle be extended to a
case with non-zero stratification in the ambient fluid, whichshould
also give more physically realistic results.

Note that the free boundary problem could also be obtained
by solving a problem with rigid boundaries solved over a larger
domain. In that case the characterisation of the free boundary
established in this paper will describe the geometry of the internal
interface in the fluid which represents the boundary of the vortex.

Using the methods ofCraig (1991), it is then possible to
show that the evolution of such a vortex under the action
of axisymmetric forcing can be described by an evolution
equation for a potential pseudo-density in isentropic and angular
momentum coordinates. It is interesting to note that Craig,eq.
(33), shows that this problem can still be written in terms
of a potential vorticity. This represents the mass in suitably
transformed variables. This is to be expected because of the
Hamiltonian derivation of the equations. Conditions for the
solution of this to be well-posed are derived. Such a model could
be considered to represent the axisymmetric part of the evolution
of an almost axisymmetric flow, where the forcing terms represent
the integrated effects of non-axisymmetric perturbationson the
basic vortex.

The physical applicability of axisymmetric vortex theory
presumes that such a vortex can be stable to non-axisymmetric
disturbances. InMontgomery and Shapiro(1995) this is analysed
using a balanced model, and necessary conditions for instability
are found that require the radial gradient of the potential
vorticity to change sign on an isentropic surface. There is also
a boundary contribution. This analysis is strictly only valid for
small azimuthal wavenumbers as the balanced model is not valid
otherwise. An alternative approach is suggested by the strong
axisymmetrisation observed in tropical cyclones and analysed,
for instance, bySmith and Montgomery(1995). This suggests
that the end result of non-axisymmetric disturbances to a vortex
would be regarded as a new axisymmetric vortex in which the
potential vorticity was a rearrangement of the original potential
vorticity allowing for mixing. The computations and analysis
of Schubertet al. (1999) demonstrate in a two-dimensional
vortex that an initial annular ring of vorticity is unstableto
non-axisymmetric disturbances and then evolves towards a new
axisymmetric vortex with the vorticity concentrated at thecentre.
Mixing is clearly visible. Thus we could expect that a stable
vortex represents an extremum of the energy with respect to
axisymmetric rearrangements of potential vorticity whichallow
for mixing. Mathematically rigorous analyses like this were
carried out forquasi-geostrophic vortices in a shear flow by
Burton and Nycander (1999) and for straight geostrophic flows
by Cullen and Douglas(2003). In this paper we illustrate the
approach for the two-dimensional case, and compare with the
results of Montgomery and Shapiro.

2. Governing equations

2.1. Physical space equations

We start with the equations for the evolution under the action
of forcing of an axisymmetric vortex introduced byEliassen
(1951). The form of the equations followsCraig (1991) and
describe a hydrostatic rotating Boussinesq atmosphere with the
vertical coordinatez being a function of pressure. The equations
are written in cylindrical polar coordinates(λ, r, z) with velocity
components(u, v, w) in the coordinate directions. However, all

variables are assumed to be independent ofλ. The geopotential is
ϕ. The potential temperature is written as the deviationθ′ from
a spatially uniform valueθ0. The angular velocity of the system
rotation isΩ and the acceleration due to gravity isg. The forcing
is described by termsF, S which are also independent ofλ. These
could represent the averaged effects ofλ−dependent disturbances
to the vortex, or other external forcing.
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Du
Dt + uv

r + 2Ωv = 1
r F (t, r, z),

Dθ′

Dt = S(t, r, z),
u2

r + 2Ωu = ∂ϕ
∂r ,

1
r

∂
∂r (rv) + ∂w

∂z = 0,
∂ϕ
∂z − g θ′

θ0
= 0.

(1)

The third of these equations is only valid ifu → 0 as r →
0. Following Shuttset al. (1988), we therefore exclude a small
region r < r0 with u = 0 from the problem, and assume that
equations (1) define the flow in an isolated vortex occupying a
regionΓς defined by

Γς = [0, 2π] × [r0, ς(t, z)] × [0, H]. (2)

The vortex is assumed to be sitting in an ambient fluid at rest with
constant potential temperatureθ0. We assume thatθ′ > 0, so that
the potential temperature of the vortex is always greater thanθ0.
These assumptions were introduced in Cullen and Sedjro (2013)
to make the mathematics tractable. It is hoped that they can be
relaxed in future work.The boundary conditions are

8

<

:

w(t, r, 0) = w(t, r, H) = 0,

v(t, r0, z) = 0,

ϕ(t, ς(t, z), z) = 0.

(3)

The last of these conditions is required to makeϕ well-defined.
The boundary conditionv(t, r0, z) = 0 is physically appro-

priate if u(t, r0, z) ≥ 0, because then the assumptionu = 0 for
r < r0 is consistent with stability of the vortex. Since imposing
this extra condition makes the problem overdetermined, it implies
a restriction on the choice of initial data which will be discussed
later.

The boundaryr = ς(t, z) is a material surface so that

∂ς

∂t
+ w

∂ς

∂z
= v. (4)

Physically relevant solutions will require this vortex to be stable
to internal axisymmetric perturbations. Similarly, we require the
vortex to retain its identity, so that there is no mixing between
the vortex and the surrounding fluid. This will require the
boundaryr = ς to be stable against perturbations also involving
the surrounding fluid. It is then possible to justify only considering
the fluid in the vortex and ignoring the motion of the ambient fluid.

2.2. Equations in new variables

In this section, we show how the equations for forced
axisymmetric flows can be reformulated as a continuity equation
in a set of transformed variables. A more thorough discussion can
be found inCullen and Sedjro(2013). Letϕ be smooth and define
ϕt(r, z) = ϕ(t, r, z) for each fixedt. Use a similar convention for
other variables. Then, followingShuttset al. (1988), define a new
radial coordinates and a potentialPt defined in terms of this
coordinate by

Pt(s, z) = ϕt(r, z) +
Ω2r2

2
with 2s = r−2

0 − r−2. (5)

The domain occupied by the vortex,Γς , defined in (2) written in
(λ, s, z) coordinates is

Dρ = [0, 2π] × [0, ρ(t, z)] × [0, H]. (6)
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We can use the third and fifth equations of (1) to show that

∇Pt =

„

u2
t r2 + 2Ωutr

3 + Ω2r4, g
θ′t
θ0

«

. (7)

The quantity (utr + Ωr2) is the component of the angular
momentum of the fluid in the direction of the rotation of the
coordinate system. The conditions for a minimum energy state
given byFjortoft (1946) andEliassen and Kleinschmidt(1957)
are that the square of the angular momentum is monotonically
increasing inr and the potential temperature is monotonically
increasing inz, which means that

∇Pt is invertible, (8)

Shuttset al. (1988) show that this is equivalent to convexity of
Pt. The boundary condition satisfied byϕ in (3) becomes

Pt(ρt(z), z) =
Ω2r2

0

2(1 − 2r2
0ρt(z))

on {ρt > 0}, (9)

where
2ρt = r−2

0 − ς−2
t . (10)

If we assume that the angular momentum(utr + Ωr2) > 0,
we can define new variables as introduced bySchubert and Hack
(1983) andShuttset al. (1988):
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>

:

ΩR2 = utr + Ωr2,

Υ = Ω2R4,

Z = g
θ′

t

θ0
.

(11)

Then (7) becomes
∇Pt = (Υ, Z). (12)

The monotonicity condition (8) means thatΥ is monotonically
increasing inr and thatZ is monotonically increasing inz.

Writing the evolution equations (1) in these variables and
(λ, s, z) coordinates gives
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:

1
2
√

Υ
D
√

Υ
Dt = Ft(r, z),

DZ
Dt = St(r, z),

∇P = (Υ, Z),
1

e(s)
∂
∂s (e(s)υ) + ∂w

∂z = 0,

(13)

whereυ is the radial velocity ins coordinates, and the volume
measurerdrdz in (r, z) coordinates becomese(s)dsdz in (s, z)

coordinates where

e(s) = r4
0/(1 − 2sr2

0)2 for 0 ≤ 2r2
0s < 1. (14)

The boundary conditions become

8

<

:

w(t, s, 0) = w(t, s, H) = 0,

υ(t, 0, z) = 0,

ϕ(t, ρ(t, z), z) = 0.

(15)

where
∂ρ

∂t
+ w

∂ρ

∂z
= υ. (16)

Next introduce angular momentum and isentropic coordinates.
The monotonicity condition (8) means that these will be well-
defined. Define

Ψt(Υ, Z) = sΥ + zZ − Pt. (17)

This means thatΨt(Υ, Z) is the Legendre transform ofPt(s, z)

for eacht as defined byRockafellar (1970). Then it can be shown
thatΨt is also convex and∇Ψt = (s, z). The map from physical

coordinates(s, z) to angular momentum and potential temperature
coordinates(Υ, Z) is generated by∇Pt and its inverse is∇Ψt.

We now need to recognise that these two coordinates are
defined in different units, which is important when proving that
the transformation can be constructed and in generating examples.
To illustrate this, apply this transformation to a state of rest in
hydrostatic balance, as considered inShuttset al. (1988). Eq.
(11) shows that this corresponds to choosingΥ = Ω2r4, while
Z can be any positive function ofz. The definition ofs in (5)
shows that the domainr0 ≤ r < ∞ transforms to the finite domain
0 ≤ s ≤ 1

2r2

0

, but the associated steady state value ofΥ will be

in the domainΩ2r4
0 ≤ Υ < ∞. Since we wish to show that a

unique vortex with prescribed angular momentum and potential
temperature can be constructed, it is necessary to restrictthe
values ofΥ to a finite range. Noting the requirementu ≥ 0 at r =

r0 discussed in section2.1, we write this range asΥ ∈ [Ω2r4
0, Υm]

for someΥm. We then map this into a finite physical region as in
the definition (6) where the boundaryρ has to be determined as
part of the solution.The definition ofe(s) in (14) and the definition
of s in (5) show thate(s) = r4. Thus a state of rest corresponds to
Υm = Ω2e(ρ).

2.3. Mass conservation

Since the mass in physical coordinates is represented by the
volume in pressure coordinates, and the fluid occupies the region
Γς defined in (2), the mass in physical space can be represented
as the integral ofrχΓςt

(r,z)drdz, whereχΓς
is the characteristic

function of Γς . Since the physical coordinate has been changed
from r to s, we need to write mass conservation in terms ofs using
the volume measure (14). The mass then becomes the integral of

e(s)χDρt
dsdz, (18)

where χDρt
is the characteristic function ofDρt , the domain

occupied by the fluid in(s, z) coordinates.
Next define the mass density in(Υ, Z) coordinates asσt, where

σtdΥdZ = e(s)dsdz, (19)

Since(Υ, Z) = ∇Pt(s, z), we have using (19)

σt
∂(Υ, Z)

∂(s, z)
= σt det(∂2Pt) = e(s), (20)

where∂2Pt is the Hessian matrix ofPt.
Mathematically we represent mass densities as probability

measures, since these take non-negative values and have a
prescribed integral equal to the total mass. It is then convenient
to write (20) in the form

σt = ∇Pt#e(s)χDρt
(21)

# indicates the push forward of the measuree(s)χDρt
in physical

space by the map∇Pt which takes physical space to(Υ, Z) space.
This concept is defined byVillani (2003).

As ∇Pt is invertible with inverse∇Ψt, σt is equivalently
defined by

e(∂ΥΨ) det(∂2Ψ) = σt ∇Ψ(∆) = Dht
, (22)

wheres = ∂ΥΨ = ∂Ψ/∂Υ and∆ is the region ofR2
+ whereσt is

non-zero. (22) can be written as

∇Ψt#σt = e(s)χDρt
. (23)
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Conservation of mass then requires that

(

∂σ
∂t + ∇ · (σVt) = 0 (0, T ) × R

2

σ|t=0 = σ0.
(24)

whereVt is the velocity in(Υ, Z) coordinates, so that

Vt =

„

DΥ

Dt
,
DZ

Dt

«

. (25)

Equations (1) give, using the definitions (11),

(

1
2
√

Υ
D
√

Υ
Dt = Ft(r, z),

DZ
Dt = St(r, z).

(26)

Writing Ft and St as functions of(Υ, Z), using the relation
∇Ψt = (s, z) and the definition ofs from (5) gives

Vt =

 

2
√

ΥFt

 

r0
q

1 − 2r2
0

∂Ψ
∂Υ

,
∂Ψ

∂Z

!

, (27)

g

θ0
St

 

r0
q

1 − 2r2
0

∂Ψ
∂Υ

,
∂Ψ

∂Z

!!

.

Solving (26) requires calculatingΨt given σt. If this can be
done, then (23) determinesρt and (17) is used to calculatePt.
Equation (7) is then used to calculateu andθ′, giving a complete
solution for the vortex. The radial and vertical velocities(υ, w)

can be determined by transformingVt as defined in (25) into (s, z)

coordinates using the map∇Ψt, allowing for the time dependence
of Ψt.

The result will correspond to a solution of (13) if Ψt is
convex, since then the change of coordinates is valid. The first
two equations of (13) correspond to the definition ofVt (27),
the third equation corresponds to equation (17), and the fourth
equation corresponds to equation (24). The boundary equation
(16) corresponds to (23) which determinesρt.

In the next section, we show thatΨt can be uniquely calculated
for a given σt by minimising the energy subject to mass
conservation. We show that the resultingΨt is convex. This will
then generate a solution of (26) for the reasons above.

3. Solution of the free boundary problem

In this paper we show rigorously that the energy can be minimised
under rearrangements of the fluid conserving angular momentum,
represented byΥ, and potential temperatureZ. This is equivalent
to specifying the mass of the fluid in angular momentum and
isentropic coordinates and then minimising the energy with
respect from maps from(Υ, Z) to physical coordinates(s, z)

which conserve mass. In order to confirm the conditions foundby
Fjortoft (1946) andEliassen and Kleinschmidt(1957), we need
to show that this minimising state is characterised by a map∇Ψt

with Ψt convex.

3.1. Energy minimisation

Suppose that the mass in(Υ, Z) is σt, which is a probability
measure with support∆ ⊂ R

2
+. We assume additionally that∆ is

compact (i.e. closed and bounded). We now show that finding the
map from∆ to Dρ which conserves mass while minimising the
energy corresponds to finding an invertible map∇Ψt, together
with a functionρt(z) which defines the regionDρ in physical
space occupied by the vortex. This corresponds to the energy
minimisation problem solved byShuttset al. (1988), but without
making the assumption of piecewise constant data and using a

free vortex boundary rather than a rigid boundary. A proof that
the energy minimiser is unique will show that a unique stable
axisymmetric vortex with a free boundary with suitably prescribed
angular momentum and potential temperature on fluid parcelscan
be embedded in an ambient isentropic fluid at rest.

The total energy to be minimised is

E =
1

2π

Z

Dρ

„

1

2
u2

t − gθ′tz
θ0

«

e(s)dλdsdz. (28)

The energy density12u2
t − gθ′

tz
θ0

can be rewritten using (11) as

r2
0Ω2

2(1 − 2r2
0s)

− sΥ − zZ +
Υ

2r2
0

− Ω
√

Υ. (29)

We wish to minimise (28) over maps from∆ to Dρ for a
given σt. This type of constraint means that the problem is an
optimal transport problem, as described inVillani (2003). In
order to solve it, it is necessary to solve a relaxed problem called
the Monge-Kantorovich problem. The relaxed problem does not
require individual points in∆ to be mapped to individual points
in Dρ, but only requires the mass in subsets of∆ to be mapped to
well-defined subsets ofDρ. Thus instead of seeking a map from
∆ to Dρ, and thus finding aΨt such that(s, z) = ∇Ψt, we seek
a joint probability measureγ with marginalsσt and e(s)χDρt

,
whereχDρt

is the characteristic function ofDρt . This means that
for any functionsφ(s, z), ψ(Υ, Z),

Z

∆×Dρt

(ψ(Υ, Z) + φ(s, z))dγ = (30)

Z

∆
ψσtdΥdZ +

Z

Dρt

φe(s)dsdz.

This procedure is described inVillani (2003).
In general we write such a joint probability measure as

γ ∈ G(σt, e(s)χDρt
), (31)

whereG is the set of joint probability measures onR
2
+ × R

2
+. In

the special case where this corresponds to a map from∆ to Dρ, (
31) reduces to

γ = σtδ[(s, z) = ∇Ψt], (32)

whereδ denotes the Dirac delta function.
We now have to minimise (28) over choices ofγ as in (31) and

choices ofρt which define the vortex domainDρt .
Write (28) using (29) in the form

I(ρ, γ) :=

Z

Dρ×∆

 

− sΥ − zZ +
Υ

2r2
0

(33)

−Ω
√

Υ +
r2
0Ω2

2(1 − 2r2
0s)

!

dγ

We first assume a given valuẽρ of ρ, and minimise (33) over
choices ofγ. The result can be written as

Ī[σt](ρ̃) := inf
[γ∈G(σt,e(s)χDρ̃

)]

(

Z

∆×Dρ̃

(−sΥ − zZ) dγ

)

+

Z

Dρ̃

„

Ω2r2
0

2(1 − 2sr2
0)

«

e(s)dsdz + (34)

Z

R2

„

Υ

2r2
0

− Ω
√

Υ

«

σtdΥdZ.
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The second term in (34) depends only on the choice ofDρ̃ and the
third term depends only onσt.

In order to prove that the first term in (34) can be uniquely
minimised, we write it in a dual formulation, as discussed in
Villani (2003). It can be proved that

Z

R2

−Ψ̃σdΥdZ +

Z H

0

Z ρ̃(z)

0
−P̃ (s, z)e(s)dsdz, (35)

can be uniquely maximised over the set of continuous functions
Ψ̃, P̃ such that

P̃ (s, z) + Ψ̃(Υ, Z) ≥ sΥ + zZ for all (36)

((s, z), (Υ, Z)) ∈ Dρ̃ × R
2
+.

At the solution the inequality in (36) becomes an equality and the
value is the value ofsΥ + zZ to be used in the first term of (34),
so thatĪ[σt](ρ̃) is defined for a giveñρ.

The complete minimization problem can then be written as the
calculation of

H∗(σt) = inf
h̃

Ī[σt](h̃). (37)

Using (34) and (35), we can write

H∗(σt) = sup

 

Z

R2

„

Υ

2r2
0

− Ω
√

Υ − Ψ̃

«

σdΥdZ + (38)

inf
ρ̃∈H′

Z H

0

Z ρ̃(z)

0

„

Ω2r2
0

2(1 − 2sr2
0)

− P̃ (s, z)

«

e(s)dsdz

!

.

Here, H′ consists of all measurable functions̃ρ : [0, H] 7−→
[0, 1/(2r2

0)]. The supremum in (38) is taken over the same set of
continuous functions̃Ψ, P̃ as is defined in (36).

It is proved inCullen and Sedjro(2013) that there is a unique
minimiser in (37). The proof is carried out by solving the
maximisation problem (38). Write ρt for the minimiser in (37)
for a givenσt andΨt, Pt for the functions that maximise (38).
It is proved that the maximiser corresponds to equality in (36),
so thatΨt, Pt are Legendre transforms of each other as required
at the end of section2.2. It is proved thatΨt satisfies (22)
together with (9). It is also proved thatΨt, Pt are convex and
so ∇s,zPt is invertible almost everywhere. Provided thatσt is
bounded, so that a finite amount of mass is not associated with
a single value of(Υ, Z), the solutions satisfy (21) and the inverse
relation (23). This means that the mass of fluid specified in(Υ, Z)

coordinates completely fills the physical domainDρt . However,
ρt may be zero for some values ofz ∈ [0, H]. It is proved that
ρt is monotonically increasing inz if the region ∆ in which
the mass is specified is contained inZ > 0. This corresponds to
the original assumptionθ′ > 0 in (1). In the original coordinates
(r, z) this means that the boundaryr = ς(z) is monotonically
increasing inz. The solution provides a rigorous solution of the
two-dimensional elliptic problem solved byCraig (1991), eq. (64)
though Craig did not use the same boundary conditions.

3.2. Properties of the solution

The mathematical problem that is solved in the preceding
subsections shows that, given the mass of fluid with given
bounded values of angular momentum and potential temperature,
the fluid can be uniquely arranged to give an axisymmetric vortex
in an unbounded ambient fluid at rest. However, the vortex may
not fill the depth of the domain.

It is simplest to study the implications of the results usingthe
original physical coordinater. First consider the implications of
the result at the boundaryr = ςt of the physical domainΓςt . The
discussion above shows thatςt is monotonically increasing inz.

Outside the physical domainϕt = 0, so that (5) implies using
(11) that ∇Pt = (Ω2r4, 0). In general∇Pt = (Υ, Z) = ((utr +

Ωr2)2, gθ′t/θ0). The assumption that the support ofσt, ∆t ⊂ R
2
+

is compact means thatΥ is less than someΥm for all points
in ∆t. Thus the vortex in physical space is bounded byr = rm

where Ω2r4
m = Υm. Since θ′t has been chosen to be positive,

the invertibility of ∇Pt at r = ςt implies thatς is monotonically
nondecreasing inz. It also implies thatϕt > 0 within Γςt . Thus
∂ϕt/∂r will be negative asr approachesςt, which implies that
ut < 0. Thus the flow must become anticyclonic at the vortex
boundary. This is an artificial restriction resulting from embedding
the vortex in an ambient fluid at rest. More realistically, as
discussed in the Introduction,ut would be less cyclonic at the
boundary than the ambient flow.

We first illustrate the nature of a stable vortex with a free
boundary. Atz = 0 we construct a vortex with radiusς(0) = r1.
Using (11), we chooseΥ = Υ1 throughout the vortex, where
Υ1 = Ω2r4

1. Then

u =
1

r
Ω(r2

1 − r2). (39)

Eq. (1) gives
∂ϕ

∂r
=

Ω2

r3
(r4

1 − r4). (40)

Integrating this and using the boundary condition (3) gives

ϕ(r, 0) = Ω2
„

r2
1 − 1

2

„

r4
1

r2
+ r2

««

. (41)

Now extend this to a three-dimensional vortex by settingZ =

gθ′/θ0 = gθ̂′z/H, whereθ̂′ is a constant so that the static stability
is constant. Then

ϕ(r, z) = ϕ(r, 0) +
1

2
gθ̂′z2/H : for r ≤ r1. (42)

Using (41), (42) and the boundary conditionϕ = 0 at r = ς(z)

gives

Ω2
„

r2
1 − 1

2

„

r4
1

ς(z)2
+ ς(z)2

««

+
gθ̂′

2H
z2 = 0, (43)

which determinesς(z).
This solution is illustrated in Fig.1 which shows plots ofu

againstr and ς againstz. r1 is chosen to be 100km rather than
a more representative choice for the overall radius of a tropical
cyclone of 1000km. The solution atz = 0 shows azimuthal
winds of about 50ms−1. If r1 is chosen to be 1000km, then the
maximum azimuthal wind is about 5000ms−1, indicating that
it is not necessary for the angular momentum from the outer
part of the vortex to be brought into the centre in order to
explain observed tropical cyclone intensities. (39) shows thatu
will become increasingly negative in the outer part of the vortex
r > r1 asz increases. This is an artifact of the simple data used to
construct the illustration.

We now illustrate the solution procedure based on the
construction of a vortex where the massσt is given as a function
of Υ andZ. We thus have to findςt(z). The total mass of the fluid
has to be the same in both(Υ, Z) and physical(r, z) coordinates.
Since the vortex fillsDςt , this means that

Z

∆t

σtdΥdZ =

Z

Dςt

rdrdz. (44)

However,ςt may be zero for some values ofz.
Next consider the nature ofς. The conditionϕt = 0 applied at

r = ςt(z) implies

∂ϕt

∂r

∂ςt
∂z

+
∂ϕt

∂z
= 0. (45)
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Figure 1. Left: Azimuthal velocity profile (ms−1 at z = 0 given by Eq.39 with Ω = 0.5E-4 s−1,r0 = 10km,r1 = 100km. Right: Vertical profile ofς (km) given by
Eq.43with additionally g=10 ms−2, H=10 km

Using (1) then gives

„

u2
t

ςt
+ 2Ωut

«

∂ςt
∂z

+ g
θ′t
θ0

= 0.

This can be rewritten as
„

1

ς3t
Υ − Ω2ςt

«

∂ςt
∂z

+ Z = 0.

At a state of rest,Υ = Ω2r4 so atr = ςt write Υ′ = Υ − Ω2ς4t .
Then

∂

∂z
ς−2
t = 2

Z

Υ′ . (46)

If ςt increases withz thenΥ′ has to be negative as expected from
the conditionut < 0 at r = ςt as found above.

To illustrate the solution, chooseZ = gθ̂′z/H andΥ′ equal to
a negative constant, and then

ς−2
t = ς−2

t (0) + gθ̂′z2/(Υ′H). (47)

Sinceςt has to be positive for0 ≤ z ≤ H, (47) shows thatΥ′

has to be chosen to be sufficiently negative. Thenσt satisfies

Z

∆t

σtdΥdZ =
1

2

Z H

0

 

Υ′H

Υ′Hς−2
t (0) + gz2

!

dz − 1

2
r2
0H.

(48)
Noting that ςt(0) ≥ r0 and Υ′ < 0, ςt(0) can be found to

ensure positivity of (48) if −gH > Υ′r−2
0 . The right hand side of

(48) can then be made arbitrarily large by lettingςt(0) approach
p

−gH/Υ′. Thus theςt(0) can be chosen to fit any desired value
of the total mass on the left hand side provided that

Z

∆t

σtdΥdZ ≥ 1

2

Z H

0

 

Υ′H

Υ′Hr−2
0 + gz2

!

dz. (49)

If the total mass is smaller than the expression on the right hand
side of (49), then we set

ςt = r0 : z < z1, (50)

ςt =

s

− Υ′H

Υ′Hr−2
0 + g(z2 − z2

1)
: z ≥ z1,

which is consistent with (46).
The effect of this is illustrated in Fig.2. Choosingθ̂′ = 0.1,

which implies a potential temperature excess of 30K at the top
of the troposphere, andΥ′=-2.5E12, which implies a 5% angular

momentum deficit compared to the rest state value at a radius of
about 200km, means that the rate of increase of vortex diameter
with height is very sensitive to the radius. The situation where
the vortex does not reach the ground is illustrated. For a more
realistic choice of 100km for the bottom level radius a much larger
value of the angular momentum deficit would be required to allow
(49) to be solved. If a value corresponding to a 5% deficit at a
500km radius is used, the radius at the top of the troposphere
becomes 330km. The vertical profile ofς shown in Fig.2 is
quite different from that in the example of Fig.1 because the
assumption of uniformΥ is replaced by the assumption that the
angular momentum deficitΥ′ is uniform with height.

These examples are limited by the need to choose a uniform
angular momentum or angular momentum deficit in order to allow
analytic solution. This is not very realistic. In order to simulate a
realistic hurricane-like vortex which extends through thevertical
domain, it is necessary to choose a sufficiently large totalσt, as
illustrated above, and to chooseσt small for smallΥ so that large
values of the angular momentumΥ are mapped onto small values
of r.

In order to understand the implications further, consider the
two-dimensional case where there is no variation inz. The
variational problem solved by Cullen and Sedjro becomes highly
degenerate in this case as we illustrate. The angular momentum
is given by

√
Υ. A stable vortex is given by choosings to be a

monotonically increasing function ofΥ such thate(s)∂s/∂Υ =

σt. Suppose the maximum angular momentum of the fluid
specified to be in the vortex is

√
Υm. The boundary of the vortex

is given byr = ςt, and so the area of the vortex will be given by
1
2 ς2t . This must be equal to the integral ofσt over∆t = [0, Υm].
The angular momentum of the ambient fluid isΩr2 for r ≥ ςt.
Applying the condition that the angular momentum increases
with r at the vortex boundaryr = ςt implies thatΥm ≤ Ω2ς4t ,

so thatςt ≥ Ω− 1

2 Υ
1

4

m. If the specified total mass is too small,
thenςt will be smaller than this. Sufficient additional mass from
the ambient fluid has then to be incorporated into the vortex so

that ςt = Ω− 1

2 Υ
1

4

m. This imposes a restriction onσt which is not
present in the three-dimensional problem.

4. Solution of the evolution equations

4.1. Theoretical results

We now solve equations (24), (27) and (23) in time, given an
initial mass distributionσ0 in angular momentum and isentropic
coordinates. In order to solve (24) we have to calculateVt from σt

at eacht as described in section2.2.
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Figure 2. Vertical profiles of vortex radiusς(z) (km) given by Eq.49 for various choices of total mass, settingΩ = 0.5E − 4 s−1, θ̂′ = 0.1 andΥ′ =-2.5E12m4s−2.

As noted in section2.1, physical applicability requires choosing
σ0 so thatu ≥ 0 at r = r0. This will be assured if the domain∆0

whereσ0 is non-zero satisfies

∆0 = [(Υ, Z) : Ω2r4
0 ≤ Υ ≤ Υm < ∞, 0 ≤ Z ≤ Zm < ∞],

(51)
for someΥm, Zm.

In Cullen and Sedjro (2013), equation (24) is solved for
particular classes of angular momentum forcingF and thermal
forcing S. The main difficulty is that the forcing terms are
specified as functions of physical space but, as shown in (27), have
to be applied as functions of angular momentum and potential
temperature,Υ andZ. Since the mapping from(Υ, Z) to (r, z) is
unknown until the problem has been solved, the results are highly
non-trivial. However, some types of physical forcing, for instance
those resulting from air-sea interaction, are naturally specified in
physical coordinates. The lack of prior knowledge of the mapping
leads to some severe restrictions on what can be proved. These
come from the requirements thatΥ is an inherently positive
quantity and thatZ has been assumed to be positive to distinguish
it from the ambient fluid. It is likely that the restriction onZ could
be relaxed, though the proof of the results in section3.1 would
have to be modified, and the nature ofς(z) would change.

Some types of forcing, such as latent heat release, could be
more naturally imposed as a function ofΥ and Z. In that case
it is quite easy to solve (24) becauseVt as defined in (25) will be
known explicitly from (27).

Equation (24) is solved under two different sets of assumptions.
In the first case,σ(0, ·) is assumed to be bounded, so that
the results of section3.1 mean that (23) holds, as well as
(21). Essentially this means that the transformation between
physical coordinates(s, z) and angular momentum and potential
temperature coordinates(Υ, Z) is invertible. If σ(0, ·) contains
Dirac masses, thenthere will be values of(Υ, Z) where a single
value of angular momentum and potential temperature is mapped
to a finite regionof physical space. Cullen and Sedjro prove that
if

1. 0 ≤ F, g
θ0

S ≤ M for some positive constantM ,

2. ∂F
∂z = ∂S

∂r = 0,

3. ∂F
∂r , ∂S

∂z > 0,

thenσ remains bounded as it evolves in time under the action of
the forcing termsF andS.

These restrictions are very artificial, for instance they require
that diabatic heating increases with height which is the reverse
of the usual case. If these restrictions are not observed, itis
possible that Dirac masses will be created inσ, corresponding to
well-mixed layers of uniform potential temperature and absolute
angular momentum. This is definitely possible in the real system
and is illustrated in the computations ofShuttset al. (1988)..
If this happens, then Cullen and Sedjro prove that (24) can
still be solved, and the solutions will respect (21), if F and S

are continuous, bounded and non-negative. However, the map
from (Υ, Z) to physical space will be multivalued. The artificial
restrictions thatF, S ≥ 0 are required becauseΥ is an inherently
positive quantity andZ is assumed to be positive as discussed
above.

In the results of Shuttset al. (1988), which showed an eyewall
discontinuity and a strong low-level vortex, they started by
defining a state of rest in hydrostatic balance in a fixed domain
Dςt = [r0, ςt] × [0, H]. This corresponds to choosingσt = 1

4Ω
√

Υ

over a domain∆0 = [Ω2r4
0, Υm] × [0, H]. This was represented

discretely by assigning massesσi to points(Υi(0), Zi(0)) in ∆0.
The results illustrated in their paper were obtained by adding a
single time incrementS to Zi at pointsi with small values ofr and
z, so thatZi(t) = Zi(0) + S. This gives a discrete solution of (24)
with F = 0 and withS > 0 for small values ofr andz. This choice
is consistent with the second set of assumptions used by Cullen
and Sedjro, though the smoothness assumption is not relevant for a
discrete scheme. Mapping the solution att back to physical space
produced a low level vortex bounded by an eyewall discontinuity,
and an upper level anticyclonic lens representing the convective
outflow. A number of experiments were carried out with choices
of region with different aspect ratios whereS was non-zero, and
also with regions whereS < 0 to represent evaporative cooling.
In the latter case, the values ofS were chosen to ensure thatZi

remained positive which is required for the results of Cullen and
Sedjro to be valid.
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4.2. Stability of the solutions

The requirement thatabsoluteangular momentum increases with
radius ensures that a vortex whose evolution is described by(24) is
stable to axisymmetric perturbations. In order for the evolution to
be physically relevant, it is also necessary for the solutions to be
stable to non-axisymmetric disturbances. We therefore consider
what distributions ofσt as a function ofΥ and Z correspond
to vortices which are stable to non-axisymmetric disturbances.
The study ofSchubertet al. (1999) shows that the evolution of
a barotropic vortex in a non-divergent rotating fluid from initial
data consisting of an annulus of vorticity with a small azimuthal
perturbation goes towards a vortex concentrated at the origin.
However, conservation of energy and angular momentum require
that some of the initial vorticity is left behind as filamentary
structures outside the core vortex. This evolution was discussed
in terms of either a minimum enstrophy hypothesis or a maximum
entropy hypothesis.

Burton and Nycander (1999) analysed the nonlinear stability
of a three-dimensional quasi-geostrophic vortex to perturbations
which rearranged and/or mixed the potential vorticity. The
inclusion of mixing is necessary to make the extremisation
problem well posed. In the case where there is no background
shear flow, the stable states are axisymmetric and represent
maximisers of the energy. If an axisymmetric vortex is
stable to axisymmetric perturbations, but unstable to non-
axisymmetric perturbations,it is expected that non-axisymmetric
perturbations will grow, equilibriate and the solution will evolve
to a new axisymmetric state with the vorticity mixed, as
discused bySmith and Montgomery(1995) and illustrated in
the computations of Schubertet al.. Thus, in particular, a stable
state can be characterised as an extremum of the energy with
respect to axisymmetric perturbations which rearrange and/or
mix vorticity and conserve total angular momentum.Similar
results were obtained by Cullen and Douglas(2003) for straight
geostrophic flows.

We now show how our analysis is equivalent to Burton and
Nycander’s in the barotropic case.We assume that the vortex is
coherent, so that it occupies a region0 ≤ r ≤ ς where

R

∆ σdΥ =
1
2 ς2. The angular momentum conservation requirement is then
that

R ς
0

√
Υrdr is conserved. The absolute vorticity,which is

assumed positive, is

1

r

∂

∂r

“

ur + Ωr2
”

=
1

r

∂
√

Υ

∂r

Rearranging or mixing absolute vorticity in an axisymmetric

way thus corresponds to mixing1r
∂
√

Υ
∂r allowing for mass

weighting. Thus if we mix two annular rings of vorticity at radii
r1 andr2, both with widthδr, we will obtain a single ring with
vorticity

1

(r1 + r2)δr

ˆ

√
Υ
˜r2+

1

2
δr

r1− 1

2
δr

. (52)

Since
√

Υ has to be monotonically increasing inr, the maximum
and minimum values of

√
Υ will not be changed by the mixing.

However, imposing conservation of the total angular momentum
will then require both to be changed by the same amount.
Complete mixing will give a profile where∂/∂r(

√
Υ) is a

constant. If we allow the mixing to include the regionr ≤ r0,
whereu = 0 as assumed in section 2.1, then we will haveΥ = 0 at
r = 0 so that

√
Υ is proportional tor, giving solid body rotation.

However, this will not in general be compatible with conservation
of total angular momentum.
A maximum energy state corresponding to a cyclonic vortex is
obtained by rearranging the vorticity to be axisymmetric and
monotonically decreasing, which allows the largest valuesof u to

be obtained over the maximum region, givenu = 0 at r = 0. This
is the solution found byBurton and Nycander(1999). It is like the
end state of the simulations inSchubertet al. (1999), though this
state could not be reached because the energy would have been
larger than the initial energy. The initial data used by Schubert
et al. and the vortex analysed bySmyth and McWilliams(1998)
do not satisfy this monotonicity condition. This is consistent
with the instability to non-axisymmetric disturbances found by
Smyth and McWilliams. The stability condition derived by
Montgomery and Shapiro(1995) for three-dimensional vortices

using linear theory reduces to the requirement that∂
√

Υ
r∂r is either

monotonically increasing or decreasing inr, which is consistent
with Burton and Nycander’s result.

In our case, the evolution is given by equation (24) which states
that the mass distributionσ evolves as a function of the square of
the absolute angular momentumΥ. We can writeσ as

σ = r
∂r

∂Υ
=

1

2

∂r2

∂Υ
(53)

which follows from (18) and (21). Mixing σ as a function of
Υ thus implies thatr2 is a linear function ofΥ. If Υ = 0 at
r = 0, thenr2 will be proportional toΥ, which implies solid body
rotation as found above. However, imposing angular momentum
conservation will in general lead to a state withu 6= 0 ar r = r0.

Schubertet al. (1999)’s results do not suggest why there is
an ’eye’ with small relative vorticity at the centre of the vortex,
which would correspond to a vortex which was unstable to
non-axisymmetric perturbations. An eye was found in the three-
dimensional vortex derived byShuttset al. (1988). The analysis
of Montgomery and Shapiro(1995) suggests that stability of such
a vortex requires the potential vorticity to vary monotonically
with r on each isentropic surface. It would be desirable to extend
the nonlinear stability analysis discussed above to this caseusing
potential vorticity instead of vorticity. However, there is now the
additional difficulty that the analysis would have to be carried
out with the full Euler equations, whose solutions cannot be
completely described by the potential vorticity. In particular, the
stability of an energy maximiser with respect to rearrangements
of potential vorticity could be compromised by the radiation
of energy in inertio-gravity waves. This possibility is discussed
by Schecter and Montgomery (2006), who derive conditions
under which such radiation is inhibited. This requires regimes
where there is a timescale separation between the evolutionof
perturbations to the vortex and the frequency of inertio-gravity
and acoustic waves. Burton and Nycander (1999) state that their
quasi-geostrophic analysis is only valid in regimes where the
quasi-geostrophic equations remain accurate for an extended time,
so that gravity wave radiation is small.

5. Physical implications

The results stated in section3.1mean that we can uniquely find an
axisymmetric vortex where the angular momentum and potential
temperature are given on fluid parcels that is embedded in an
ambient fluid at rest with specified potential temperature. The
proof does not require any more physics than the original results
of Fjortoft, Eliassen and Kleinschmidt. The stability condition
requires the azimuthal velocity at the vortex boundary to be
anticyclonic, though the bulk of the vortex can, of course, be
cyclonic. This boundary restriction is an artefact of blending two
different simple solutions together. It is likely that thisblending
procedure could be used to insert a vortex into a less triviallarge-
scale flow, stability of the boundary of the vortex would require a
cyclonic discontinuity at the boundary.

It is then shown that the evolution of this vortex under
axisymmetric forcing is also well-posed, including cases where
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the forcing creates well-mixed regions within the vortex. This
will certainly happen in the presence of convection, which is
a key mechanism. If the axisymmetric forcing is regarded as
representing the effect of non-axisymmetric features on the
axisymmetric flow, this supports the ideas that non-axisymmetric
forcing is important for maintaining the observed axisymmetric
structure. The artificial restrictions in the proof could beremoved
if the forcing were specified as a function of angular momentum
and potential temperature, which is probably more realistic than
assuming that it is specified as a function of the physical
coordinates.

Before considering non-axisymmetric dynamics, it is worth
considering whether axisymmetric solutions are stable to
non-axisymmetric disturbances. We demonstrated for a two-
dimensional vortex that this would be true under a conditionthat
the vortex was a maximum energy rearrangement of the absolute
vorticity, as in the case studied byBurton and Nycander(1999).
This also showed that a two-dimensional vortex with a central
eye would not be stable to non-axisymmetric disturbances, as
found bySchubertet al. (1999). It is likely that three-dimensional
effects are critical for the stability of observed tropicalcyclone
vortices.
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