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This book consists of two parts which can be read independently. It is written by authors who
are on top of the topics they discuss. Throughout the reading of this book the reader will absorb
a lot of fine and subtle information on the subjects discussed. This book contains known results,
recent results and new results which never appeared before. The first part is about nonsmooth
analysis and ordinary differential equations on metric spaces. The tools developed in this first part
apply mainly to gradient flow differential equations. We recommend to the impatient reader to
spend some time understanding the introduction and, if possible, chapter one. The proofs here are
very accessible and the best way to penetrate the heart of the topic is to try to understand some
of the proofs in that chapter. The theories developed in this book are very instructive for anybody
who wants to have a deep understanding of parabolic equations.

The second part focuses on some particular metric spaces, the set of probability measures,
endowed with a Wasserstein distance. The results presented in both parts improve our under-
standing of parabolic partial differential equations. Most of the recent developments of the Monge-
Kantorovich theory, especially those related to partial differential equations, are collected in this
book. It is an excellent source of information for people who have joint interest in probability,
partial differential equations, fluid mechanics and probably geometry. Many remarkable old and
new results obtained at the cross section of these fields, are incorporated in the book.

1 Analysis on metric spaces

1.1 A new concept as a substitute of gradient flow: curves of maximal slope

The first part of this book develops basic tools in metric spaces (S, dist). These tools are needed
to give a sense to ordinary differential equations which are the analogue of gradient flows on metric
spaces, which may not have any differential structure. It starts with the concept of metric derivative
of an absolutely continuous curve v : (a, b) ⊂ R → S given by

|v′|(t) = lim
h→0

dist(v(t+ h), v(t))

|h|
. (1)

For p ∈ [1,+∞], let ACp(a, b;S) be the set of v : (a, b) ⊂ R → S such that

dist(v(t), v(s)) ≤

∫ t

s
m(r)dr, ∀a < s ≤ t < b (2)
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for some m ∈ Lp(a, b). If L1 is the one dimensional Lebesgue measure, the authors prove that the
limit in (1) exists for L1–almost every t ∈ (a, b) provided that v ∈ ACp(a, b;S). The set AC1(a, b;S)
is called the set of absolutely continuous curves. In that case, |v ′| is the smallest function m in
Lp(a, b) such that (2) holds.

If φ : S → R and u ∈ ACp(a, b;S), u′ and ∇φ(u(t)) may not make any sense since S may not
have a differential structure. Thus, the equation

u′(t) = −∇φ(u(t)) (3)

may not be well-defined. Assume for a moment that S is a Hilbert space with an inner product
< ·; · > and denote its norm by || · ||. The equation u′(t) = −∇φ(u(t)) is then equivalent to

0 ≥
1

2
||u′(t) + ∇φ(u(t))||2 =

1

2
||u′(t)||2 +

1

2
||∇φ(u(t))||2+ < u′(t);∇φ(u(t)) >

which is equivalent to

0 ≥
1

2
||u′(t)||2 +

1

2
||∇φ(u(t))||2 +

d

dt
φ(u(t)) (4)

provided that the chain rule d
dtφ(u(t)) =< u′(t);∇φ(u(t)) > holds. Hence, (4) suggests that in case

of lack of differential structure on S, the equation u′(t) = −∇φ(u(t)) could still make sense, if we
find the right substitute for ||u′(t)||, ||∇φ(u(t))||, and if d

dtφ(u(t)) is well-defined. A candidate for
an upper bound for ||∇φ|| is the local slope of φ defined by

|∂φ|(v) = lim sup
w→v

(φ(v) − φ(w))+

d(v, w)
. (5)

We can convince ourselves that the expression in (5) is a good candidate for ||∇φ(v)|| when S is
say, a Hilbert space and φ is differentiable at v. Indeed, in that case, the expression in (5) is clearly
bounded above by ||∇φ(v)||. Since we identify S and its dual and

lim
r→0+

(

φ(v) − φ(wr)
)+

dist(v, wr)
= ||∇φ(v)||, where wr = v − r∇φ(v)/||∇φ(v)||,

we conclude that |∂φ|(v) = ||∇φ(v)||.
Let us suppose that φ never assumes the value −∞ and is a proper function in the sense that

φ(vo) < +∞ for at least a vo ∈ S. Setting g = |∂φ|, then g is a weak upper gradient for φ in the
following sense. For all v ∈ AC1(a, b;S), if |v′|g ◦ v ∈ L1(a, b) and φ ◦ v = ϕ L1 a.e. in (a, b) and ϕ
is a function of finite pointwise variations in (a, b), then |ϕ′| ≤ |v′| g ◦ v. Note that there are several
weak upper gradients. For instance if g is one of them then g+λ is another one for λ ≥ 0. Another
candidate of upper bound for the modulus of the gradient is the strong upper gradient. A function
g : S → [0,+∞] is called strong upper gradient for φ if for all v ∈ AC 1(a, b;S), g ◦ v is a Borel map
and

|φ(v(t)) − φ(v(s))| ≤

∫ t

s
|v′|(r)g ◦ v(r)dr, ∀a < s ≤ t < b.

If φ is lower semicontinuous, then a strong upper gradient for φ is lφ, the global slope of φ, defined
by

lφ(v) = sup
w 6=v

(φ(v) − φ(w))+

d(v, w)
.
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If (S, || · ||) is a Banach space, (S∗, || · ||∗) is its dual space and φ : S is convex and lower semicon-
tinuous, then

lφ(v) = |∂φ|(v) = min{||ξ||∗ : ξ ∈ ∂φ(v)}

where ∂φ(v) is the subdifferential of φ at v. We have the characterization

ξ ∈ ∂φ(v) ⊂ S∗ if and only if lim inf
w→v

φ(w) − φ(v)− < ξ;w − v >

||v − w||
≥ 0.

The equivalence between (3) and (4) suggests that the analogue of gradient flows in case of lack of
differential structure on S is

0 ≥
1

2
|u′|2(t) +

1

2
g2(u(t)) +

d

dt
φ(u(t)). (6)

Here, g is a weak upper gradient for φ, used as a substitution of what would have been the modulus
of the gradient of ∇φ. The metric derivative |u′| has been used as a substitution of what would
have been the modulus of the tangent vector u′. Any solution u ∈ AC1(a, b;S) satisfying (6) will be
called a 2–curve of maximal slope for φ, with respect to the upper gradient g of φ. If p ∈ (1,+∞) and
q = p/(p− 1) is the conjugate of p, the authors exploit Young’s inequality |x|p+ 1

q |y|
q q = p/(p− 1)

to motivate the definition of p–curve of maximal slope as follows. Assume that u ∈ AC 1(a, b;S).
We say that u is a p–curve of maximal slope for φ, with respect to the its weak upper gradient g,
if φ ◦ u = ϕ L1 a.e. in (a, b) and ϕ is a non-increasing function such that

0 ≥
1

p
|u′|p(t) +

1

q
gq(u(t)) + ϕ′(t) for L1 a.e. t ∈ (a, b). (7)

Since |ϕ′| ≤ |v′| g ◦ v, one can combine Young’s inequality to conclude that when (7) holds, then

|u′|p(t) = gq(u(t)) = −ϕ′(t) for L1 a.e. t ∈ (a, b).

The authors further motivate the definition in (7) by showing that when S is a Banach space,
their definitions coincide with the classical definitions in the literature. For the sake of brevity we
lay down their arguments by further imposing that the Banach space is reflexive. We refer the
reader to section 1.4 for complete statements on these issues. The first author has established in a
previous work with B. Kirchheim that v ∈ ACp(a, b;S) is equivalent to v is differentiable at L1 a.e.
t ∈ (a, b), and its derivative v′ ∈ Lp(a, b;S). In that case the metric slope of v coincides with the
norm of v′ at L1 a.e. t ∈ (a, b). Suppose that φ : S → (−∞,+∞] is a proper, lower semicontinuous
function and u ∈ ACp(a, b;S) is such that φ ◦ u is L1 a.e. equal to a non-increasing function. It is
shown that u is p–curve of maximal slope for φ, with respect to the weak upper gradient of φ, if
and only if

∅ 6= −∂minφ(u(t)) ⊂ Jp(u
′(t)) for L1 a.e. t ∈ (a, b). (8)

Here, ∂minφ(u(t)) consists of the elements of minimal norm in ∂φ(u(t)), the set of Fréchet differential
of φ at u(t) and Jp : S → 2S

′

is defined by ξ ∈ Jp(v) if and only if

< ξ; v >= ||v||p = ||ξ||q∗ = ||v|| ||ξ||∗.

Note that if the norm || · || on S is differentiable, φ is differentiable and p = 2, then (8) is equivalent
to

−∇φ(u(t)) = u′(t) for L1 a.e. t ∈ (a, b).



4

1.2 Existence of curves of maximal slope

For the sake of simplicity, assume for a moment that S = R
d and φ : R

d → R is twice differen-
tiable. One can solve (3) by a fixed point method or a constructive algorithm which could be an
explicit or implicit scheme. Implicit schemes have many advantages. Very often, they have a better
convergence property. The authors show how to adapt implicit schemes to metric spaces S which
are not flat. Assume we are given uo ∈ R

d and we are to find u : [0, 1] → R
d satisfying (3) with

u(0) = uo. First, we fix a time step size 0 < τ << 1 such that N = 1/τ is an integer. Assume that
we can define inductively uk+1 as a solution to

uk+1 − uk
τ

= −∇φ(uk+1) k = 0, · · · , N − 1. (9)

We may interpolate the discrete values {uk}
N
k=0 to define uτ : [0, 1] → R

d by

uτ (t) = uk t ∈ (kτ, (k + 1)τ ], k = 0, · · · , N − 1.

If we can interpret (uk+1 − uk)/τ as (uτ )′(t) for t ∈ (kτ, (k + 1)τ) , (9) reads off

(uτ )′ = −∇φ(uτ ) + 0(τ). (10)

The main issues are:
(i) given uk, under what conditions can we find uk+1 that solves (9) even when S is a Hilbert

space? What is the analogue of (9) when S is an arbitrary metric space?
(ii) Can one establish the analogue (10) on metric spaces?
(iii) Suppose the analogue of (10) holds on metric spaces. Can we show that {uτ}τ>0 is pre-

compact for a topology (which might be) weaker than the topology of the metric dist? If {uτ}τ>0

converges to some u for the topology σ, as τ tends to 0 , does u satisfy (3)?
Even when S = R

d and φ is of class C∞, unless an upper bound is imposed on |∇φ| (or |∇2φ|),
a solution to (3) may exist only for t ∈ [0, ε) for some ε > 0 which may be small. Existence of a
solution u(t) for all t ≥ 0 can be established when S = R

d and ∇2φ ≥ λI for some λ ∈ R. Here, I
is the d × d identity matrix. The inequality ∇2φ ≥ λI which expresses that all the eigenvalues of
∇2φ are greater than or equal to λ is equivalent to saying that u→ φ(u) − λ||u||2/2 is convex. In
other words, for all u, v ∈ R

d,

φ((1 − t)u+ tv) ≤ (1 − t)φ(u) + tφ(v) −
λ

2
t(1 − t)||u− v||2 ∀t ∈ (0, 1). (11)

When (S, dist) is a complete metric space and λ ∈ R, φ : S → [−∞,+∞] is said to be λ–convex if
the analogue of (11) holds:

φ(γt) ≤ (1 − t)φ(γo) + tφ(γ1) −
λ

2
t(1 − t)dist2(γo, γ1), (12)

for all minimal geodesics t→ γt of constant speed.
When S = R

d, any solution uk+1 of (9) is a critical point of the functional u→ ||u−uk||
2/2τ +

φ(u). When S is an arbitrary metric space, the authors introduce the functional

Φ(τ, u, v) =
dist2(u, v)

2τ
+ φ(v). (13)

They also introduce a Hausdorff topology σ, weaker than the dist–topology and such that if
{un}

∞
n=1, (resp. {vn}

∞
n=1) converges to u (resp. v) then

dist(u, v) ≤ lim inf
n→+∞

dist(un, vn).
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Given uk, a sufficient condition for a point uk+1 to be a critical point of Φ(τ, uk, ·) is that uk+1 be a
minimizer. Standard conditions in the calculus of variations which ensure existence of a minimizer
are:

(H 1) σ–lower semicontinuity of φ on bounded subsets of S.
(H 2) If {un}

∞
n=1 is a bounded sequence in S and {φ(un)}

∞
n=1 is a bounded sequence

in R, then {un}
∞
n=1 is σ–precompact.

To be hopeful that Φ(τ, uk, ·) will admit a minimizer for all 0 < τ << 1 and all uk ∈ S, one should
at least impose that there exists τ ∗ > 0 and u∗ ∈ S such that

(H3) φτ∗(u∗) = infv∈S Φ(τ∗, u∗, v) > −∞
The author introduce the number

τ∗(φ) = sup{τ > 0 : φτ (u) > −∞ for some u ∈ S}

One can now check that if 0 < τ < τ∗ ≤ τ∗(φ) and u ∈ S, then

φτ (u) ≥ φτ∗(u∗) −
1

τ∗ − τ
dist2(u∗, u) (14)

and so, φτ (u) > −∞ provided that φτ∗(u∗) > −∞. Also, for u, v ∈ S,

dist2(u, v) ≤
4ττ∗
τ∗ − τ

(

Φ(τ, u, v) − φτ∗(u∗) +
1

τ∗ − τ
dist2(u∗, u)

)

(15)

Since (H 1, 2, 3) imply (14) and (15), existence of a minimizer uk+1 ∈ S is ensured for the
functional Φ(τ, uk, ·) if τ < τ∗/2. Hence, given uo, one can inductively define a sequence {uk}

∞
k=0 ⊂

S such that Φ(τ, uk, uk+1) = φτ (uk). In fact, the authors study a more subtle problem, where they
allow the starting point of the algorithm to be a point uo,τ , close to uo in the sense that

lim
τ→0+

φ(uo,τ ) = φ(uo), uo,τ tends to uo in the σ topology, as τ tends to 0

One can interpolate the uk’s in time and obtain a function uτ : [0,+∞) → S such that the
analogue of (10) holds. To do that, it is important to study the finest properties of Φ and φτ .
There are several possible ways of interpolating the uk’s to obtain an approximate solution uτ .
The authors choose a deep interpolation which goes back to De Giorgi [17]. We hereby describe
a simplified version of the algorithm and the interpolation used in the manuscript under review.
First, we introduce

Jτ [u] = argminΦ(τ, u, ·), d+
τ (u) = sup

v∈Jτ [u]
dist(v, u), d−τ (u) = inf

v∈Jτ [u]
dist(v, u).

Set tk = kτ (in the book under review, the authors do not impose that tk+1 − tk is independent
of k). Given δ ∈ (0, tk+1 − tk) = (0, τ), one chooses the interpolation

uτ (t+ δ) ∈ argminu∈SΦ(δ, uk, u). (16)

That interpolation satisfies the energy equality

1

2

∫ tj

ti

(

|u′τ |
2(t) +G2

τ (t)
)

dt+ φ(uτ (tj)) = φ(uτ (ti)). (17)

where,

|u′τ |(t) =
dist(uτ (tk), uτ (tk−1))

tk − tk−1
, Gτ (t) =

d+
t−tk−1

(uτ (tk−1))

t− tk−1
t ∈ (tk−1, tk].
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Set
ūτ (t) = uτ (tk) t ∈ (tk−1, tk]

The equality in (17) is a powerful property which is used to show existence of a u ∈ AC 2
loc([0,+∞);S)

and existence of a subsequence {τn}
∞
n=1 (independent of t) such that for all t ≥ 0

uτn(t), ūτn(t) tend to u(t) in the σ topology, as n tends to + ∞. (18)

Exploiting again (17), the authors obtain an energy inequality for u :

1

2

∫ t

s

(

|u′|2(r) + |∂relaxedφ(u(r))|2
)

dr ≤ ϕ(s) − ϕ(t) (19)

where,
ϕ(t) = lim

n→+∞
φ(ūτn(t)), |∂relaxedφ(w)| = inf

{wn}∞n=1

{lim inf
n→+∞

|∂φ(wn)|}.

Here, the infimum is performed over the set of bounded sequences {wn}
∞
n=1 ⊂ S such that {φ(wn)} ⊂

R is bounded and {wn}
∞
n=1 tends to w in the σ topology, as n tends to +∞. They prove that

ϕ(t) = φ(u(t)) for L1 a.e. t ∈ (0,+∞), (20)

provided that |∂relaxedφ| is a weak upper gradient. Now (19) and (20) readily yield that

−ϕ′(t) ≥
1

2

(

|u′|2(t) + |∂relaxedφ(u(t))|2
)

for L1 a.e. t ∈ (0,+∞) (21)

and so, u is a curve of maximal slope for φ with respect to its weak upper gradient |∂ relaxedφ|.
It is worth mentioning that when φ is λ–convex, its slope |∂φ| is lower semicontinuous (so it is

equal to the relaxed slope |∂relaxedφ| ) and it is a strong upper gradient. Hence, not only are all
the inequalities in (19) and (21) equalities, but also, t 7→ φ(u(t)) is locally absolutely continuous.

1.3 Uniqueness of curves of maximal slope

Assume (S, dist) is a complete metric space and φ : S → (−∞,+∞] is convex, proper, lower
semicontinuous. Let D(φ) be the domain of φ, which is the set of u ∈ S such that φ(u) < +∞.
Assume temporarily that S is a Hilbert space and φ satisfies the coercivity condition

∃u∗ ∈ D(φ), r∗ > 0 : inf
v∈S

{φ(v) : d(v, u∗) ≤ r∗} > −∞. (22)

Under these restrictive assumptions, uniqueness of solutions of (3) is well understood. The unique-
ness property has been established on nonpositively curved metric spaces: these are length spaces
such 1/2dist 2(·, w) is 1–convex for every w ∈ S. This notion was introduced by Aleksandrov and
can be found in the book by Jost [25]. As done in section 4 of the manuscript under review, let us
come back to the assumption that (S, dist) is solely a complete metric space. To obtain uniqueness
of solutions, the authors impose that the functional Φ introduced in (13) satisfies the following
property: for every w, uo, u1 ∈ D(φ) there exists a curve γ : [0, 1] → S such that γ(0) = uo,
γ(1) = u1 and

Φ(τ, w, ·) is (
1

τ
+ λ) − convex for each τ ∈ (0,

1

λ−
). (23)

Clearly, (23) holds when φ is λ–convex and S is a nonpositively curved metric spaces as considered
by Mayer [32]. The results obtained here are stronger than a simple uniqueness result. The authors
show that no matter what subsequence is chosen in (18), we can obtain u as

u(t) = S[u(0)](t) = lim
n→+∞

(Jt/n)
n[u(0)].
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Uniqueness is now a consequence of the fact that

dist
(

S[u(0)](t), S[v(0)](t)
)

≤ e−λtdist(u(0), v(0)) ∀u(0), v(0) ∈ D(φ).

Also, when λ = 0 and φ is nonnegative, they obtain the optimal a priori estimate (see (4.0.15))

dist2
(

S[u(0)](t), (Jt/n)n[u(0)]
)

≤
t

n
φ(u(0)) ∀u(0) ∈ D(φ).

2 Mass transport and weak riemannian structure on the set of

probability measures

Section 5, reviews some basic measure-theoric tools. If X is a separable metric space, B(X) denotes
the collection of Borel subsets of X and P(X) denotes the set of Borel probability measures on X.
If µ ∈ P(X), we say that µ is tight if for every every ε > 0 there exists a compact set K ⊂ X
such that µ(X \K) < ε. If X is a separable metric space then every µ ∈ P(X) is tight, by Ulam
theorem. More generally, we say that X is a Radon space if every µ ∈ P(X) is tight.

In 1781, the great geometer G. Monge formulated a mass transport problem which consists in
finding the optimal way to transport a pile of dirt to an excavation. Here, optimality is measured
against the cost function |x−y| which represents the cost of transporting a unit mass from the point
x to the point y. It has long been suspected that Monge has formulated a central problem which
would drastically impact mathematics. This suspicion went far beyond expectation as justified
by the endless ramifications of the Monge problem in the past two hundred years. The Academy
of Paris established the ’Prix Bordin’ which was offered to Appell a hundred years later, for a
formal solution to Monge problem. The title of [2] alone says much more about the importance
of this problem than our short sell. We also refer the reader to [16] for more comments on the
’Prix Bordin’ . The first impact of Monge’s problem was first on developable surfaces. A cen-
tury elapsed before a first rigorous solution to a relaxation of Monge’s problem was proposed by
Kantorovich as a problem in economics with applications in statistics and probability. In the past
twenty years, the Monge-Kantorovich problem and its variants have been used as a powerful tool in
partial differential equations, fluid mechanics. Many scientists from fields ranging from geometry
to functional analysis, geophysics to kinetic theory have recognized that subject as a useful area
which has advanced their research.

One of the goals of the second part of this book is to collect known and basic results of the Monge-
Kantorovich theory and establish many other new ones, which have never appeared elsewhere.
Especially, this book develops a rigorous setting which endows the set of probability measures
with a weak Riemannian structure, formally introduced by Otto in his seminal paper [35]. This
Riemannian structure is used to prove existence and uniqueness for parabolic partial differential
equations. These equations can be expressed as gradient flows of functionals, on the set P(Rd), of
Borel probability measures on R

d.

2.1 The mass transportation problem

Let X and Y be two Radon spaces and let c : X × Y → [0,+∞] be a Borel function. We call c a
cost function and interpret c(x, y) as the cost of transporting a unit mass from the point x to the
point y. If t : X → Y and µ ∈ P(X), we define t#µ, the push forward measure of µ through t by

t#µ(B) = µ
(

t
−1(B)

)

B ∈ P(Y ).
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Given µ ∈ P(X) and ν ∈ P(Y ), the Monge problem is the following variational problem:

inf
t

{

∫

X
c(x, t(x))dµ(x) : t#µ = ν

}

. (24)

At the time Monge first formulated his problem, measure theory was not a well-developed field and
so, it is clear that he must be assuming to have ’nice’ measures. For instance these measures could
have been chosen to have densities. Also, the above formulation of the Monge problem is so general
that it may be ill posed unless we impose additional conditions on the measures µ and ν. Indeed,
there may not exist a Borel map t : X → Y such that t#µ = ν. For instance if x ∈ X, y1, y2 are
two distinct elements of Y , there is no t such that t#δx = 1/2(δy1 + δy2). It is a standard fact in
measure theory that if that µ has no atoms (µ{x} = 0 for all x ∈ X) then there exists a Borel map
t that pushes µ forward to ν.

The first breakthrough on Monge’s problem was achieved by Kantorovich in 1942 [26], [27],
who formulated a linear programing problem and was awarded the nobel price for related works
[34]. Kantorovich linear programing problem (25) turned out to be the relaxation of the Monge
problem when µ does not have any atoms [21]. Let Γ(µ, ν) be the set of Borel probability measures
on X × Y that have µ and ν as their marginals: γ(A × Y ) = µ(A) and γ(X × B) = ν(B) for all
A ∈ B(X), B ∈ B(Y ). The so-called Monge-Kantorovich problem is:

inf
γ∈Γ(µ,ν)

{

∫

X×Y
c(x, y)dγ(x, y)

}

. (25)

It is easy to show that when c is lower semicontinuous then (25) admits a minimizer. If t#µ = ν,
and idX denote the identity map on X, one can identify t with (idX × t)#µ ∈ Γ(µ, ν). Since

∫

X
c(x, t(x))dµ(x) =

∫

X×Y
c(x, y)d(idX × t)#µ(x, y)

we conclude that

inf
t

{

∫

X
c(x, t(x))dµ(x) : t#µ = ν

}

≥ inf
γ∈Γ(µ,ν)

{

∫

X×Y
c(x, y)dγ(x, y)

}

. (26)

The support of γ ∈ P(X × Y ) is the smallest closed subset K ⊂ X × Y such that γ(K) = 1.
A set Γ ⊂ X × Y is c–cyclically monotone if for all n integers, all {(xi, yi)}

n
i=1 ⊂ X × Y and all σ

permutation of n letters,
n

∑

i=1

c(xi, yi) ≤
n

∑

i=1

c(xi, yσ(i)). (27)

When for instance X = Y = R
d and c(x, y) = |x − y|2, by a well known result of Rockafeller, c–

cyclically monotone sets are characterized by the fact that they are contained in the subdifferential
of convex functions. In theorem 6.1.4, the authors assume that

µ

(

{

x ∈ X :

∫

Y
c(x, y)dν(y) < +∞

}

)

> 0. (28)

and

ν

(

{

y ∈ Y :

∫

Y
c(x, y)dµ(x) < +∞

}

)

> 0. (29)

The authors show that if γ ∈ Γ(µ, ν) is optimal in (25) and
∫

X×Y c(x, y)dγ(x, y) < +∞, then γ is
concentrated on a c–cyclically monotone Borel set. If in addition c is continuous, then the support
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of γ is c–cyclically monotone. Conversely, if c is real-valued, γ ∈ Γ(µ, ν) is concentrated on a c–
cyclically monotone Borel set and (28 –29 ) hold, then γ is optimal and

∫

X×Y c(x, y)dγ(x, y) < +∞.
The current result is slightly finer than what was known in the literature.

A second breakthrough on Monge’s problem was achieved by Brenier [3] in 1987 when he proved
existence and uniqueness of an optimal map in (24), when X = Y = R

d, c(x, y) = ||x − y||2 and
µ << Ld. That paper is responsible for the revival of the mass transport theory in the partial
differential equations community. The topic has then stayed vibrant for the past 15 years. It
has been applied to fluid mechanics [4], [6] and miraculously found a strong connection with the
semigeostrophy systems introduced by Eliasssen [18] in 1948 and rediscovered by Hoskins [24] in
1975. The first studies of the semigeostrophy systems were done by meteorologists [8][14] [15] who
were not at first aware of the mass transport theory. However, since the connection between these
two fields has been observed, many of the recent works in the mathematics community [5] [7] [10]
[11] [12] [13] [31] rely on the mass transport theory.

Let Cb(X) be the set of continuous, bounded functions on X. Theorem 6.1.1 establishes that
when c is proper and lower semicontinuous then a dual to (25) is

sup
(ϕ,ψ)

{

∫

X
ϕ(x)dµ(x) +

∫

Y
ψ(y)dν(y)

}

. (30)

Here the infimum is performed over the set of pairs (ϕ,ψ) ∈ Cb(X)×Cb(Y ) such that ϕ(x)+ψ(y) ≤
c(x, y) for all (x, y) ∈ X ×Y. We write (ϕ,ψ) ∈ C. This duality result was probably due to Kellerer
[28]. The proof in this book is different from the original proof and is succinct. Many other authors
contributed to a better understanding of (24) in the case when X = Y = R

d, c(x, y) = ||x − y||2

and µ << Ld. A refined version of the work of Brenier, due to McCann [30], allows µ to vanish on
(d− 1)–rectifiable sets. A method for establishing existence of optimal maps, which solely focuses
on understanding (30) without using as an ingredient that it is a dual to (24), was proposed by
the reviewer of the current manuscript in [19]. That method was later applied to more general cost
functions in [20] and [22]. A new geometric argument was introduced in [23] and is the basis of
many of the methods used by various authors including the one of the current manuscript.

If the supremum in (30) is finite, (28 –29) hold and we further assume that c is real-valued,
then there exists (ϕ,ψ) maximizer in (30). In that case, it is not a loss of generality to assume that
the supremum is attained at an extreme point of C so that ϕ = ψc, and ψ = ϕc where

ψc(x) = inf
y∈Y

c(x, y) − ψ(y). (31)

By duality, if γ ∈ Γ(µ, ν) is a minimizer in (25) we must necessary have that

ϕ(x) + ϕc(y) = c(x, y) γ a.e. in X × Y. (32)

Indeed, by duality and the fact that γ ∈ Γ(µ, ν) and (ϕ,ϕc) ∈ C, we have

0 =

∫

X×Y
c(x, y)dγ(x, y) −

∫

X×Y
(ϕ(x) + ϕc(y))dγ(x, y) =

∫

X×Y
|c(x, y) − ϕ(x) − ϕc(y)|dγ(x, y).

This proves (32). That equality is fundamental for proving existence of a minimizer in (24) when
µ is absolutely continuous with respect to Lebesgue measure. To illustrate that fact, let us make
that additional assumption on µ, in the remainder of this paragraph. The authors state existence
of an optimal map for the Monge problem for cost functions of the form c(x, y) = h(x − y) when
X = Y = R

d. They only imposed that h : R
d → [0,+∞) is strictly convex. They don’t impose
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any condition on the growth of h(z) as |z| tends to infinity. That growth condition was required in
[23], which provided the first existence of optimal maps for general cost functions. The expression
in (31) is used to prove that ϕ is locally Lipschitz and so is differentiable µ–almost everywhere.
Let x ∈ R

d be a point of differentiability of ϕ such that (32) holds for some y. Then, z →
c(z, y) − ϕ(z) − ϕc(y) = l(z) attains its minimum at x. Thus, 0 ∈ ∂l(x) = ∂h(x− y) −∇ϕ(x) and
so, ∇ϕ(x) ∈ ∂h(x − y). The strict convexity of h yields that y = x − (∇h)−1(∇ϕ(x)). One can
readily conclude that except for a set of zero measure, the support of γ is contained in the graph
of the map x → t(x) = x − (∇h)−1(∇ϕ(x)) and so, t#µ = ν. One verifies that γ = (idX × t)#µ
and so,

∫

X
c(x, t(x))dµ(x) =

∫

X×Y
c(x, y)dγ(x, y).

This, together with (26) gives that t is a minimizer for (24). It is also clear that t is uniquely
determined µ–almost everywhere since its explicit expression was dictated to us from (32). An
approximate differential property of t is established in theorem 6.2.7. It is also shown that the
eigenvalues of ∇t are nonnegative when h satisfies appropriate conditions (e.g h(z) = ||z||p, p ∈
(1,+∞).) A first proof of that weak regularity result on t and the nonnegativeness of ∇t is due to
Otto when h is smooth. We also refer the reader to Cordero [9].

The authors consider a more general case than the one we describe earlier by assuming that
X = Y are Hilbert spaces, c(x, y) = ||x− y||p = h(x− y) and p ∈ (1,+∞). Note that (∇h)−1 exists
and is continuous. A measure ν ∈ P(X) is a nondegenerate Gaussian measure if L#ν ∈ P(R) has
a Gaussian distribution for all linear bounded forms on X. A set B ∈ B(X) is a Gaussian null set
if µ(B) = 0 for every nondegenerate Gaussian measure ν ∈ P(X). A analogue of Radermacher’s
theorem ensures that if X is a Hilbert separable space, every locally Lipschitz map is Gateaux
differentiable everywhere, except maybe on a Gaussian null set. A measure µ ∈ P(X) is regular
if µ(B) = 0 for all Gaussian null sets. Let us denote the set of regular measures by P(X)r. The
argument of the previous paragraph can be readily adapted to this Hilbert case, to obtain existence
of an optimal map for the Monge problem.

2.2 Weak Riemannian structure on a subset of P(X)

In this subsection, X = Y is a separable Hilbert space endowed with the inner product < ·; · > . If
{ei}

∞
i=1 is an orthonormal basis of X, one can define on X a norm || · ||2ω̄ whose topology is weaker

than the original topology. For instance

||x||2ω̄ =

∞
∑

i=1

1

i2
< x; ei >

2 .

Every bounded sequence for the original norm is precompact for || · ||2ω̄. For p ∈ [1,+∞) the
authors consider the Monge-Kantorovich problem with the cost function c(x, y) = ||x − y||p. For
µ, ν ∈ P(X), we define

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

{

∫

X×Y
||x− y||pdγ(x, y)

}

. (33)

Let Lp(µ,X) denote the set of µ–measurable Borel maps v : X → X such that ||v||Lp(µ,X) =
∫

X ||v||pdµ < +∞. For W p
p (µ, ν) to be finite, it suffices to assume that idX ∈ Lp(µ,X) ∩ Lp(ν,X).

Indeed, setting γ = µ⊗ ν and using that ||x− y||p ≤ 2p−1(||x||p + ||y||p), one concludes that

W p
p (µ, ν) ≤ 2p−1(||idX ||

p
Lp(µ,X) + ||idX ||

p
Lp(ν,X)).
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This fact suggests that the sets Pp(X) of µ ∈ P(X) such that idX ∈ Lp(µ,X) will play an
important role. For p ∈ (1,+∞) and q = p/(p − 1), the continuous map jp : X → X defined
by jp(v) = v||v||p−2 yields a map from Lp(µ,X) onto Lq(µ,X). If µ, ν ∈ Pp(X), the set of γ
minimizers in (33), is nonempty and we denote it by Γpopt(µ, ν). When p = 2, we simply denote
that set by Γopt(µ, ν). The authors generalize an interpolation introduced by McCann [29] in his
influential PhD dissertation, to Hilbert spaces. If µo, µ1 ∈ P2(X) and γ ∈ Γpopt(µ, ν), one can define
the interpolant path t→ µt ∈ P2(X) starting at µo and ending at µ1 by

µt = πt#γ, πt(x, y) = (1 − t)x+ ty, (x, y) ∈ X ×X.

One can readily check that t→ µt is a geodesic (of constant speed) such that

Wp(µs, µt) = (t− s)Wp(µo, µ1) ∀0 ≤ s < t ≤ 1. (34)

In lemma 7.2.1, the authors prove the remarkable result that if t ∈ (0, 1) then Γpopt(µo, µt) (resp.
Γpopt(µo, µt)) contains a unique element µ0 t (resp. µt 1). The plans µt 1 and (µ0 t)−1 are induced by
transport maps. In other words, their supports are contained in the graph of a Borel map.

In the current manuscript, the authors introduce the set C∞
fin, c(X) which consists of the func-

tions
ψ ◦ π, ψ ∈ C∞

c (Rd), π(x) = (< x; e1 >, · · · , < x; en >),

where {e1, · · · , en} ⊂ X is an orthonormal family and n is a positive integer. One can show that
ψ ◦ π ∈ C∞

fin, c(X) is continuous for ω̄ and its Fréchet gradient ∇ψ exists everywhere. In theorem
8.3.1, the authors prove the following amazing and central result: If I ⊂ R is an open interval and
t→ µt is an absolutely continuous curve and |µ′| is its metric derivative, then there exists a Borel
vector field (x, t) → vt(x) such that

vt ∈ Lp(µt, X), ||vt||Lp(µt,X) ≤ |µ′| for L1 a.e. t ∈ I. (35)

and the continuity equation

∂tµt + ∇ · (µtvt) = 0 ∈ X × I (36)

holds in the sense of distribution. Moreover, for L1–a.e. t ∈ I, jp(vt) belongs to the closure in
Lq(µt, X), of the subspace generated by the gradients ∇ψ with ψ ∈ C∞

fin, c(X). We denote that
space by TµtPq(X). They prove that vt is uniquely determined

Conversely, if a narrowly continuous curve t ∈ I → µt ∈ Pp(X) satisfies (36) for some Borel
velocity field vt with ||vt||Lp(µt,X) ∈ L1(I), then t→ µt is absolutely continuous and

|µ′| ≤ ||vt||Lp(µt,X) for L1 a.e. t ∈ I. (37)

The authors prove another amazing generalized version of p–Hodge decomposition which we de-
scribe only when p = 2 : if u ∈ L2(µ,X) then there exists a unique pair (v,w) ∈ L2(µ,X)×L2(µ,X)
such that

u = v + w, µ a.e. v ∈ TµP2(X), divµw = 0,

where divµ is the linear functional on L2(µ,X) defined by

< w;∇ψ >µ=:

∫

X
< w;∇ψ > dµ = −

∫

X
(divµw)ψdµ ∀ψ ∈ C∞

fin; c(X).
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In other words, v = Π(u) where Π is the orthogonal projection onto TµP2(X). They apply this
Hodge decomposition to show in proposition 8.4.5 that the vector field vt identified by (35) and
(36), is uniquely determined and belongs to TµtP2(X). It becomes then legitimate to write that

µ′t = vt

Exploiting now (37) one concludes that

∫

I
|µ′|2dt =

∫

I
||µ′t||

2
L2(µt,X)dt. (38)

While the left handside of (38) is expressed in terms of the metric derivative of µt, its right handside
is expressed in terms of the L2(µt, X)–norm of vt. Taking (38) into account and using (8.0.2), one
realizes that the authors have established that the space P2(X) is endowed with a weak Riemannian
structure, consistent with the metric W2 in the following sense. If µo, µ1 ∈ P2(X), then

W 2
2 (µo, µ1) = min

{µt}

{

∫ 1

0
< µ′t;µ

′
t >µt dt : t→ µt ∈ AC2(0, 1;X), µt=0 = µo, µt=1 = µ1

}

. (39)

2.3 Sudifferential and convexity of functions on P2(X)

In chapter 9, for functions φ : Pp(X) → (−∞,+∞], the authors defined various notions of convexity,
including λ–convexity as defined in (12), along the geodesics. For instance, they show that if
ν ∈ P2(X) then − 1

2W
2
2 (·, ν) is (−1)–convex whereas 1

2W
2
2 (·, ν) fails to be λ–convex for any λ ∈ R.

In lemma 9.1.4, they prove that if a sequence of λ–convex functionals Γ–converges, then the limit
is also λ–convex. They introduce notions of generalized geodesics and generalized geodesics with a
base point . We suggest that the reader should spend sometime on remark 9.2.8 which comments
on the convexity properties of 1

2W
2
2 (·, ν) with respect to these various geodesics.

The notion subdifferential of a functional φ : P2(X) → (−∞,+∞] is crucial for studying
ordinary differential equations on P2(X). Since P2(X) is neither a vector space, nor a Riemannian
manifold in any classical sense, the definition of subdifferentials of functionals is not straightforward
to guess. The authors propose various definitions of subdifferentials for the metric space Pp(X)
in definition 10.1.1 and 10.3.1. Definition 10.1.1 is too restrictive and definition 10.3.1 requires
additional notation. Because of that, I hereby give myself the liberty to suggest a definition (for
p = 2) which appeared in a joint paper by the first author of the book under review and myself. If
ξ ∈ L2(µ,X) and φ(µ) < +∞, they say that ξ belongs to ∂φ(µ) the Fréchet subdifferential of φ at
µ if

φ(ν) ≥ φ(µ) + sup
γ∈Γopt(µ,ν)

∫

X×X
< ξ(x), y − x > dγ(x, y) + o(W2(µ, ν),

as ν → µ. The set ∂φ(µ) is a convex closed subset of P2(X) and so, admits an element of minimal
norm which is necessary in TµP2(X). That element is simply denoted by ∇φ(µ); one could rather
write ∇W2

φ(µ) to distinguish it from gradient of functions defined on X.
With the notions of gradients and subdifferential of functions φ : P2(X) → (−∞,+∞], the

authors introduced a rigorous concept of gradient flow on Pp(X). This coincides with the notion
of curves of maximal slopes studied in section 1.3. The fact that 1

2W
2
2 (·, ν) is not λ–convex for any

λ ∈ R, led the authors to exploit its convexity along generalized geodesics with a base point. That
property is used in chapter 11 to study existence and uniqueness of gradient flows solutions when
the functional φ is λ–convex.
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Conclusions. The importance of topics covered by this book and the care with which it is
written, make it an excellent book of analysis/partial differential equations. Sections 5–11 com-
plements another recent book on the Monge-Kantorovich theory, by C. Villani, which appeared in
2003 as a graduate text book in the AMS series. I anticipate that this book will establish itself
for many years to come, as one of the main references on the geometry of the set of probability
measures.
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