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Abstract. In this manuscript, given a metric tensor on the probability simplex, we define dif-
ferential operators on the Wasserstein space of probability measures on a graph. This allows us
to propose a notion of graph individual noise operator and investigate Hamilton-Jacobi equa-
tions on this Wasserstein space. We prove comparison principles for viscosity solutions of such
Hamilton-Jacobi equations and show existence of viscosity solutions by Perron’s method.

1. Introduction

Partial differential equations (PDE) in infinite dimensional and abstract spaces have been stud-
ied steadily over the last several decades. The main interest has always been in Hamilton-Jacobi-
Bellman (HJB) equations related to deterministic and stochastic optimal control problems for
control of PDE and stochastic PDE and other abstract differential equations. Recently there has
been a renewed interest in such equations in spaces of probability measures due to their connection
to mean field control and mean field game problems. The theory of first and second order PDE in
Hilbert spaces has been developed the most. A complete overview of various approaches, classical
solutions, viscosity solutions, mild solutions, L2-solutions, solutions using backward stochastic dif-
ferential equations methods can be found in [37]. Results about classical solutions of linear second
order PDE can be found in [35] and earlier results about mild solutions for first order PDE and
solutions using convex regularization procedures can be found in [4]. Viscosity solutions in Hilbert
spaces have been originally introduced by Crandall and P. L. Lions in [28, 29, 30, 31, 32, 33]. We
refer to [37] for the full account of the theory and further references. Some aspects of the theory
for first order equations can also be found in [62].

The original interest in the PDE in spaces of probability measures came from partially observed
optimal control problems through the study of fully observable so called separated problems where
one controls a new measure valued state process (unnormalized conditional density of the original
state with respect to the observation process) which satisfies the so-called Duncan-Mortensen-Zakai
equation. Early attempts to look at HJB equations in the space of measures for such a problem
was made in [54]. A Bellman equation in the space of measures was also studied in [55]. A
renewed interest in HJB equations in spaces of probability measures started with the development
of the theory of mass transport and a calculus in the Wasserstein space of probability measures
and later the study of mean field control and mean field game problems. The first definition
of a viscosity solution using sub- and super-differentials in the Wasserstein space appeared in
[46] and later different notions of viscosity solutions were introduced of equations in the space of
probability measures and more abstract metric spaces in various contexts. In particular a notion
of the so-called L-viscosity solution was introduced in [63] which “lifts” the equation from the
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Wasserstein space to an Hilbert space of L2 random variables and this approach was developed
further in [50] (see also [20, 21] for more on the lifting procedure). We refer the readers to
[5, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 25, 36, 44, 45, 47, 48, 52, 56, 57, 58, 67, 71, 72, 73]
for equations related to mean field control and optimal control/variational problems in spaces
of probability measures. Equations related to control problems with partial observation were
studied in [6] and equations related to differential games were investigated in [26, 59]. HJB
equations in the Wasserstein and metric spaces with formal Riemannian structure as well as
completely regular spaces, mostly related to control of gradient flows, large deviations and fluid
dynamics were studied by different techniques in [23, 24, 38, 39, 40, 41, 42, 60, 61]. Various
comparison theorems and uniqueness results for appropriately defined viscosity solutions were
proved in these papers. HJB equations in abstract metric spaces were studied by various techniques
in [1, 14, 15, 47, 49, 53, 64, 65, 69, 70]. Uniqueness of appropriately defined viscosity solutions of
first order HJB equations in the Wasserstein space was proved in [5, 58]. Uniqueness of viscosity
solutions of a second order Bellman master equation in the Wasserstein space arising in stochastic
optimal control problems for McKean-Vlasov diffusion processes was established in [25]. Other
papers containing uniqueness results are [17], where a uniqueness result for a notion of viscosity
solution for a class of integro-differential Bellman equations of a special type was shown, and [73],
where well-posedness of viscosity solutions of parabolic master equations, including HJB master
equations associated with control problems for McKean-Vlasov stochastic differential equations
was established. There is also vast literature on master equations of mean field games which are
integro-differential PDE in the space of probability measures. We do not discuss them here since
they are not HJB equations.

In this manuscript we investigate Hamilton-Jacobi equations on the Wasserstein space of prob-
ability measures on graphs. Discrete optimal transport calculus, in the space of probability mea-
sures on graphs and gradient and Hamiltonian like flows on graphs, have been studied in many
papers; we refer for instance to [22, 34, 66, 68]. In particular, finite state mean field games have
received significant attention in recent years. Master equation for finite state mean field games
with Wright–Fisher common noise have been studied in [7] and [51] derived master equations from
finite state Hamilton-Jacobi equation which appear in potential games. However very little is
known about Hamilton-Jacobi equations in such spaces. The goal in this manuscript is to develop
a mathematical setup for such equations, introduce a notion of a viscosity solution and study their
well-posedness. Since the set of probability measures on a graph with n vertices is identified with a
simplex in Rn, the theory resembles the theory of viscosity solutions in finite dimension. Moreover,
it can be seen that it can be recast in terms of viscosity solutions on Riemannian manifolds with
boundary (see Remark 4.4). We refer for instance to [3] for the theory of viscosity solutions on
Riemannian manifolds. The analogy stops here although in our case the manifold (the simplex) is
flat. We have to deal with Hamiltonians which vanish near the boundary of the simplex since we
are working on the Wasserstein space. This makes our study different from the classical theory of
viscosity solutions. Hence, we present everything from the beginning and with details. We focus
on a class of Hamilton-Jacobi equations with a convex and somehow coercive Hamiltonian and an
individual noise type term. We prove two comparison results, one for an initial boundary value
problem and the second for an initial value problem where the boundary is irrelevant. We also
discuss the existence of viscosity solutions by Perron’s method. Even though Perron’s method
here is a rather straightforward adaptation of the classical Perron’s method, we present full details
for the sake of completeness.

Throughout this manuscript, we fix an undirected graph G = (V,E, ω), where V = {1, · · · , n}
is the set of vertices and E ⊂ V 2 is the set of edges. The weight ω = (ωij) is a n by n symmetric
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matrix with nonnegative entries such that ωij > 0 if (i, j) ∈ E. As in [43], we assume for simplicity
that the graph is connected, simple, with no self-loops or multiple edges. We denote by P(G) the
probability simplex {

ρ ∈ [0, 1]n
∣∣∣ n∑
i=1

ρi = 1
}
.

We use a symmetric function g : [0, 1]2 → [0,∞), to induce an equivalence relation on Sn×n, the
set of n by n skew-symmetric matrices: if ρ ∈ P(G), we say that v, ṽ ∈ Sn×n are ρ-equivalent if
(vij − ṽij)gij(ρ) = 0 for all (i, j) ∈ E. We denote the quotient space by Hρ. Under appropriate
conditions which will later be specified, g is used to define a metric tensor on P(G) and endow Hρ

with an inner product and a discrete norm as follows:

(1.1) (v, ṽ)ρ :=
1

2

∑
(i,j)∈E

vij ṽijgij(ρ) and ‖v‖ρ :=
√

(v, v)ρ, ∀ v, ṽ ∈ Sn×n.

Here the coefficient 1/2 accounts for the fact that whenever (i, j) ∈ E then (j, i) ∈ E.

If φ : V → Rn, its graph gradient denoted ∇Gφ is defined as

∇Gφ :=
√
ωij(φi − φj)(i,j)∈E .

The adjoint of ∇G for the (·, ·)ρ inner product is −divρ : Hρ → Rn given by

divρ(v) =

( n∑
j=1

√
ωijvjigij(ρ)

)n
i=1

, ∀ v ∈ Sn×n.

We call divρ the divergence operator. In this manuscript, we impose that

(1.2)
∫ 1

0

dr√
g(r, 1− r)

< +∞,

to ensure that the expression W, defined below in (2.7), is a metric on P(G) (cf. [66] and [43]).

We fix T > 0 and assume that we are given F ,G ∈ C(P(G)) and H ∈ C(P(G) × Sn×n). We
denote by L(ρ, ·) the Legendre transform ofH(ρ, ·) with respect to the inner product (·, ·)ρ. Setting

ḡ(s, t) :=
log s− log t

s− t
g(s, t),

for s 6= t such that s, t > 0, in this introduction, we shall keep our focus on the cases where

(1.3) ḡ has a unique continuous extension to [0, 1]2.

As a consequence, as a function a-priori defined on a subset of (0, 1)n,

(1.4) ρ→ divρ
(
∇G log ρ

)
has a unique continuous extension to [0, 1]n.

We list examples of g’s satisfying (1.3) in (2.5) and (2.6). However, in most of this work, we do
not need to assume that (1.3) holds.

In light of (1.4), standard ODEs theory ensures that given v̄ ∈ L1(0, T ; Sn×n) and ~ ≥ 0, the
system of equations

(1.5) σ̇ + divσ

(
v̄ + ~∇G log σ

)
= 0

has a distributional solution σ : [0, T ]→ Rn, of class W 1,1.
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When the range of σ is contained in P(G), we call v̄ a control for σ on [0, T ]. For t ∈ (0, T ] we
consider

(1.6) U(t, µ) = inf
(σ,v̄)

{
G(σ0) +

∫ t

0

(
L(σ, v̄)ds+ F(σ)

)
ds : σt = µ

}
,

where the infimum is performed over the set of (σ, v̄) such that v̄ is a control for σ over [0, t].
Formally at least, we expect U to satisfy a Hamilton–Jacobi equation, after defining a suitable
notion of Wasserstein gradient operator on the set of functions on P(G). More precisely, we expect
that U would satisfy, in a sense which remains to be specified, the equation

(1.7) ∂tU(t, µ) +H
(
µ,∇WU(t, µ)

)
+ F(µ) = ~∆indU(t, µ).

Here
∆indU(t, µ) :=

(
divµ

(
∇WU(µ)

)
, logµ

)
= −Oµ

(
∇WU(µ)

)
and we have set

Oµ(p) := −
(
p,∇G logµ

)
µ
, ∀(p, µ) ∈ P(G)× Sn×n.

We call ∆ind, the graph individual noise operator. The assumption (1.3) ensures that Oµ(p)
satisfies (6.1), an essential condition in the application of Perron’s method to obtain the existence
of a solution to (1.7).

The above arguments relating (1.7) to the control problem (1.6) will not be pursued in this
manuscript. This formalism was brought up here only to motivate the study of (1.7).

Observe that (1.7) is linear in U , when F ≡ 0, H ≡ 0 and g is given by Example 2.5, which
means ḡ(s, t) ≡ 1. One can check that the solution in this special case is given by

U(t, µ) := G
(
etAµ

)
,

where

(1.8) Aij(σ) =


ωijg(σi, σj), if j ∈ N(i);
0, if j 6∈ N(i), j 6= i;
−
∑

k∈N(i) ωikg(σi, σk), if j = i.

Here, N(i) := {j ∈ V : ωij > 0}. In fact, for each t ≥ 0, etA is a transition matrix and there
exists a constant C > 0 such that if µi ≥ ε for all i ∈ V then (etAµ)i ≥ Cεt for all i ∈ V .

The plan of paper is the following. In Section 2 we present the definitions, notation and the
mathematical setup for the Wasserstein space of probability measures on a finite graph. Section 3
collects preliminary material about calculus on the Wasserstein space on a graph and in Definition
3.15, we introduce the so-called individual noise operator. In Section 4 we introduce the definition
of viscosity solution and in Section 5 we prove two comparison results. Existence of viscosity
solutions and some regularity results are discussed in Section 6. The Appendix (Section 7) contains
proofs of some technical results.

2. Definitions and Notation

We denote the set of skew–symmetric n × n matrices as Sn×n. Let G = (V,E, ω) denote an
undirected graph of vertices V = {1, ..., n} and edges E, with a weighted metric ω = (ωij) given by
an n by n symmetric matrix with nonnegative entries ωij and such that ωij > 0 if (i, j) ∈ E. For



WELL-POSEDNESS FOR HAMILTON-JACOBI EQUATIONS ON THE WASSERSTEIN SPACE ON GRAPHS 5

simplicity, assume that the graph is connected and simple, with no self–loops or multiple edges.
We set

λ̄ω := sup
(i,j)∈E

ω−1
ij and Cω := sup

(i,j)∈E

√
ωij .

The range and kernel of the gradient operator. It is customary to identify a function
φ : V → R with a vector φ = (φi)

n
i=1 ∈ Rn. We use the standard inner product and norm on Rn:

(φ, φ̃) :=
n∑
i=1

φiφ̃i and ‖φ‖ =
√

(φ, φ), ∀ φ, φ̃ ∈ Rn.

We denote by R(∇G) the range of ∇G (defined in the introduction) and by 1 ∈ Rn the vector
whose entries are all equal to 1. Since G is connected, the kernel of ∇G is the one dimensional
space spanned by 1. The orthogonal complement in Rn of the latter space is ker (∇G)⊥, the set of
h ∈ Rn such that

∑n
i=1 hi = 0.

G-Divergence of vector field. The divergence operator associates to any vector field m on
G a function on V defined by

∇G · (m) = divG(m) :=
( ∑
j∈N(i)

√
ωijmji

)n
i=1
.

Set of probability measures and its boundary. We identify P(G), the set of probability
measures on V, with the simplex

P(G) =
{
ρ = (ρi)

n
i=1 ⊂ [0, 1]n

∣∣∣ n∑
i=1

ρi = 1
}
.

We denote for 0 ≤ ε < 1, Pε(G) := P(G) ∩ (ε, 1)n so that P0(G) is the interior of P(G). The
boundary of P(G) is P(G) \ P0(G).

The set C(ρ0, ρ1) of paths connections probability measures. Given ρ0, ρ1 ∈ P(G), we
denote as C(ρ0, ρ1) the set of pairs (σ,m) such that

σ ∈ H1(0, 1;P(G)), m ∈ L2(0, 1;Sn×n), (σ(0), σ(1)) = (ρ0, ρ1)

and

(2.1) σ̇i +
∑
j∈N(i)

√
ωijmji = 0, in the weak sense on (0, 1).

Throughout this manuscript g : [0,∞)× [0,∞)→ [0,∞) satisfies the following assumptions:

(H-i) g is continuous on [0,∞)× [0,∞) and is of class C∞ on (0,∞)× (0,∞);
(H-ii) g(r, s) = g(s, r) for any s, r ∈ [0,∞);
(H-iii) min{r, s} ≤ g(r, s) ≤ max{r, s} for any r, s ∈ [0,∞);
(H-iv) g(λr, λs) = λg(r, s) for any λ, s, r ∈ [0,∞);
(H-v) g is concave.

We set
gij(ρ) = g(ρi, ρj), ∀ ρ ∈ Rn, ∀ i, j ∈ V.
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The Hilbert spaces Hρ and integration by parts. If ρ ∈ P(G), we shall use the inner
product defined in (1.1). Similarly, if m, m̃ ∈ Sn×n, we set

(m, m̃) :=
1

2

∑
(i,j)∈E

mijm̃ij and ‖m‖ :=
√

(m,m).

If φ ∈ Rn and v ∈ Sn×n, we have the integration by parts formula

(2.2) (∇Gφ, v)ρ = −(φ,divρ(v)).

Using the notation from [43], we denote by TρP(G) the closure of the range of ∇G in Hρ. We refer
to TρP(G) as the tangent space to P(G). We denote by πρ the projection onto TρP(G).

Using the fact that by (H-iii) gij(ρ) ≤ ρi + ρj , one shows that

(2.3) ‖divρ(v)‖`2 ≤
√

2nCω ‖v‖ρ, and so, ‖divρ(v)‖`1 ≤
√

2nCω ‖v‖ρ.

Connected components. Let ρ ∈ P(G). We say that i, j ∈ V are g-connected if either i = j or
i 6= j but there are i1, i2, ..., ik ∈ V such that i1 = i, ik = j, (il, il+1) ∈ E for l = 1, ..., k − 1 and

k∏
l=2

gil−1il(ρ) > 0.

Example 2.1. Examples of g satisfying (H-i)-(H-v) and (1.2) include

(2.4) g(r, s) =
r + s

2
,

(2.5) g(r, s) =

∫ 1

0
r1−tstdt =


r−s

log r−log s , if r 6= s;

0, if r = 0 or s = 0;

r, if r = s,

and

(2.6) g(r, s) =

{
0, if r = 0 or s = 0;
2

1
r

+ 1
s

, otherwise.

One can generate more examples by taking convex combinations of the g’s in (2.4)-(2.6).

The Monge-Kantorovich metric on P(G). We define the square 2-Monge-Kantorovich metric
between ρ0, ρ1 ∈ P(G) by

(2.7) W2(ρ0, ρ1) := inf
(σ,v)

{ ∫ 1

0
(v, v)σdt

∣∣∣ σ̇ + divσ(v) = 0, σ(0) = ρ0, σ(1) = ρ1
}
.

Here the infimum is performed over the set of pairs (σ, v) such that σ ∈ H1 (0, 1;Rn) and v :
[0, 1]→ Sn×n is measurable. Recall that if Cg < +∞, thenW(ρ0, ρ1) < +∞ for any ρ0, ρ1 ∈ P(G)
(see Proposition 3.7 [43]). There exists a minimizer (σ, v) in (2.7) such that ‖v‖σ = W(ρ0, ρ1)
almost everywhere on (0, 1). Using the continuity equation and the second identity in (2.3), we
conclude that

(2.8) ‖σ̇(t)‖`∞ ≤
√

2nCωW(ρ0, ρ1).

This proves that the W 1,∞-norm of σ is bounded by a constant depending only on n, g,G, ω.
Further assume that γP (ρ0), γP (ρ1) > 0, where γP is the Poincaré function on G given in [43]. By
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Remark 6.5 and Theorem 7.5 [43], we can find a Borel map φ ≡ φ[ρ0, ρ1] : [0, 1] → Rn such that
v = ∇Gφ and

(2.9) vij = ∇Gφ is uniquely determined on {t ∈ (0, 1) : gij(σ(t)) > 0}.
Under the stringent assumption that there exists ε > 0 such that ρ0, ρ1 ∈ Pε(G), Theorem 7.3 [43]
asserts that ‖φ‖W 1,1(0,1) is bounded by a constant which is independent of ρ0 and ρ1. Thus,

(2.10) (ρ0, ρ1)→ φ[ρ0, ρ1](1) is continuous for the metric `1 on Pε(G)× Pε(G).

Remark 2.2. We recall that the (P(G),W) topology is the same as the (P(G), `1) topology (cf.
[66]) and thus it is also the same as the `2–topology. Therefore, P(G) is a compact set and the
notion of a continuous function is the same for all these three topologies. In particular, P0(G) is
a dense subset of P(G) for the W-topology. Since P(G) is a compact set, it has a finite diameter.

Throughout the paper, for any r > 0 and µ ∈ P(G), we denote the open ball with radius r
centered at µ in (P(G), ‖ · ‖`2) by Br(µ). By Remark 2.2, Br(µ) is also an open neighborhood of µ
in (P(G),W) and in (P(G), ‖ · ‖`1). Similarly, for any t ∈ [0, T ], r > 0, µ ∈ P(G), we use Br(t, µ)
to denote the open ball with radius r centered at (t, µ) in [0, T ]× (P(G), ‖ · ‖`2).

3. Preliminaries

Throughout the section, we use the same notation as in Section 2 and assume that (H-i)-(H-v)
and (1.2) hold. For ρ ∈ P(G), we set

(3.1) λg(ρ) = sup
(i,j)∈E

{ √
2

√
ωij

n√
gij(ρ)

: gij(ρ) > 0

}
.

Note that λg(ρ) <∞ if ρ has a g-connected component of cardinality greater than or equal to 2.

Remark 3.1. If ε > 0 and ρ ∈ P(G) is such that ρi ≥ ε for all i ∈ V then λg(ρ) ≤
√

2λ̄ωε−1n.

3.1. Further properties of tangent vectors and tangent spaces. For ρ ∈ P(G) and v ∈
TρP(G), denote by [v]ρ the set of ṽ ∈ TρP(G) such that v and ṽ are ρ–equivalent.

Lemma 3.2. For any ρ ∈ P(G) such that λg(ρ) < ∞, there exists Pρ : TρP(G) → Rn such that
if φ ∈ Rn and we set ψ := Pρ

(
[∇Gφ

]
ρ

)
then

(i) ∇Gψ and ∇Gφ are ρ-equivalent and so,
∥∥∇Gφ∥∥ρ =

∥∥∇Gψ∥∥ρ.
(ii) |ψi| ≤ λg(ρ)

∥∥∥∇Gφ∥∥∥
ρ
for all i ∈ V.

Proof. Let C1(ρ), · · · , CN (ρ) be all the g-connected components of ρ ∈ P(G) and for l ∈ {1, · · · , N},
set

kl := min
k∈Cl(ρ)

k.

Given φ : V → R, we define
ψi := φi − φkl , ∀i ∈ Cl(ρ).

Note that if i, j ∈ Cl(ρ) then

(3.2) ψkl = 0 and (∇Gψ)ij = (∇Gφ)ij .

This is enough to conclude that ∇Gψ and ∇Gφ are ρ-equivalent.
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If i ∈ Cl(ρ) and i 6= kl, we can find l1 = kl, · · · , lαi = i such that gl1l2 , · · · , glαi−1lαi
> 0. The

identity
ψlm = ψlm−1 +

(
∇Gφ

)
lmlm−1

, ∀m ≥ 2

and ψl1 = 0 implies that the sequence
(
ψlm
)αi
m=1

is uniquely determined by ∇Gφ. This is enough
to conclude that the map Pρ is well–defined.

Let El be the set of (i, j) in E such that i, j ∈ Cl(ρ). We use the first identity in (3.2) to
conclude that

2
∥∥∥∇Gφ∥∥∥2

ρ
=

N∑
l=1

∑
(i,j)∈El

(
∇Gψ

)2
ij
gij(ρ).

If i ∈ Cl(ρ) and i 6= kl, using the above notation, we have

2
∥∥∥∇Gφ∥∥∥2

ρ
≥ ωl1l2 ψ2

l2 gl1l2(ρ) +

αi∑
m=3

ωlm−1lm

(
ψlm−1 − ψlm

)2
glm−1lm(ρ).

One checks that ∣∣ψi∣∣ ≤ αi∑
m=2

√
2

√
ωlm−1lm

1√
glm−1lm(ρ)

∥∥∥∇Gφ∥∥∥
ρ
.

We conclude that (ii) holds for i in the union of the sets Cl(ρ) of a cardinality greater than or equal
to 2. It is obvious that (ii) continues to hold for i in the union of the sets Cl(ρ) with cardinality
1. The proof of (iii) follows from the fact that ψi = φi − φ1 and ω1i |ψi|2 g1i(ρ) ≤

∥∥∇Gφ∥∥2

ρ
. �

Corollary 3.3. By Lemma 3.2, if ρ ∈ P(G) and λg(ρ) <∞, then for any v ∈ TρP(G) there exists
ψ ∈ Rn such that v = ∇Gψ and |ψi| ≤ λg(ρ)‖v‖ρ for all i ∈ V.

3.2. TheWasserstein metric and the space of absolutely continuous paths on (P(G),W).

Lemma 3.4. For any ρ, ρ̄ ∈ P(G), we have ‖ρ̄− ρ‖`1 ≤ 2
√
nCω W(ρ, ρ̄).

Proof. Since there exists a W geodesic connecting ρ to ρ̄, (cf. Theorem 4.5-(i) in [43]), we use
(2.8) to conclude. �

Lemma 3.5. If ε > 0 and ρ, ρ̄ ∈ P(G) are such that ρi, ρ̄i ≥ ε for all i ∈ V then
√
εW(ρ, ρ̄) ≤

√
2λ̄ωn ‖ρ̄− ρ‖`1 .

Proof. Setting
σ(t) = (1− t)ρ+ tρ̄, ∀t ∈ [0, 1],

we have σi(t) ≥ ε for i ∈ V and t ∈ [0, 1]. We then use Remark 3.1 to conclude that

(3.3) λg(σ(t))
√
ε ≤

√
2λ̄ωn.

We define

E(φ) :=

∫ 1

0

(1

2
‖∇Gφ‖2σ(t) − (φ, ρ̄− ρ)

)
dt, ∀φ ∈ L2(0, 1;Rn).

For φ ∈ L2(0, 1;Rn), using the operator Pσ(t) from Lemma 3.2 and setting ψ(t) = φ(t)−φ1(t), we
have

ψ ∈ L2(0, 1;Rn), ψ = Pσ
(
[∇Gφ(t)

]
σ

)
, E(φ) = E(ψ).
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By (3.3),

E(ψ) ≥
∫ 1

0

( ε

4λ̄ωn3
‖ψ‖2`2 − ‖ψ‖`2 ‖ρ̄− ρ‖`2

)
dt.

This proves that E is bounded from below and if (ψk)k is a sequence in the range of Pσ such that(
E(ψk)

)
k
decreases to the infimum of E over L2(0, 1;Rn) then (ψk)k is bounded in L2(0, 1;Rn).

Hence, (ψk)k admits a point of accumulation ψ∞ for the weak topology. Since φ → E(φ) is a
quadratic and convex function, we conclude that

lim inf
k→+∞

E(ψk) ≥ E(ψ∞).

We can assume without loss of generality that ψ∞ = Pσ
(
[∇Gψ∞

]
σ

)
. The Euler-Lagrange equation

satisfied by ψ∞ is

(3.4)
∫ 1

0

((
∇Gψ∞,∇Gφ

)
σ
− (ρ̄− ρ, φ)

)
dt = 0, ∀φ ∈ L2(0, 1;Rn).

This means that

(3.5) σ̇ + divσ(∇Gψ∞) = 0.

Using φ = ψ∞ in (3.4), we obtain∫ 1

0

∥∥∇Gψ∞∥∥2

σ
dt =

∫ 1

0
(ρ̄− ρ, ψ∞)dt ≤ ‖ρ̄− ρ‖`1

∫ 1

0
‖ψ∞‖`∞dt ≤ ‖ρ̄− ρ‖`1

∫ 1

0
λg(σ)‖∇Gψ∞‖σdt.

We first use (3.3) and then use Hölder’s inequality to conclude that∫ 1

0

∥∥∇Gψ∞∥∥2

σ
dt ≤ ‖ρ̄− ρ‖`1

√
2λ̄ωε−1n

√∫ 1

0
‖∇Gψ∞‖2σdt.

We simplify the previous identity and use the fact that, by (3.5), ∇Gψ∞ is a velocity for σ to
obtain

W
(
σ(0), σ(1)

)
≤
∫ 1

0
‖∇Gψ∞‖σdt ≤

√∫ 1

0
‖∇Gψ∞‖2σdt ≤ ‖ρ̄− ρ‖`1

√
2λ̄ωε−1n.

This concludes the proof. �

Remark 3.6. Let ε > 0 and let ρ ∈ P(G) be such that ρi ≥ ε for all i ∈ V. Suppose f ∈ Rn is
such that

∑n
i=1 fi = 0. As done in Lemma 3.5, one can show that there exists φ ∈ Rn such that

f + divρ(∇Gφ) = 0, ‖∇Gφ‖ρ ≤ ‖f‖`1
√

2λ̄ωε−1n.

Remark 3.7. Suppose that σ : [0, 1]→ P(G) and v : [0, 1]→ Rn is a Borel map such that

σ̇ + divσ(v) = 0 in the weak sense in (0, 1) and
∫ 1

0
‖v(t)‖2σ(t)dt < +∞.

By definition of W, we have that σ is an absolutely continuous curve on (P(G),W) since

W(σ(t), σ(s)) ≤
∫ t

s
‖v‖σdτ, ∀0 ≤ s < t ≤ 1.

Hence, if we denote by |σ′|W the W metric derivative of σ, then |σ′|W ≤ ‖v‖σ a.e. on (0, 1).

We next show that v can be chosen in an optimal way.
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Proposition 3.8. Suppose that σ : [0, 1]→ P(G) such that

(3.6) W(σ(t), σ(s)) ≤
∫ s

t
β(τ)dτ and β ∈ L2(0, 1).

Then there exists v : (0, 1)→ Sn×n Borel such that v(t) ∈ Tσ(t)P(G) for almost every t,

(3.7) σ̇ + divσ(v) = 0 in the weak sense in (0, 1)

and

(3.8) ‖v‖σ ≤ |σ′|W ≤ β, |σ̇| ≤
√

2nCω|σ′|W a.e. on [0, 1].

Proof. We skip the proof since it is similar to the proof of Theorem 8.3.1 of [2]. �

3.3. The Wasserstein gradient on P(G).

Definition 3.9 (Wasserstein gradient). Let F : P(G)→ R and ρ ∈ P(G).

(i) We say that F is W-differentiable at ρ if there exist v ∈ TρP(G) and C > 0 such that: for
every ε > 0 there exists δ > 0 such that if ρ̄ ∈ P(G) and v̄ ∈ TρP(G) then

(3.9) ‖ρ̄− ρ‖`1 ≤ δ =⇒
∣∣F(ρ̄)−F(ρ)− (v̄, v)ρ

∣∣ ≤ εW(ρ̄, ρ) + C
∥∥ρ̄− ρ+ divρ(v̄)

∥∥
`1
.

(ii) We write F ∈ C1(P0(G),W) if F isW-differentiable everywhere on P0(G) and its Wasser-
stein gradient ∇WF is continuous on P0(G).

Remark 3.10. Let F and ρ be as in Definition 3.9.

(i) We will later show that when there exists v as in Definition 3.9, it is uniquely determined.
If this is the case, we use the notation v = ∇WF(ρ) and call v the Wasserstein gradient
of F at ρ. One similarly defines Wasserstein sub and super gradients.

(ii) Observe that if ρ ∈ P0(G) then for any ρ̄ in a small enough neighborhood of ρ in P(G),
‖ · ‖ρ̄ and ‖ · ‖`2 are equivalent. Therefore in Definition 3.9, there is no confusion about
what it means that ∇WF is continuous on P0(G).

Definition 3.11 (Fréchet derivative). Let F : P(G)→ R and let ρ ∈ P(G).

(i) We say that F has a Fréchet derivative at ρ if there exists p ∈ Rn such that

(3.10)
n∑
i=1

pi = 0, and lim
s→0+

F((1− s)ρ+ sρ̄)−F(ρ)

s
= (p, ρ̄− ρ), ∀ρ̄ ∈ P(G).

We will later show that there is at most one p ∈ Rn satisfying (3.10). When such p exists,
we write p = δF

δρ (ρ) and call it the Fréchet derivative at ρ. Lemma 3.14 shows a relation
between δF

δρ and ∇WF . One similarly defines Fréchet sub and super differentials.
(ii) We write that F ∈ C1(P0(G), `2) if F has a continuous Fréchet derivative everywhere on
P0(G).

Lemma 3.12. If ∇WF(ρ) exists for some ρ ∈ P(G), then it is uniquely determined as an element
of the quotient space TρP(G).
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Proof. Assume v, ṽ ∈ TρP(G) are Wasserstein gradients of F at ρ. We are to show that if (i, j) ∈ E
and gij(ρ) > 0 then vij = ṽij . We assume without loss of generality that ρi ≥ ρj . Since by (H-iii)
we have (ρi, ρj) 6= (0, 0), we conclude that ρi > 0. For 0 < a << 1, we set vakl = 0 except that

(3.11) vaij = −vaji = −
√
ωij

gij(ρ)
a.

Note that divρ(v
a)k = 0 when k 6= i, j and

divρ(v
a)i = ωija = −divρ(v

a)j .

We set

(3.12) σ(s) = ρ− sdivρ(v
a), ρ̄ = σ(1), v̄a(s) = va

gij(ρ)

gij(σ(s))
, ∀s ∈ [0, 1].

Since 0 < a << 1, the range of σ is contained in P(G) and the range of gij ◦ σ lies in (0,∞).

Let ε > 0 and let δ > 0 be such that (3.9) holds for v and ṽ. Assuming 2ωija ≤ δ we get
‖ρ̄− ρ‖`1 ≤ δ. Since ρ̄− ρ+ divρ(v̄) = 0, we conclude that∣∣F(ρ̄)−F(ρ)− (va, v)ρ

∣∣, ∣∣F(ρ̄)−F(ρ)− (va, ṽ)ρ
∣∣ ≤ εW(ρ̄, ρ)

and so,

(3.13)
∣∣(va, v − ṽ)ρ

∣∣ ≤ 2εW(ρ̄, ρ).

But,

(3.14)
∣∣(va, v − ṽ)ρ

∣∣ =
√
ωija|vij − ṽij | and divρ(v

a) = divσ(v̄a).

The first identity in (3.12) and the last identity in (3.14) yield σ̇ + divσ(v̄a) = 0. Thus,

W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2ωij

∫ 1

0

1

g(ρi − ωijas, ρj + ωijas)
ds.

We conclude that for a sufficiently small, we have

(3.15) W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2C2ωij , C2 :=

2

gij(ρ)
.

This, together with (3.13) and the first identity in (3.14), implies
√
ωija|vij − ṽij | ≤ 2

√
ωijεaC.

Since ε > 0 is arbitrary, we conclude that |vij − ṽij | = 0. �

Lemma 3.13. If δF
δρ (ρ) exists for ρ ∈ P(G), then it is uniquely determined.

Proof. Suppose ξ, ξ̃ ∈ Rn are Fréchet derivatives of F at ρ. The second identity in (3.10) implies
that (ξ̃ − ξ, ρ̄− ρ) = 0 for all ρ̄ ∈ P(G). This means that ξ̃ − ξ is parallel to 1 := (1, · · · , 1). The
first identity in (3.10) implies that ξ̃ − ξ is perpendicular to 1. Consequently, ξ̃ − ξ = 0. �

Lemma 3.14. Let F : P(G)→ R and ρ ∈ P(G).

(i) If F has both the Fréchet derivative and the Wasserstein gradient at ρ then ∇WF(ρ) =
∇G(δF/δρ)(ρ).

(ii) If F has the Fréchet derivative in an `1-neighborhood of ρ and if δF/δρ is continuous
at ρ for the `1 metric, then F has the Wasserstein gradient at ρ and v := ∇WF(ρ) =
∇G(δF/δρ)(ρ).
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Proof. (i) Suppose that F has both the Fréchet derivative and the Wasserstein gradient at ρ
and set v1 = ∇G(δF/δρ)(ρ), v2 = ∇WF(ρ). We are to show that whenever (i, j) ∈ E is such
that gij(ρ) > 0, we have v1

ij = v2
ij . We can assume without loss of generality that ρi ≥ ρj . For

0 < a << 1, let va be as in (3.11) and let σa(s) ∈ P(G) be as in (3.12). We first use the fact that
F has the Wasserstein gradient at ρ and then use that F has the Fréchet derivative at ρ to obtain(

va, v2
)
ρ

= lim
s→0+

F(σa(s))−F(ρ)

s
= −

(
δF
δρ

(ρ),divρ(v
a)

)
=
(
va, v1

)
ρ
.

This means

−a
√
ωij

gij(ρ)
v2
ij = −a

√
ωij

gij(ρ)
v1
ij , ∀0 < a << 1

and so, v1
ij = v2

ij .

(ii) Assume that F has the Fréchet derivative in an `1-neighborhood of ρ and δF/δρ is continuous
at ρ for the `1 metric. Thanks to Lemma 3.4, we may choose a constant c ≡ c(G, g) such that
‖ · − · ‖`1 ≤ cW(·, ·). Let δ0 > 0 be such that F has the Fréchet derivative in B, the closed `1-ball
of radius δ0 and centered at ρ. Let ε > 0 and choose δ ∈ (0, δ0) such that

2c sup
η∈B

∥∥∥δF
δρ

(η)− δF
δρ

(ρ)
∥∥∥
`∞
≤ ε.

Assume
ρ̄ ∈ P(G) and ‖ρ̄− ρ‖`1 ≤ δ0, v̄ ∈ TρP(G).

Set ρt := ρ+ t(ρ̄−ρ). If t ∈ (0, 1) and |h| is small enough, since ρt+h = ρt+h(ρ̄−ρt), t→ F(ρt) is
differentiable on (0, 1) and its Fréchet derivative is

(
δF/δρ(ρt), ρ̄− ρ

)
. Since δF/δρ is continuous

at ρ, its absolute value is bounded by a constant M on B. Thus, t→ F(ρt) is Lipschitz and so,

F(ρ1)−F(ρ0) =
(δF
δρ

(ρ), ρ̄− ρ
)

+

∫ 1

0

(δF
δρ

(ρt)−
δF
δρ

(ρ), ρ̄− ρ
)
dt.

Thus,

F(ρ1)−F(ρ0) =

(
∇G

δF
δρ

(ρ), v̄

)
ρ

+

(
δF
δρ

(ρ), ρ̄− ρ+ divρ(v̄)

)
+

∫ 1

0

(
δF
δρ

(ρt)−
δF
δρ

(ρ), ρ̄− ρ
)
dt.

Hence,∣∣∣F(ρ̄)−F(ρ)−
(
v, v̄
)
ρ

∣∣∣ ≤ ∥∥∥δF
δρ

(ρ)
∥∥∥
`∞
‖ρ̄− ρ+ divρ(v̄)‖`1 + sup

η∈B

∥∥∥δF
δρ

(η)− δF
δρ

(ρ)
∥∥∥
`∞
‖ρ̄− ρ‖`1 .

We bound the `1 norm by the W-metric and use the condition on ε to conclude (ii). �

Definition 3.15. If u : P(G) → R is differentiable at ρ ∈ P0(G), the graph individual noise
operator 4ind is defined by

(3.16) 4indu(ρ) :=
(

divρ
(
∇Wu(ρ)

)
, log ρ

)
.

When (1.3) holds, we can extend the definition of4indu(ρ) up to the boundary of P(G). Integrating
by parts (cf. (2.2)), we conclude that

(3.17) 4indu(ρ) = −
(
∇Wu(ρ),∇G log ρ

)
ρ
.
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Remark 3.16. In the continuum setting, the individual noise operator is known to be a second
order differential operator, obtained by differentiating Wasserstein derivatives with respect to spatial
derivatives. However, in the discrete setting, the individual noise operator is obtained just as a
special combination of first order Wasserstein derivatives. Here, the spatial graph gradient exists
for every function since there is no notion of smoothness with respect to the graph gradient.

Lemma 3.17. Let T > 0 and σ ∈ AC2((0, T ) ; (P(G),W)) and let v be the velocity given by Propo-
sition 3.8. The proposition asserts that T , the set of t0 ∈ (0, T ) such that the metric derivative of
σ at t0 exists, v(t0) ∈ Tσ(t0)P(G), σ is differentiable at t0 and

(3.18) σ̇(t0) + divσ(t0)(v(t0)) = 0,

is of full measure in (0, T ). If F : P(G) → R has the Wasserstein gradient at σ(t0) and t0 ∈ T
then

d

dt
F(σ(t))

∣∣∣
t=t0

=
(
∇WF(σ(t0)), v(t0)

)
σ(t0)

.

If we further assume that δF
δρ (σ(t0)) exists, then

d

dt
F(σ(t))

∣∣∣
t=t0

=

(
δF
δσ

(σ(t0)), σ̇(t0)

)
.

Proof. Let t0 ∈ T and let C > 0 be such that for every ε > 0 there exists δ > 0 such that if
ρ ≡ σ(t0) and v̄ ∈ Tσ(t0)P(G) then (3.9) holds. Let ō : (−1, 1)→ R be a function continuous at 0
and such that ō(0) = 0 and

σ(t)− σ(t0) + (t− t0)divσ(t0)(v(t0)) = (t− t0)ō(t− t0).

For ‖σ(t)− σ(t0)‖`1 << 1, we use (3.9) to infer∣∣∣∣F(σ(t))−F(ρ))

t− t0
−
(
∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ εW
(
σ(t)), ρ)

)
|t− t0|

+ C‖ō(t− t0)‖`1 .

Hence,

lim sup
t→t0

∣∣∣∣F(σ(t))−F(ρ))

t− t0
−
(
∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ ε|σ′|(t0),

which proves the first statement of the lemma, as ε > 0 is arbitrary. In light of Lemma 3.14, we
now conclude that the second statement of the lemma holds. �

Corollary 3.18. Assume that F : P0(G)→ R has a local minimum at ρ ∈ P0(G).

(i) If F ∈ C1
(
P0(G),W) then ∇WF(ρ) = 0.

(ii) If F ∈ C1
(
P0(G), `2) then δF

δρ (ρ) = 0.

Proof. (i) Assume that F ∈ C1
(
P0(G),W). Let (σ, v̄a) be as in the proof of Lemma 3.12, except

that now, we can choose δ > 0 such that σ : [−δ, δ]→ P0(G). By Lemma 3.17 and the minimality
property of F and ρ, the following proves (i):

0 =
F(σ(t))−F(ρ)

t
=
(
∇WF(ρ), v̄a(0)

)
ρ

= a

(
∇WF(ρ)

)
ij
ωij

gij(ρ)
.

(ii) Assume that F ∈ C1
(
P0(G), `2). For any f ∈ Rn such that

∑n
i=1 fi = 0, t → F(ρ + tf)

achieves its minimum at t = 0 and so, its derivative at t = 0 is null, which means (f, δFδρ (ρ)) = 0.

We choose f = δF
δρ (ρ) to conclude that δF

δρ (ρ) = 0. �
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4. Viscosity solutions on P(G).

In this section we introduce a notion of viscosity solution. We assume that (1.2) hold. We fix
T > 0 and assume that F ∈ C(P(G)) and H ∈ C(P(G)× Sn×n).

Recall that we denote by C1(P0(G), `2) the set of real valued functions on P0(G) which have a
continuous Fréchet derivative and we denote by C1(P0(G),W) the set of real valued functions on
P0(G) which have a continuous Wasserstein gradient. By Lemma 3.14 (ii),

C1
(
P0(G), `2

)
⊂ C1

(
P0(G),W

)
.

Note that for ν ∈ P(G), the function

(4.1) µ→ J (µ, ν) := 1/2‖µ− ν‖2`2
is of class C1(P0(G), `2). Similarly, J (µ, ·) is of class C1(P0(G), `2) and we have

∇WJ (·, ν)(µ) ≡ ∇G(µ− ν) and ∇WJ (µ, ·)(ν) ≡ ∇G(ν − µ).

We also consider the function

(4.2) µ→ I(µ) :=

n∑
i=1

1

µi
=

n∑
i=1

Ii(µ), ∀µ ∈ P0(G),

which is of class C1(P0(G), `2).

For each µ ∈ P(G), we assume to be given a linear functional

Oµ : Sn×n → R
such that µ→ Oµ(p) is continuous for all p ∈ Sn×n.

Remark 4.1. Any H̄ : P(G)× Sn×n → R, can be written as H̄(µ, p) = H(µ, p) + F(µ), where

H(µ, p) := H̄(µ, p)− H̄(µ, 0), F(µ) := H̄(µ, 0).

In the sequel, we chose to adopt the notation H(µ, p)+F(µ) only to emphasize the fact that we will
impose assumptions on H̄(µ, p) − H̄(µ, 0). Therefore, H(µ, p) + F(µ) represents a large class of
Hamiltonians and is not contained in the restrictive class of the discrete analogue of the so-called
“separable Hamiltonians”.

Given u0 : P(G)→ R, we consider the Hamilton-Jacobi equation

(4.3) ∂tu(t, µ) +H
(
µ,∇Wu(t, µ)

)
+ F(µ) = Oµ

(
∇Wu(t, µ)

)
, u(0, ·) = u0

for a class of Hamiltonian functions H which will be specified later.

Definition 4.2.

(i) A function u ∈ USC([0, T )× P0(G)) is a viscosity subsolution to (4.3) if u(0, ·) ≤ u0 and
for every (t0, ρ0) ∈ (0, T ) × P0(G) and every ϕ ∈ C1

(
(0, T ) × P0(G), `2

)
such that u − ϕ

has a local maximum at (t0, ρ0), we have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≤ Oρ0
(
∇Wϕ(t0, ρ0)

)
.

(ii) A function u ∈ LSC([0, T )×P0(G)) is a viscosity supersolution to (4.3) if u(0, ·) ≥ u0 and
for every (t0, ρ0) ∈ (0, T ) × P0(G) and every ϕ ∈ C1

(
(0, T ) × P0(G), `2

)
such that u − ϕ

has a local minimum at (t0, ρ0), we have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≥ Oρ0
(
∇Wϕ(t0, ρ0)

)
.
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(iii) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 4.3. By Corollary 3.18, every ϕ ∈ C1
(
(0, T )×P0(G), `2

)
which achieves a local maximum

at (t, µ) ∈ (0, T )×P0(G), satisfies ∂tϕ(t, µ) = 0 and ∇Wϕ(t, µ) = 0. Hence, every smooth function
for which (4.3) holds pointwise on (0, T ) × P0(G), is also a viscosity solution. An analogous
conclusion can be drawn for viscosity subsolutions and supersolutions.

Remark 4.4. For any (i, j) ∈ E such that 1 ≤ i < j ≤ n, we define eij ∈ Rn to be such that all
its entries are null, except that the i-th entry is −1 and the jth entry is 1. If u : P(G) → R and
its Fréchet derivative exists at ρ ∈ P0(G), we can define the following limit when it exists:

∇eiju(ρ) := lim
t→0

u(ρ+ teij)− u(ρ)

t
.

When the Fréchet derivative of u exists in a neighborhood of ρ and is continuous at ρ, then

∇Wu(ρ) = ∇G
(
δu

δρ

)
(ρ)

and so, √ωij∇eiju(ρ) are the entries of ∇Wu(ρ).

Thus, if we consider P0(G) to be a flat Riemannian manifold, ∇Wu(ρ) only depends on the
derivatives of u in the directions that span the tangent space. Hence, we can conclude that if u is
a Wasserstein-viscosity solution to

∂tu(t, ρ) +H(ρ,∇Wu(t, ρ)) + F(ρ) = Oρ
(
∇Wu(t, ρ)

)
then at least formally, u is a viscosity solution to

∂tu(t, ρ) +H
(
ρ, (
√
ωij∇eiju(t, ρ))

)
+ F(ρ) = Oρ

(
(
√
ωij∇eiju(t, ρ))

)
which we can consider to be a PDE on a flat Riemannian manifold. Moreover, after a change of
coordinates, the equation can be transformed into an equation on (0, T ) × Ω, where Ω is an open
subset of Rn−1.

5. Comparison principles

In this section we show comparison principles for viscosity solutions to equation (4.3). We will
consider two cases, a boundary value problem for (4.3) and a case when the boundary P(G)\P0(G)
is irrelevant.

We now introduce the assumptions on H and O. We fix κ > 1 and assume that and there
exist positive constants t∗ > 1 and non-negative functions γ, γ̄, ω∗ ∈ C([0,∞)) such that for any
µ, ν ∈ P0(G), and p, q ∈ Sn×n, the following hold:

(A-i) H ∈ C
(
P0(G)× Sn×n

)
and H(µ, ·) is convex.

(A-ii) limt→1+ γ̄(t) = 1, γ(t) > 1 for any t ∈ (1, t∗) and we have

tγ(t)H(µ, p) ≤ H(µ, tp) ≤ γ̄(t)H(µ, p), ∀t > 0.

(A-iii) For every 0 < ε < 1 there exists θε > 0 such that θε‖p‖κµ ≤ H(µ, p) for all µ ∈ Pε(G).
(A-iv) We have H(µ, 0) = 0 and there are moduli ωε and constants Cε for 0 < ε < 1 such that

H(µ, p)−H(ν, p) ≥ −ωε(‖µ− ν‖`2)‖p‖κµ − Cε
∣∣‖p‖µ − ‖p‖ν∣∣(‖p‖κ−1

µ + ‖p‖κ−1
ν

)
, ∀µ ∈ Pε(G).
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(A-v) If I is as in (4.2) then

|H(µ, p)| ≤ C‖p‖κµI(µ)−κ, ∀(µ, p) ∈ P0(G)× Sn×n.

(O) There exist a constant C ≥ 0 and for every 0 < ε < 1 a constant Cε such that for every
b1, b2 ≥ 0 (if J is as in (4.1))

Oµ
(
b1∇WJ (·, ν)(µ) + b2∇WI(µ)

)
+Oν

(
b1∇WJ (µ, ·)(ν) + b2∇WI(ν)

)
≤ Cεb1‖µ− ν‖2`2 + Cb2(‖∇WI(µ)‖µI(µ)−1 + ‖∇WI(ν)‖νI(ν)−1), ∀µ, ν ∈ Pε(G).

(5.1)

Example 5.1. Let a ∈ C(P(G)) be non-negative such that aIκ is bounded from above and for
every ε > 0, there exists θε > 0 such that a ≥ θε when µ ∈ Pε(G). Setting H(µ, p) := a(µ)‖p‖κµ,
we have

H(µ, p) = H(ν, q) +
(
a(µ)− a(ν)

)
)‖p‖κµ + a(ν)

(
‖p‖κµ − ‖q‖κν

)
.

We choose ω∗ to be the modulus of continuity of a and we use the fact that∣∣∣‖p‖κµ̄ − ‖q‖κν ∣∣∣ ≤ κ∣∣‖p‖µ − ‖q‖ν∣∣ (‖p‖κ−1
µ + ‖q‖κ−1

ν

)
,

to conclude that (A-i)-(A-v) hold.

Observe that the `2-Lipschitz constant of the function J := I−1 on P0(G) is less than or equal
to 1 and so, J admits a unique Lipschitz extension on P(G) which we continue to denote by J .
Since on P0(G), J(µ) ≤ µi for all i ∈ V , one concludes that nJ ≤

∑
i∈V µi = 1 on P(G), and J

vanishes on the boundary of P(G). Therefore, (A-i)-(A-v) hold for

a(µ) := C0J
κ(µ), θε = C0ε

κn−κ, Cε := κC0n
−κ.

Remark 5.2. Since I−1 is bounded from above by n, (A-v) implies that

(5.2) |H(µ, p)| ≤ Cn−κ‖p‖κµ, ∀(µ, p) ∈ P(G)× Sn×n.

Example 5.3. Assume that Oµ is the graph individual noise operator so that

Oµ(p) = −
(
p,∇G logµ

)
µ
.

We have

Oµ
(
∇WI(µ)

)
=− 1

2

∑
(k,l)∈E

(
∇WI(µ)

)
kl
gkl(µ)

(
∇G logµ

)
kl

=− 1

2

∑
(k,l)∈E

( n∑
j=1

∇WIj(µ)
)
kl
gkl(µ)

(
∇G logµ

)
kl
.

One checks that
(5.3)

δIj
δµ

(µ) =
1

µ2
j

( 1

n
, · · · , 1

n
,

1

n
− 1,

1

n
, · · · , 1

n

)T
, ∇G

(
δIj
δµ

)
(µ) =


0 if k, l 6= j or k = l = j,

−√ωjlµ−2
j if k = j, l 6= j,

√
ωjkµ

−2
j if k 6= j, l = j.
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Hence,

Oµ
(
∇WI(µ)

)
=
∑

(j,l)∈E

ωjlgjl(µ)
1

µ2
j

(
logµj − logµl

)
=

∑
(j,l)∈E,j<l

ωjlgjl(µ)

(
1

µ2
j

− 1

µ2
l

)(
logµj − logµl

)
=−

∑
(j,l)∈E,j<l

ωjlgjl(µ)

(
µl + µj
µ2
jµ

2
l

)(
logµj − logµl

)
(µj − µl) ≤ 0,(5.4)

where we have used the fact that
(

logµj − logµl
)
(µj − µl) ≥ 0.

Note that

Oµ
(
∇WJ (·, ν)(µ)

)
= −1

2

∑
(i,j)∈E

ωij
(
(µi − νi)− (µj − νj)

)(
logµi − logµj

)
gij(µ).

We similarly compute Oν
(
∇WJ (µ, ·)(ν)

)
to conclude that

Oµ
(
∇WJ (·, ν)(µ)

)
+Oν

(
∇WJ (µ, ·)(ν)

)
=− 1

2

∑
(i,j)∈E

ωij
(
(µi − νi)− (µj − νj)

)((
logµi − logµj

)
gij(µ)−

(
log νi − log νj

)
gij(ν)

)
.

We denote by Eij each one of the expressions in the above sum. Since

Eij =− 1

2
ωij
(
(µi − νi)− (µj − νj)

)((
logµi − log νi

)
+
(

log νj − logµj
))
gij(µ)

− 1

2
ωij
(
(µi − νi)− (µj − νj)

)(
log νi − log νj

)
(gij(µ)− gij(ν)),

we conclude that
Eij ≤ Cε‖µ− ν‖2`2

where

Cε := 2Cω log
(1

ε

)
Lip(g|[ε,1]2) +

2Cω
ε
.

Hence,

Oµ
(
∇WJ (·, ν)(µ)

)
+Oν

(
∇WJ (µ, ·)(ν)

)
≤ n2Cε‖µ− ν‖2`2 .

This concludes the proof of (5.1).

Remark 5.4. The conclusion (5.4) in Example 5.3 continues to hold if instead of I(µ) =
∑

i∈V 1/µi,
we take I(µ) =

∑
i∈V `(µi) for any positive function ` ∈ C∞(0,+∞) such that `′ < 0. We would

need to impose an additional condition that limt→0+ `(t) = +∞, to use
∑

i∈V `(µi) in place of∑
i∈V 1/µi in the proof of the comparison principle.

Let u be a viscosity subsolution and v be a viscosity supersolution to (4.3) such that u and −v
are bounded above. For any a, β, ε, δ ∈ (0, 1], λ ∈ (1

2 , 1], we define

Ψ0(t, s, µ, ν) := λu(t, µ)− v(s, ν)− β

T − t
− β

T − s
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and

Ψa,ε,δ(t, s, µ, ν) := Ψ0(t, s, µ, ν)−
‖µ− ν‖2`2

2ε
− (t− s)2

2δ
− a

n∑
i=1

( 1

µi
+

1

νi

)
.

We set
M := sup

[0,T )×P0(G)
Ψ0(t, t, µ, µ),

Ma := sup
[0,T )×P0(G)

(
Ψ0(t, t, µ, µ)− 2a

n∑
i=1

1

µi

)
,

Ma,ε := sup
[0,T )×P0(G)2

(
Ψ0(t, t, µ, µ)−

‖µ− ν‖2`2
2ε

− a
n∑
i=1

( 1

µi
+

1

νi

))
,

Ma,ε,δ := sup
[0,T )2×P0(G)2

Ψa,ε,δ.

Since for every β, a, ε, δ ∈ (0, 1] and 1
2 ≤ λ ≤ 1, Ma,ε,δ ≤ M∗ for some constant M∗, it is easy to

see (see e.g. [27], Proposition 3.7 for such argument) that

(5.5) lim
δ→0

Ma,ε,δ = Ma,ε,

(5.6) lim
δ→0

Ma,ε = Ma,

(5.7) lim
δ→0

Ma = M.

Theorem 5.5 (Comparison Principle, No Boundary Condition). Assume that H satisfies (A-
i)-(A-v) and F ∈ C(P(G)). Assume further that O is as above and satisfies (O). If u is a
viscosity subsolution to (4.3), v is a viscosity supersolution to (4.3), u,−v are bounded above and
u(0, ·) ≤ v(0, ·) on P0(G), then u ≤ v in [0, T )× P0(G).

Proof. Suppose on the contrary that u ≤ v in [0, T )× P0(G) fails. Let (t̃, µ̃) ∈ (0, T )× P0(G) be
such that 3e := u(t̃, µ̃)− v(t̃, µ̃) > 0.

Step 1. Properties of maximizer of Ψa,ε,δ. We will use the notation Ψ in place of Ψa,ε,δ and to
alleviate the notation, we simply denote a maximizer of Ψa,ε,δ by (t̄, s̄, µ̄, ν̄), without displaying
the dependence in β, a, ε, δ. It is clear that there exist 0 < λ0 < 1, β0 > 0, a0 > 0 such that if
λ0 < λ < 1, 0 < β < β0 and 0 < a < a0, then Ψ(t̄, s̄, µ̄, ν̄) > 2e and λu(0, µ̄) − v(0, µ̄) < e.
Moreover, we always have

(5.8) µ̄i, ν̄i ≥ c1a, ∀i ∈ V
for some independent constant c1.

We start by observing that

(5.9) Ma,ε,δ +
(t̄− s̄)2

4δ
= Ψ(t̄, s̄, µ̄, ν̄) +

(t̄− s̄)2

4δ
≤Ma,ε,2δ

and

(5.10) Ma,ε,δ +
‖µ̄− ν̄‖2

4ε
+

(t̄− s̄)2

4δ
≤Ma,2ε,2δ.

Thus, (5.9), together with (5.5), implies that

(5.11) lim
δ→0

(t̄− s̄)2

δ
= 0, ∀a, ε > 0.
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Now (5.5), (5.6) and (5.10) give us

(5.12) lim
ε→0

lim sup
δ→0

‖µ̄− ν̄‖2`2
ε

= 0.

Similarly, since

(5.13) Ma,ε,δ +
a

2
(I(µ̄) + I(ν̄)) +

‖µ̄− ν̄‖2

4ε
+

(t̄− s̄)2

4δ
≤Ma/2,2ε,2δ,

(5.5), (5.6) and (5.7) yield

(5.14) lim
a→0

lim sup
ε→0

lim sup
δ→0

a(I(µ̄) + I(ν̄)) = 0.

Since Ψ is upper semicontinuous, in particular it follows from (5.8), (5.11) and (5.12) (even though
the full conclusions of (5.8), (5.11), (5.12) are not necessary) that for λ0 < λ < 1, 0 < β < β0, 0 <
a < a0 and for sufficiently small ε, δ, we must have t̄, s̄ > 0.

Step 2. Control on gradients of C1 functions which touch u from above or touch v from below.
Observe that,

ϕ : (t, µ)→ β

λ(T − t)
+
J (µ, ν̄)

λε
+

(t− s̄)2

2λδ
+
a

λ

n∑
i=1

1

µi

belongs to C1
(
(0, T )×P0(G), `2

)
and is such that u−ϕ achieves its maximum at (t̄, µ̄) in (0, T )×

P0(G). Since u is a viscosity subsolution, we infer

β

(T − t̄)2
+
t̄− s̄
δ

+ λH
(
µ̄,
p̄

λ

)
+ λF(µ̄) ≤ λOµ̄

( p̄
λ

)
,

where we have set

p̄ :=
∇WJ (·, ν̄)(µ̄)

ε
+ a∇WI(µ̄) =: p̄1 + p̄2.

Let F∞ ∈ R be such that |F| ≤ F∞. We have

(5.15)
β

T 2
+
t̄− s̄
δ

+ λH
(
µ̄,
p̄

λ

)
+ F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞.

By (5.3), we can find a constant C independent of µ such that

(5.16) ‖∇WI(µ̄)‖µ̄ ≤ C
n∑
i=1

1

µ̄2
i

.

Since H(µ̄, ·) is a convex function and η := (1 + λ)/2 is between 0 and 1, we have

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− λ(1− η)

η
H
(
µ̄,

η

1− η
p̄2

λ

)
.

Using (5.16) and (A-v), we obtain for a constant C̄ > C independent of a, ε, δ such that

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− C̄

∣∣∣∣ η

(1− η)λ

∣∣∣∣κ
(
aκ

n∑
i=1

1

µ̄2κ
i

)
1

I(µ̄)κ
.

By (5.14), we can find ω(a, ε, δ) such that lima→0 lim supε→0 lim supδ→0 ω(a, ε, δ) = 0 and

λH
(
µ̄,
p̄

λ

)
≥ λ

η
H
(
µ̄, η

p̄1

λ

)
− ω(a, ε, δ).



20 GANGBO, MOU, AND ŚWIĘCH

Now (A-ii) and (5.15) imply

(5.17)
β

T 2
+
t̄− s̄
δ

+ γ
(η
λ

)
H(µ̄, p̄1) + F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞ + ω(a, ε, δ).

Similarly,

ϕ̃ : (s, ν)→ β

T − s
+
J (µ̄, ν)

ε
+

(t̄− s)2

2δ
+ a

n∑
i=1

1

νi

belongs to C1
(
(0, T )×P0(G), `2

)
and is such that v+ ϕ̃ achieves its minimum at (s̄, ν̄) in (0, T )×

P0(G). Using the fact that v is a viscosity supersolution, we infer

(5.18) − β

T 2
− s̄− t̄

δ
+H(ν̄, q̄) + F(ν̄)−Oν̄(q̄) ≥ 0.

Here, we have set

q̄ := −1

ε
∇WJ (µ̄, ·)(ν̄)− a∇WI(ν̄) =: −q̄1 − q̄2.

We notice that −q̄1 = p̄1.

Since η > λ, in light of (A-ii), for τ < 1 sufficiently close to 1 we have

r := γ
(η
λ

)
− τ γ̄

(1

τ

)
> 0.

Similarly as before, we use the convexity of H(ν̄, ·), (A-ii) and (A-v), to obtain

H
(
ν̄, q̄
)
≤ τH

(
ν̄,
p̄1

τ

)
+ (1− τ)H

(
ν̄,− 1

1− τ
q̄2

)
≤ τ γ̄

(1

τ

)
H
(
ν̄, p̄1

)
+ ω(a, ε, δ),

where ω is as before. This, together with (5.18) implies that

− β

T 2
− s̄− t̄

δ
+ τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(ν̄)−Oν̄(q̄) + ω(a, ε, δ) ≥ 0.

We combine this with (5.17) to conclude that

γ
(η
λ

)
H(µ̄, p̄1)− τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(µ̄)−F(ν̄)

≤ (1− λ)F∞ − 2βT−2 +Oµ̄(p̄)−Oν̄(q̄) + ω(a, ε, δ).

By (5.1), (5.12), (5.14) and (5.16),

γ
(η
λ

)
H(µ̄, p̄1)− τ γ̄

(1

τ

)
H(ν̄, p̄1) + F(µ̄)−F(ν̄) ≤ (1− λ)F∞ − 2βT−2 + ω(a, ε, δ)

(for a different ω(a, ε, δ) satisfying the same properties) and hence, using (A-iii),

τ γ̄
(1

τ

)(
H
(
µ̄, p̄1

)
−H

(
ν̄, p̄1

))
+ F(µ̄)−F(ν̄) + rθac1‖p̄1‖κµ̄ ≤ (1− λ)F∞ − 2βT−2 + ω(a, ε, δ).

Thanks to (A-iv), we conclude that if ωF is the `2-modulus of continuity of F then

− τ γ̄
(1

τ

)(
ωac1(‖µ̄− ν̄‖`2)‖p̄1‖κµ̄ + Cac1

∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄
∣∣ (‖p̄1‖κ−1

µ̄ + ‖p̄1‖κ−1
ν̄

))
+ rθac1‖p̄1‖κµ̄

≤(1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ ω(a, ε, δ).

(5.19)
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Step 3. Relative smallness of
∣∣‖p̄1‖µ̄−‖p̄1‖ν̄

∣∣. Using the fact that µi, νi ≥ ac1 for all i = 1, ..., n,
we easily have ∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄

∣∣ ≤ ∣∣‖p̄1‖2µ̄ − ‖p̄1‖2ν̄
∣∣ 12

=

1

2

∣∣∣∣ ∑
(i,j)∈E

(p̄1)2
ij

(
gij(µ̄)− gij(ν̄)

)∣∣∣∣
 1

2

≤ Ka‖p̄1‖µ̄‖‖µ̄− ν̄‖
1
2
`2

and
‖p̄1‖ν̄ ≤ Ka‖p̄1‖µ̄

for some constant Ka.

Putting it all together in (5.19) we obtain that for some constant Ka

−Ka

(
ωac1(‖µ̄− ν̄‖`2) + ‖µ̄− ν̄‖

1
2
`2

)
‖p̄1‖κµ̄ + rθac1‖p̄1‖κµ̄

≤(1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ ω(a, ε, δ).

We now take λ so that (1 − λ)F∞ < βT−2 and then take lima→0 lim supε→0 lim supδ→0 of both
sides of the above and use (5.12) to obtain a contradiction. �

We next show that a comparison principle still holds even if we weaken the assumptions on H
and Oµ, provided we have additional information about how u and v behave on [0, T )× ∂P(G).

Theorem 5.6 (Comparison Principle, Boundary Condition). Let the assumptions of Theorem 5.5
be satisfied except that we now only require H to satisfy (A-i)-(A-iv) and Oµ to satisfy (O) with
b2 = 0. If u ∈ USC([0, T )× P(G)) is a viscosity subsolution to (4.3), v ∈ LSC([0, T )× P(G)) is
a viscosity supersolution to (4.3), u,−v are bounded above, u(0, ·) ≤ v(0, ·) on P(G) and u ≤ v on
[0, T )× ∂P(G), then u ≤ v in [0, T )× P(G).

Proof. Since the arguments here are similar to those of the proof of Theorem 5.5, we just sketch
the necessary adjustments. Suppose that u 6≤ v on [0, T ) × P(G). For 0 < λ < 1, β, ε, δ > 0 we
consider the function

Ψε,δ(t, s, µ, ν) := λu(t, µ)− v(s, ν)−
‖µ− ν‖2`2

2ε
− (t− s)2

2δ
− β

T − t
− β

T − s
and we denote its maximizer by (t̄, s̄, µ̄, ν̄). It is easy to see that there exist 0 < λ0 < 1, β0 > 0
such that for every λ0 < λ < 1, 0 < β < β0 there is η > 0 (depending only on λ, β) such that for
sufficiently small ε, δ > 0, we have η < t̄, s̄ < T − η, µ̄, ν̄ ∈ Pη. The proof now repeats the lines of
the proof of Theorem 5.5 and is easier since we do not need to deal with terms coming from the
functions I(µ) and I(ν). We have in place of (5.15)

β

T 2
+
t̄− s̄
δ

+ γ(
1

λ
)H
(
µ̄, p̄
)

+ F(µ̄)−Oµ̄(p̄) ≤ (1− λ)F∞,

where

p̄ :=
∇WJ (·, ν̄)(µ̄)

ε
.

The part from (5.15) to (5.17) is skipped and we have in place of (5.18)

− β

T 2
− s̄− t̄

δ
+H(ν̄, p̄) + F(ν̄)−Oν̄(p̄) ≥ 0.
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We set r = γ( 1
λ)− 1 > 0 and we obtain instead of (5.19),

− ωη(‖µ̄− ν̄‖`2)‖p̄‖κµ̄ − Cη
∣∣‖p̄1‖µ̄ − ‖p̄1‖ν̄

∣∣ (‖p̄1‖κ−1
µ̄ + ‖p̄1‖κ−1

ν̄

)
+ rθη‖p̄1‖κµ̄

≤ (1− λ)F∞ − 2βT−2 + ωF
(
‖µ̄− ν̄‖`2

)
+ Cη

‖µ̄− ν̄‖2`2
ε

.(5.20)

This allows us to conclude as in Step 3 of the proof of Theorem 5.5 by taking limε→0 lim supδ→0

of both sides of the above. �

6. Perron’s method

The goal of this section is to use Perron’s method to show the existence of a viscosity solution
to (4.3). Throughout the section, we assume that F ∈ C(P(G)), H is continuous on P0(G)×Sn×n
and Oµ : Sn×n → R is linear, µ→ Oµ(p) is continuous for all p ∈ Sn×n and there exists a constant
CO such that

(6.1) |Oµ(p)| ≤ CO‖p‖`2 , ∀(µ, p) ∈ P0(G)× Sn×n.
For example when (1.3) holds, the individual noise operator satisfies (6.1).

When S is a topological space, for a function f defined on a subset of Q ⊂ S, we will write f∗
to denote its upper semicontinuous envelope and f∗ to denote its lower semicontinuous envelope,
i.e.

f∗(y) = lim sup
z→y

f(z) and f∗(y) = lim inf
z→y

f(z).

In Lemma 6.1 we do not consider the initial condition to be part of the definition of viscosity
subsolution and we consider viscosity subsolutions to be functions on (0, T )× P0(G).

Lemma 6.1. Let S be a family of viscosity subsolutions to (4.3). Let v := sup{w ; w ∈ S} and
assume that v∗ < +∞ on (0, T )× P0(G). Then v∗ is a viscosity subsolution to (4.3).

Proof. Suppose that ϕ ∈ C1
(
(0, T )×P0(G), `2

)
and there exists r > 0 and (t0, µ0) ∈ (0, T )×P0(G)

such that v∗ − ϕ achieves its maximum on B̄r(t
0, µ0) at (t0, µ0). We may assume without loss

of generality that B̄r(t0, µ0) ⊂ (0, T ) × P0(G). By the definition of v∗, there exists (tn, µn) and
wn ∈ S such that

(6.2) (tn, µn)→ (t0, µ0) and wn(tn, µn)→ v∗(t0, µ0) as n→ +∞.
Set

ϕδ(t, µ) := ϕ(t, µ) + δ|t− t0|2 + δ‖µ− µ0‖2`2 on (0, T )× P0(G).
Note that ϕδ is of class C1

(
(0, T ) × P0(G), `2

)
. Furthermore, (t0, µ0) is a strict maximizer for

v∗(t, µ) − ϕδ(t, µ) on B̄r(t
0, µ0). For any n ∈ N, let (t̂n, µ̂n) be a maximizer of wn − ϕδ over

B̄r(t
0, µ0). Observe that

wn(tn, µn)− ϕδ(tn, µn) ≤ wn(t̂n, µ̂n)− ϕδ(t̂n, µ̂n) ≤ v∗(t̂n, µ̂n)− ϕδ(t̂n, µ̂n).

Thus, if (t∞, w∞) is a point of accumulation for
(
(t̂n, µ̂n)

)
n
then by (6.2), we have

v∗(t0, µ0)− ϕδ(t0, µ0) = lim sup
n→+∞

(wn(tn, µn)− ϕδ(tn, µn)) ≤ lim sup
n→+∞

(v∗(t̂n, µ̂n)− ϕδ(t̂n, µ̂n)).

We use the fact that v∗ is upper semicontinuous to conclude that

v∗(t0, µ0)− ϕδ(t0, µ0) ≤ v∗(t∞, µ∞)− ϕδ(t∞, µ∞).
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Since (t0, µ0) is the unique maximizer of v∗ − ϕδ over B̄r(t0, µ0), we conclude that (t0, µ0) =
(t∞, w∞) and so, (t0, µ0) is the unique point of accumulation of

(
(t̂n, µ̂n)

)
n
. Thus, the whole

sequence
(
(t̂n, µ̂n)

)
n
converges to (t0, µ0) and so, for n large enough, (t̂n, µ̂n) belongs to Br(t0, µ0).

Note that

∂tϕδ(t, µ) = ∂tϕ(t, µ) + 2δ(t− t0) and ∇Wϕδ(t, µ) = ∇Wϕ(t, µ) + 2δ∇G(µ− µ0).

Since wn ∈ S and (t̂n, µ̂n) maximizes wn − ϕδ over B̄r(t0, µ0), we obtain that

∂tϕ(t̂n, µ̂n) + 2δ(t̂n − t0) +H
(
µ̂n,∇Wϕ(t̂n, µ̂n) + 2δ∇G(µ̂n − µ0)

)
+ F(µ̂n)

≤Oµ̂n
(
∇Wϕ(t̂n, µ̂n)

)
+ 2δOµ̂n

(
∇W∇G(µ̂n − µ0)

)
.

Observe that since µ0 ∈ P0(G), ‖ · ‖µ̂n and ‖ · ‖`2 are equivalent.

Letting n→ +∞ and using the continuity of F ,H,Oµ, and (6.1), we obtain

∂tϕ(t0, µ0) +H(µ0,∇Wϕ(t0, µ0)) + F(µ0) ≤ Oµ
(
∇Wϕ(t0, µ0)

)
.

This concludes the proof of the lemma. �

Lemma 6.2. Suppose that u is a viscosity subsolution to (4.3) such that u∗ is not a viscosity
supersolution to (4.3). Then, there exist (t0, µ0) ∈ (0, T )×P0(G), δ, r > 0, such that B2r(t

0, µ0) ⊂
(0, T )× P0(G) and a viscosity subsolution v to (4.3) such that the following hold.

(i) v ≥ u on [0, T )× P0(G) and v = u on ([0, T )× P0(G)) \Br(t0, µ0).
(ii) There exists a sequence

(
(tn, µn)

)
n
⊂ (0, T )× P0(G) such that

(tn, µn)→ (t0, µ0), u(tn, µn)→ u∗(t
0, µ0), v(tn, µn)− u(tn, µn)→ δ as n→ +∞.

Proof. Since u∗ is not a supersolution to (4.3), there exists ϕ ∈ C1
(
(0, T )×P0(G), `2

)
, r > 0 and

(t0, µ0) ∈ (0, T )×P0(G) such that u∗−ϕ attains the minimum value 0 at (t0, µ0) ∈ (0, T )×P0(G)
on B2r(t

0, µ0) ⊂ (0, T )× P0(G) and

∂tϕ(t0, µ0) +H(µ0,∇Wϕ(t0, µ0)) + F(µ0) < Oµ
(
∇Wϕ(t0, µ0)

)
.

By a continuity argument, if δ, γ > 0 are sufficiently small, reducing the value of r if necessary, we
obtain that

(t, µ)→ ϕδ,γ(t, µ) := ϕ(t, µ) + δ − γ‖µ− µ0‖2`2 − γ|t− t
0|2

is a classical subsolution to (4.3) on Br(t0, µ0) ⊂ (0, T ) × P0(G). Thus, by Remark 4.3, ϕδ,γ is a
viscosity subsolution to (4.3) on Br(t0, µ0). Observe that

u(t, x) ≥ u∗(t, x) ≥ ϕ(t, x) on Br(t
0, µ0).

If we choose δ = r2γ
8 , then

u(t, µ) > ϕδ,r(t, µ) on Br(t
0, µ0) \ B̄ r

2
(t0, µ0).

Setting

(6.3) v(t, µ) =

{
max{u(t, µ), ϕδ,γ(t, µ)}, on Br(t

0, µ0),
u(t, µ), otherwise,

we conclude that v = u on the open set

Ω := (0, T )× P0(G) \ B̄ r
2
(t0, µ0).
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Thus, v is a viscosity subsolution to (4.3) on Ω. Since, by Lemma 6.1, v = max{u, ϕδ,γ} is a
viscosity subsolution to (4.3) on Br(t0, µ0) and since the union of the open sets Ω and Br(t0, µ0)
is (0, T )× P0(G), we conclude that v is a viscosity subsolution to (4.3) on [0, T )× P0(G).

Let {(tn, µn)}n∈N ⊂ (0, T )× P0(G) be such that

lim
n→+∞

(tn, µn) = (t0, µ0) and lim
n→+∞

u(tn, µn) = u∗(t
0, µ0).

We have

lim
n→+∞

(v(tn, µn)− u(tn, µn)) ≥ ϕδ,γ(t0, µ0)− u∗(t0, µ0) = u∗(t
0, µ0) + δ − u∗(t0, µ0) = δ,

which completes the proof of (ii). �

Theorem 6.3 (Perron’s Method, No Boundary Condition). Let the assumptions of Theorem 5.5
be satisfied, let (6.1) hold and let u0 ∈ C(P0(G)). Suppose that u is a bounded viscosity subsolution
to (4.3), ū is a bounded viscosity supersolution to (4.3) and in addition u∗(0, µ) = ū∗(0, µ) = u0(µ)
for all µ ∈ P0(G). Then, setting

S :=
{
w : u ≤ w ≤ ū on [0, T )× P0(G) and w is a viscosity subsolution to (4.3)

}
,

the function u := supw∈S w is a viscosity solution to (4.3).

Proof. By Lemma 6.1, u∗ is a viscosity subsolution to (4.3). Since u ≤ u ≤ ū, we have u ≤ u∗ ≤ ū
and u0(µ) = u∗(0, µ) ≤ u∗(0, µ) ≤ u∗(0, µ) ≤ ū∗(0, µ) =: u0(µ) and so, u∗(0, µ) = u∗(0, µ) = u0(µ)
for µ ∈ P0(G). By the maximality property of u, this implies that u = u∗ and so, u is a viscosity
subsolution to (4.3). If u∗ fails to be a viscosity supersolution to (4.3), let v be the viscosity
subsolution to (4.3) provided by Lemma 6.2. Observe that v(0, ·) = u0(·). By the comparison
principle, v ≤ ū on [0, T )× P0(G). Also u ≤ u ≤ v by the construction of v. Hence v ∈ S and so,
by the maximality property of u, we have v ≤ u, which contradicts (ii) of Lemma 6.2. Thus, u∗ is
also a viscosity supersolution to (4.3) and then comparison yields u∗ ≤ u∗. Therefore u = u∗ = u∗
is a viscosity solution to (4.3). �

In the same way we can prove Perron’s method theorem for boundary value problems.

Theorem 6.4 (Perron’s Method, Boundary Condition). Let the assumptions of Theorem 5.6 be
satisfied, let (6.1) hold and let u0 ∈ C(P0(G)), h ∈ C([0, T ) × (P(G) \ P0(G))) be such that
h = u0 on {0} × (P(G) \ P0(G)). Suppose that u ∈ USC([0, T ) × P(G)) is a bounded viscosity
subsolution to (4.3), ū ∈ LSC([0, T )×P(G)) is a bounded viscosity supersolution to (4.3). Suppose
in addition that u∗(0, µ) = ū∗(0, µ) = u0(µ) for all µ ∈ P(G) and u∗(t, µ) = ū∗(t, µ) = h(t, µ) for
all (t, µ) ∈ (0, T )× (P(G) \ P0(G)). Then, setting

S :=
{
w : u ≤ w ≤ ū on [0, T )× P(G) and w is a viscosity subsolution to (4.3)

}
,

the function u := supw∈S w is a viscosity solution to (4.3) such that u = h on [0, T ) × (P(G) \
P0(G)).

In light of Theorems 5.5, 5.6, 6.3 and 6.4, to show that (4.3) has a unique viscosity solution, it
suffices to construct a viscosity subsolution u and a viscosity supersolution ū to (4.3). We achieve
this goal in the next proposition under the assumptions of Theorem 5.5 for the problem without
a boundary condition, but we are unable do so when a boundary value is prescribed, see the
comments after the proof of Proposition 6.5.
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Proposition 6.5. Let the assumptions of Theorem 5.5 be satisfied (recall that we assume (6.1)
in this section). Suppose that u0 : P0(G) → R is a function such that one of the following two
conditions holds:

(i) u0 is `2-Lipschitz;
(ii) O ≡ 0 and u0 is W-Lipschitz.

Then there exists a constant C0 > 0 which depends only on u0,H,F such that the functions

u(t, µ) = −C0t+ u0(µ), u(t, µ) = C0t+ u0(µ)

are respectively a viscosity subsolution and a viscosity supersolution to (4.3). Moreover, if u is a
bounded viscosity solution to (4.3) then u(·, µ) is C0-Lipschitz on [0, T ) for every µ ∈ P0(G) and
for every ε > 0 there is a constant Kε such that

(6.4) |u(t, µ)− u(t, ν)| ≤ Kε‖µ− ν‖`2 for all t ∈ [0, T ], µ, ν ∈ Pε(G).

Proof. In the case (i), we assume l0 is the `2–Lipschitz constant of u0. We fix C0 > C > 0 whose
value will be specified later and set u(t, µ) ≡ −C0t + u0(µ). Let ϕ ∈ C1

(
(0, T ) × P0(G), `2

)
be

such that there are r > 0 and (t0, ρ0) such that B̄r(t0, ρ0) ⊂ (0, T )×P0(G) and u−ϕ achieves its
maximum on B̄r(t0, ρ0) at (t0, ρ0). Note that ∂tϕ(t0, ρ0) = −C0 and

∥∥ δϕ
δµ (t0, µ0)

∥∥
`2
≤ l0 and so,

‖∇Wϕ(t0, µ0)‖µ0 ≤ 2n2l0Cω.

Set
C := COl0 + sup

(µ,p)

{∣∣H(µ, p) + F(µ)
∣∣ : µ ∈ P0(G), p ∈ Sn×n, ‖p‖µ ≤ 2n2l0Cω

}
.

We have

∂tϕ(t0, ρ0) +H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0)−Oρ0
(
∇Wu(t0, ρ0)

)
≤ −C0 + C.

This proves that u is a viscosity subsolution to (4.3) such that u(0, ·) = u0. In a similar manner, we
construct a viscosity supersolution ū to (4.3), which is such that ū(0, ·) = u0. We apply Theorems
5.5 and 6.3 to conclude the proof in case (i).

In the case (ii), one shows that if u− ϕ achieves a local maximum at (t0, ρ0) ∈ (0, T )×P0(G),
then ‖∇Wϕ(t0, µ0)‖µ0 ≤ nl0C. We follow the same lines of arguments to conclude the proof in
the case (ii) when CO = 0.

To show Lipschitz continuity in t, we notice that comparison principle gives us

(6.5) − C0t+ u0(µ) ≤ u(t, µ) ≤ C0t+ u0(µ) = C0t+ u0(µ)

for any t ∈ [0, T ) and µ ∈ P0(G). Let s > 0 and define v(t, µ) = u(t + s, µ). Since H is time
independent, v is a viscosity solution to (4.3) such that v(0, ·) = u(s, ·). We have

v(0, ·)− ‖v(0, ·)− u(0, ·)‖∞ ≤ u(0, ·) ≤ v(0, ·) + ‖v(0, ·)− u(0, ·)‖∞.

By the comparison principle,

v(t, ·)− ‖v(0, ·)− u(0, ·)‖∞ ≤ u(t, ·) ≤ v(t, ·) + ‖v(0, ·)− u(0, ·)‖∞ on (0, T − s)× P0(G).

Thanks to (6.5), we conclude that

−C0s ≤ −‖u(s, ·)−u(0, ·)‖∞ ≤ u(t+s, ·)−u(t, ·) ≤ ‖u(s, ·)−u(0, ·)‖∞ ≤ C0s on (0, T−s)×P0(G).

Thus, u(·, µ) is C0-Lipschitz on [0, T ) for µ ∈ P0(G).
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To prove (6.4), for every δ > 0 we define the sup-convolution of u in the µ variable by

uδ(t, µ) = sup
ρ∈P0(G)

{
u(t, ρ)−

‖µ− ρ‖2`2
2δ

}
.

Let ρ̄ be a maximizing point. It is easy to see that we must have

‖µ− ρ̄‖`2 ≤ 2
√
‖u‖∞δ =: Cδ.

Let now 0 < t < T, µ ∈ PCδ(G). Then ρ̄ ∈ P0(G). Suppose uδ−ϕ has a maximum at (t, µ). Then

(6.6) u(t, ρ̄)−
‖µ− ρ̄‖2`2

2δ
− ϕ(t, µ) ≥ u(s, ρ)−

‖ν − ρ‖2`2
2δ

− ϕ(s, ν)

for all s, ν, ρ. If we set ν = ρ+ (µ− ρ̄) we thus have

u(t, ρ̄)− ϕ(t, µ) ≥ u(s, ρ)− ϕ(s, ρ+ (µ− ρ̄))

so u−ϕ(·, ·+(µ− ρ̄)) has a maximum at (t, ρ̄). Thus, using the definition of viscosity subsolution,

(6.7) ∂tϕ(t, µ) +H(ρ̄,∇Wϕ(t, µ)) + F(ρ̄) ≤ Oρ̄
(
∇Wϕ(t, µ)

)
≤ CO‖∇Wϕ(t, µ)‖`2 .

Assume in the sequel that µ ∈ Pε(G) and δ is sufficiently small so that Cδ < ε
2 . Since u(·, µ) is

C0-Lipschitz, |∂tϕ(t, µ)| ≤ C0.We use in (6.7), (A-iii) and the fact that by (H-iii) ‖ · ‖ρ̄ ≥
√
ε‖ · ‖`2

on Pε(G), to deduce that

θ ε
2
ε
κ
2 ‖∇Wϕ(t, µ))‖κ`2 ≤ CO‖∇Wϕ(t, µ)‖`2 + C0 + F∞,

where |F| ≤ F∞. Thus, some constant Kε independent of δ we have

(6.8) ‖∇Wϕ(t, µ)‖`2 ≤ Kε.

Setting s = t, ρ = ρ̄ in (6.6) we also see that the function

ν → −
‖ν − ρ̄‖2`2

2δ
− ϕ(t, ν)

has a maximum at µ so

(6.9)
δϕ

δρ
(t, µ) =

ρ̄− µ
δ

.

Since G is connected ∇Gp = 0 if and only if pi = pj = 0 for all i, j and thus, on the set of null
average p, ‖∇Gp‖`2 and ‖p‖`2 are two equivalent norms. Hence, since ∇Wϕ(t, µ) = ∇G( δϕδρ )(t, µ),
there is a constant C such that ∥∥∥δϕ

δρ
(t, µ)

∥∥∥
`2
≤ Cε‖∇Wϕ(t, µ)‖`2 .

Thus, (6.8) and (6.9) imply

(6.10) ‖ ρ̄− µ
δ
‖`2 ≤ Kε

for some constant Kε.

The set of points (t, µ) such that uδ − ϕ has a maximum at (t, µ) for a smooth function ϕ is
dense in (0, T )×P0(G) (where in P0(G) we take the ‖ ·‖`2 norm). This can be seen by considering
for every (t0, µ0) ∈ (0, T )× P0(G), n = 1, 2, ..., the functions

uδ(t, µ)− n((t− t0)2 + ‖µ− µ0‖2`2)
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which, for large n, will have maxima close to (t0, µ0). We thus conclude from (6.10) that for every
(t, µ) ∈ (0, T ) × Pε(G) there is a sequence (tn, µn) such that if ρ̄n is the maximizing point for
uδ(tn, µn), then ∥∥∥ ρ̄n − µn

δ

∥∥∥
`2
≤ Kε.

Thus, by passing to a subsequence, we obtain that for every (t, µ) ∈ (0, T )×Pε(G), there exists a
maximizing point ρ̄ for uδ(t, µ) such that (6.10) holds.

Let now t ∈ (0, T ), µ, ν ∈ Pε(G). We define the function

ψδ(s) = uδ(t, µ+ s(ν − µ)), ∀s ∈ [0, 1].

The function ψδ is Lipschitz and hence differentiable a.e. Let 0 < s̄ < 1 be a point of differentia-
bility of ψδ and let h ∈ C1(R) be a function such that ψδ − h has a maximum at s̄. Let ρ̄ be a
maximizing point for uδ(t, µ+ s(ν − µ)) satisfying (6.10). Then the function

s→ u(t, ρ̄)−
‖µ+ s(ν − µ)− ρ̄‖2`2

2δ
− h(s)

has a maximum at s̄. Therefore

h′(s̄) =

(
ρ̄− (µ+ s(ν − µ))

δ
, ν − µ

)
and thus |h′(s̄)| ≤ Kε‖ν − µ‖`2 . We now conclude that

|uδ(t, ν)− uδ(t, µ)| = |ψδ(1)− ψδ(0)| ≤ Kε‖ν − µ‖`2 .

It remains to send δ → 0. �

If u0 ∈ C(P(G)) (and hence u0 is uniformly continuous), let uδ0 for 0 < δ < 1 be the sup-
convolution of u0 defined as in the proof of Proposition 6.5. Then uδ0 is `2-Lipschitz and u0 ≤
uδ0 ≤ u0 + aδ, where aδ → 0 as δ → 0. Therefore for every 0 < δ < 1 there is a constant Cδ > 0
such that

uδ(t, µ) := Cδt+ uδ0(µ)

is a viscosity supersolution to (4.3). Then the function

u := inf
0<δ<1

uδ

is a bounded continuous viscosity supersolution to (4.3) such that u(0, µ) = u0(µ) for all µ ∈ P0(G).
We can construct a bounded continuous viscosity subsolution u in the same way by approximating
u0 by its inf-convolutions.

Unfortunately in general it does not seem possible to construct viscosity subsolutions u and
viscosity supersolutions u to (4.3) when a boundary condition is prescribed. Even if we assume
in (A-iii) that there is θ > 0 such that θ‖p‖κµ ≤ H(µ, p) for all µ ∈ P0(G) (for instance if
H(µ, p) ≡ ‖p‖κµ), the HamiltonianHmay still degenerate near ∂P(G) since ‖p‖κµ may become small
even when ‖p‖κ`2 is large and µ is near ∂P(G). This prevents typical constructions of supersolution
barriers. Moreover, even if the Hamiltonian were ‖ · ‖`2-coercive near ∂P(G), it is not clear how
one would produce a viscosity subsolution unless some special compatibility conditions on the data
were satisfied. We are also not able to use the individual noise type operator to produce barriers
near ∂P(G).
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7. Appendix: Differentiability properties of W2(ρ∗, ·)

Using the same terminology as in [43], we denote by γP (ρ) the Poincaré constant of ρ ∈ P(G).
We fix ρ∗ ∈ P(G) and define

F0(ρ) =
1

2
W2(ρ∗, ·), ∀ρ ∈ P(G).

We set

(7.1) H(a, b) = sup
ρ∈P(G)

{
(a, ρ) +

1

2
‖b‖2ρ

}
, ∀(a, b) ∈ Rn × Sn×n.

Given λ ∈ BVloc(0, 1;Rn), we denote by λ̇absL1 the absolutely continuous part of distributional
derivative λ̇ and denote by λ̇sing its singular part. As in [43], B∗ stands for the set of λ ∈
BVloc(0, 1;Rn) such that H

(
λ̇,∇Gλ

)
= 0. In convex analysis this means that, for any non-

negative Borel regular measure ν such that −λ̇sing
i << ν and ν and L1 are mutually singular, we

have

(7.2) H
(
λ̇abs,∇Gλ

)
= 0 L1 a.e. in (0, 1), max

i=1≤i≤n

{dλ̇sing
i

dν

}
= 0, ν a.e. in (0, 1).

Recall (c.f. Theorem 7.4 [43]) that if ρ0, ρ1 ∈ P(G) and γP (ρ0), γP (ρ1) > 0, then

(7.3) min
(ρ,m)

{
A(ρ,m)

∣∣∣ (ρ,m) ∈ C(ρ0, ρ1)
}

= max
λ

{(
λ(1), ρ1

)
−
(
λ(0), ρ0

) ∣∣∣ λ ∈ B∗

}
.

Remark 7.1. Assume that ρ∗ ∈ P(G) with γP (ρ∗) > 0 and ρ ∈ P0(G). In [43], we obtained
a W-geodesic µ of constant speed such that µ(0) = ρ∗ and µ(1) = ρ. We combine Remark 6.3
and Theorem 7.3 of [43] to conclude that v, the velocity of minimal norm of µ, is such that
v is continuous near 1 and v(t) = ∇Gλ(t) for all t near 1, where λ is a maximizer in (7.3).
Furthermore, we have ‖v(t)‖µ(t) = W(ρ∗, ρ) for every t < 1 close to 1. By Corollary 3.3, we can
assume without loss of generality that ‖λ(1)‖`∞ ≤ λg(ρ)‖v(1)‖ρ.

Lemma 7.2. For any ρ ∈ P0(G) there exists λ∞ ∈ Rn such that the following hold.

(i) Whenever ρ̄ ∈ P(G) and its Poincaré constant satisfies γP (ρ̄) > 0 then

(7.4) F0(ρ̄) ≥ F0(ρ) + (λ∞, ρ̄− ρ).

(ii) ∇Gλ∞ is a Wasserstein subgradient of F0 at ρ, ‖∇λ∞‖ρ ≤ W(ρ∗, ρ) and ‖λ∞‖`∞ ≤
λg(ρ)W(ρ∗, ρ).

Proof. By Remark 2.2, there is a sequence (ρ∗,k)k ⊂ P0(G) which converges to ρ∗ in theW metric.
By (7.3) there exists λk ∈ B∗ such that

(7.5)
1

2
W2
(
ρ∗,k, ρ

)
=
(
λk(1), ρ)− (λk(0), ρ∗,k

)
.

By Remark 7.1,

(7.6) ‖∇Gλk(1)‖ρ ≤ W(ρ∗,k, ρ) and ‖λk(1)‖`∞ ≤ λg(ρ)W(ρ∗,k, ρ).

If ρ̄ ∈ P(G) and γP (ρ̄) > 0, due to the maximality property of λk expressed (7.5), we infer
1

2
W2(ρ∗,k, ρ̄)− 1

2
W2(ρ∗,k, ρ) ≥

(
λk(1), ρ̄− ρ

)
.

Thus, letting k →∞, we obtain (7.4).
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If v̄ ∈ TρP(G), (7.4) implies

F0(ρ̄) ≥F0(ρ)−
(
λ∞,divρ(v̄)

)
+
(
λ∞, ρ̄− ρ+ divρ(v̄)

)
≥F0(ρ) +

(
∇Gλ∞, v̄

)
ρ
− ‖λ∞‖`∞

∥∥ρ̄− ρ+ divρ(v̄)
∥∥
`1
,

which concludes the proof. �

Let ρ ∈ P(G) and let µ : [0, 1] → Rn be a geodesic of constant speed connecting ρ∗ to ρ and
assume that the range of µ is entirely contained in (0, 1]n. Since the range is a compact set, there
exists ε > 0 such that the range of µ is contained in [2ε, 1 − 2ε]n. The geodesic µ is uniquely
characterized by the Euler-Lagrange equations

(7.7) ρ̇ = ∇φHg(ρ, φ), φ̇ = −∇ρHg(ρ, φ),

where,

Hg(ρ, φ) =
1

4

∑
(i,j)∈E

ωijg(ρi, ρj)(φi − φj)2.

This means

(7.8) µ̇i +
∑
j∈N(i)

ωij(φj − φi)g(µi, µj) = 0, φ̇i +
1

2

∑
j∈N(i)

ωij∂1g(µi, µj)(φi − φj)2 = 0,

along with the boundary conditions µ(0) = ρ∗ and µ(1) = ρ.

We also know that ∇Gφ is uniquely determined. Replacing φi by φi − 1/n
∑n

j=1 φi(1), one
checks that (7.8) still holds and

(7.9)
n∑
i=1

φi(1) = 0.

Since the second identity in (7.8) depends only on ∇Gφ and µ, we conclude that φ̇ is uniquely
determined and so, if φ̄ is another solution, we must have that φ̄ − φ = c is a constant. But∑n

i=1(φ̄i − φi)(1) = 0 implies that
∑n

i=1 ci = 0, while ∇G(φ̄ − φ) = 0 implies that ci = cj for all
(i, j) ∈ E. Since (G,V, ω) is a connected graph, we obtain that ci = cj for all i, j ∈ V and so,
ci = 0 for all i ∈ V. This shows that the curve φ is then uniquely determined under the convention
(7.9), which we impose in the sequel. We define

µ ≡ µ[ρ∗, ρ] and φ ≡ φ[ρ∗, ρ].

We recall that the velocity v of µ satisfies the identity

(7.10) v(t) = ∇Gφ(t), ‖v(t)‖µ(t) =W(µ(0), µ(1)), ∀t ∈ [0, 1].

Let δ > 0 be sufficiently small such that for any ρ̄ ∈ Bδ(ρ) ⊂ P0(G) there is a unique geodesic
connecting ρ∗ to ρ̄ and the geodesic is contained in [ε, 1− ε]n. One readily concludes that (t, ρ̄)→
φ[ρ∗, ρ̄](t) is continuous on [0, 1]×Bδ(ρ).

Proposition 7.3. Let ρ, ρ∗ ∈ P0(G) and let δ > 0 be small enough such that for all ρ̄ ∈ Bδ(ρ) ⊂
P0(G) there is a unique geodesic connecting ρ∗ to ρ̄. We further assume that there exists ε > 0
such that these geodesics are contained in [ε, 1− ε]n. Then:

(i) F0 has the Fréchet derivative at each ρ̄ ∈ Bδ(ρ) and its derivative δF0/δρ(ρ̄) = φ[ρ∗, ρ̄](1)
is `1-continuous in Bδ(ρ).

(ii) F0 has the Wasserstein gradient at each ρ̄ ∈ Bδ(ρ) and its gradient ∇WF0(ρ̄) = ∇G
(
φ[ρ∗, ρ̄](1)

)
is `1-continuous in Bδ(ρ).
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Proof. (i) Let ρ̄ ∈ Bδ(ρ). For all s ∈ [0, 1], the geodesic of constant speed connecting ρ∗ to
ρ+ s(ρ̄− ρ) = ρ+ sf is also contained in [ε, 1− ε]n. We have

F0(ρ+ sf)−F0(ρ) ≥
(
φ[ρ∗, ρ](1), ρ+ sf

)
−
(
φ[ρ∗, ρ](0), ρ∗

)
−
(
φ[ρ∗, ρ](1), ρ

)
+
(
φ[ρ∗, ρ](0), ρ∗

)
= s

(
φ[ρ∗, ρ](1), f

)
.

Similarly,

F0(ρ+ sf)−F0(ρ) ≤
(
φ[ρ∗, ρ+ sf ](1), ρ+ sf

)
−
(
φ[ρ∗, ρ+ sf ](0), ρ∗

)
−
(
φ[ρ∗, ρ+ sf ](1), ρ

)
+
(
φ[ρ∗, ρ+ sf ](0), ρ∗

)
= s

(
φ[ρ∗, ρ+ sf ](1), f

)
.

Hence,

lim sup
s→1−

F0(ρ+ sf)−F0(ρ)

s
≤ lim sup

s→1−

(
φ[ρ∗, ρ+ sf ](1), f

)
=

(
φ[ρ∗, ρ](1), f

)
≤ lim inf

s→1−

F0(ρ+ sf)−F0(ρ)

s
.

This shows that
lim
s→1−

F0(ρ+ sf)−F0(ρ)

s
=
(
φ[ρ∗, ρ](1), f

)
.

Hence, F0 has the Fréchet derivative at ρ and δF0/δρ(ρ) = φ[ρ∗, ρ](1). Since we may replace ρ by
any ρ̄ ∈ Bδ(ρ) in the above arguments, we have

δF0

δρ
(ρ̄) = φ[ρ∗, ρ̄](1), ∀ρ̄ ∈ Bδ(ρ)

and so, since φ[ρ∗, ·](1) is `1-continuous on Bδ(ρ), we conclude the proof of (ii).

(ii) In light of Lemma 3.14, (i) implies (ii). �

Remark 7.4. Let ε > 0 and let ρ, ρe ∈ P(G) be such that ρi ≥ 10ε for all i ∈ V and
√

2nCωW(ρ, ρe) ≤
ε. Let µ be the geodesic of constant speed connecting ρe to ρ. We use Lemma 3.4 to conclude that

‖µ(t)− ρ‖`1 ≤
√

2nCωW(µ(t), ρ) =
√

2n(1− t)CωW(ρe, ρ) ≤ ε.
Hence, µi(t) ≥ 9ε for all i ∈ V .

If ρ̄ ∈ P(G) is such that
√

2nCωW(ρ, ρ̄) ≤ ε and µ̄ is a geodesic of constant speed connecting ρe
to ρ̄ then

‖µ(t)− ρe‖`1 ≤
√

2n(1− t)CωW(ρe, ρ̄) ≤
√

2n(1− t)Cω
(
W(ρe, ρ) +W(ρ, ρ̄)

)
≤ 2ε.

Hence, µ̄i(t) ≥ 8ε for all i ∈ V . In conclusion, we have proven that if we set δ := ε/(
√

2nCω) then
whenever ρ̄ ∈ Bδ(ρ) then every geodesic connecting ρe to ρ is contained in [ε, 1− ε]n and so, it is
uniquely determined.

Corollary 7.5. Assume that γP (ρ∗) > 0. Then:

(i) F0 has the Fréchet derivative and the Wasserstein gradient on P0(G), and for any ρ ∈
P0(G) we have ‖∇WF0(ρ)‖ρ = W(ρ, ρ∗). If ρe is on a geodesic connecting ρ∗ to ρ and ρe
is sufficiently close to ρ then

δF0

δρ
(ρ) = φ[ρe, ρ](1) and ∇WF0(ρ) = ∇Gφ[ρe, ρ](1).
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In particular, ∇Gφ[ρe, ρ](1) is independent of the geodesic.
(ii) If ρ∗ ∈ P0(G) then both δF0

δρ and ∇WF0 are `1–continuous at ρ.

Proof. (i) Assume ρ ∈ P0(G) and there exists ε > 0 such that ρi ≥ 10ε for all i ∈ V . Let λ ∈ B∗
be the maximizer in the dual formulation of 1/2W2(ρ∗, ρ) as chosen in the proof of Lemma 7.2 so
that

1

2
W2
(
ρ∗, ρ

)
=
(
λ(1), ρ)− (λ(0), ρ∗

)
holds. Let µ be a geodesic of constant speed connecting ρ∗ to ρ. Choose r ∈ (0, 1) so that
W
(
ρ, µ(1− r)

)
≤ ε/(2

√
nCω) and set ρe := µ(1− r). We have

1

2
W2
(
ρe, ρ

)
= (φ[ρe, ρ](1), ρ)−

(
φ[ρe, ρ](0), ρe

)
.

Let µ̄ : [1−r, 1]→ P(G) be the geodesic connecting ρe := µ(1−r) to ρ̄ and extend µ̄ to [0, 1−r]
to be the restriction of µ to [0, 1−r]. If v is the velocity of µ and v̄ is the velocity of µ̄ on [1−r, 1],
we have

(7.11) F0(ρ̄) ≤ 1

2

∫ 1−r

0
‖v‖2µdt+

1

2

∫ 1

1−r
‖v̄‖2µ̄dt = F0(ρ) +

1

2

(
W2
(
ρe, ρ̄

)
−W2

(
ρe, ρ

))
.

By Remark 7.4 and Proposition 7.3, W2
(
ρe, ·

)
has the Fréchet derivative and the Wasserstein

gradient at ρ. Furthermore,

(7.12)
δW2

(
ρe, ·

)
δρ

(ρ) = φ[ρe, ρ](1) and ∇WW2
(
ρe, ·

)
(ρ) = ∇Gφ[ρe, ρ](1).

By (7.11) and in light of the first identity in (7.12), φ[ρe, ρ](1) is in the super-differential of F0 at
ρ. But by Lemma 7.2, there exists λ∞ ∈ Rn in the sub-differential of F0 at ρ. Since ρ ∈ P0(G),
we have that φ[ρe, ρ](1)− λ∞ is orthogonal to any f ∈ Rn such that

∑n
i=1 fi = 0. In other words,

φ[ρe, ρ](1) − λ∞ is parallel to 1 := (1, · · · , 1). Since we have imposed the normalization property
that both φ[ρe, ρ](1) and λ∞ are perpendicular to 1, we conclude that φ[ρe, ρ](1) = λ∞.

By (7.11) and in light of the second identity in (7.12), there exists a constant C > 0 such that,
for every ε̄ > 0, there exists δ̄ > 0 satisfying for any v̄ ∈ TρP(G)

‖ρ̄− ρ‖`1 ≤ δ̄ =⇒ F0(ρ̄) ≤ F0(ρ) +
(
∇Gφ[ρe, ρ](1), v̄

)
ρ

+ C‖ρ̄− ρ+ divρ(v̄)‖`1 + ε̄W(ρ, ρ̄).

Hence, F0 has a Wasserstein super-gradient at ρ which is ∇Gφ[ρe, ρ](1). Since in light of Lemma
7.2, F0 has a Wasserstein sub-gradient at ρ, we conclude that ∇Gφ[ρe, ρ](1) is the gradient of F0

at ρ. We use (7.10) to obtain the identity ‖∇WF0(ρ)‖ρ =W(ρ, ρ∗).

(ii) Further assume that ρ∗ ∈ P0(G). We observe that φ[ρe, ρ](l) = φ[ρ∗, ρ](lr + 1 − r) for
l ∈ [0, 1]. We use (2.10) when l = 1 to conclude that ∇WF0 is `1-continuous at ρ. �
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