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Euler–Poisson systems as

action-minimizing paths in the Wasserstein

space

W. Gangbo ⋆, T. Nguyen ⋆⋆, A. Tudorascu ⋆⋆⋆

Abstract

This paper uses a variational approach to establish existence of solutions
(σt, vt) for the 1–d Euler-Poisson system by minimizing an action. We as-
sume that the initial and terminal points σ0, σT are prescribed in P2(IR),
the set of Borel probability measures on the real line, of finite second-order
moments. We show existence of a unique minimizer of the action when the
time interval [0, T ] satisfies T < π. These solutions conserve the Hamilto-
nian and they yield a path t → σt in P2(IR). When σt = δy(t) is a Dirac
mass, the Euler-Poisson system reduces to ÿ + y = 0. The kinetic version
of the Euler-Poisson, i.e. the Vlasov-Poisson system was studied in [1] as a
Hamiltonian system.

1. Introduction

Several works are concerned with the Euler-Poisson system and its many
variants [11], [17], [20] and [8] (the pressureless case). Some of them have
considered the so-called entropy solutions [13], [16]. In this paper, we an-
alyze a different class of solutions for the one-dimensional repulsive Euler-
Poisson system with constant background. Our goal is to study solutions
which are action-minimizing paths with respect to a Lagrangian L. This
Lagrangian is defined on the tangent bundle to P2(IR) (as defined in [2]).
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Here, P2(IR) is the space of Borel probability measures on IR with finite
second-order moments. When the initial and terminal points of the paths
are prescribed, we refer to this problem as the two-point boundary prob-
lem. We establish existence of solutions for the two-point boundary problem,
along with uniqueness of solutions that are action-minimizer s. Our study
is facilitated by a remarkable Eulerian-Lagrangian duality property in the
space of L2-absolutely continuous curves. This property is a direct conse-
quence of lemma 1. It could also be obtained as a consequence of the more
subtle purely analytic result obtained in proposition 6. These results allow
us to pass from Eulerian to Lagrangian coordinates. Here, we require min-
imal smoothness property in the time variable and no regularity property
in the space variable. The result in proposition 6 is also exploited to obtain
conservation of the Hamiltonian along solutions in the action-minimizing
class.

Let us begin by introducing the commonly known form of the pressure-
less, repulsive Euler-Poisson system with constant background charge







∂tρt + ∂y(ρtvt) = 0 in IR × (0, T ),
∂t(ρtvt) + ∂y(ρtv

2
t ) = −ρt∂yΦt in IR × (0, T ),

−∂2
yyΦt = ρt − 1 in IR.

(1)

Observe that y → y2/2 − Φt(y) is a convex function and so, ∂yΦt is well-
defined except maybe on an at most countable set. Hence, the expression
ρt∂yΦt makes sense since ∂yΦt is well-defined ρt–almost everywhere. If, in-
stead, we try to substitute the density ρt by an arbitrary Borel measure σt in
the expression ρt∂yΦt, we are forced to substitute ∂yΦt by a function which
is defined almost everywhere with respect to σt. Thus, to further allow for
solutions that are Borel probability measures, we focus on an extension of
the momentum equation in (1). Namely we substitute it by

∂t(σtvt) + ∂y(σtv
2
t ) = σt[γ̄t − id] (2)

in the distributional sense. Here γ̄t(y) = σt(−∞, y) + 1/2σt{y} − 1/2. We
note that if σt := ρtL1, then this formulation and that from (1) coincide. We
are going to give a different interpretation of γ̄t in the sequel. We arrive to
(2) as a natural expression of Newton’s second law. To do so, we first need to
recall some basic facts from the theory of L2-absolutely continuous curves
in P2(IR). We shall be quite sketchy; for further details we recommend
the comprehensive reference [2]. Let us endow P2(IR) with the quadratic
Wasserstein metric defined by

W 2
2 (µ, ν) := min

γ

∫

IR2

|ȳ − y|2dγ(y, ȳ),

where the infimum is taken among all probabilities γ on the the product
space IR2 with marginals µ, ν. The joint distributions γ that realize the
minimum are called optimal couplings or optimal plans. Thus, (P2(IR),W2)
becomes a Polish space on which we define absolutely continuous curves.
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Suppose in general that (S, dist) is a complete metric space. We say that
[0, T ] ∋ t → σt ∈ S lies in AC2(0, T ;S) provided that there exists f ∈
L2(0, T ) such that dist(σt, σt+h) ≤

∫ t+h

t
f(s)ds for all 0 < t < t + h < T .

We now take (S, dist) = (P2(IR),W2) and σ ∈ AC2(0, T ;P2(IR)). We arrive
to the definition of γ̄t by first considering γt as the unique optimal cou-
pling between ν0 := L1|(−1/2,1/2) and σt. Then we let γ̄t be the barycentric
projection of γt onto its second marginal σt. In general, the barycentric pro-
jection γ̄µ : IRd → IRd of a plan γ ∈ P(IRd × IRd) onto its second marginal
µ := π2

#γ is uniquely defined µ–a.e. by

γ̄µ(y) :=

∫

IRd

x dγy(x) for µ-a.e. y ∈ IRd, (3)

where we have disintegrated γ as γ =
∫

IRd γydµ(y). When d = 1 one
can check that the barycentric projection reduces to γ̄µ(y) = µ(−∞, y) +
1/2µ{y} − 1/2. To relate back to (1), we make the following observation: if
σt vanishes on sets which are at most countable, then γ̄t is nothing but the
optimal map ∂yψt between σt and ν0. Moreover, we have ∂yψt is differen-
tiable σt–almost everywhere and ∂yyψt = σt in the sense of distributions.
In this particular case, ψt and the function Φt appearing in (1) are related
by Φt(y) = y2/2 − ψt(y).

To arrive to our point of view, we shall briefly discuss a system related
to (1) that was recently studied from a similar, yet different perspective.
The kinetic version of (1) is the Vlasov-Poisson system






∂tf(y, v, t) + v∂yf(y, v, t) = −∂yφ(y, t)∂vf(y, v, t) in IR × IR × (0, T ),
∂2

yyφ(·, t) = ρ − 1 in IR × (0, T )
ρ(y, t) =

∫

IR
f(y, v, t)dv.

Indeed, at least at the formal level, if vt is a velocity for t → ρ(·, t) =: ρt and
f(y, w, t) = ρt(y)δw−vt(y) (monokinetic solution for Vlasov-Poisson), then
(ρ, v) solves (1). Infinite-dimensional Hamiltonian ODE are treated in [1]
for Hamiltonians H : P2(IR

d×IRd) → IR. Set H(ν) = W 2
2 (ν, ν0⊗δ0)/2 with

ν0 being the indicator function of the unit cube X := (−1/2, 1/2)d. One can
show that the Hamilton ODE in the sense of [1] becomes the Vlasov-Monge-
Ampère system introduced in [9]. It appears as an asymptotic approximation
for the standard Vlasov-Poisson system describing the evolution of electron
clouds in neutralizing uniform media. The two systems are the same if d = 1.
Let us now explain how the Euler-Poisson system (or Euler-Monge-Ampère
in multiple dimensions), can also be regarded as a Lagrangian system in a
rela ted context. We use the observation already exploited in prior works,
valid for all d: if ν ∈ P2(IR

2d), then

W 2
2 (ν, ν0 ⊗ δ0) =

∫

IRd

|v|2dν2(v) + W 2
2 (ν1, ν0). (4)

Here ν1 and ν2 are, respectively, the first and second marginals of ν. Thus,
H defined above does not “see” the full measure ν, only its marginals. Let
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us further restrict our attention to measures ν of the form ν(E) = µ({x ∈
IRd| (x, ζ(x)) ∈ E}) with µ ∈ P2(IR

d) and ζ : IRd → IRd in L2(µ). We
write ν = (id × ζ)#µ, where id stands for the identity map on IRd. The

tangent space TµP2(IR
d) is the closure of

{

∇ϕ | ϕ ∈ C∞
c (IRd)

}

in L2(µ)
[2], thus it is a separable Hilbert space which we choose to identify with its
dual. Therefore, we make no distinction between the tangent and cotangent
spaces at µ. We can then restrict ourselves to ζ in the cotangent bundle at
µ. For ν of the form (id× ζ)#µ, the right hand side of (4) gives rise to the
Hamiltonian

H(µ, ζ) :=
1

2
‖ζ‖2

L2(µ) +
1

2
W 2

2 (µ, ν0).

The associated Lagrangian considered in this paper is

L(µ, ξ) :=
1

2
‖ξ‖2

L2(µ) −
1

2
W 2

2 (µ, ν0) = sup
ζ∈TµP2(IRd)

{

〈ζ, ξ〉 − H(µ, ζ)
}

.

It is defined for µ ∈ P2(IR
d) and ξ ∈ TµP2(IR

d).
We now take 0 < T < π and consider the action

AT (σ) :=

∫ T

0

L(σt,vt)dt, σ ∈ CT (µ, µ̄).

Here CT (µ, µ̄) denotes the set all paths in AC2(0, T ;P2(IR
d)) connecting two

given probabilities µ, µ̄ ∈ P2(IR
d). The Borel map v : IRd × (0, T ) → IRd is

the velocity of minimal norm associated to σ. By that we mean first that in
the sense of distribution, the continuity equation ∂tσt+∇y ·(σtvt) = 0 holds

in IRd × (0, T ). Secondly, the norm ‖vt‖L2(σt) is the metric derivative |σ′|(t)
for L1–almost every t ∈ (0, T ). As a consequence, vt ∈ Tσt

P2(IR
d) for these

t (we refer the reader to section 8.3 of [2]). We prove that any critical path
for AT is a solution for the Euler-Poisson system in the sense of distribu-
tions. Using a direct method for proving that AT attains a minimizer which
is unique in CT (µ, µ̄) seems arduous, mainly because the existence result is
complicated by the negative term appearing in L. It prevents us from infer-
ring that AT satisfies any reasonable lower semicontinuity property useful
to our purpose. Also, it is not clear that AT is strictly convex in a sense
to be specified. When the space dimension d = 1, we achieve our goal by
switching to the Lagrangian formulation. The key fact here is that for any
µ, µ̄ ∈ P2(R), one has W2(µ, µ̄) = ‖Mµ − Mµ̄‖L2(ν0), where Mµ denotes
the optimal map such that Mµ#ν0 = µ. We use this property in lemma 1
to show that σ ∈ AC2(0, T ;P2(IR)) is equivalent to M ∈ H1(0, T ;L2(ν0))
and |σ′|(t) = |M ′|(t) for a.e. t ∈ (0, T ). Here we have set Mt := Mσt

. As a
consequence ‖vt‖L2(σt) = |M ′|(t) for a.e. t ∈ (0, T ). In fact, we manage to
prove a stronger property which lead to |σ′|(t) = |M ′|(t) . We establish the
identity M ′

t = vt◦Mt for a.e. t ∈ (0, T ). Here, M ′ is the functional derivative
of M as recalled in (7). Note that here σt may be singular and vt may be
completely non-smooth. These facts show that one can switch between the
Eulerian and Lagrangian formulations. Before making the latest statement
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more accurate we point out that the remarkable identity M ′
t = vt◦Mt yields

conservation of the Hamiltonian H along paths minimizing the action AT .
As a consequence of the 1–d setting, one has

W 2
2 (µ, ν0) =

∫

IR

y2dµ(y) − 1

2

∫

IR2

|y − ȳ|dµ(y)dµ(ȳ) +
1

12
. (5)

Then, we mainly focus in this paper on the minimization problem in La-
grangian coordinates. By that we mean analyzing a new action M →
Q(M) + C(M) on AC2(0, T ;L2(ν0)) after the identification of the space
AC2(0, T ;L2(ν0)) with the Hilbert space H1(0, T ;L2(ν0)) (as in remark
1.1.3 [2]). It consists of a quadratic term Q(M) and a convex term C(M)
given by

2Q(M) =

∫ T

0

|M ′|2(t)dt −
∫ T

0

dt

∫

X

|Mt|2dν0,

4C(M) =

∫

X2

|Mtx − Mtx̄|dxdx̄.

By the previous comments, AT (σ)+T/24 = Q(M)+C(M). Here, as before,
we have assumed that Mt ∈ L2(ν0) is the optimal map that pushes ν0

forward to σt. Let us prescribe the initial and final maps M̄0, M̄T ∈ L2(ν0).
Let CT (M̄0, M̄T ) be the set of M ∈ AC2(0, T ;L2(ν0)) such that M0 =
M̄0 and MT = M̄T . We prove existence and uniqueness of a minimizer of
Q(M) + C(M) over CT (M̄0, M̄T ) if M̄0, M̄T ∈ L2(X). The Euler-Lagrange
equation satisfied by the minimizer M is

M ′′
t x + Mtx =

1

2

∫

X

W (x, x̄, t)dx̄. (6)

Here W (x, x̄, t) ∈ ∂·| · |(Mtx − M1
t x̄) is such that W (x̄, x, t) = −W (x, x̄, t).

In fact, since Q + C is shown to be strictly convex on CT (M̄0, M̄T ), (6)
characterizes completely its minimizers over CT (M̄0, M̄T ). We show that if
M̄0 and M̄T are monotone nondecreasing, then so are Mt for L1–almost
every t ∈ (0, T ). Note that we are not claiming that Q+C is even convex on
H1(0, T ;L2(ν0)). We have imposed that T < π in order to use Poincaré’s
inequality in remark 4 and obtain strict convexity of Q on the smaller set
CT (M̄0, M̄T ).

Due to the lack of differentiability of | · | on the real line, we could not
establish (6) by a direct argument. Our strategy was to introduce the func-
tion | · |s which is of class C1(IR) for s > 1. We then replace the expression
C(M) by

Cs(M) =
1

4

∫

X2

|Mtx − Mtx̄|sdxdx̄.

It is easy to derive (40) as the Euler-Lagrange equation satisfied by the
minimizer Ms of Q(M) + Cs(M) over CT (M̄0, M̄T ). We then let s tend to
1 to obtain (6).

The characterization of minimizers in (6) is employed to prove a remark-
able result: if the two endpoints are averages of n Dirac masses, then so is the
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minimizing path. We refer to this as the closedness principle of P·n, the set
of averages of n Dirac masses. Unlike this closedness principle, we provide an
example showing the following: if the two endpoints are absolutely continu-
ous with respect to the Lebesgue measure, then the minimizing path is not
necessarily so. This is in contrast with the case of minimizing paths for the
Lagrangian ‖ξ‖2

L2(µ) (i.e. geodesics in the Wasserstein space), which satisfy
the property that if the left endpoint is absolutely continuous with respect
to the Lebesgue measure, then so are all measures on the geodesic except
possibly the right endpoint [18]. Our example also leads to nonuniqueness
of energy preserving, entropy solutions for the initial-value problem.

For any x ∈ X, let S(x, ·) be the solution of S′′(x, t) + S(x, t) = x,
S(x, 0) = M0x, S(x, T ) = MT x. Then S(x, t) is given by

S(x, t) = (M0x − x)

(

cos t − cos T

sin T
sin t

)

+ (MT x − x)
sin t

sin T
+ x.

Note that depending on M0 and MT , the function x 7→ S(x, t) may fail to be
monotone nondecreasing and hence cannot be a solution of (6). However,
if S(·, t) is increasing for all t ∈ (0, T ), then the path t 7→ S(·, t)#ν0 is
a minimizing path such that S(·, t)#ν0 << L1 for all t ∈ [0, T ]. These
measures can be computed explicitly. Conversely, if the minimizing path σ
satisfies σt << L1 for all t ∈ [0, T ], then we must have σt := S(·, t)#ν0.

A formulation similar to (2) appeared in [13], where the initial value
problem for a variant of the Euler-Poisson system (attractive, with zero
background charge) was studied for σ0 << L1 or σ0 purely atomic. The
similarities stop here, as these authors were interested in global solutions
satisfying standard entropy conditions. In previous studies such as [8] and
[13], one seeks for solutions of the Euler-Poisson system which satisfy the
property that when two particles collide, they stick together. Here, we do
not impose that condition but obtain that the minimizer of the action AT

satisfies a similar property. By considering the simpler case of the evolution
of two particles one discovers that two particles can collide, stick together
for some time and then split ways again. But this kind of interaction can
occur only once in any time interval of length at most π (see Remark (9)).

The analysis described above, however, takes full advantage of the as-
sumption d = 1 through the isometric identification of (P2(R),W2) with
a closed, convex subset of L2(ν0). The isometric identification mentioned
above fails in higher dimensions. For dimensions d > 1 we have only been
able to check that the Euler-Lagrange equation for the action AT considered
above is the so-called Euler-Monge-Ampère system.

The plan of the paper is as follows: the next section contains some notation
and useful preliminaries. This includes general compactness results and a
Poincaré-Wirtinger inequality for AC2(0, T ;S) for general complete metric
spaces S. It also covers properties of optimal maps in the mass transport
problem. In section 3 we prove that Euler-Lagrange equation for the action
of L is the Euler-Monge-Ampère system in arbitrary dimensions. Section 4
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is restricted to the one-dimensional case and contains proofs of many of the
main results announced above.

Acknowledgements. It is a pleasure to express our gratitude to L. Ambrosio, Y.
Brenier, A. Fathi, T. Pacini, A. Swiech and C. Villani for fruitful discussions. We
also would like to thank the referee whose many valuable suggestions have helped
us to improve the presentation of the paper.

2. Preliminaries

In this section we record some notation and definitions used throughout
the manuscript. Here T ∈ (0,∞) is fixed. We recall well-known facts about
the one-dimensional Monge-Kantorovich mass transport theory. A special
attention will be devoted to the monotone maps M : X = (−1/2, 1/2) → IR
which are square integrable. We recall the concept of metric derivative of an
absolutely continuous path in a complete metric space. One of the spaces we
consider is P2(IR), the set of Borel probability measures on IR with finite
second moments, endowed with the Wasserstein distance. Another space
which naturally appears is L2(X, ν0), the set of square integrable functions
on X. Here, ν0 is the restriction to X of the one-dimensional Lebesgue mea-
sure. We often denote it by L2(ν0). A specific subset of it is known to be
isometric to P2(IR). We elaborate on that fact in remark 1 (ii) as it will be
significantly exploited in this work. Suppose next that ν0 is a Borel probabil-
ity measure on IRd and let L2(ν0) be the set of M : IRd → IRd that is square
integrable with respect to ν0. Let 〈·, ·〉ν0

be the standard inner product on
L2(ν0). We will recall the well-known identification of L2(0, T ;L2(ν0)) and
L2(ν0 × L1|(0,T )). We consider the space H1(0, T ;L2(ν0)) which consists
of M ∈ L2(0, T ;L2(ν0)) such that its functional derivative M ′ exists in
L2(0, T ;L2(ν0)). This means we require

lim
h→0

∥

∥

∥

∥

Mt+h − Mt

h
− M ′

t

∥

∥

∥

∥

ν0

= 0 (7)

for L1 − a.e. point t ∈ (0, T ), and that M ′ ∈ L2(0, T ;L2(ν0)). The vec-
tor space H1(0, T ;L2(ν0)) is a Hilbert space when endowed with the inner
product

〈M,N〉 =

∫ T

0

(〈Mt, Nt〉ν0
+ 〈M ′

t , N
′
t〉ν0

)dt.

2.1. Notation and Definitions

-We suppose that T > 0 is a constant. We sometimes give it a specific
value such as T = 1.
- | · | is the euclidean norm on IRd and 〈·, ·〉 is the standard inner product.
- C∞

c (IRd) is the set of functions on IRd which are infinitely differentiable
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and of compact support.
- If ψ : IRd → IR ∪ {±∞}, ψ∗ is its Legendre transform.
- id denotes the identity map on IRd for d ≥ 1.
- As usual, we denote by Ld the Lebesgue measure on IRd.
- X denotes the unit cube in IRd, centered at the origin. In particular if d = 1
then X = (−1/2, 1/2). We set XT := X×(0, T ). Similarly, X×X×(0, T ) =
X2

T . The measure ν0 is the restriction of Ld to X and so it is a Borel
probability measure. We write ν0 = Ld|X . The product measure of ν0 by
L1|(0,T ) is the measure on XT denoted by ν. We do not display explicitly its
dependence on T since this does not create any confusion in this manuscript.
- P2(IR

d) stands for the set of Borel probability measures µ on IRd with finite
second moments:

∫

IRd

|y|2dµ(y) < ∞. (8)

- Given µ, ν ∈ P2(IR
d), Γ (µ, ν) is the set of Borel probability measures on

IRd × IRd which have µ and ν as their marginals. The Wasserstein distance
W2 between µ and ν is defined by

W 2
2 (µ, ν) = min

γ∈Γ (µ,ν)

∫

IR2d

|x − y|2dγ(x, y).

The set of γ where the minimum is achieved is nonempty and is denoted
by Γo(µ, ν). We refer the reader to [2] chapter 7 for the properties of W2

and Γo(µ, ν). (P2(IR
d),W2) is a complete and separable metric space. We

set M := P2(IR).
- If µ ∈ P2(IR

d), L2(µ) is the set of function ξ : IRd → IRd which are µ
measurable and such that

∫

IRd |ξ|2dµ is finite. This is a separable Hilbert
space for the inner product 〈ξ, ξ̄〉µ =

∫

IRd〈ξ, ξ̄〉dµ. We denote the associated
norm by ‖ · ‖µ. When m = L1|(0,T ) to distinguish between the space and
time variables, we write ‖ · ‖L2(0,T ) for ‖ · ‖m.

- If µ ∈ P2(IR
d), we denote by TµP2(IR

d) the closure of {∇ϕ : ϕ ∈ C∞
c (IRd)}

in L2(µ). We refer to TµP2(IR
d) as the tangent space to P2(IR

d) at µ (see
section 8.5 of [2]). When d = 1 it is easy to check that TµP2(IR) = L2(µ).
- If (Z, | · |) is a norm space, L2(0, T ;Z) is the set of Borel functions M :

(0, T ) → Z such that
∫ T

0
|Mt|2Zdt < ∞. Here and throughout this work, we

write Mt in place of M(t). When µ is a Borel probability measure on IRd

and Z = L2(µ), we identify L2(0, T ;L2(µ)) with L2(µ × L1|(0,T )).

- We also recall that if M : IRd → IRd is a Borel map and µ ∈ P2(IR
d) then

M#µ is the Borel measure defined by

M#µ[C] = µ[M−1(C)] for all Borel sets C ⊂ IRd. (9)

- If µ, ν are Borel probability measures on the real line and µ is atom-
free, then it is known that there exists a unique (up to a set of µ–zero
measure) optimal map pushing forward µ to ν. It is called the monotone



Euler-Poisson system as action minimizing paths 9

rearrangement and is obtained as G−1 ◦ F , where F, G are the cumulative
distribution functions of µ and ν. We have

G(y) = ν(−∞, y] and G−1(x) = inf{y ∈ IR : G(y) ≥ x}.

Note that G−1 is the left-continuous generalized inverse of G (in [21] the
right-continuous one is considered). In this work, optimal map on the real
line always means left continuous optimal map.
- We denote by Mon the set of monotone nondecreasing functions M :
(−1/2, 1/2) → IR which are in L2(ν0).
- Suppose (S, dist) is a complete metric space and σ : (0, T ) → S. We write
σt to denote the value of σ at t : σt := σ(t). If there exists β ∈ L2(0, T )
such that

dist(σt, σs) ≤
∫ t

s

β(u)du (10)

for every s < t in (0, T ), we say that σ is absolutely continuous. We denote
by AC2(0, T ;S) the set of σ : (0, T ) → S that are absolutely continuous.
- Suppose σ ∈ AC2(0, T ;S). Since S is complete, limt→0+ σt exists and will
be denoted σ0. Similarly, σT is well-defined. For L1–almost every t ∈ (0, T )

|σ′|(t) := lim
h→0

dist(σt+h, σt)

|h| (11)

exists. If the above limit exists at t, we say that |σ′| exists at t. We have
|σ′| ≤ β for every β satisfying (10) and

dist(σt, σs) ≤
∫ t

s

|σ′|(u)du. (12)

The function |σ′| is refered to as the metric derivative of σ. For more details,
we refer the reader to section 1.1 of [2]. We denote the L2–norm of |σ′| on
(0, T ) by ‖σ′‖metric,T . In case there is no confusion about the time interval
on which we integrate, we simply write ‖σ′‖metric.
- Suppose s, s̄ ∈ S. We denote by CT (s, s̄) the set of curves σ ∈ AC2(0, T ;S)
such that σ0 = s and σT = s̄.
- If n is a integer, P·n is the set of n averages of n Dirac masses in IR. When
d = 1, we divide X = (−1/2, 1/2) into n intervals of equal length. Recall that
ν0 is the restriction to X of the one-dimensional Lebesgue measure. Suppose
N, N̄ ∈ L2(ν0) =: S and are constant on each of these subintervals. We
denote by Cn

T (N, N̄) the set of M in CT (N, N̄) such that for each t ∈ (0, T ),
Mt is constant on each of these subintervals.

2.2. Optimal maps

In this subsection, we recall well-known facts about optimal mass trans-
portation theory. We refer the reader to [2] and [21] for more details.

If µ, µ̄ ∈ P2(IR) and µ vanishes on (d− 1)–rectifiable sets, then Γo(µ, µ̄)
reduces to a single element {γ0}. In that case, γ0 = (id ×∇φ)#µ for some
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φ : IRd → IR ∪ {+∞} convex lower semicontinuous (see [2] chapter 6 and
[14]). The map ∇φ is the unique (up to a set of µ–zero measure) optimal
map such that ∇φ#µ = µ̄. What we mean is that ∇φ is the unique map that
minimizes M →

∫

IRd |id − M |2dµ over the set of Borel maps M satisfying
M#µ = µ̄. When d = 1 and X = (−1/2, 1/2) ⊂ IR, ν0 are as above and
µ = ν0 then there is a monotone nondecreasing function M : X → IR such
that M#ν0 = µ̄. It is uniquely defined up to a set of ν0–measure and is the
optimal map that pushes ν0 forward to µ̄. Since

∫

IR
y2dµ̄(y) = ‖M‖2

ν0
< ∞

and M is monotone, it achieves only finite values in X. Hence, the set of
discontinuity points of M is at most countable. The monotone nondecreasing
map can be described explicitly. We next write the expression of the one
which is left continuous and which will be used throughout this work. For
y ∈ IR and x ∈ X, set

Nµ̄(y) = µ̄(−∞, y] − 1/2, Mµ̄(x) = inf
z∈IR

{z : Nµ̄(z) ≥ x}.

Then Mµ̄#ν0 = µ̄ and W2(µ, µ̄) = ‖Mµ − Mµ̄‖ν0
. In the next remark we

comment on how this well-known identity may be established.

Remark 1. (i) If M0,MT : X → IRd are Borel maps and Mt#ν0 = σt

for t = 0, T then γ := (M0 × MT )#ν0 has σ0 and σT as its marginals
and so, W 2

2 (σ0, σT ) ≤
∫

IR2 |y − ȳ|2dγ(y, ȳ) = ‖M0 − MT ‖2
ν0

. Hence, if

M ∈ AC2(0, T ;L2(ν0)) and σt := Mt #ν0 then σ ∈ AC2(0, T ;P2(IR
d)).

We then exploit the expression of the metric derivative given in (11) to
conclude that |σ′|(t) ≤ |M ′|(t) for L1-almost every t ∈ (0, T ). As a conse-
quence, ‖M ′‖metric ≥ ‖σ′‖metric.
(ii) Suppose in addition that d = 1, M0 and MT are monotone nondecreas-
ing. For each integer number n, we choose σn

0 ∈ P2(IR) absolutely contin-
uous with respect to L1, of positive density, such that W2(σ

n
0 , σ0) ≤ 1/n.

Let Mn
0 : X → IR be monotone increasing satisfying Mn

0#ν0 = σn
0 . The

map Mn
0 admits an inverse Nn : IR → X which is monotone increas-

ing. Since MT ◦ Nn is monotone nondecreasing and pushes σn
0 forward to

σT , we conclude that W 2
2 (σn

0 , σT ) = ‖id − MT ◦ Nn‖2
σn
0
. The last term

is checked to be ‖Mn
0 − MT ‖2

ν0
. Letting n tend to ∞, we conclude that

W 2
2 (σ0, σT ) = ‖M0 − MT ‖2

ν0
.

A direct consequence of remark 1 and (11) is the following lemma.

Lemma 1. Suppose σ ∈ L2(0, T ;P2(IR)), M ∈ L2(0, T ;L2(ν0)) are such
that Mt is monotone nondecreasing and Mt#ν0 = σt. Then we have σ ∈
AC2(0, T ;P2(IR)) if and only if M ∈ AC2(0, T ;L2(ν0)). In that case |M ′|(t)
exists if and only if |σ′|(t) exists. Moreover, both functions coincide where
they exist.

2.3. The spaces AC2(0, T ;L2(ν0)) and AC2(0, T ;P2(IR
d))

Recall that

X = (−1/2, 1/2)d, XT = X × (0, T ), ν0 = Ld|X , ν := ν0 × L1|(0,T ).
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One can notice that the next two lemmas are still valid if we replace X by
an open subset of IRd. The first lemma of this section recalls the standard
identification of L2(0, T ;L2(ν0)) and L2(ν). It allows not to distinguish be-
tween these two spaces. Given N as in the lemma below, replacing N by
Ñ if necessary, we shall always use the convention that N ≡ Ñ . Since the
proof of the lemma is standard, it will be skipped.

Lemma 2. If N ∈ L2(0, T ;L2(ν0)), then there exists Ñ ∈ L2(ν) such that

∫ T

0

dt

∫

X

Nt(x)ψ(t, x) dx =

∫

XT

Ñ(x, t)ψ(x, t)dxdt

for all ψ ∈ L2(ν). Furthermore, t → Ñ(·, t) belongs to L2(0, T ;L2(ν0)) and
for L1-a.e. t, Ñ(x, t) = Nt(x) for ν0–almost every x ∈ X.

The next lemma is also elementary and so, its proof will not be given.

Lemma 3. Suppose that {M} ∪ {Mn}∞n=1 ⊂ AC2(0, T ;L2(ν0)) satisfies

‖Mn‖AC2(0,T ;L2(ν0)), ‖M‖AC2(0,T ;L2(ν0)) ≤ C

for a constant C > 0. Suppose that for each t ∈ (0, T ), {Mn
t }∞n=1 converges

weakly to Mt in L2(ν0). Then {Mn}∞n=1 converges weakly to M in L2(ν)

and
{(

Mn
)′}∞

n=1
converges weakly to

{

M ′
}

in L2(ν).

In the remainder of this subsection d = 1, so that X = (−1/2, 1/2). The
purpose of the next two lemmas is to show that if M ∈ AC2(0, T ;L2(ν0))
and Mt is monotone nondecreasing and left continuous for each t, then
(t, x) → Mtx is a Borel map. The point is that we do not need to modify
Mtx on a set of L2–zero measure to obtain a Borel map.

Lemma 4. Let a < b be two real numbers and let M ∈ AC2(0, T ;L2(a, b)).
Suppose that for each t, the function Mt : (a, b) → IR is monotone, nonde-
creasing and continuous. Then (t, x) → Mtx is continuous on (a, b)×(0, T ).

Proof. We skip the proof of this lemma since it is an elementary exercise.
We give a hint which is based on the following fact on the class of C1(a, b)–
convex functions. Suppose {fn}∞n=1 ⊂ C1(a, b) are convex, f ∈ C1(a, b)
is convex and ‖fn‖L1(a,b) is bounded. Then {fn}∞n=1 converges weakly in
L1

loc(a, b) to f if and only if it converges pointwise in (a, b) to f. This is also
equivalent to {fn}∞n=1 converges in C0

loc(a, b) to f and {f ′
n}∞n=1 converges

pointwise in (a, b) to f ′. Since monotone maps are derivatives of convex
functions, one establishes the lemma.

Lemma 5. Let R ∈ C1
c (IR) be nonnegative with

∫

IR
R(y) dy = 1. Suppose

N : X → IR is a locally bounded function and N−(x) := limy→x− N(y),
N+(x) := limy→x+ N(y) exist for all x in X. Set

N ǫ = Rǫ ∗ N,
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where Rǫ(z) = 1
ǫ R( z

ǫ ). Then, for any x ∈ (− 1
2 , 1

2 ), we have

lim
ǫ→0

N ǫ(x) = λN+(x) + (1 − λ)N−(x),

where λ =
∫ 0

−∞
R(y) dy. As a consequence, the pointwise limit exists every-

where.

Proof. We have

N ǫ(x) =

∫ 0

−∞

R(z)N(x − ǫz) dz +

∫ ∞

0

R(z)N(x − ǫz) dz ∀x ∈ X.

Since N is locally bounded in X, the dominated convergence theorem yields
the conclusion.

Proposition 1. Suppose that M ∈ AC2(0, T ;L2(ν0)) and for each t, the
function Mt : X → IR is monotone, nondecreasing and left continuous.
Then (x, t) → Mtx is Borel on XT as a function of two variables.

Proof. Let R be as in lemma 5 such that
∫ 0

−∞
R(y) dy = 0. Set Mn

t =

R 1
n
∗ Mt. For 0 < δ < 1/2, set Xδ = (− 1

2 + δ, 1
2 − δ). Then

‖Mn
t − Mn

s ‖L2(Xδ) ≤ ‖Mt − Ms‖L2(ν0) for t, s ∈ Xδ.

This proves that Mn ∈ AC2(0, T ;L2(Xδ). By Lemma 4 we obtain the map
(x, t) 7→ Mn

t (x) is continuous on Xδ
T . By lemma 5 limn→∞ Mn

t (x) = Mtx
for each (x, t) ∈ XT . Thus, M is Borel measurable on XT as a pointwise
limit of Borel maps.

Observe that the spaces AC2(0, T ;L2(ν0)) and H1(0, T ;L2(ν0)) coincide
(see Remark 1.1.3 of [2]). If M ∈ H1(0, T ;L2(ν0)) we denote by M ′ ∈
L2(0, T ;L2(ν0)) its functional derivative. It is straightforward to check that
|M ′|(t) = ‖M ′

t‖ν0
for L1–a.e. t ∈ (0, T ). In the next lemma, we shall view

M as a map in AC2(IR;L2(ν0)) by extending Mt = M0+ for t ≤ 0 and
Mt = MT− for t ≥ T . Recall that M ′ can be viewed as an element of
L2(XT ). We obtain an extension of M ′ to X × IR which we identify with
an element of L2(ν0 × L1).

Lemma 6. Let M ∈ AC2(0, T ;L2(ν0)) and M ′ be its functional derivative.
Then

lim
h→0

∫

XT

∣

∣

∣

∣

Mt+hx − Mtx

h
− M ′

tx

∣

∣

∣

∣

2

dxdt = 0. (13)

As a consequence, there exist sequences h+
k → 0+, h−

k → 0− and a measur-
able subset A of X × IR such that L2((X × IR) \ A) = 0 and

lim
k→∞

Mt+h+

k
x − Mtx

h+
k

= lim
k→∞

Mt+h−

k
x − Mtx

h−
k

= M ′
tx (14)

for all (x, t) ∈ A.
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Proof. Set g(t) = ‖M ′
t‖ν0

and let g∗(t) be the Hardy-Littlewood maximal
function given by

g∗(t) = sup
h

∣

∣

∣

∣

∣

1

2h

∫ t+h

t−h

g(s) ds

∣

∣

∣

∣

∣

, t ∈ IR.

Note that g ∈ L2(IR) and so, g∗ ∈ L2(IR). Clearly, ‖(Mt+h − Mt)/h −
M ′

t‖ν0
≤ 2g∗(t)+ g(t). This, together with (7) and the Lebesgue dominated

convergence theorem yields

lim
h→0

∫ T

0

∥

∥

∥

∥

Mt+h − Mt

h
− M ′

t

∥

∥

∥

∥

2

ν0

dt = 0.

Fubini’s theorem implies (13).

Lemma 7. Assume that M ∈ AC2(0, T ;L2(ν0)) and for each t, the function
Mt : X → IR is monotone nondecreasing. Let A be as in the previous lemma.
Suppose (x, t), (x̄, t) ∈ A and Mtx = Mtx̄. Then M ′

tx = M ′
t x̄.

Proof. Without loss of generality, we can assume x < x̄. Then

Mt+h−

k
x̄ − Mt+h−

k
x

h−
k

≤ 0 ≤
Mt+h+

k
x̄ − Mt+h+

k
x

h+
k

.

By (14), this yields M ′
tx = M ′

t x̄.

Remark 2. Let ∂tM denote the distributional derivative in time of (x, t) →
Mtx = M(x, t). Then, M ′

tx = ∂tM(x, t) for L2-almost every (x, t) ∈ XT .

Proof. Let ξ ∈ C∞
c (XT ) be arbitrary. We have

−
∫

XT

∂tM(x, t)ξ(x, t)dxdt =

∫

XT

M(x, t)∂tξ(x, t)dxdt

=

∫ T

0

dt

∫

X

M(x, t)∂tξ(x, t)dx

= lim
h→0

∫ T

0

dt

∫

X

M(x, t)
ξ(x, t + h) − ξ(x, t)

h
dx

= lim
h→0

∫

X

dx

∫ T

0

M(x, t)
ξ(x, t + h) − ξ(x, t)

h
dt

= lim
h→0

∫

X

dx

∫ T

0

M(x, t − h) − M(x, t)

h
ξ(x, t)dt

=

∫

X

dx

∫ T

0

M ′
txξ(x, t)dt =

∫

XT

M ′
txξ(x, t)dxdt.

This concludes the proof.
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Recall that (see [2] theorem 8.3.1) if σ ∈ AC2(0, T ;P2(IR
d)), then there

exists a Borel map (y, t) → vt(y) ∈ IRd such that

∂tσt + ∇y · (σtvt) = 0 in IRd × (0, T )

in the sense of distributions. We call v a velocity associated to the path σ.
One can choose a velocity associated to the path σ so that it is uniquely
determined by the following properties: if w is another velocity associated
to the path, then for L1-almost every t ∈ (0, T ) ‖vt‖L2(σt) ≤ ‖wt‖L2(σt)

and vt ∈ Tσt
P2(IR

d). We refer to vt as the tangent velocity field at σt, or
the velocity of minimal norm associated to σ.

Remark 3. It is known that (see [2] theorem 8.3.1) for L1–almost every
t ∈ (0, T ), we have ‖vt‖L2(σt) = |σ′|(t).

2.4. Analysis on AC2(0, T ;S)

Throughout this subsection (S, dist) is a complete metric space. We
assume the existence of a Hausdorff topology τ on S, weaker than the metric
topology. Also, suppose there exists a distance distτ such that on bounded
subsets of (S, dist), the topology τ coincides with the distance topology
distτ . We assume that closed balls of (S, dist) are compact for τ and that
dist is τ–sequentially lower semicontinuous on B×B whenever B is a closed
ball of (S, dist). For instance, when (S, dist) = (L2(ν0), ‖ · ‖ν0

), we choose
τ to be the weak topology. When S = P2(IR

d) and dist is the Wasserstein
distance, we choose τ to be the narrow convergence topology (see [2] remark
5.1.1). We extend the Poincaré–Wirtinger inequality from IRd to S.

Proposition 2. Suppose that σ belongs to AC2(0, T ;S) and s0 ∈ S. Then

dist(σt, s0) ≤ dist(σ0, s0) +
√

t‖σ′‖metric (15)

and

π‖dist(σ(·), s0)‖L2(0,T ) ≤ T‖σ′‖metric +
√

TWS(σ0, σT ; s0) (16)

where WS(σ0, σT ; νo) is defined below. We also have

π‖dist(σ(·), s0)‖L2(0,T ) ≤ 2T‖σ′‖metric + π
√

Tdist(σT , s0). (17)

Here, WS(σ0, σT ; s0) = π
(

dist(σ0, s0) dist(σT , s0) + 1
3dist2(σ0, σT )

)1/2

+

dist(σ0, σT ).

Proof. Set u(t) = dist(σt, s0). Then for all h > 0 and t ∈ (0, T )

(|u(t + h) − u(t)|)/h ≤ dist(σ(t + h), σt)/h.
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This proves that u ∈ H1(0, T ) and |u′(t)| ≤ |σ′|(t) for L1–almost every

t ∈ (0, T ). We exploit this and the identity u(t) = u(0) +
∫ t

0
u′(s)ds to

obtain (15). Set

w(t) := u(t) − u(0) + (t/T )(u(0) − u(T )), w̃(t) := |σ′|(t) +
1

T
dist(σ0, σt).

Then w ∈ H1
0 (0, T ) and so, by the standard Poincaré inequality, since we

have |w′| ≤ w̃,

(π/T )‖w‖ ≤ ‖w′‖ ≤ ‖w̃‖ ≤ ‖σ′‖metric +
1√
T

dist(σ0, σT ),

where the norm ‖ · ‖ := ‖ · ‖L2(0,T ) This, together with the fact that

∫ T

0

((1 − t/T )a + (t/T )b)2dt = (T/3)(b − a)2 + Tab,

yields (16). We use that π‖u−u(T )‖L2(0,T ) ≤ 2T‖u′‖L2(0,T ) to obtain (17).

Proposition 3. Suppose that σ : [0, T ] → S, {σn}∞n=1 ⊂ AC2(0, T ;S) and
{σn

t }∞n=1 converges to σt in (S, distτ ) for every t ∈ (0, T ). If {σn
0 }∞n=1 is

bounded in (S, dist), then σ ∈ AC2(0, T ;S) and

lim inf
n→∞

‖(σn)′‖metric ≥ ‖σ′‖metric. (18)

Proof. Without loss of generality, we assume the left hand side of (18) is
finite and let {nk}∞k=1 ⊂ N be such that

C0 = lim
k→+∞

‖(σnk)′‖metric = lim inf
n→∞

‖(σn)′‖metric.

The sequence {|(σnk)′|}∞k=1 is bounded in L2(0, T ) and so, it admits a sub-
sequence (not relabelled) which converges weakly to some α in L2(0, T ).
Since {σn

0 }∞n=1 is bounded in (S, dist), (12) yields that {σn
t }∞n=1 is bounded

in (S, dist) for each t ∈ (0, T ). We use (12) again and the fact that dist is
distτ–lower semicontinuous on dist-bounded sets to obtain

dist(σt, σs) ≤ lim inf
k→+∞

dist(σnk

t , σnk
s ) ≤ lim inf

k→+∞

∫ t

s

|(σnk)′|(u)du =

∫ t

s

α(u)du

(19)
for every 0 < s ≤ t < T . This proves that σ ∈ AC2(0, T ;S). By the
minimality property of |σ′|, (19) yields |σ′| ≤ α. This, together with the
lower semicontinuity of ‖ · ‖L2(0,T ) gives that

lim inf
k→+∞

‖(σnk)′‖metric ≥ ‖α‖L2(0,T ) ≥ ‖σ′‖metric.

This concludes the proof.

The following proposition will be used often in this work. It appears as
proposition 3.3.1 in [2].
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Proposition 4. Suppose {σn}∞n=1 is a sequence in AC2(a, b;S) satisfying

M := sup
n

‖(σn)′‖metric, M̄ := sup
n

dist(σn(0), ν0) < ∞

for some ν0 ∈ S. Then, there exist σ ∈ AC2(a, b;S) and a sequence of
positive integers {nk}∞k=1 (independent of t) such that {σnk

(t)}∞k=1 converges
to σt in (S, distτ ) for every t ∈ (a, b).

3. Actions on AC2(0, T ;P2(IR
d)) and AC2(0, T ;L2(ν0))

In this section we assume that T ∈ (0, π). This condition is not needed
in subsection 3.1 but it is useful in the remaining subsections.

3.1. Euler-Monge-Ampère systems as minimizers of an action

On AC2(0, T ;P2(IR
d)) we consider the action

AT (σ) :=
1

2

(

‖σ′‖2
metric − ‖W 2

2 (σ(·), ν0)‖2
L2(0,T )

)

. (20)

In the remainder of this subsection, we fix σ ∈ AC2(0, T ;P2(IR
d)) and

ξ ∈ C∞
c ((0, T )×IRd; IRd). We define σs

t = (id+sξ(t, ·))#σt, where we recall
that id(y) ≡ y. Let M ∈ AC2(0, T ;L2(ν0)) be such that Mt#ν0 = σt and
Mt is monotone nondecreasing.

Lemma 8. For s ∈ IR, σs ∈ AC2(0, T ;P2(IR
d)) and, if s is small enough,

|(σs)′|2(t) − |σ′|2(t) ≤ C2
t s2 + 2s

∫

IRd

〈vt, ∂tξt + ∇yξtvt〉dσt

for L1-a.e. t ∈ (0, T ), where Ct = ‖∂tξ + ∇ξt · vt‖L2(σt).

Proof. Set Mt = id + sξt. For arbitrary F ∈ C∞
c (IRd), it is easy to see

that the derivative of t →
∫

IRd Fdσs
t =

∫

IRd F (Mt)dσt with respect to t is
∫

IRd〈∇F,vs
t 〉dσs

t , where

vs
t =

[

vt + s
(

∂tξ + ∇ξt · vt

)]

◦ M−1
t .

Hence, vs is a velocity for the σs (we also refer the reader to theorem 2.1
of [3] for more details). By the fact that |(σs)′|(t) is the minimal norm of
admissible velocities of σs, we conclude that for L1-almost every t ∈ (0, T )

|(σs)′|(t) ≤ ‖vs
t‖L2(σs

t ).

From that, it is apparent that the lemma holds.
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Lemma 9. Let µ ∈ P2(IR
d), η ∈ C∞

c (IRd) and set µs = (id + sη)#µ. Let ϕ
be a lower semicontinuous convex function such that (∇ϕ)#ν0 = µ. Then,

lim
s→0

W 2
2 (µs, ν0) − W 2

2 (µ, ν0)

s
= 2

∫

IRd

〈id − γ̄, η〉 dµ. (21)

Here γ = (id×∇ϕ)#ν0 and γ̄ ∈ TµP2(IR
d) is the barycentric projection of

γ onto µ (see (3) in the introduction).

Proof. We have W2(µ
s, µ) ≤ s‖η‖µ and so, by the triangle inequality,

W2(µ
s, ν0) tends to W2(µ, ν0) as s tends to 0. Set Ts = id + sη and let ϕs

be the convex function satisfying (∇ϕs)#ν0
= µs. Observe that Γo(ν0, µ)

has only one element. Hence, it is obvious that {∇ϕs} converges weakly
in L2(ν0) to ∇ϕ as s tends to 0 (see for instance [1] lemma 3.3). Since
W2(µ

s, ν0)
2 = ‖∇ϕs − id‖2

ν0
and W 2

2 (µ, ν0)
2 = ‖∇ϕ − id‖2

ν0
we conclude

that {∇ϕs} converges strongly in L2(ν0) to ∇ϕ as s tends to 0. Note that
(Tscirc∇ϕ)#ν0

= µs and so,

W 2
2 (µs, ν0) − W 2

2 (µ, ν0) ≤
∫

X

|id − Ts ◦ ∇ϕ|2 dν0 −
∫

X

|id −∇ϕ|2 dν0

= 2s

∫

X

〈∇ϕ − id, η ◦ ∇ϕ〉 dν0 + s2

∫

X

|ξ ◦ ∇ϕ|2 dν0.

(22)

On the other hand, T−1
s exists and (T−1

s ◦ ∇ϕs)#ν0
= µs if s is sufficiently

small. Thus,

W 2
2 (µ,ν0) − W 2

2 (µs, ν0) ≤
∫

X

|id − T−1
s ◦ ∇ϕs|2 dν0 −

∫

X

|id −∇ϕs|2 dν0

= 2s

∫

X

〈 (id − T−1
s ) ◦ ∇ϕs

s
, id − (id + T−1

s ) ◦ ∇ϕs

2
〉 dν0 =: 2sAs.

(23)

It is easy to check that |T−1
s (y) − y + sξ(y, t)| ≤ Cs2 for a constant C

independent of s and y and so,

As =
s2

2
‖η‖2

ν0
+

∫

X

〈id −∇ϕs, η ◦ ∇ϕs〉 dν0 + 0(s2). (24)

We combine (22), (23), (24) and use the fact that {∇ϕs} converges strongly
in L2(ν0) to ∇ϕ as s tends to 0 to conclude the proof. The assumption
γ ∈ Γo(ν0, µ) and the definition of barycentric projection are both utilized
to obtain the right hand side of (21). We have also used the Lebesgue
dominated convergence theorem and the fact that {η ◦ ∇ϕs} is bounded in
L∞(ν0).
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Theorem 1 (Euler-Monge-Ampère system). If σ minimizes AT over
CT (σ̄0, σ̄T ), then

∂t(σtvt) + ∇y · (σtvt ⊗ vt) = σt[γ̄
t − id] (25)

in the distributional sense, where γt ∈ Γo(ν0, σt).

Proof. We use lemmas 8, 9 and the fact that σ minimizes AT to obtain

0 ≤ lim inf
s→0+

AT (σs) −AT (σ)

s
≤

∫ T

0

dt
(

∫

IRd

〈vt, ∂tξt + ∇yξtvt〉
)

dσt

−
∫ T

0

(

∫

IRd

〈id − γ̄t, ξt〉
)

dσtdt.

Since we can substitute ξ by −ξ, the conclusion of the theorem follows.

3.2. Another action as a quadratic form in AC2(0, T ;L2(ν0))

Throughout this subsection, d = 1 and σ̄0, σ̄T ∈ P2(IR). We will not
directly study minimizers of the action AT over CT (σ̄0, σ̄T ) for two reasons.
The first reason is that unlike the second order moment, the second term
µ →

∫

IR2 |y − ȳ|dµ(y)dµ(ȳ) appearing in the Wasserstein distance (5) is
not differentiable. Note that, so far, we only know that (25) is a necessary
condition satisfied by the minimizer of AT . To obtain an Euler-Lagrange
equation which characterizes completely the minimizers of AT , we regularize
W2 to obtain a differentiable function

Ws(µ) :=

∫

IR

|y|2dµ(y) − 1

2s

∫

IR2

|y − ȳ|sdµ(y)dµ(ȳ) +
1

12
.

We introduce the corresponding action

As
T (σ) :=

1

2

∫ T

0

[

|σ′|2(t) −Ws(σt)
]

dt (26)

and later study its minimizers as s tends to 1. The second reason is that
the term −1/2W 2

2 (ν0, ·) appearing in AT is not lower semicontinuous for
the narrow convergence on P2(IR). This is a source of further difficulty we
encounter while trying to directly minimize AT .

Let M ∈ AC2(0, T ;L2(ν0)) be such that Mt : X → IR is the unique (ν0–
almost everywhere) monotone nondecreasing map satisfying Mt #ν0 = σt.
We decompose AT into two terms which will satisfy some lower semiconti-
nuity properties in a sense to be made precise. These are

1

2
‖σ′‖2

metric −
1

2

∫ T

0

∫

X

y2dσt(y) and
1

4

∫ T

0

dt

∫

IR2

|y − ȳ|dσt(y)dσt(ȳ).

The second term can be expressed as a function of M :

C(M) =
1

4

∫

X2
T

|Mtx − Mtx̄|dxdx̄dt.
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It is a convex functional on the Hilbert space H1(0, T, L2(ν0)) with the
standard inner product. Lemma 1 yields that the first expression is the
quadratic form Q(M) = B(M,M) where B is the bilinear form defined on
H1(0, T, L2(ν0)) by

B(M,N) =
1

2

∫ T

0

(〈M ′, N ′〉ν0
− 〈M,N〉ν0

)dt, Q(M) = B(M,M). (27)

We regularize C to obtain a differentiable convex functional

Cs(M) =
1

4s

∫

X2
T

|Mtx − Mtx̄|sdtdxdx̄.

We shall study the action Q(M) + Cs(M) on AC2(0, T ;L2(ν0)).

Remark 4. Let M̄0, M̄T ∈ L2(ν0) and let M,M̃ ∈ CT (M̄0, M̄T ).
(a) If and α ∈ [0, 1], then

Q((1 − α)M + αM̃) = Q(M) + α2Q(M̃ − M) + 2αB(M,M̃ − M). (28)

We apply Poincare’s inequality (with s0 = 0) in proposition 2 to S = L2(ν0)
and obtain

2Q(M̃ − M) ≥
(

1 − T 2

π2

)

‖(M̃ − M)′‖2
metric. (29)

We combine (28) and (29) to obtain: if M 6= M̃ , then

α → Q((1 − α)M + αM̃) is strictly convex. (30)

(b) In particular, if we set Mt = (1− t/T )M̄0 +(t/T )M̄T , then (28) (α = 1)
and (29) imply

Q(M̃) −Q(M) − 2B(M,M̃ − M) (31)

≥ 1

2

(

1 − T 2

π2

)

(

‖M̃ ′‖2
metric −

1

T
‖M̄T − M̄0‖2

L2(ν0)

)

.

We have used ‖(M̃ − M)′‖2
metric = ‖M̃ ′‖2

metric − (1/T )‖M̄T − M̄0‖2
ν0

.

Proposition 5 (Q and Q + Cs are sequentially weakly lower semi-
continuous). Let s ≥ 1 and let {M} ∪ {Mn}∞n=1 ⊂ CT (M̄0, M̄T ). Suppose
that for each t ∈ (0, T ), {Mn

t }∞n=1 converges weakly to Mt in L2(ν0). Then,

lim inf
n→+∞

Q(Mn) ≥ Q(M) and lim inf
n→+∞

Q(Mn) + Cs(Mn) ≥ Q(M) + Cs(M).
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Proof. We assume without loss of generality that {Q(Mn)}∞n=1 is bounded
independently of n. Poincaré’s inequality (16) ensures that

sup
n∈N

‖(Mn)′‖metric, sup
n∈N

‖Mn‖L2(ν) < ∞.

Lemma 3 shows that the sequence {Mn}∞n=1 converges weakly to M in L2(ν)
and {(Mn)′}∞n=1 converges weakly to M ′ in L2(ν). Note that, by (28),

Q(Mn) ≥ Q(M) + 2B(M,Mn − M), (32)

where we have used (29) to ensure that Q(Mn − M) ≥ 0. Since B(M, ·) is
linear and continuous on H1(0, T, L2(ν0)), (32) gives that

lim inf
n→+∞

Q(Mn) ≥ Q(M).

Setting En(x, y, t) := Mn
t (x) − Mn

t (y) we obtain that {En}∞n=1 converges
weakly to E in L2(ν × ν0), where E(x, y, t) := Mtx − Mty. This, together
with the lower semicontinuity of the Ls(ν × ν0)-norm, yields

lim inf
n→+∞

Cs(Mn) ≥ Cs(M).

This concludes the proof of the proposition.

4. Lagrangian minimizing paths in P2(IR)

Throughout this section, d = 1 and so, X = (−1/2, 1/2), ν0 = L1|X and
ν = L2|XT

. We suppose that T ∈ (0, π). It is convenient to introduce Mon,
the set of monotone nondecreasing functions M ∈ L2(ν0).

4.1. More on properties of paths in AC2(0, T ;P2(IR))

The method of proof for most of the results in this subsection exploits
strongly that d = 1. As far as we know, some of them, such as proposition
6, are not available in the literature. The main point of that proposition is
that (33) holds although the velocity v may fail to be smooth in any sense.
We use Q and Cs as defined in the previous section.

Suppose that M̄0, M̄T ∈ Mon. The purpose of the next remark is to show
that the minimizer of Q + Cs over C(M̄0, M̄T ) coincides with its minimizer
over C(M̄0, M̄T ) ∩ {M | Mt ∈ Mon}.
Remark 5. Suppose M̃ ∈ AC2(0, T ;L2(ν0)) and set σt = M̃t #ν0 so that by
remark 1, σ ∈ AC2(0, T ;P2(IR)). Let Mt ∈ Mon be such that Mt#ν0 = σt.
By lemma 1, M ∈ AC2(0, T ;L2(ν0)). We combine remark 1 and lemma 1
to conclude that ‖M ′‖metric ≤ ‖M̃ ′‖metric. Since

‖Mt‖L2(ν0) =

∫

IR

|z|2dσt(z) = ‖M̃t‖L2(ν0),
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it is apparent that Q(M) ≤ Q(M̃). Similarly,

Cs(M) =
1

4s

∫ T

0

∫

IR2

|z − w|sdσt(z)dσt(w) = Cs(M̃)

and so, Q(M) + Cs(M) ≤ Q(M̃) + Cs(M̃). We use lemma 1 to obtain that
As

T (σ) = Q(M) + Cs(M) − T/24.

Proposition 6. Suppose σ ∈ AC2(0, T ;P2(IR)). Let v be the Borel velocity
of minimal norm associated to σ and let Mt ∈ Mon be such that Mt#ν0 =
σt. For each t, modifying Mt on a countable subset of X if necessary, we may
assume without loss of generality that Mt is left continuous (see subsection
2.2 ). Then, we have

M ′
tx = vt(Mtx) (33)

for ν-almost every (x, t) ∈ XT .

Proof. First, recall that M ∈ AC2(0, T ;L2(ν0)). Let A and the sequence
{h+

k } be given as in lemma 6 and let K be a countable dense subset of C1
c (IR).

We use the definition of v and lemma 6 to obtain a Borel set J ⊂ (0, T ) of
full measure satisfying the following for each t ∈ J : d

dt

∫

IR
ϕdσt =

∫

IR
vtϕ

′dσt

for all ϕ ∈ K, and the set

Dt := {x ∈ X : (x, t) ∈ A and x is a Lebesgue point of M ′
t} ⊂ X

has full ν0–measure. For t ∈ J , let us define

M̄tx = lim inf
n→∞

(

n

∫ x

x− 1
n

M ′
t x̄dx̄

)

, x ∈ X.

Note that M̄t is a Borel map as a liminf of continuous functions on X. We
also define St(z) = −1/2 + σt(−∞, z], which is, up to an additive constant,
the right continuous distribution function of σt. Then let us introduce the
map wt = M̄t ◦ St, which is a Borel map as a composition of two Borel
maps. Fix t ∈ J arbitrary. For x ∈ X, we have

wt(Mtx) = M̄t ◦ St ◦ Mtx = M̄tx
r
t , (34)

where xr
t is the right endpoint of It,x := {x̄ ∈ X : Mtx̄ = Mtx}. Notice

that since Mt is left continuous, It,x is a right closed interval (possibly
degenerate) containing x. Now assume that x ∈ Dt. Then if It,x contains
only x = xr

t , we obtain wt(Mtx) = M ′
tx as a direct consequence of (34).

Otherwise It,x is an interval of positive length so that xr
t is the largest value

in the interval. Thus, [xr
t − 1/n, xr

t ] ⊂ It,x for n large enough. Because Dt

has full ν0–measure, lemma 7 gives that
∫ xr

t

xr
t−

1
n

M ′
t x̄dx̄ = (1/n)M ′

tx and so,

M̄tx
r
t = M ′

tx. This together with (34) yields

wt(Mtx) = M ′
tx for all x ∈ Dt. (35)
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We combine (14) and (35) to obtain for t ∈ J and ϕ ∈ K,
∫

IR

wtϕ
′dσt =

∫

X

wt(Mtx)ϕ′(Mtx)dx =

∫

X

M ′
txϕ′(Mtx)dx

= lim
k→∞

∫

X

ϕ(Mt+h+

k
x) − ϕ(Mtx)

h+
k

dx

= lim
k→∞

∫

IR

ϕ
dσt+h+

k
− dσt

h+
k

=

∫

IR

vtϕ
′dσt. (36)

As K is dense in C1
c (IR), we conclude that the equalities in (36) hold for all

ϕ ∈ C1
c (IR). As σt ∈ P2(R) is a Borel probability measure on IR, {ϕ′| ϕ ∈

C1
c (IR)} is itself dense in L2(σt). Here, we have used that IR is of dimension

1. Hence (36) holds if we substitute ϕ′ by any element of L2(σt). This proves
that wt = vt σt–almost everywhere. Moreover, observe that if σt(N ) = 0
then ν0(M

−1
t (N )) = σt(N ) = 0. Therefore, for t ∈ J , using (35) we conclude

that M ′
tx = wt(Mtx) = vt(Mtx) for ν0-almost every x ∈ X. This yields the

proposition.

4.2. Minimizing paths on P2(IR)

We recall that Q and Cs are defined in section 3.2. Since T < π, it
follows from the Poincaré inequality that sublevel subsets of Q + Cs are
contained in sublevel subsets of ‖ · ‖AC2(0,T ;L2(ν0)). Observe that Q + Cs

is differentiable only for s > 1. We will see that if M̄0, M̄T are monotone
nondecreasing satisfying M0 #ν0 = σ̄0 and MT #ν0 = σ̄T , then minimizing
AT over CT (σ̄0, σ̄T ) is equivalent to minimizing Q + C over CT (M̄0, M̄T ).
Furthermore, there is a unique minimizer in each one of these two problems.
We analyze the minimizers of Q + C by first studying those of Q + Cs.

Theorem 2. Suppose M̄0, M̄T ∈ L2(ν0). Then Q + Cs admits a unique
minimizer Ms on CT (M̄0, M̄T ). If we further assume that M̄0, M̄T ∈ Mon
then for L1-almost every t ∈ (0, T ), Ms

t ∈ Mon.

Proof. We choose S = L2(ν0) with the metric dist = ‖ · ‖ν0
. We take

τ to be the weak topology and we apply proposition 3. Set Mt = (1 −
t/T )M̄0 + (t/T )M̄T and let {Mn}∞n=1 be a minimizing sequence for Q+ Cs

over CT (M̄0, M̄T ). We may assume that 1 + Q(M) + Cs(M) ≥ Q(Mn) +
Cs(Mn). It follows from the Poincare’s inequalities (15)–(16) that {Mn}∞n=1

is bounded in H1(0, T ;L2(ν0)). In particular, there exists a constant C
independent of n such that

‖ |(Mn − M)′| ‖L2(0,T ) ≤ C. (37)

Thanks to (37) we can apply proposition 4. We obtain a subsequence of
{Mn}∞n=1 (we do not relabel) such that for each t ∈ [0, T ], {Mn

t }∞n=1 con-
verges weakly to some Ms

t in L2(ν0). We use proposition 3 to obtain that
Ms ∈ AC2(0, T ;L2(ν0)). One can readily conclude that Ms ∈ CT (M̄0, M̄T ).
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By lemma 3, {Mn}∞n=1 converges weakly to Ms in L2(ν) and {(Mn)′}∞n=1

converges weakly to (Ms)′ in L2(ν0). By proposition 5, Q+Cs is sequentially
weakly lower semicontinuous on CT (M̄0, M̄T ). We use these to conclude that
Ms minimizes Q + Cs over CT (M̄0, M̄T ). By remark 4, Q is strictly convex
on CT (M̄0, M̄T ). Hence Q + Cs is strictly convex as the sum of a strictly
convex function and a convex function. This proves that the minimizer Ms

is unique.
Suppose, in addition, that M̄0, M̄T ∈ Mon. Let M̃s be such that M̃s

t

is monotone nondecreasing and M̃s
t #ν0 = Ms

t #ν0. By remark 5, M̃ ∈
AC2(0, T ;L2(ν0)) and Q(M̃) + Cs(M̃) ≤ Q(M) + Cs(M). Thus M̃ is an-
other minimizer of Q+Cs over CT (M̄0, M̄T ). By uniqueness, Ms = M̃s. This
proves that for L1-almost every t ∈ (0, T ), Ms

t is monotone nondecreasing.

Remark 6. Suppose M ∈ AC2(0, T ;L2(ν0)) so that M ∈ L2(ν). If, in
addition, Mt ∈ Mon for each t ∈ [0, T ] then that for 0 < r < 1/2, we have
r|Mtx| ≤

∫

X
|Mty|dy on [−1/2 + r, 1/2 − r] =: Xr. Hence,

r

∫ 1/2−r

−1/2+r

|∂xMtx| ≤ r(Mt(1/2− r)−Mt(−1/2 + r)) ≤ 2

∫

X

|Mty|dy. (38)

We have used that ∂xMt is a nonnegative measure on X. Thus, r‖∂xM‖Xr
T
≤

2
√

T‖M‖ν . Let ∂tM be the distributional derivative of M which coincides
with M ′ by remark 2. Then ‖∂tM‖ν = ‖M ′‖metric. This proves the existence
of a constant C̄(r) dependent on T but independent of M such that

‖M‖BV (Xr
T

) ≤ C̄(r)‖M‖AC2(0,T ;L2(ν0)). (39)

4.3. Euler-Poisson system in 1–d in terms of its associated flow

Suppose s > 1, so that Q + Cs is not only strictly convex, but also
Gâteaux differentiable. If M̄0, M̄T ∈ L2(ν0), standard arguments give that
Ms ∈ CT (M̄0, M̄T ) minimizes Q + Cs over CT (M̄0, M̄T ) if and only if

(

Ms
)′′

t
x + Ms

t x =
1

2

∫

X

(Ms
t x − Ms

t y)|Ms
t x − Ms

t y|s−2dy (40)

in the sense of distributions on XT . An analogous characterization of M1

can be stated although Q+C1 is not Gâteaux differentiable everywhere. As
in the previous section, let us set Xr = [−1/2 + r, 1/2 − r].

Proposition 7. Suppose M ∈ CT (M̄0, M̄T ), W is a Borel function on X2
T

such that W (x, y, t) ∈ ∂·| · |(Mtx − Mty) and W (x, y, t) = −W (y, x, t) for
ν × ν0- almost every (x, y, t) ∈ X2

T . If

M ′′
t x + Mtx =

1

2

∫

X

W (x, x̄, t)dx̄ (41)

in the sense of distributions on XT , then M is the unique minimizer of
Q + C over CT (M̄0, M̄T ). If we further assume that M̄0, M̄T are monotone
nondecreasing, then for L1–almost every t ∈ (0, T ), Mt is monotone non-
decreasing.
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Proof. Let M̃ ∈ CT (M̄0, M̄T ) be arbitrary. Since W (x, y, t) = −W (y, x, t),
we have

∫

X2
T

W (x, x̄, t)(M̃tx − Mtx)dxdx̄dt

= −
∫

X2
T

W (x, x̄, t)(M̃tx̄ − Mtx̄)dxdx̄dt.

By the definition of B in (27) and (41),

−8B̄(M,M̃ − M) =

∫

X2
T

W (x, x̄, t)
(

(M̃tx − M̃tx̄) − (Mtx − Mtx̄)
)

dxdx̄dt.

(42)
We exploit (42) and the fact that W (x, y, t) ∈ ∂·| · |(Mtx−Mty) to conclude
that

1

4

∫

X2
T

(|M̃tx − M̃tx̄| − |Mtx − Mtx̄|)dxdx̄dt ≥ −2B(M,M̃ − M).

This, in view of (28) (set α = 1) and the fact that Q(M̃ − M) ≥ 0,
yields Q(M̃) + C(M̃) ≥ Q(M) + C(M). Hence, M minimizes Q + C over
CT (M̄0, M̄T ). For each t ∈ [0, T ], define Mo

t to be the unique monotone
nondecreasing map such that Mo

t #ν0 = Mt #ν0 =: σt. By remark 1, the fact

that M ∈ AC2(0, T ;L2(ν0)) yields σ ∈ AC2(0, T ;P2(IR)). Lemma 1 ensures
that Mo ∈ CT (M̄0, M̄T ) and

‖M ′‖metric ≥ ‖σ′‖metric = ‖(Mo)′‖metric.

This, along with the fact C(M) = C(Mo), yields that Mo is also a minimizer
of Q + C over CT (M̄0, M̄T ). The strict convexity of Q + C obtained in (30)
ensures uniqueness of its minimizer over CT (M̄0, M̄T ). Thus, M = Mo.

We are next going to show the converse of proposition 7. For that, let
M̄ = (1−t/T )M̄0+(t/T )M̄T . In this work we are interested in what happens
when s ↓ 1; we shall assume that s ≤ 2. Observe that for s ∈ [1, 2] we have

sup
s′∈[1,2]

Q(M̄) + Cs′

(M̄) ≥ Q(Ms) + Cs(Ms) ≥ Q(Ms),

where Ms is the minimizer of Q + Cs over CT (M̄0, M̄T ). Hence Poincare’s
inequality (16) yields

sup
s∈[1,2]

(

‖(Ms)′‖metric + sup
t∈[0,T ]

‖Ms
t ‖2

ν0

)

< ∞. (43)

The above supremum depends only on T , M̄0 and M̄T .
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Theorem 3. Suppose M̄0, M̄T ∈ L2(ν0) ∩ Mon and M1 ∈ CT (M̄0, M̄T ).
Then M1 minimizes Q + C over CT (M̄0, M̄T ) if and only if

(

M1
)′ ∈ AC2(0, T ;L2(ν0))

and
(

M1
)′′

t
x + M1

t x =

∫

X

WM1(x, x̄, t)dx̄ (44)

in the sense of distributions on XT , for some WM1 ∈ L∞(X2
T ) satisfying

WM1(x, x̄, t) ∈ ∂·| · |(M1
t x − M1

t x̄) and WM1(x, x̄, t) = −WM1(x̄, x, t) for
ν × ν0- almost every (x, x̄, t) ∈ X2

T .

Proof. Let Ms be the minimizer of Q + Cs over CT (M̄0, M̄T ). By the pre-
vious proposition, Ms

t ∈ Mon. We set Xr
T = (0, T ) × [−1/2 + r, 1/2 − r].

We use (16) to obtain existence of a constant C̄(r) which depends on r but
is independent of s ∈ [1, 2] such that ‖Ms‖BV (Xr

T
) ≤ C̄(r). We next invoke

the compactness of bounded subsets of BV (Xr
T ) in L1(Xr

T ). We obtain ex-
istence of a sequence {sj}∞j=1 ⊂ [1, 2] converging to 1 as j tends to +∞
and such that {Msj}∞j=1 converges to some M̃1 in L1

loc(XT ). Passing to a
subsequence if necessary, we may assume that {Msj}∞j=1 converges ν-almost

everywhere to M̃1. Passing to another subsequence, it is easy to check that
M̃1 ∈ CT (M̄0, M̄T ) and {Msj

t }∞j=1 converges weakly to M̃1
t in L2(ν0) for

each t ∈ (0, T ). By Egoroff’s theorem, {Msj}∞j=1 converges uniformly to

M̃1 except on a set of ν-small measure. By (43) {|Msj

t x − M
sj

t y|sj}∞j=1 is

weakly closed in L1(ν × ν0) and so,

lim
j→+∞

∫

X2
T

|Msj

t x − M
sj

t x̄|sj dtdxdx̄ =

∫

X2
T

|M̃1
t x − M̃1

t x̄|dtdxdx̄. (45)

This, together with the fact that proposition 5 provides the lower semicon-
tinuity of Q, yields lim infj→+∞ Q(Msj ) + Csj (Msj ) ≥ Q(M̃1) + C(M̃1).

Hence, M̃1 minimizes Q + C over CT (M̄0, M̄T ). Uniqueness of minimizers
being ensured by theorem 2, we conclude that M̃1 = M1. We use that

lim inf
j→+∞

Q(M1) + Csj (M1) ≥ lim inf
j→+∞

Q(Msj ) + Csj (Msj ) ≥ Q(M1) + C(M1)

and (45) to conclude that Q(M1) = lim infj→+∞ Q(Msj ). Using (29) we
obtain

0 = lim inf
j→+∞

Q(Msj − M1) ≥ lim inf
j→+∞

1/2

(

1 − T 2

π2

)

‖(Msj − M1)′‖metric.

This, together with Poincaré’s inequality (16) proves that {Msj}∞j=1 con-

verges strongly to M1 in H1(0, T ;L2(ν0)). Set

WMs(x, x̄, t) := (Ms
t x − Ms

t x̄)|Ms
t x − Ms

t x̄|s−2.
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We have that WMs is uniformly bounded in L2(X2
T ) and

WMs(x, x̄, t) ∈ ∂·G
s(Ms

t x − Ms
t x̄) with Gs(e) :=

|e|s
s

.

Hence, up to a subsequence we do not relabel, {WMsj }∞j=1 converges weakly

in L2(X2
T ) to some WM1 in L2(X2

T ). The fact that {Msj}∞j=1 converges

strongly to M1 in H1(0, T ;L2(ν0)) yields WM1(x, x̄, t) ∈ ∂·| · |(M1
t x−M1

t x̄).
Using (40) we obtain (44). It is apparent that WM1(x, x̄, t) = −WM1(x̄, x, t)
for ν×ν0-almost every (x, x̄, t) ∈ X2

T . We use proposition 7 to conclude that
any solution of (44) is a minimizer of Q+ C. Observe that WM1 ∈ L∞(X2

T )
and

∣

∣

∣

∣

∫

X

WM1(x, x̄, t)dx̄

∣

∣

∣

∣

≤ 1.

Since M1 ∈ AC2(0, T ;L2(ν0)), (44) implies
(

M1
)′ ∈ AC2(0, T ;L2(ν0)).

Remark 7. Let M1 be as in theorem 3. Note that, in particular, if for L2-
almost every (x, t), M1

t x 6= M1
t x̄ for L1-almost every x̄ ∈ X, (44) reads

off
(

M1
)′′

t
x + M1

t x = x.

Corollary 1. Suppose σ̄0, σ̄T ∈ P2(IR). Let M̄0, M̄T be monotone nonde-
creasing maps satisfying M̄0 #ν0 = σ̄0 and M̄T #ν0 = σ̄T , and let Ms be
the unique minimizer of Q+Cs over CT (M̄0, M̄T ) given by theorem 2. Then
σs := Ms

t #ν0 is the unique minimizer of As
T over CT (σ̄0, σ̄T ).

Proof. Let σ ∈ AC2(0, T ;P2(IR)) be arbitrary and let Mt ∈ Mon such
that Mt #ν0 = σt. By remark 5, M ∈ AC2(0, T ;L2(ν0)). We have

As
T (σs)+T/24 = Q(Ms)+Cs(Ms) ≤ Q(M)+Cs(M) = As

T (σ)+T/24. (46)

The inequality in (46) being strict unless Ms = M , we conclude that σs is
the unique minimizer of As

T over CT (σ̄0, σ̄T ).

Suppose σ̄0, σ̄T ∈ P2(IR) and σ1 is the unique minimizer of AT found
in corollary 1. Let v be the Borel velocity of minimal norm associated to
σ1. For each t ∈ [0, T ], let M1

t be the monotone nondecreasing map such
that M1

t #ν0 = σ1
t . Since the tangent space Tσ1

t
P2(IR) is a separable Hilbert

space, we shall identify it with its dual and so, we can view the tangent
vector vt as a cotangent vector. Although the Hamiltonian H is defined on
the cotangent bundle of P2(IR), now it still makes sense to write H(σ1

t , vt).
By remark 3 and lemma 1, for L1–almost every t ∈ (0, T )

2H(σ1
t , vt) = ‖vt‖2

L2(0,T ) + W 2
2 (σ1

t , ν0) =

∫

X

[∣

∣

(

M1
t

)′∣
∣

2
+ |M1

t − id|2
]

dν0.

Whereas t → H(σ1
t , vt) may not be continuous, the H2 regularity of M1

proved in theorem 3 ensures that the map

t → 2H̄(t) :=

∫

X

[|
(

M1
)′

t
|2dν0 + W 2

2 (σ1
t , ν0)]dν0
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belongs to H1(0, T ). As a matter of fact, we will prove that this map is a
constant, by showing that its distributional derivative is null. We are able
to show conservation of the Hamiltonian even without the assumption that
σ1

t << L1, that in general fails. The proof relies on (33) of proposition 6
and on the following lemma.

Lemma 10. Suppose that M : X → IR is monotone nondecreasing and
W ∈ L∞(X2

T ) satisfy W (x, x̄) ∈ ∂·| · |(Mx−Mx̄) and W (x, x̄) = −W (x̄, x)
for L2-almost every (x, x̄) ∈ X2. If ξ ∈ L1(σ) is a Borel map for σ := M#ν0,
then

2

∫

X

xξ(Mx)dx =

∫

X2

ξ(Mx)W (x, x̄)dxdx̄.

Proof. We set

A = {(x, x̄)|Mx > Mx̄}, B = {(x, x̄)|Mx < Mx̄}.

We use that M is monotone nondecreasing to conclude that

2

∫

X

xξ(Mx)dx =

∫

X

dx

∫ x

−1/2

ξ(Mx)dx̄ −
∫

X

dx

∫ 1/2

x

ξ(Mx)dx̄

=

∫

A

ξ(Mx)dxdx̄ +

∫

{(x,x̄)| x>x̄,Mx=Mx̄}

ξ(Mx)dxdx̄

−
∫

B

ξ(Mx)dxdx̄ −
∫

{(x,x̄)| x<x̄,Mx=Mx̄}

ξ(Mx)dxdx̄

=

∫

A

ξ(Mx)dxdx̄ −
∫

B

ξ(Mx)dxdx̄ (47)

=

∫

A

ξ(Mx)W (x, x̄)dxdx̄ +

∫

B

ξ(Mx)W (x, x̄)dxdx̄.(48)

To obtain the equality in (47), we have used that

∫

{(x,x̄)| x>x̄,Mx=Mx̄}

ξ(Mx)dxdx̄ =

∫

{(x,x̄)| x<x̄,Mx=Mx̄}

ξ(Mx)dxdx̄.

By Fubini’s theorem
∫

{Mx=Mx̄}

ξ(Mx)W (x, x̄)dxdx̄ =

∫

{Mx=Mx̄}

ξ(Mx̄)W (x̄, x)dx̄dx

= −
∫

{Mx=Mx̄}

ξ(Mx)W (x, x̄)dx̄dx

and so, the three previous expressions vanish. This, together with (48),
yields the proof.

Theorem 4. Setting H̄(t) := 1
2

∫

X
|
(

M1
)′

t
|2dν0+ 1

2W 2
2 (σ1

t , ν0), we have that

H̄(0) = H̄(t) for all t ∈ [0, T ].
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Proof. To simplify the notation, take M := M1. Let ϕ ∈ C1
c (0, T ) be

arbitrary. Since M, M ′ ∈ H1(0, T ;L2(ν0)), it can be shown that

lim
h→0

∫

XT

∣

∣

∣

∣

(

Mt+hx)2 −
(

Mtx
)2

h
− 2MtxM ′

tx

∣

∣

∣

∣

dxdt = 0

and

lim
h→0

∫

XT

∣

∣

∣

∣

(

M ′
t+hx)2 −

(

M ′
tx

)2

h
− 2M ′

txM ′′
t x

∣

∣

∣

∣

dxdt = 0.

By the above limits and theorem 3, one has

−
∫ T

0

ϕ′(t)H̄(t)dt=
1

2
lim
h→0

∫

XT

ϕ(t − h) − ϕ(t)

h

[

|M ′
t |2 + |Mt − id|2

]

dν0dt

=

∫

XT

ϕ(t)M ′
t(M

′′
t + Mt − id)dν0dt

=

∫ T

0

ϕ(t)

∫

X

M ′
tx

(1

2

∫

X

WM (x, x̄, t)dx̄ − x
)

dxdt.

Thus, by combining with proposition 6, we have for L1–a.e. t ∈ (0, T ),

d

dt
H̄(t) =

∫

X

vt(Mtx)
(1

2

∫

X

WM (x, x̄, t)dx̄ − x
)

dx.

We use lemma 10 to conclude that d
dtH̄(t) = 0 for L1–a.e. t ∈ (0, T ). Because

H̄ is absolutely continuous, H̄(t) = H̄(0) for every t ∈ (0, T ].

4.4. Minimizing paths whose endpoints are discrete measures.

We denote by P·n the set of measures of the form 1/n
∑n

i=1 δxi
where

(x1, · · · , xn) ∈ IRn. We show that if σ̄1
0 , σ̄

1
T ∈ P·n and σ1 minimizes AT

over CT (σ̄1
0 , σ̄1

T ) then at each time t, σ1
t ∈ P·n. Let ci = −1/2 + i/n for

i = 0, 1, · · · , n and

L˙n = {S : X → IR| S|(ci−1,ci) is constant for each i = 1, · · · , n}, (49)

which is a closed subspace of L2(ν0). For M̄0, M̄T ∈ L˙n, we denote by
Cn

T (M̄0, M̄T ) the set of paths M ∈ AC2(0, T ;L˙n) satisfying M0 = M̄0 and
MT = M̄T . To x = (x1, · · · , xn) ∈ IRn, we associate the measure σx =
1/n

∑n
i=1 δxi

and the map Mx ∈ L˙n defined by

Mx(x) = xi if x ∈ (ci−1, ci).

For r ∈ H1(0, T ; IRn), we define the action

As
·n(r) =

1

2

∫ T

0

n
∑

i=1

(
|ṙi(t)|2

n
− |ri(t)|2

n
)dt+

1

4ns

∫ T

0

n
∑

i,j=1

|ri(t)−rj(t)|s−
T

24
.

Note that As
·n(r) = As

T (σr).
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Remark 8. It is easy to show that As
·n admits a minimizer rs over over

the set {r ∈ H1(0, T )n| r(0) = x0, r(T ) = xT }. For s ∈ (1, 2), the Euler-
Lagrange equations satisfied are

r̈s
i (t) + rs

i (t) =
s

2n

∑

j 6=i

(rs
i (t)− rs

j(t))|(rs
i (t)− rs

j(t)|s−2, i = 1, · · · , n, (50)

in the sense of distributions on (0, T ). This proves that rs ∈ H2(0, T )n. For
u ∈ H1(0, T )n (independent of s) and s ∈ [1, 2], we have

As
·n(rs) ≤ sup

s̄∈[1,2]

As̄
·n(u) < ∞

and so, Poincaré’s inequality gives that ‖rs‖H1(0,T )n is bounded by a con-
stant independent of s. This, together with (50) yields that ‖rs‖H2(0,T )n is
bounded by a constant independent of s.

We show that the set P·n(IR) is closed under the Lagrangian minimizing
paths in the following sense.

Theorem 5. Suppose σ̄0 = 1/n
∑n

i=1 δx0
i
, σ̄T = 1/n

∑n
i=1 δxT

i
and let σ1

be the path found in corollary 1, minimizing A1
T over CT (σ̄0, σ̄T ). Then

σ1
t ∈ P·n(IR) for a.e. t ∈ (0, T ).

Proof. Assume without loss of generality that xk
i−1 ≤ xk

i for k = 0, T and
i = 1, · · · , n. We set

M̄0 = Mx0 , M̄T = MxT , xk = (xk
1 , · · · , xk

n) for k = 0, T.

Let s ∈ [1, 2]. We are going to apply proposition 3 with S = (L˙n, ‖ · ‖L2(ν0))
and τ is the L2-weak topology which coincides with the ‖·‖ν0

-topology when
restricted to L˙n. Since bounded sets of L˙n are closed for the τ -topology,
we can apply proposition 3 and obtain as in proposition 2, existence of a
path Ms minimizing Q+ Cs over AC2(0, T ;L˙n). Let σs(t) = Ms

#ν0 and let

M̄s
t be monotone nondecreasing such that σs(t) = M̄s

#ν0. As argued in the
proof of theorem 2, by remark 5,

M̄s ∈ AC2(0, T ;L˙n), and Q(M̄s) + Cs(M̄s) ≤ Q(Ms) + Cs(Ms).

The strict convexity of Q + Cs (direct consequence of (30)) yields Ms =
M̄s. This proves that Ms

t is monotone nondecreasing for each t ∈ [0, T ]. If
r = (r1, · · · , rn) ∈ H1(0, T ; IRn), by abuse of notation we denote the map
t → Mr(t) ∈ L˙n by Mr. Set

σr(t) =
1

n

n
∑

i=1

δri(t), rs
i (t) := Ms

t ((ci−1 + ci)/2) (i = 1, · · ·n).

If r(0) = x0 and r(T ) = xT then Mr(0) = M̄0 and Mr(T ) = M̄T . By lemma
1 and remark 1

‖(Ms)′‖metric = ‖(σs)′‖metric, ‖(Mr)
′‖metric ≥ ‖(σr)

′‖metric.
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Thus

As
·n(rs) = As

T (σs) = Q(Ms) + Cs(Ms) − T/24

≤ Q(Mr) + Cs(Mr) − T/24 = As
T (σr) = As

·n(r).

This proves that rs minimizes As
·n over the set {r ∈ H1(0, T )n| r(0) =

x0, r(T ) = xT }. We use remark 8 to obtain existence of a sequence {sj}∞j=1

converging to 1 as j tends to ∞, such that {rsj}∞j=1 converges to some r1

in C1([0, T ]). Extracting if necessary a subsequence we do not relabel, we
obtain that {wsj

ij }∞j=1 converges weakly ∗ in L∞(0, T ) to some wij (here

ws
ij(t) := (rs

i (t) − rs
j(t))|(rs

i (t) − rs
j(t)|s−2 from (50)). It is apparent that

wij = −wji and wij(t) ∈ ∂·| · |(r1
i (t) − r1

j (t)). One uses (50) to obtain that

r̈1
i (t) + r1

i (t) =
1

2n

∑

j 6=i

w1
ij(t), i = 1, · · · , n. (51)

We set w1
ii(t) ≡ 0 and

M(x, t) = r1
i (t), W (x, x̄, t) = w1

ij(t)

for x ∈ (ci−1, ci) and x̄ ∈ (cj−1, cj) to discover that M̃1
0 = M̄0, M1

T = M̄T

and
(

M1
)′′

t
x + M1

t x =
1

2

∫

X

W (x, x̄, t)dx̄.

This, together with theorem 3, shows that M1 is the unique minimizer of
Q + C over CT (M̄0, M̄T ). Set σ1

t = M1
t #ν0 ∈ Pn(IR). We use corollary 1 to

conclude that σ1 is the unique minimizer of AT over CT (σ̄0, σ̄T ).

Remark 9. To motivate the statement made in the introduction about the
behavior of a simple two-particle system, let us consider µ0 = 1/2(δx0

+δy0
),

µT = 1/2(δxT
+δyT

) and let σ1 be the unique minimizer of AT over C(µ0, µT )
with T < π. We learned from the closedness principle of the set P· 2 that σ1

must satisfy σ1
t = 1/2(δxt

+ δyt
). Assume t1 < t2, x(t1) = y(t1) =: a1 and

x(t2) = y(t2) =: a2. In other words, the two particles of the system collide
at two distinct times. Then, it is obvious that we must have x(t) = y(t) for
all t ∈ [t1, t2]. Indeed, let z be the unique solution of the ODE z̈ + z = 0
on [t1, t2] such that z(t1) = a1, and z(t2) = a2. Then the map Mtx = z(t)
defined on (t1, t2)×X and WM (y, ȳ, t) ≡ 0 defined on X2 × (t1, t2) satisfies
(6). Thus, it minimizes the action

M →
∫ t2

t1

dt

∫

X

(|M ′|2 − |M |2)dx +
1

2

∫ t2

t1

dt

∫

X2

|Mtx − Mtx̄|dxdx̄

over C(a1, a2). Define σt := Mt#ν0. Since σ minimizes
∫ t2

t1
L(σt, vt)dt over

C(δa1
, δa2

), we conclude that σt = σ1
t for [t1, t2].
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4.5. Minimizing paths σ1 such that σ1(0), σ1(1) << L1.

In this subsection, we show that minimizing paths σ1 may escape the set
of absolutely continuous measures in spite of σ1(0), σ1(1) << L1. Suppose
that T = 1 and σ̄0 << L1 and σ̄1 << L1 are two Borel probability measures.
The main observation in this section is that they may be chosen so that if
σ1 minimizes A1 over C1(σ̄0, σ̄1) then σ1

t = δ0 for all t ∈ [1/2, 3/4]. In other
words, σ1 does not entirely lie inside the set of measures that are absolutely
continuous with respect to L1.

In light of theorem 3 and corollary 1, to identify appropriate σ̄0 and σ̄1,
it suffices to determine maps M1

t : X → IR monotone nondecreasing which
satisfy the following properties. (i) M1 ∈ C1(M̄0, M̄1), (ii) (44) holds, (iii)
M1

0 #ν0,M
1
1 #ν0 << L1 and (iv) M1

t ≡ 0 for all t ∈ [1/2, 3/4]. Define

f(t) =
cos(t − 1/2)

cos 1/2
, αt = 1 − f(t)

f(1/2)
, Mtx = αtx t ∈ [0, 1].

Note that αt > 0 unless t = 1/2 and α1/2 = 0. The map Mt is increasing
(as a function of x) for t ∈ [0, 1] provided that t 6= 1/2. But M1/2,M

′
1/2 ≡ 0.

Since f̈ + f ≡ 0, we have that M ′′
t x + Mtx = x for every (t, x) ∈ X1. Set

W (x, x̄, t) = (x − x̄)/|x − x̄|. We use that M ∈ C∞(X1) to conclude that

M ′′
t x + Mtx = x =

1

2

∫

X

W (x, x̄, t)dx̄, (52)

in the sense of distributions on X1. Similarly, we define

g(t) =
cos(t − 3/4)

cos 1/4
, βt = 1 − g(t)

g(3/4)
, Ntx = βtx t ∈ [1/2, 1]

and β = β1 = 1−cos(1/4). As before, the map Nt is increasing (as a function
of x) for t ∈ [1/2, 1] provided that t 6= 3/4. Note that N3/4,M

′
3/4 ≡ 0. We

use that N ∈ C∞(X1) to obtain

N ′′
t x + Ntx = x =

1

2

∫

X

W (x, x̄, t)dx̄, (53)

in the sense of distributions on (1/2, 1) × X.

The monotone maps M1. For (x, t) ∈ X1, we define

M1
t x =











Mtx if t ∈ [0, 1/2]

0 if t ∈ [1/2, 3/4]

Ntx if t ∈ [3/4, 1]

,

WM1(x, x̄, t) =











x−x̄
|x−x̄| if t ∈ [0, 1/2]

0 if t ∈ [1/2, 3/4]
x−x̄
|x−x̄| if t ∈ [3/4, 1].
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We have that

WM1(x, x̄, t) ∈ ∂·| · |(M1
t x − M1

t x̄) for L3 − a.e. (x, x̄, t) ∈ X2 × (0, 1).

Clearly, M ∈ C([0, 1], L2(ν0)). Since
(

M1
)′

(1/2)−
=

(

M1
)′

(1/2)+
and

(

M1)′(3/4)− =
(

M1
)′

(3/4)+

we obtain that M ∈ H2(0, 1;L2(ν0)). One uses (52) , (53) and that

(

M1
)′′

t
x + M1

t x = 0 =
1

2

∫

X

WM1(x, x̄, t)dx̄,

in the sense of distributions on (1/2, 3/4) × X to obtain that

(

M1
)′′

t
x + M1

t x =
1

2

∫

X

WM1(x, x̄, t)dx̄.

in the sense of distributions on X1.

Note that if we set σ1
t = M1

t #ν0 then

σ1
t =











1
αt

χ(−αt/2,αt/2) if t ∈ [0, 1/2)

δ0 if t ∈ [1/2, 3/4]
1
βt

χ(−βt/2,βt/2) if t ∈ (3/4, 1].

The velocity in Lagrangian and Eulerian coordinates is given by

(

M1
)′

t
x =











− tan(t − 1
2 )x if t ∈ [0, 1/2)

0 if t ∈ [1/2, 3/4]

− tan(t − 3
4 )x if t ∈ [3/4, 1]

,

v1
t (y) =











− tan(t− 1
2
)

αt
y if t ∈ [0, 1/2)

0 if t ∈ (1/2, 3/4)

− tan(t− 3
4
)

βt
y if t ∈ (3/4, 1).

We have proven the following theorem.

Theorem 6. Let

σ̄0 =
1

α0
χ(−α0/2,α0/2), σ̄1 =

1

β1
χ(−β1/2,β1/2),

v0(y) =
tan 1/2

1 − cos 1/2
y for |y| ≤ α0/2.

(i) Optimal path escaping the set of absolutely continuous mea-
sures. σ1, defined above, minimizes A1

1 over C1(σ̄0, σ̄1) and σ1
t = δ0 for

t ∈ [1/2, 3/4].
(ii) Non uniqueness in the initial value problem. The path σ defined
by σt = Mt #ν0, minimizes A1

1 over C1(σ̄0, σ̄0). Thus, σ and σ1 are two
solutions of the Euler-Poisson system, distinct for t ∈ (1/2, 3/4), with the
same initial point σ̄0 and the same initial velocity v0 = v1

0 .
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2. L. Ambrosio, N. Gigli, G. Savaré: Gradient flows in metric spaces and the
Wasserstein spaces of probability measures. Lectures in Mathematics, ETH
Zurich, Birkhäuser, 2005.
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