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Abstract

Let c : Λk−1 → R+ be convex and Ω ⊂ Rn be a bounded domain. Let f0 and f1 be two closed k−forms
on Ω satisfying appropriate boundary conditions. We discuss minimization of

∫
Ω
c (A) dx over a subset

of (k − 1)−forms A on Ω such that dA + f1 − f0 = 0, and its connection with a transport of symplectic
forms. Section 3 mainly serves as a step toward Section 4 which is richer, as it connects to variational
problems with multiple minimizers.

Transport optimal des formes fermées pour des coût convexes

Résumé
Soient c : Λk−1 → R+ une fonction convexe et Ω ⊂ Rn un domaine borné. Soient f0 et f1 des k−formes
fermées sur Ω satisfaisant des conditions de bord appropriées. Nous nous intéressons à la minimisation de∫

Ω
c (A) dx sur l’ensemble des (k − 1)−formes A telles que dA + f1 − f0 = 0, ainsi que sa relation à un

problème de transport des formes symplectiques. La Section 3 sert d’étape intermédiaire vers la Section 4
qui est plus riche, car reliée à des problèmes variationels avec une multitude de minimiseurs.

Version française abrégée

Soit n un entier positif pair, soit Ω ⊂ Rn un ouvert borné contractile de bord régulier et de normal uni-
taire extérieure ν. Supposons que f0, f1 ∈ C1(Ω; Λ2) soient des formes symplectiques telles que ν ∧ (f0 − f1)
s’annule sur le bord ∂Ω. Faisons l’hypothèse supplémentaire que ft := tf1 + (1− t) f0 reste symplectique
pour tout t ∈ [0, 1]. Nous identifierons les éléments u de Λ1 avec des champs vectoriels de u : Ω→ Rn. Rap-
pelons que la définition de l’ensemble C(f1 − f0) apparâıt dans Definition 2. Montrons comment le problème
variationel

(P2) inf
A

{
I2 (A) =

1

2

∫
Ω

|A|2 : A ∈ C (f1 − f0)

}
peut être exploité pour produire des bijections qui soient des applications optimales transportant f0 sur ft .
Notre affirmation repose aussi sur la Section 1 affirmant que le chemin t → (ft, A2) est optimal pour la
fonction coût c̄(f,A) = |A|2 dans le problème (1).

Theorem 1 Soit A2 l’unique minimiseur de (P2) (voir Theorem 4). Comme ft est non dégénérrée, soit
ut ∈ Λ1 l’unique solution de ut y ft = A2. Soit enfin ϕ : [0, 1]× Ω̄→ Ω̄ le flot associé à u, définie par

∂tϕt = ut ◦ ϕt sur t ∈ [0, 1]× Ω, ϕ0 = id sur Ω.

Alors, pour tout t ∈ [0, 1] ϕt ∈ Diff1
(
Ω; Ω

)
(en particulier ϕt(Ω) = Ω) et ϕ∗t (ft) = f0 dans Ω.
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Proof Le résultat de régularité (12) nous donne que A2 ∈ C1,α pour tout α < 1 et donc (t, x) → ut(x)
est de classe C1

(
[0, 1]× Ω;Rn

)
. Comme ν ∧ A2 = 0 sur ∂Ω, nous en déduisons que 〈ν;ut〉 = 0 sur ∂Ω, d’ou

ϕt ∈ Diff1
(
Ω; Ω

)
. Nous utilisons un résultat standard (voir par exemple Theorem 12.5 dans [3]) pour conclure

que
∂t
(
ϕ∗t (ft)

)
= ϕ∗t

(
∂tft + d(ut y ft) + ut y dft

)
.

Comme
dft = 0 et que d (ut y ft) = dA2 = f0 − f1 = −∂tft

nous en déduisons que ϕ∗t (ft) est indépendante de t, ce qui termine la preuve car ϕ0 = id .

1 Introduction

Let Ω ⊂ Rn be a bounded contractible smooth set and denote by ν the outward unit normal to ∂Ω. Let
1 < p <∞ and let f0, f1 ∈ Lp(Ω̄; Λk) be two closed forms (in the weak sense), of maximal rank, such that

ν ∧ (f1 − f0) = 0 on ∂Ω

(cf. Definition 2). When k = 2, n = 2m and f0 and f1 are smooth and of maximal rank these forms are
called symplectic.

Our original motivation is to find a map ϕ : Ω̄→ Ω̄, so that ϕ∗ (f1) = f0 . This is a very classical problem
that goes back to the famous Darboux theorem. We want here to propose an “optimal” way of selecting such
a ϕ. In our articles [5] and [6], we discuss other approaches to the problem.

Let us informally start with a description [5], to arrive at the content of the current manuscript. Denote
by F the set of closed forms h ∈ Lp(Ω,Λk) such that ν ∧ (f1 − h) = 0 on ∂Ω in the weak sense. Denote by
P (f0, f1) the set of pairs (f̄ , Ā) such that f̄ is continuous in t, f̄ starts at f0, ends at f1,

Ā ∈ L1
(
(0, 1)× Ω; Λk

)
, f̄ ∈ C([0, 1];F),∫ 1

0

(∫
Ω

(〈f ; ∂th〉+ 〈A; δh〉)dx
)
dt =

∫
Ω

〈f1, h1〉 − 〈f0, h0〉, ∀ h ∈ C1
(
[0, 1];C1(Ω̄,Λk)

)
. (1)

Let c̄ : Λk × Λk−1 → R ∪ {∞} be a lower semicontinuous function, bounded below. We are interested
proving existence of minimizers and characterizing the Euler–Lagrange equations of

inf
(f̄ ,Ā)

{∫ 1

0

∫
Ω

c̄(f̄t(x), Āt(x))dxdt
∣∣∣ (f̄ , Ā) ∈ P (f0, f1)

}
. (2)

Let C (f1 − f0) be the set of A ∈ L1(Ω; Λk−1) which satisfy in the weak sense (cf. Definition 2)

dA+ f1 − f0 = 0 in Ω and ν ∧A = 0 on ∂Ω. (3)

One of the simplest versions of the variational problem (2) is obtained by assuming the existence of a
strictly convex function c : Λk−1 → R such that c̄(f̄ , Ā) = c(Ā). Setting

A(x) =

∫ 1

0

Āt(x)dt, f̃t = (1− t)f0 + tf1,

we have (f̃ , A) ∈ P (f0, f1), A ∈ C (f1 − f0) and by Jensen’s inequality (which is strict unless Āt ≡ A)∫ 1

0

(∫
Ω

c̄(f̄t(x), Āt(x))dx
)
dt =

∫
Ω

(∫ 1

0

c(Āt(x))dt
)
dx ≥

∫
Ω

c(A)dx =

∫ 1

0

(∫
Ω

c̄(f̃t(x), A(x))dx
)
dt.

Thus, the study of (1) reduces to that of the variational problem

(P ) inf
A

{
I (A) =

∫
Ω

c (A) dx : A ∈ C (f1 − f0)

}
.
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In the particular case where c(A) = |A|2/2, n = 2m and k = 2, (P) has a unique minimizer A which satisfies

A ∈ Cl+1,α(Ω̄,Λ1) if for instance f1, f0 ∈ Cl,α(Ω̄,Λ2) (cf. Theorem 4). If in addition f̃t = (1 − t)f0 + tf1

remains a symplectic form for any t ∈ [0, 1] then we can define (cf. Theorem 1) u ∈ C1
(
[0, 1];Cl,α(Ω̄,Λ1)

)
which we identify with a vector field and ϕ : [0, 1]× Ω̄→ Ω̄ so that

ut y ft = A, and

{
d
dtϕt = ut ◦ ϕt t ∈ [0, 1]

ϕ0 = id .

Consequently, for any t ∈ [0, 1], ϕt is a diffeomorphism from Ω onto Ω and ϕ∗t (ft) = f0 in Ω.
Returning to a general strictly convex smooth c that satisfies growth conditions such as (7), existence of a

minimizer A is obtained by standard method of the calculus of variation (cf. Theorem 4). Optimal regularity
properties of A is a harder task to establish in general. Setting q = p/(p− 1), one identifies the dual problem
of (P), obtained by maximizing over the set of h ∈W 1,q

(
Ω; Λk

)
,

D(h) :=

∫
Ω

(
〈f1 − f0;h〉 − c∗ (δh)

)
dx.

A maximum is readily obtained (cf. Theorem 6) in this problem which we denote by (D). We discuss also the
case where c(A) = |A|, the linear growth case. We obtain a duality result in weaker spaces (cf. Theorem 12).

2 Notation and definition

For simplicity, throughout the manuscript, Ω ⊂ Rn is assumed to be an open contractible smooth set and
ν denote the outward unit normal to ∂Ω. Let 1 ≤ k ≤ n be an integer. We assume that p, q ∈ (1,∞)
are conjugate of each other in the sense that p + q = pq. We refer to [3] for this section and adopt the
following notations. First, if u ∈ Λ1 (Rn) and f ∈ Λk (Rn) , then u y f is the interior product of f with u.
If ϕ ∈ C1

(
Ω;Rn

)
, then ϕ∗ (f) is the pullback of f by ϕ. Recall that for u ∈ Λ1 (Rn) , f ∈ Λk (Rn) and

h ∈ Λk+1 (Rn) we have 〈u ∧ f ;h〉 = 〈f ;u yh〉 .
We now give a weak formulation to the notion of closedness as well as its dual counterpart. Let 1 ≤ k ≤

n− 1 be an integer, f ∈ L1
(
Ω; Λk

)
.

(i) When we write df = 0 ( resp. δf = 0) in the weak sense, we mean that∫
Ω

〈f ; δh〉 = 0 ∀ h ∈ C∞c
(
Ω; Λk+1

) (
resp.

∫
Ω

〈f ; dh〉 = 0 ∀ h ∈ C∞c
(
Ω; Λk−1

))
.

(ii) Similarly if we want to express in the weak sense

(i)

{
df = 0 in Ω

ν ∧ f = 0 on ∂Ω

(
resp. (ii)

{
δf = 0 in Ω

ν y f = 0 on ∂Ω

)
, (4)

we write∫
Ω

〈f ; δh〉 = 0 ∀ h ∈ C∞
(
Ω; Λk+1

) (
resp.

∫
Ω

〈f ; dh〉 = 0 ∀ h ∈ C∞
(
Ω; Λk−1

))
.

We will often use the following results in [3]: Theorem 6.5, the regularity result in Theorem 7.2, the
classical integration by parts in Theorem 3.28, the particular version of Gaffney inequality in Theorem 5.21,
and the remark following it.

Definition 2 Let 1 ≤ k ≤ n−1, and f ∈ Lp
(
Ω; Λk

)
be such that (4) (i) holds. We say that A ∈ L1

(
Ω; Λk−1

)
satisfies in the weak sense (3), and we write A ∈ C (f), if∫

Ω

〈A; δh〉 =

∫
Ω

〈f ;h〉 for every h ∈ C∞
(
Ω; Λk−1

)
. (5)
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Remark 3 (i) Note that C (f1 − f0) is not empty. Indeed, combining (4) and Theorem 7.2 in [3], there exists
F ∈W 1,p

(
Ω; Λk−1

)
such that F ∈ C(f1 − f0) and δF = 0.

(ii) Note that, when k = 1 the minimization problem (P ) is trivial since, noticing that d is here the
gradient operator, C (f1 − f0) = {F}.

(iii) When k = n the condition (4) has to be replaced by∫
Ω

(f1 − f0) = 0. (6)

Indeed (6) insures that the set C (f1 − f0) is not empty (see e.g. Theorem 7.2 in [3]).

3 The superlinear case

Let γ1, · · · , γ4 > 0 and let c : Λk−1 (Rn)→ R+ be a C1, strictly convex satisfying

γ1 |A|p − γ2 ≤ c (A) ≤ γ3 |A|p + γ4, (7)

The following properties are easily derived (cf. e.g. Chapter 2 in [4]): if c∗ denotes the Legendre transform
of c, then c∗ ∈ C1 and there exist constants β > 0, α1, · · · , α4 > 0 such that

α1 |A∗|q − α2 ≤ c∗ (A∗) ≤ α3 |A∗|q + α4 (8)

and
|∇c (A)| ≤ β

(
|A|p−1

+ 1
)

and |∇c (A∗)| ≤ β
(
|A∗|q−1

+ 1
)
. (9)

Let 1 ≤ k ≤ n− 1, f0, f1 ∈ Lp
(
Ω; Λk

)
be two k−forms such that, in the weak sense

f := f1 − f0 satisfies (4) (i) and df0 = df1 = 0 in Ω. (10)

We are mostly interested in the symplectic case, which means that k = 2 (but most of this paper will work
for any k), n = 2m and f0 and f1 satisfy, in addition to the previous hypotheses,

rank [f0] = rank [f1] = 2m.

The other relevant, and by now classical, problem is the case of volume forms where k = n and f0 · f1 > 0 in
Ω, where we have identified the n−forms with scalar functions. Note that in this case the conditions (10) are
automatically fulfilled. They have to be replaced by (6).

3.1 Existence of a minimizer

Theorem 4 If 1 ≤ k ≤ n− 1 then there exists a unique minimizer A ∈ Lp
(
Ω; Λk−1

)
of (P).

(i) It satisfies in the weak sense
δ(∇c

(
A
)
) = 0 in Ω. (11)

(ii) If we further assume that c (A) = 1
2 |A|

2
, then A has the optimal regularity; namely, let l be an integer,

0 < α < 1 and 1 < r <∞, then

A ∈

{
Cl+1,α

(
Ω; Λk

)
if f1 − f0 ∈ Cl,α

(
Ω; Λk

)
W l+1,r

(
Ω; Λk

)
if f1 − f0 ∈W l,r

(
Ω; Λk

)
.

(12)

Proof Step 1. Existence and uniqueness of a minimizer in (P) is given by standard methods of the calculus of
variations (cf. e.g. [4]). Indeed, the growth condition (7) and the convexity of c ensures that A→

∫
Ω
c(A)dx

is weakly lower semicontinuous on Lp(Ω; Λk−1) and its sub–level subsets are weakly compact. By Remark 3,
Lp(Ω; Λk−1)∩C (f1 − f0) 6= ∅. Furthermore, the latter set is weakly closed. Hence, (P) has a minimizer Ā over
C (f1 − f0) which turns out to be in Lp(Ω; Λk−1) ∩ C (f1 − f0) . The strict convexity of c ensures uniqueness
of the minimizer.
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Step 2. Let h ∈ C∞0
(
Ω; Λk−2

)
. Then A+ ε dh ∈ C (f1 − f0) . The growth condition on |∇c| in (9) ensures

that the real valued function ε →
∫

Ω
c
(
A+ ε dh

)
is differentiable at 0. Since it achieves its minimum there,

its derivative must vanish, which is precisely (11).

Step 3. We assume now that c (A) = 1
2 |A|

2
and prove (ii) only for Hölder spaces, since the proof in the

other case is similar. By Theorem 7.2 [3], there exists F̄ ∈ Cl+1,α
(
Ω; Λk−1

)
such that F ∈ C(f1 − f0) and

ν ∧ F̄ = 0 on ∂Ω. We use (i) to conclude that d(F̄ − Ā) = 0 in Ω, δ(F̄ − Ā) = 0 in Ω and ν ∧ (F̄ − Ā) = 0 on
∂Ω. Hence, by Theorem 6.5 [3], F̄ = A , which concludes the proof.

Remark 5 (i) When c (A) = 1
p |A|

p
with 1 < p < 2, we conjecture that A ∈ C0,α, for some α > 0, is in

general the best regularity that can be expected. Indeed, it is proven in [8] that when q 6= 2, the solution to

d
(
δh̄
∣∣δh∣∣q−2

)
= 0

satisfies h̄ ∈ C0,α locally for some α > 0. One can anticipate that it should be possible to extend this result
to the non-zero right hand side f1− f0 . Note also that C0,α is, in general, the optimal regularity for δh when
the system of equations reduces to the so–called q−Laplacian scalar equation.

(ii) The same analysis is valid when k = n under the natural hypothesis (6).

Theorem 6 The maximum of D over {h ∈ W 1,q(Ω,Λk) : |δh| ≤ 1} is achieved at h̄ such that ∇c(Ā) = δh̄
and it can moreover be assumed to verify dh̄ = 0 in Ω and ν ∧ h̄ = 0 on ∂Ω. Furthermore, (P) and (D) are
dual of each other.

Proof Since Ā ∈ Lp(Ω; Λk−1), the growth condition on |∇c| in (9) and that on c in (7) imply ∇c(Ā) ∈
Lq(Ω; Λk−1). We use (11) and Theorem 7.2 [3] to find h̄ ∈ W 1,q(Ω,Λk) such that ∇c(Ā) = δh̄ in Ω, dh̄ = 0
in Ω.

Let h ∈W 1,q(Ω,Λk) and A ∈ C(f1− f0). We first use that c and c∗ are Legendre transform of each other,
we then use the fact that A ∈ C(f1 − f0) to obtain∫

Ω

(
c(A) + c∗(δh)

)
dx ≥

∫
Ω

〈A; δh〉dx =

∫
Ω

〈f1 − f0;h〉dx. (13)

The inequality in (13) becomes an equality if and only if (A, δh) = (Ā, δh̄). Rearranging, we have proven that
I(A) > D(h) and equality holds if and only if ∇c(Ā) = δh̄.

Definition 7 For f ∈ C(0) and f0, f1 as above, we define

|f |p = inf
A∈C(f)

(∫
Ω

|A|p
)1/p

, Mp (f0, f1) = |f1 − f0|p .

Recall that C (f1 − f0) is the set of (k − 1)−forms A ∈ L1
(
Ω; Λk−1

)
verifying, in the weak sense,

dA+ f1 − f0 = 0 in Ω and ν ∧A = 0 on ∂Ω.

The first claim in Proposition 8 implies the second one. When p = 1, C(f) has to be replaced by the set
of currents (cf. Section 4).

Proposition 8 (Metrics for k−forms) Let 1 ≤ p <∞. Then |·|p is a norm and Mp (·, ·) is a distance.

Remark 9 (i) When 1 < p <∞ then there exists a unique geodesic of Mp of minimal length connecting f0

to f1. It is independent of p and is given by (1− t)f0 + tf1.
(ii) When k = n, M2 has been studied by Brenier [2] and M1 is the Monge–Kantorovich metric [1] [7].
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4 The case of linear growth

Here, f0, f1 ∈ Lp
(
Ω; Λk

)
are still two k−forms such that (10) holds in the weak sense. In this section, we

plan to replace the strictly convex smooth super linear cost c(A) of the previous section by the “linear cost”
|A|. In that case we expect (1) to have multiple solutions. We postpone the study of the question, which is
to characterize the optimal paths (f̄ , Ā) such that f̄ 6≡ (1− t)f0 + tf1, to [5].

Definition 10 A (k − 1)−current A on Ω is a linear form on Cc
(
Rn; Λk−1

)
whose support is contained in

Ω and whose total mass is finite. By Riesz representation theorem, there exists a collection of
(
n
k−1

)
signed

Radon measures Ai1···ik−1
, 1 ≤ i1 < · · · < ik−1 ≤ n, supported by Ω with finite total mass that represents A

in the following sense:

A (f) =
∑

1≤i1<···<ik−1≤n

∫
Ω

fi1···ik−1
Ai1···ik−1

(dx) =:

∫
Ω

〈A (dx) ; f〉,

when
f =

∑
1≤i1<···<ik−1≤n

fi1···ik−1
dxi1 ∧ · · · ∧ dxik−1 ∈ Cc

(
Rn; Λk−1

)
.

Define

||A|| := sup
f

{
|A (f) | : f ∈ Cc (Rn) : ‖f‖L∞ ≤ 1

}
=

∫
Ω̄

|A|. (14)

Definition 11 The set C∗ (f1 − f0) is the set of (k − 1)−currents A on Ω such that∫
Ω

〈A (dx) ; δh〉 =

∫
Ω

〈f1 − f0;h〉 for every h ∈ C1
(
Ω; Λk

)
. (15)

We have C (f1 − f0) ⊂ C∗ (f1 − f0) and so, by Remark 3 (i), theses sets are not empty. We define F∞ to
be the set of h ∈ ∩s≥1W

1,s
(
Ω; Λk

)
such that ‖δh‖L∞ ≤ 1. We set

I∗1 (A) = ||A|| : A ∈ C∗ (f1 − f0) , and D∞ (h) =

∫
Ω

〈f1 − f0;h〉 , h ∈ F∞.

We problem at hand, which we denote by (P ∗1 ), consists in minimizing I∗1 over C∗ (f1 − f0). We denote by
(D∞) the problem which is to maximize D∞ over F∞.

Let r ∈ (1, p) and r′ = r/(r − 1) be its conjugate exponent. Since f0, f1 ∈ Lr(Ω; Λk) we can apply the
results of Section 3 to c(A) = |A|r/r and denote by Ar the unique minimizer of (P) and by hr the unique
maximizer of (D).

Theorem 12 (i) Up to a subsequence, (Ar)r converges weak ? to some A∗1 ∈ C∗ (f1 − f0) and (hr)r converges
weakly to some h∞ in W 1,s, for every s ∈ (1,∞), as r tends to 1. Moreover ‖δh∞‖L∞ ≤ 1.

(ii) A∗1 minimizes (P ∗1 ) , h∞ maximizes (D∞) and duality holds, i.e.

I∗1 (A∗1) = inf (P ∗1 ) = sup (D∞) = D∞ (h∞) .

Proof Step 1. Let F ∈ W 1,p
(
Ω; Λk−1

)
be given by Remark 3. For r < p, we first use Hölder inequality,

then Theorem 6 to obtain Ar|Ar|r−2 = δhr and the minimality property of Ar to obtain

||F ||rLr ≤ ||F ||rLp |Ω|1−
r
p , ||δhr||r

′

Lr′ = ||Ar||rLr , ||Ar||Lr ≤ ||F ||Lr . (16)

The first and last inequalities in (16) prove that {||Ar||Lr : r ∈ (1, p)} and so, {||Ar||L1 : r ∈ (1, p)} are
bounded by a constant C. Thus, up to a subsequence, (Ar)r converges narrowly to a (k − 1)−current A∗1
on Ω. We conclude that A∗1 ∈ C∗ (f1 − f0) by using the fact that since Ar ∈ C(f1 − f0), we have for any
h ∈ C1

(
Ω̄; Λk

) ∫
Ω

〈f1 − f0;h〉 = lim
r→1

∫
Ω

〈Ar; δh〉 =

∫
Ω

〈A∗1 (dx) ; δh〉 .
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Step 2. If s ≤ r′ then by Hölder inequality ||δhr||Ls ≤ ||δhr||Lr′ |Ω|
1
s−

1
r′ . This, together with (16) implies

||δhr||Ls ≤ ||F ||
r
r′
Lp |Ω|

r−1
r −

r−1
p . (17)

Hence, {||δhr||Ls}r is bounded by a constant Cs depending on s but independent of r < s/(s − 1). Since
dhr = 0 in Ω and ν ∧ hr = 0 on ∂Ω, Theorem 5.21 [3] yields that {hr}r is weakly pre–compact in W 1,s.
Hence, up to a subsequence, {hr}r converges to some h∞ weakly in W 1,s. By a diagonal sequence argument,
we can choose a common subsequence for any s ∈ {n+ 1, n+ 2, · · · } to obtain that h∞ is independent of s.
The Sobolev imbedding theorem yields that up to a subsequence (hr)r converges uniformly to h∞. Letting r
tend to 1 in (17) we have ||δh∞||Ls ≤ 1 for s large enough. Hence, ‖δh∞‖L∞ ≤ 1. These show that (i) holds.

Step 3. The proof of the fact that the graph of I∗1 is above that of D∞ can be given as in (13). We use first
the duality (P)=(D) for c(A) = |A|r/r and then the second identity in (16) to obtain that

∫
Ω
〈f1−f0;hr〉dx =

||Ar||rLr . Thus, by the weak lower semi–continuity of the total variations,∫
Ω

|A∗1| (dx) ≤ lim
r→1+

∫
Ω

|Ar| ≤ lim
r→1+

||Ar||r|Ω|
1
r′ = lim

r→1+

(∫
Ω

〈f1−f0;hr〉dx
) 1

r |Ω| 1r′ =

∫
Ω

〈f1−f0;h∞〉dx. (18)

Thus, since the graph of I∗1 is above that of D∞ and (18) reads off D∞(h∞) ≥ I∗1 (A1), then (ii) holds.
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