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1 Introduction

The topic of exponential sums entered firmly into the mainstream of number
theory with the work [We] of H. Weyl. Although today very general sums

∑

x

e (F (x)) , e(z) = exp (2πiz) ,

are studied, Weyl was concerned with the case of F being a polynomial and,
whether x runs over a segment of integers, elements of a finite field, or some
other set of points, such sums are still referred to as “Weyl sums”.

An important instance is provided by the Weyl sum over roots of quadratic
congruences:

(1.1) Wh(D; c) =
∑

b(mod c)
b2≡D(mod c)

e

(

hb

c

)

.

The most powerful methods for handling these sums exploit the modern
theory of automorphic forms; see [DFI1] for spectral aspects and [DIT] for
more arithmetical connections.

The sum (1.1) has only a few terms, bounded by the divisor function, so
there is not much room for cancellation, but for applications there is a lot of
interest in bounds for sums of these as the modulus c varies, say

(1.2) Wh(D) =
∑

c≡0 (mod q)

f(c)Wh(D; c) ,
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where f is a nice test function.

The best results to date [By], [DFI1], are extremely strong when the dis-
criminant D is fixed, or at least small relative to the modulus. Our main goal
is to obtain bounds which demonstrate such cancellation, even if relatively
little, but for D as large as we can. Such a saving, even extremely modest in
size, can be crucial for applications. Throughout the paper we assume that D
is a positive fundamental discriminant (apart from some remarks and state-
ments concerning negative discriminants in the final section). For simplicity,
we only give details of proof for D odd, a condition that may be removed
by suitable modifications of the arguments. Extensions to non-fundamental
discriminants are also possible. We prove:

Theorem 1.1. Let h > 1, q > 1 and D a positive (odd) fundamental dis-
criminant. Let f(y) be a smooth function supported on Y 6 y 6 2Y with
Y > 1, such that

(1.3) |f(y)| 6 1, y2|f ′′(y)| 6 1 .

Then

(1.4) Wh(D) ≪ h
1
4 (Y + h

√
D)

3
4 D

1
8
− 1

1331 ,

where the implied constant is absolute.

Here, the parameter h (the frequency) is not very important to us, never-
theless we manage to give an explicit dependence. A similar remark applies
to the divisor q. What is important is the relation between the size Y of the
moduli and that of the discriminant D for which the result exhibits cancel-
lation; namely, for h and q fixed,

Wh(D) ≪ Y 1−1/1331· 665 if Y > D
1
2
− 1

1332 .

Note that the result retains its significance even when Y is somewhat smaller
than

√
D. Since the class number is frequently as large as

√
D one cannot

hope to achieve a result covering this wide a range by using any method which
involves decomposing the sum into contributions from individual classes.

The spectral theory enters our problem by way of Kloosterman sums (see
Section 2). Let K(m, n; c) be the Kloosterman sum

(1.5) K(m, n; c) =
∑

d(mod c)

εd

( c

d

)

e

(

md̄ + nd

c

)
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for c > 0, c ≡ 0(mod 4), where εd = 1, i according as d ≡ 1(mod 4) or d ≡
3(mod 4) and

(

c
d

)

denotes the extended Jacobi symbol as defined in Section
6. These are the Kloosterman sums which appear in the theory of half-
integral weight modular forms with respect to the classical theta multiplier,
see Section 2.

In order to prove Theorem 1.1 we require a bound for a sum of these,
namely for

(1.6) Kg(m, n) =
∑

c≡0(mod q)

c−1K(m, n; c)g

(

4π
√

mn

c

)

,

where g is a nice test function. Specifically, we prove

Theorem 1.2. Let m > 1, n > 1, q > 4, 4 | q, n squarefree. Let g(x) be a
smooth function, supported on X 6 x 6 2X with X > 0, such that

(1.7) |g(x)| 6 1, x2|g′′(x)| 6 1.

Then we have

(1.8) Kg(m, n) ≪
(

X− 1
4 + X

1
2
+ε
)

(mn)
1
4 n−1/1330τ(m) log 2m ,

where the implied constant depends only on ε.

We remark that, in the sum (1.6) one can easily introduce the extra
restriction (c, δ) = 1 by means of the Möbius function. Then, the upper
bound (1.8) remains true if we introduce an extra factor τ(δ).

We give four arithmetic applications of Theorem 1.1. Weyl sums were
originally architected by him for the study of uniform distribution of se-
quences modulo one. Hence, it is natural to give a result in this spirit as our
first application.

Theorem 1.3. Let D > 1, D ≡ 1 (mod4), D squarefree, and χD(n) = (D
n
).

Let q be a positive integer, q ≡ 0 (mod 4), such that D ≡ 1 (mod 8) if 8|q and

χD(p) = 1 if p | q, p 6= 2 .
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For 0 6 α < β 6 1 and x > 1, define N(x; α, β) to be the number of fractions
b/c in the segment [α, β] with 1 6 c 6 x, c ≡ 0 (mod q) and b (mod c), b2 ≡
D (mod c). Then we have

(1.9) N(x; α, β) = (β − α)
3

π2
R(q) xL(1, χD) + O

(

(x +
√

D) x− 1
7987

)

,

where

R(q) =
[

2 + (2, q/4)
] 2ω(q)

q

∏

p|q

(

1 +
1

p

)−1

and the implied constant is absolute. In particular, R(4) = 1.

Note that the asymptotic formula (1.9) is meaningful if

x > q D
1
2
− 1

16000 .

Of course, we believe that the study of such exponential sums with wide
uniformity in the discriminant (positive or negative) is of interest on its
own, as is the case with many other arithmetic quantities. But actually, the
primary motivation by which we were originally drawn to the problem comes
from three specific external sources, all of which are concerned with positive
discriminant.

Let D > 1 be a fundamental discriminant, odd for simplicity, so D ≡
1(mod 4), D squarefree. We consider the indefinite integral binary quadratic
forms with discriminant D.

(1.10) Q(x, y) = ax2 + bxy + cy2, b2 − 4ac = D.

These are primitive, that is (a, b, c) = 1, because D is squarefree. Then, the
roots of Q(x, y)

(1.11) θ1 =
−b −

√
D

2a
, θ2 =

−b +
√

D

2a

are the endpoints of a geodesic in H. This geodesic induces a unique, primi-
tive positively-oriented closed geodesic on the modular surface PSL2(Z)\H,
of length log εD (or 2 log εD if Q is not equivalent to −Q), where

εD = 1
2

(

uD + vD

√
D
)
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and uD, vD is the smallest positive solution of u2 − Dv2 = 4.

Equivalent forms give rise to the same closed geodesic, the corresponding
hyperbolic conjugacy class in PSL2(Z) being that of

(1.12) gQ = ±
(

1
2

(

uD + bvD

)

cvD

−avD
1
2

(

uD − bvD

)

)

.

For more information see the classical paper [Sa] of P. Sarnak,

The closed geodesics of length log εD (or 2 log εD) appear with multiplicity
h(D), the class number of the group of equivalence classes of the forms, which
is also the class number of the field K = Q(

√
D). Recall the celebrated

formula of Dirichlet

(1.13) h(D) log εD = L(1, χD)
√

D.

Hence, it is not difficult to establish an asymptotic formula for the sum
∑

0<D6X

h(D) log εD

(cf [IK]). A deeper problem occurs when the averaging is not ordered by
the discriminant, but instead by the size of the fundamental unit. Here, the
celebrated trace formula of A. Selberg provides an adequate tool leading to

∑

log εD6X

h(D) log εD = X + O
(

X
3
4

)

.

To be precise, the above sum is extended to all positive discriminants, not
only the fundamental ones (see [Sa]).

Our objective is still more difficult because we want to work with each
term individually. One would like to analyze the distribution of the closed
geodesics of a given length, as D tends to infinity. But, because h(D) can be
small (Gauss conjectured that h(D) = 1 indefinitely often) the task seems to
be hopelessly difficult. Therefore we look at the problem from a somewhat
larger perspective.

Every form of our discriminant D is equivalent (under the action of
SL2(Z) as a unimodular transformation of the variables) to some form (1.10)
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with

0 < b <
√

D ,√
D − b < 2|a| <

√
D + b .

(1.14)

These conditions translate in terms of the roots into

(1.15) |θ2| < 1 < |θ1|,
and such a form is called “reduced”. In general such a reduction does not
always determine a unique representative, because some reduced forms can
still be equivalent to each other (cf [Bu]). Nevertheless, it is easy to see that
the number of reduced forms of a given discriminant D > 0 is finite.

Having set the stage, we are now ready to go for our objective. The prob-
lem concerns the distribution of integral points (a, b, c) on the one–sheeted
hyperboloid

(1.16) b2 − 4ac = D

reduced by (1.14). Without losing generality we also assume that

(1.17) a > 0

because the reduction conditions (1.14) depend only on |a|. Let H(D) be the
set of such integral points. By the way, every point in H(D) gives rise to an
integral ideal of Q(

√
D):

a = a Z +
1

2

(

b +
√

D
)

Z ,

of norm Na = a. First, we state the following asymptotic formula.

As D → ∞ over odd fundamental discriminants we have

(1.18) |H(D)| ∼ 6π−2
(

log 2
)
√

D L
(

1, χD

)

.

We want to know how the first root (1.11) varies with points in H(D).
To this end we consider the subset H(D; λ) of points in H(D) (the negatives
of the roots) which satisfy

(1.19) 1 <
b +

√
D

2a
< λ

for any fixed λ > 1. One may say that we are asking how the generators of
integral ideals in Q(

√
D) are distributed. Here is the answer.
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Theorem 1.4. Let λ > 1. Then, as D → ∞ over odd fundamental discrim-
inants we have

(1.20)
|H(D; λ)|
|H(D)| ∼ 1

log 2
log

2λ

λ + 1
.

In other words, the first root (1.11) is equidistributed with respect to the
measure

(1.21) dσ(x) =
1

log 2

dx

x(x + 1)
.

The problem has a long, fascinating history. First, partially successful
attempts were made by B. F. Skubenko [Sk] and Yu. V. Linnik (see Chapter
VI of [Li] and [TV]) by ideas from ergodic theory. These ideas have been
recently revised and developed much further by P. Michel and A. Venkatesh
(see their survey article [MV] in the ICM, Madrid 2006). In the Rutgers
Ph.D. thesis by R. Chelluri [Ch], the Skubenko–Linnik problem was given a
rather different treatment from that here, based on the arguments in [D1].

Our next application is to the solution of a problem posed in [DIT] con-
cerning the asymptotic behavior of cycle integals of the classical modular
function j(z). Recall that j(z) is holomorphic on H, satisfies j(γz) = j(z)
for all γ ∈ SL2(Z), and that j(z) has a simple pole at i∞ with integral
Fourier coefficients

j(z) = e(−z) + 744 + 196884 e(z) + . . . .

More generally, for each integer m > 0 there is a unique modular function
jm(z) that is holomorphic on H and whose Fourier expansion begins

jm(z) = e(−mz) + O
(

e(z)
)

.

Thus,
j0 = 1, j1 = j − 744, j2 = j2 − 1489 j + 159768 , . . . .

The cycle integrals are defined by

TrD(jm) =
1

2π

∑

Q

∫

CQ

jm(z)
dz

Q(z)
,
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where CQ is any smooth curve from any z ∈ H to gQ(z) where gQ was
defined in (1.12) and where the sum is over SL2(Z)-inequivalent forms Q of
discriminant D. It is easily shown (see [DIT]) that TrD(jm) is well-defined.
Our third application of Theorem 1.1 is to give an asymptotic formula for
TrD(jm) for fixed m and large D.

Theorem 1.5. We have

TrD(jm) ∼ −12

π
σ1(m)L(1, χD)

as D → ∞ through (odd) fundamental discriminants.

Here σ1(m) is the usual divisor function
∑

d|m d. Actually, we get a power
saving in D; see Theorem 14.1. Since jm has exponential growth in the cusp
this theorem shows that there is a remarkable amount of cancellation in the
sum of the integrals defining TrD(jm). A version of this result for negative
discriminants was given in [D2] which does have an exponential main term.
Another proof of that result can be given using the methods of this paper. We
refer to [DIT] for further information about TrD(jm) and for its connection
with the Fourier coefficients of mock modular forms.

Some weeks after the June 2010 Beijing lectures on our proofs by one of
us (H. I.), we received a preprint [Ms] from R. Masri, devoted to the [DIT]
problem about the cycle integrals and based on the results of [D1].

Our final application is the resolution of a problem, postponed in Section
14.8 of [FI], concerning prime points on the sphere. One knows [D1] that, as
N → ∞ through suitable residue classes modulo eight, the integer points on
the sphere

(1.22) a2 + b2 + c2 = N

are equidistributed.

It would be wonderful to be able to make a simliar statement (subject to
the appropriate congruence conditions) for points having prime co-ordinates
(a, b, c). Such a result seems hopelessly far off at the curent state of affairs so
an easier question was proposed in [FI], to estimate the number of solutions
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with at least one prime co-ordinate. Even this is too much to handle uncon-
ditionally but, subject to some well-known conjectures, the problem becomes
accessible.

The semi-linear sieve allows one to approach this question in the form
of a slightly modified counting. Instead of recording the number of solu-
tions of (1.22) with c = p a prime we count only (so without multiplic-
ity) the number of primes which occur. Thus we are interested in S(N) =
∑

p<
√

N B(N − p2) where B(n) is the characteristic function of integers rep-
resentable as a sum of two squares.

Theorem 1.6. Let N ≡ 2 (mod 4), N 6≡ 1 (mod 3). Assume the Riemann
Hypothesis holds for the Dirichlet L-functions attached to the character χN

and also to the same character twisted by the non-principal character of mod-
ulus four. Assume that the Elliott-Halberstam conjecture holds. Then we
have

S(N) ≍ S(N)N(log N)−
3
2 .

Here, S(N) is positive arithmetic function of modest size (under RH it is
bounded above and below by different powers of log log N). For the precise
definition, and for infomation about the semi-linear sieve and the Elliott-
Halberstam conjecture concerning the distribution of primes in arithmetic
progressions, see [FI].

Theorem 1.6 is stated in [FI] as Theorem 14.15. The upper bound is
relatively standard and holds unconditionally but the lower bound was proved
there subject to a Proposition 14.16 on Weyl sums, the demonstration of
which was postponed. Here, we finish that job.

To conclude this section we describe the plan of the paper. We begin in
Section 2 with a survey of the automorphic theory required for our proofs.
Although standard for a few readers, the material is widely scattered and
not easily accessible, especially as it concerns delicate aspects to the extent
it applies to multiplier systems.

The third section exposes a very neat inequality involving a trio of sums
of Kloosterman sums. It is physically reminiscent of the Cauchy inequality,
which indeed is one ingredient in its proof. However, the complete demon-
stration is highly non-trivial, requiring the full spectral resolution of the space
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of automorphic forms. This result provides a decisive step in our arguments.
Once this Cauchy inequality is granted, no further use of the spectral the-
ory is needed. What has been accomplished is the reduction of Kloosterman
sums with parameters m, n to those of m, m and of n, n. This has the ef-
fect, at the Weyl sum level, of producing quadratic polynomials which are
reducible. It is no surprise that, in such a case, we can explicitly parametrize
the solutions.

Sections 4 and 5 are more analytic in nature. They deal with the construc-
tion of various test functions and their integral transforms. Both the con-
struction and the proofs are quite delicate because we need to come up with
functions which simultaneously satisfy a number of positivity constraints.

All of the sums we deal with, whether Weyl sums or Kloosterman sums,
are related to classical Salié sums by the reciprocity law. Section 6 provides
the relevant transformations and estimates. The whole project is powered
by estimates for sums of Salié sums, which we take from our earlier paper
[DFI2], albeit in slightly modified form, as presented in Section 7.

As the Cauchy inequality of Section 3 reduces sums K(m, n) to the prod-
uct of sums K(m, m) and K(n, n) it is sufficient to make a crucial saving
in just one of these factors. Hence we can afford to give two different treat-
ments, a direct method in Section 8 which uses only bounds for the individual
Kloosterman sums and, in Section 9, the more sophisticated bound which ap-
plies the results of Section 7.

In Section 10 we input the bounds of the two previous sections into the
Cauchy inequality to obtain Theorem 1.2. In Section 11 we move from
Kloosterman sums to Weyl sums to deduce Theorem 1.1 from Theorem 1.2.

We next turn to applications of Theorem 1.1. In Section 12 we use it to
deduce Theorem 1.3. At the end of the section we provide some L-function
computations which are needed in this proof and as well in the following
Section 13 where we treat the Linnik-Skubenko problem. Then, in Section 14
we still continue to apply Theorem 1.1, now to the equidistribution problem
for the cycle integrals. In Section 15 we make some generalizations of the
previous arguments (involving Fourier expansions about various cusps) and
of Theorem 1.1, resulting in a version which fully covers the needs of the
application to the problem of prime points on the sphere. In the final Section
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16 we make some remarks and statements about the analogues to Theorems
1.1 and 1.2 for negative discriminants D.

2 Spectral Decomposition of Kloosterman Sums

In this section we give an overview of the spectral theory of automorphic
forms with applications to Kloosterman sums. Most of the facts are standard
and can be found in the original sources [Ma], [Ro], [Se]. We also recommend
[He], [DI], [I2], [DFI3].

Although we only need the theory of forms on the group Γ0(q) with
q ≡ 0(mod 4) with respect to the theta multiplier of weight k = 1

2
, our

presentation looks more transparent in a more general setting.

The group SL2(R) acts on H = {z = x + iy; x ∈ R, y ∈ R+} by

gz =
az + b

cz + d
, if g =

(

a b
c d

)

∈ SL2(R)

For any g ∈ SL2(R) we define the function jg : H → C∗ by

jg(z) =
cz + d

|cz + d| = ei arg(cz+d).

The powers zs are defined for every z ∈ C∗ and s ∈ C by

zs = es(log |z|+i arg z)

with log |z| ∈ R and −π < arg z 6 π. In particular

(jg(z))k =

(

cz + d

|cz + d|

)k

= eik arg(cz+d).

We are interested only in k real. For every g, h ∈ SL2(R) we set

σk(g, h) = jgh(z)−kjg(hz)kjh(z)k.

This product does not depend on z ∈ H. Note that

σk(g, h) = 1 if g =

(

∗ ∗
0 1

)

, h =

(

∗ ∗
0 1

)

,
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σk(g, h) = e2πik if g =

(

∗ ∗
0 −1

)

, h =

(

∗ ∗
0 −1

)

.

Let Γ be a subgroup of SL2(R) which is discrete and has fundamental do-
main of finite volume with respect to the invariant measure dµz = y−2 dxdy.
For simplicity let us assume that

(

−1 0
0 −1

)

∈ Γ.

Furthermore let us assume that ∞ is a cusp for Γ and its stability group
consists of translations z → z + b by the integers b, that is

Γ∞ =

{(

1 b
1

)

,

(

−1 b
−1

)

; b ∈ Z

}

.

A multiplier of weight k on Γ is any function ϑ : Γ → C∗ satisfying the
following conditions:

|ϑ(γ)| = 1

ϑ(γδ) = σk(γ, δ)ϑ(γ)ϑ(δ)

for every γ, δ in Γ, and

ϑ

((

−1 0
0 −1

))

= e−πik.

This last one is called the consistency condition. Note that

ϑ

((

1 0
0 1

))

= 1.

We see that the complex conjugate ϑ̄ is a multiplier of weight −k. If
ϑ1, ϑ2 are multipliers of weight k1, k2 respectively, then ϑ1ϑ2 is a multiplier
of weight k1 + k2. Finally, if ϑ is a multiplier of weight k, then it is also a
multiplier of every weight ℓ ≡ k(mod 2). For this reason the Kloosterman
sum (our main object of interest) depends only on k(mod 2).

A function f : H → C is called automorphic on Γ of weight k with respect
to the multiplier ϑ if for every γ ∈ Γ it satisfies the equation

jγ(z)−kf(γz) = ϑ(γ)f(z) .
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Let Ak(Γ, ϑ) denote the linear space of such automorphic functions. Let
Lk(Γ, ϑ) be the subspace of those which are square integrable on the funda-
mental domain Γ \ H with respect to the measure

dµz = y−2dxdy.

Therefore, Lk(Γ, ϑ) is a Hilbert space with the inner product

〈f, g〉 =

∫

Γ\H

f(z)ḡ(z)dµz.

Note that this integral does not depend on the choice of the fundamental
domain.

The Laplace operator

∆k = y2

(

∂2

∂x2
+

∂2

∂y2

)

− iky
∂

∂x

acts on smooth automorphic functions, that is, if f ∈ Ak(Γ, ϑ) is smooth,
then ∆kf ∈ Ak(Γ, ϑ). If f ∈ Ak(Γ, ϑ) is an eigenfunction of ∆k, say

(∆k + λ)f = 0 ,

then such an f is called an automorphic form of eigenvalue λ. Here, λ can
be any complex number. We write

λ = s(1 − s), s = 1
2

+ it, so λ = 1
4

+ t2 .

Here, t can be any complex number (not necessarily real). Note that t and
−t give rise to the same eigenvalue λ.

From now on we assume that

0 6 k < 2 .

Let Bk(Γ, ϑ) be the subspace of Ak(Γ, ϑ) which consists of smooth functions
f such that both f and ∆kf are bounded. Clearly Bk(Γ, ϑ) ⊂ Lk(Γ, ϑ) and
one can show that Bk(Γ, ϑ) is dense in Lk(Γ, ϑ). Moreover, for f, g ∈ Bk(Γ, ϑ)
we have

〈∆kf, g〉 = 〈f, ∆kg〉 ,
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which means ∆k is a symmetric operator on Bk(Γ, ϑ). For any f ∈ Bk(Γ, ϑ),
we have

〈f,−∆kf〉 >
k
2

(

1 − k
2

)

〈f, f〉 ,

which means −∆k is bounded from below by k
2

(

1 − k
2

)

> 0. Therefore, by
a theorem of Friedrichs, the operator −∆k admits a self–adjoint extension
(which we also denote by −∆k), and by a theorem of von Neumann the space
Lk(Γ, ϑ) has a complete spectral resolution with respect to −∆k.

There is a point spectrum (of finite multiplicity)

k
2

(

1 − k
2

)

6 λ0 6 λ1 6 . . .

and a continuous spectrum covering
[

1
4
,∞
)

with constant multiplicity. The
basic eigenpackets of the continuous spectrum are provided by the Eisenstein
series Ea(z, s) on the critical line Re s = 1

2
which are defined for every singular

cusp a.

Let a be a cusp of Γ and Γa = {γ ∈ Γ; γa = a} its stability group. There
exists σa ∈ SL2(R) such that

σa∞ = a, σa Γ∞ σ−1
a

= Γa .

The matrix σa (we call it a scaling matrix) is unique up to a translation ( 1 u
1 )

from the right side. While Γ∞ is generated by ( 1 1
0 1 ) and − ( 1 1

0 1 ), the group
Γa is generated by γa and −γa with

γa = σa

(

1 1
1

)

σ−1
a

.

We say that the cusp a is singular with respect to the multiplier ϑ if

ϑ(γa) = 1.

Recall that, by our assumption, the cusp ∞ is singular.

For every singular cusp a (and only for these) the Eisenstein series is
defined by

Ea(z, s) =
∑

γ∈Γa\Γ
ϑ(γ)σk(σ

−1
a , γ)jσ−1

a γ(z)−k(Im σ−1
a

γz)s .
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The series converges absolutely in Re s > 1 and it has meromorphic con-
tinuation to the whole complex s–plane. In the half–plane Re s >

1
2

the
Eisenstein series is holomorphic except for a finite number of simple poles at
s = sj say, with

1
2

< sj 6 1 .

The points sj do not depend on the variable z ∈ H, but the residues may
depend on z. These residues are automorphic forms of eigenvalue λj =
sj(1 − sj) < 1

4
. They may not be bounded functions, yet they are square–

integrable, so they occur in the discrete spectrum. Since λj >
k
2

(

1 − k
2

)

we
have sj = 1

2
+ itj with 0 < itj 6

1
2
|k − 1|.

The Eisenstein series Ea(z, s) on the line s = 1
2

+ it, with t ∈ R are not
square–integrable and they form eigenpackets of the continuous spectrum
with the spectral measure being (4π)−1dt.

The remaining part of Lk(Γ, ϑ), which is orthogonal to the Eisenstein
parts, is spanned by cusp forms. Recall that an automorphic form uj(z) is a
cusp form if

∫ 1

0

uj(σaz)dx = 0

for every singular cusp a. This means that the zero–th term in the Fourier
expansion of uj(z) at singular cusps vanish identically. This property makes
uj(z) bounded, so square–integrable, with its eigenvalue satisfying

λj = sj(1 − sj) >
k
2

(

1 − k
2

)

.

Hence sj = 1
2

+ itj with either tj real or purely imaginary with

0 < itj 6
1
2
|k − 1| .

The cusp forms with tj purely imaginary are usually called exceptional, be-
cause one believes they do not exist for congruence groups Γ.

Now we are ready to state the following

Theorem 2.1. (Spectral Theorem) Let {uj(z)} be an orthonormal basis of
automorphic forms in the space of the discrete spectrum (including residues of
Eisenstein series and cusp forms). Then, any f ∈ Bk(Γ, ϑ) has the expansion

f(z) =
∑

j

〈f, uj〉uj(z) +
∑

a

1

4π

∫ ∞

−∞

〈

f, Ea

(

∗, 1
2

+ it
)〉

Ea

(

z, 1
2

+ it
)

dt ,
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which converges absolutely.

Next we introduce the Fourier expansion of automorphic forms. This can
be done at every cusp, but it looks nicer at the singular cusps in which case
the frequencies are integers. Actually, we shall only consider here the Fourier
expansion at the cusp ∞ (but see Section 15 for further generalizations).
Throughout, {uj(z)} is an orthonormal basis in the space of the discrete
spectrum. Suppose

(∆k + λj)uj(z) = 0 with λj = sj(1 − sj), sj = 1
2

+ itj .

Then,

uj(z) = ρj(0)y1−sj +
∑

n 6=0

ρj(n)W kn
2|n|

, itj
(4π|n|y)e(nx)

where ρj(n) are complex numbers, called the Fourier coefficients of uj(z).
The zero–th coefficient ρj(0) vanishes if uj(z) is a cusp form.

Similarly, every Eisenstein series has the Fourier expansion

Ea(z, s) = δay
s + ρa(0, t)y

1−s +
∑

n 6=0

ρa(n, t)W kn
2|n|

, it(4π|n|y)e(nx)

for s = 1
2

+ it. Here δ∞ = 1 and δa = 0 if a 6= ∞.

To get some feeling about the size of the Fourier coefficients ρj(n), ρa(n, t)
in the spectral terms and with respect to n, we need to understand the Whit-
taker function Wκ,ν(y). This can be introduced for y > 0 and any complex
numbers κ, ν by the Mellin integral transform of the gamma functions:

Wκ,ν(y) =
ey/2

2πi

∫

(σ)

Γ(u − ν)Γ(u + ν)

Γ(u − κ + 1
2
)

y
1
2
−u du

where σ > |Re ν|. Notice that Wκ,ν(y) is holomorphic in both of the para-
maters κ, ν and it is even in ν. For Re

(

ν − κ + 1
2

)

> 0 we have

Wκ,ν(y) =
yκe−y/2

Γ(ν − κ + 1
2
)

∫ ∞

0

e−xxν−κ+ 1
2

(

1 +
x

y

)ν+κ− 1
2

dx.

For any complex numbers κ, ν we have the asymptotic formula

Wκ,ν(y) ∼ yke−y/2, as y → ∞,
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and in special cases we have

Wκ,κ− 1
2
(y) = yκe−y/2,

W0,ν(y) =
(

y
π

)
1
2 Kν

(

y
2

)

.

The following Fourier integral representation (see (3.384.9) of [GR]) is quite
useful:

Wκ,s(4πy) = π−1(πy)1−sΓ
(

s +
κ

2

)

∫ ∞

−∞

(

1 − ix

1 + ix

)κ

(1 + x2)−se(xy)dx .

Using the spectral theory and estimates for the Whittaker function, one
can show the following estimates:

∑

T−16tj6T+1

∑

N6n62N

|ρj(n)|2
ch(πtj)

≪ T 1−k ,

∑

a

1

4π

∫ T+1

T−1

∑

N6n62N

|ρa(n, t)|2
ch(πt)

≪ T 1−k ,

for all T > 1 and N > 1. The proof is technically quite difficult so we do
not provide it in this review (it is a by–product in the spectral development
of Kloosterman sums). Our purpose in presenting the above estimates is
to give some intuition as to how large are the Fourier coefficients of the
basic automorphic forms in spectral terms. Since the number of eigenvalues
λj = 1

4
+ t2j with T − 1 6 tj 6 T + 1 is about T the above estimate tells us

that
n|ρj(n)|2 ≪ t−k

j ch(πtj)

on average (see also the exact formula for |ρj(1)|2 in Proposition 19.1 of
[DFI3], where k is a positive integer and the multiplier is given by a charac-
ter).

Next we introduce the Kloosterman sums K(m, n; c). In general Klooster-
man sums are associated to pairs of cusps a, b, but we restrict our exposition
only for a = b = ∞. Since the cusp ∞ is assumed to be singular the frequen-
cies m, n are just integers. The modulus c is any positive left–lower entry in
γ = ( ∗ ∗

c ∗ ) ∈ Γ. Given m, n ∈ Z and c > 0 we set

K(m, n; c) =
∑

( a ∗
c d )∈Γ∞\Γ/Γ∞

ϑ̄

((

a ∗
c d

))

e

(

am + dn

c

)

.

17



Estimates for sums of Kloosterman sums will be our main objective. In
general we can only say that |K(m, n; c)| is bounded by the number of terms
of summation, getting

|K(m, n; c)| 6 c2/c1

and
∑

c6X

1

c
|K(m, n; c)| 6 X/c1 ,

where c1 is the smallest positive modulus (see Proposition 2.8 of [I2]). By
the way,

0 < c1 < vol (Γ \ H).

For example, if Γ is the group Γ0(q) the modulus runs over positive integers
c ≡ 0 (mod q), so c1 = q. In this case, much stronger estimates for K(m, n; c)
are available.

We are interested in sums of Kloosterman sums:

(2.1) Kg(m, n) =
∑

c

c−1K(m, n; c)g
(4π

√
mn

c

)

for fixed positive integers m, n and for various test functions g(x) on R+.
Assuming

(2.2) g(x) ≪ x1+ε ,

the series Kg(m, n) converges absolutely. The spectral theory yields a dual
expression for Kg(m, n) as a sum (over the discrete spectrum) and integrals
(over the continuous spectrum) of the Fourier coefficients of basic automor-
phic forms. These have the following shape:

(2.3) Lĝ(m, n) = 4π
√

mn
∑

j

ρ̄j(m)ρj(n)
ĝ(tj)

ch (πtj)
,

(2.4) Mĝ(m, n) = 4π
√

mn
∑

a

1

4π

∫ ∞

−∞
ρ̄a(m, t)ρa(n, t)

ĝ(t)

ch (πt)
dt ,

where ĝ(t) is a holomorphic function in |Im t| 6
1
2
. Note that the above sum

and integral converge absolutely if

(2.5) ĝ(t) ≪ (|t| + 1)k−2−ε .
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In the relation between Kg(m, n) on one side and Lĝ(m, n) + Mĝ(m, n)
on the other side the test function g(x) goes to ĝ(t) through some transfor-
mations which are a combination of the integrals

(2.6) g̃(s) =

∫ ∞

0

Js(x)g(x)x−1 dx.

Here Js(x) is the Bessel function; it satisfies

Js(x) ≪ min(x− 1
2 , xσ)

for σ = Re s > −1
2
. One should view g̃(s) as the coefficient in the projec-

tion of g(x) on Js(x) with respect to the measure x−1 dx. We recommend
Appendix B in [I2] for further illuminating interpretations.

The coefficients g̃(ℓ − 1) give rise to the series

(2.7) g∗(x) =
∑

ℓ>2
ℓ≡k(mod 2)

2(ℓ − 1)g̃(ℓ − 1)Jℓ−1(x) ,

which we call the Neumann series of g(x). Suppose g(x) is smooth on [0,∞)
and it satisfies the following conditions:

(2.8) g(0) = g′(0) = 0 ,

(2.9) g(x), g′(x), g′′(x) ≪ (x + 1)−2−ε .

Then, the Neumann series g∗(x) converges absolutely and uniformly. We
have

(2.10)

∫ ∞

0

Jµ(x)Jν(x)x−1dx =
2 sin π

2
(µ − ν)

π(µ − ν)(µ + ν)

if Re (µ + ν) > 0. Hence, for µ, ν > 0, µ ≡ ν(mod 2) we get

(2.11) 2ν

∫ ∞

0

Jµ(x)Jν(x)x−1dx = δµ,ν .

In view of this orthogonality of Bessel functions one can think of g∗(x) as the
projection of g(x) on the subspace of L2(R2, x−1 dx) which is spanned by the
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Jℓ−1(x) with ℓ ≡ k(mod 2). This subspace is not dense; actually it is rather
thin, so for most nice functions g(x) 6= g∗(x).

We still need to define the function ĝ(t) in the spectral sums (2.3), (2.4).
This is given in (84) of [Pr]. By the functional equation Γ(z)Γ(1−z) sin πz =
π and by the formula

ch 2πt + cos πk = 2 sinπ
(

1−k
2

+ it
)

sin π
(

1−k
2

− it
)

,

we find that

Γ
(

1−k
2

+ it
)

Γ
(

1−k
2

− it
)

(ch 2πt + cos πk) = D(t)−1 ,

where

(2.12) D(t) = 1
2
π−2Γ

(

1+k
2

+ it
)

Γ
(

1+k
2

− it
)

.

Hence, the function ĝ(t) given in (84) of [Pr] can be written as

(2.13) ĝ(t) = i
[

g̃(2it) cos π
(

k
2

+ it
)

− g̃(−2it) cos π
(

k
2
− it

)] D(t)

sh πt
.

Now we are ready to state the following result which is a generalization
of Kuznetsov’s formula due to Proskurin (see (83) of [Pr]).

Proposition 2.2. Let g(x) be a smooth function on [0,∞) which satis-
fies (2.8) and (2.9). Then for m, n > 1 we have

(2.14) γkKg−g∗(m, n) = Lĝ(m, n) + Mĝ(m, n) − δmnIk(g) ,

where

(2.15) Ik(g) =
1

2π

∫ ∞

0

Jk(x)g(x)dx

and

(2.16) γk = e−πik/2 .

Remark: The factor γk belongs naturally to the Kloosterman sums K(m, n; c);
see Lemma 6.2.
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To complete the spectral decomposition of Kg(m, n) we need to add
to (2.14) the contribution of Kg∗(m, n). It turns out that Kg∗(m, n) also
admits an expansion in terms of Fourier coefficients, but of classical holo-
morphic cusp forms of various weights rather than of Maass forms of fixed
weight k.

Let ℓ ≡ k(mod 2), so the multiplier ϑ of weight k is also a multiplier of
weight ℓ. Denote by Sℓ(Γ, ϑ) the linear space of holomorphic cusp forms f(z)
on Γ of weight ℓ, that is satisfying the equation

(2.17) (cz + d)−ℓ f(γz) = ϑ(γ)f(z)

for all γ = ( ∗ ∗
c d ) ∈ Γ. If you wish, putting F (z) = yℓ/2f(z) this equation

takes the familiar shape

(2.18) jγ(z)−ℓF (γz) = ϑ(γ)F (z).

The space of such cusp forms has finite dimension,

dim Sℓ(Γ, ϑ) ≪ ℓ.

Let Bℓ = Bℓ(Γ, ϑ) be an orthonormal basis of Sℓ(Γ, ϑ) with respect to the
inner product

∫

Γ\H

yℓf(z)ḡ(z)dµz.

For every f ∈ Bℓ(Γ, ϑ) we have the Fourier expansion

(2.19) f(z) =

∞
∑

1

ρf(n)(4πn)
ℓ−1
2 e(nz).

We have the following formula of Petersson which was a prototype of that in
Kuznetsov’s work [Ku] for Maass forms.

Proposition 2.3. Let ℓ > 2, ℓ ≡ k(mod 2). For m, n > 1 we have

Γ(ℓ − 1)
∑

f∈Bℓ

ρ̄f(m)ρf (n)

= δm,n + 2πe−πil/2
∑

c

c−1K(m, n; c)Jℓ−1

(

4π
√

mn
c

)

.
(2.20)

21



Note that, because ℓ > 2, the series of Kloosterman sums converges
absolutely. Taking m = n and estimating the right side trivially, we deduce
that

(2.21) Γ(ℓ − 1)
∑

f∈Bℓ

|ρf(n)|2 ≪ 1 ,

where the implied constant depends only on n and the group Γ. This bound
tells us that Γ(ℓ)|ρf(n)|2 is bounded on average with respect to ℓ.

Suppose g(x) satisfies (2.8) and (2.9). Then, one can show that

(2.22)
∑

ℓ

ℓ|g̃(ℓ)| < ∞ .

Multiplying (2.20) through by π−1(ℓ− 1)g̃(ℓ− 1)eπil/2 and summing over
ℓ on the left side we get

∑

ℓ>2
ℓ≡k(mod2)

π−1eπil/2g̃(ℓ − 1)Γ(ℓ)
∑

f∈Bℓ

ρ̄f (m)ρf (n) = eπik/2Nǧ(m, n),

say, where

(2.23) Nǧ(m, n) =
∑

ℓ>2
ℓ≡k(mod 2)

ǧ(ℓ)Γ(ℓ)
∑

f∈Bℓ

ρ̄f (m)ρf (n)

with

(2.24) ǧ(ℓ) = π−1g̃(ℓ − 1)eπi(ℓ−k)/2 .

On the other hand, we obtain δm,nI + Kg∗(m, n) (see (2.7)), where

(2.25) I =
∑

ℓ>2
ℓ≡k(mod2)

π−1(ℓ − 1)g̃(ℓ − 1)eπiℓ/2 .

Since 0 6 k < 2 the condition ℓ > 2 means ℓ = 2a + k with a running over
the positive integers. Then, by the formula 2νx−1Jν(x) = Jν−1(x) + Jν+1(x)
we find that e−πik/2I = Ik(g) is the same as in (2.14). Hence we conclude
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Proposition 2.4. Let g(x) be a smooth function on [0,∞) which satis-
fies (2.8) and (2.9). Then for m, n > 1 we have

(2.26) γkKg∗(m, n) = Nǧ(m, n) + δm,n Ik(g).

Now, adding (2.26) to (2.14) we gladly observe that the diagonal terms
δm,n Ik(g) cancel out and we arrive at the complete formula.

Theorem 2.5. Let g(x) be a smooth function on [0,∞) which satisfies (2.8)
and (2.9). Then for m, n > 1 we have

(2.27) γkKg(m, n) = Lĝ(m, n) + Mĝ(m, n) + Nǧ(m, n).

The decay conditions (2.9) for the test function g(x) can be considerably
weakened, for it suffices that the above series and integrals converge abso-
lutely. Indeed, this can be justified by mollifying g(x) so as to satisfy (2.9)
and then taking the limit which removes the mollifier. Therefore, the condi-
tions on g(x) sufficient for the formula (2.27) to hold are (2.8) together with
the following estimates:

(2.28) g̃(2it) ≪ t−2−ε ch(πt), t > 1 ,

(2.29) g̃(ℓ) ≪ ℓ−2−ε, ℓ > 1 .

The first estimate (2.28) implies (2.5) and the second estimate (2.29) im-
plies (2.22).

3 Cauchy’s Inequality for Kloosterman Sums

Applying Cauchy’s inequality to the right side of (2.27) we obtain

(3.1) |Kg(m, n)|2 6 R(m)R(n)
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where

(3.2) R(m) = L|ĝ|(m, m) + M|ĝ|(m, m) + N|ǧ|(m, m).

If one could find a legitimate function G(x), let us call it a majorant of g(x),
such that

(3.3) |ĝ(t)| 6 Ĝ(t), for t > 0 and for 0 < it 6
1
2
|k − 1|

and also

(3.4) |ǧ(ℓ)| 6 Ǧ(ℓ), for ℓ > 2, ℓ ≡ k(mod 2),

then
R(m) 6 γk KG(m, m),

R(n) 6 γk KG(n, n).

These estimates would yield the neat Cauchy-like inequality

|Kg(m, n)|2 6 |KG(m, m)||KG(n, n)|.

In practice it is not difficult to construct a nice majorant G(x) of g(x)
which satisfies (3.3) and (3.4), apart from a single value of ℓ for which (3.4)
fails because Ǧ(ℓ) is negative at this exceptional point. However this failure
can be easily overcome as follows. We have

N|ǧ|(m, m) 6 NǦ(m, m) +
(

|ǧ(ℓ)| − Ǧ(ℓ)
)

Γ(ℓ)
∑

f∈Bℓ

|ρf (m)|2

by borrowing and returning the troubled term (see (2.23)). Let c be any
number such that

(3.5)
(

|ǧ(ℓ)| + |Ǧ(ℓ)|
)

(ℓ − 1) 6 c.

Then by Proposition 2.3 for m = n, the correcting term above is bounded by

c
(

1 ± 2πγk KJℓ−1
(m, m)

)

with the sign ± chosen according to e−πiℓ/2 = ±γk. This gives

R(m) 6 γk KG(m, m) ± 2πc γk KJℓ−1
(m, m) + c = γk KH(m, n) + c
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where

(3.6) H(x) = G(x) ± 2πc Jℓ−1(x).

Hence we conclude the following true Cauchy inequality:

(3.7) |Kg(m, n)|2 6 | γk KH(m, m) + c || γk KH(n, n) + c |.

We conclude this section with several remarks. First of all, the failure
(see the next section) in finding a total majorant G(x), that is without an
exceptional point, seems to be an intrinsic issue. Do not neglect a number
of other properties which G(x) must satisfy, such as those which warrant the
absolute convergence of sums of Kloosterman sums as well as the spectral
sums over the Fourier coefficients. Therefore, an inequality of type (3.7)
without the positive constant c seems to be unrealistic (because somewhere
the diagonal term δm,nIk(g) bubbles under the surface!).

Next, one can enquire as to what is the benefit of having the Cauchy
inequality (3.7). Our point is that a general sum of Kloosterman sums
K(m, n; c) is majorized by those with m = n and the latter, K(m, m; c), can
be treated directly without an appeal to the theory of automorphic forms;
well, at least in the case of the theta multiplier, which is our primary interest
in this work. Although K(m, n; c) with m = n can be evaluated very explic-
itly we must say the job does not stop here. This only allows us to transform
KG(m, m) into bilinear forms with Kloosterman type fractions and the es-
timation for such bilinear forms is the life-saving ingredient. For this we
borrow the relevant results from [DFI2], which in turn were obtained by a
double amplification technique.

4 Construction of the Majorant Function

We are looking for a smooth function G(x) on [0,∞) with

(4.1) G(0) = G′(0) = 0

which satisfies

(4.2) G̃(2it) ≪ t−2−ε ch(πt) if t > 1 ,
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(4.3) G̃(ℓ) ≪ ℓ−2−ε if ℓ > 1 .

At the same time we also want Ĝ(t) and Ǧ(ℓ) to be positive and not too
small in the ranges

(4.4) t > 0 or 0 < it 6
1
2
|k − 1| ,

(4.5) ℓ > 2, ℓ ≡ k(mod 2) ,

respectively. We do however exclude one value of ℓ for which Ǧ(ℓ) can be
negative.

We search among functions of the type

(4.6) G(x) = x−αJβ(x), with α > 0, β > α + 1

where α, β will be further restricted in due course. First we compute

(4.7) G̃(s) =

∫ ∞

0

Js(x)Jβ(x)x−α−1 dx .

By (6.574.2) of [GR] and using the functional equation for the last gamma
factor in the denominator of (6.574.2) we get

(4.8) G̃(s) = −π−12−α−1Γ(α + 1)P (s) sin π
2
(s − β + α)

where

(4.9) P (s) = Γ
(

s+β−α
2

)

Γ
(−s+β−α

2

)

Γ
(

s+β+α
2

+ 1
)−1

Γ
(−s+β+α

2
+ 1
)−1

provided Re s > α−β. Note that P (s) is even. Next, applying the functional
equation for the first gamma factor in the denominator of (6.574.2) we get
another formula

(4.10) G̃(s) = π−12−α−1Γ(α + 1)Q(s) sin π
2
(s − β − α) ,

where

(4.11) Q(s) = Γ
(

s+β−α
2

)

Γ
(

s−β−α
2

)

Γ
(

s+β+α
2

+ 1
)−1

Γ
(

s−β+α
2

+ 1
)−1

.
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By the bound

(4.12) Γ(σ + it) ≍ tσ−
1
2 e−πt/2, t > 1,

we deduce
P (2it) ≍ t−2(α+1)

which implies (4.2) by (4.8). Similarly by the bound Γ(s+µ)Γ(s+ν)−1 ≍ sµ−ν

for µ, ν, s real, s large, we deduce

Q(ℓ) ≍ ℓ−2(α+1)

which implies (4.3) by (4.10), provided ℓ is large. Then (4.3) holds for all
ℓ > 1 by continuity and compactness.

Next we are going to compute Ĝ(t) and Ǧ(ℓ) in the ranges (4.4) and
(4.5) respectively. For these we need precise expressions to be able to see
the positivity and good lower bounds. First we deal with Ĝ(t) which is given
by (2.13). To this end we use (4.8). Since P (s) is even we need the difference

cos π
(

k
2

+ it
)

sin π
(

α−β
2

+ it
)

− cos π
(

k
2
− it

)

sin π
(

α−β
2

− it
)

= i sh (2πt) cos π
2

(k + α − β) .

Hence, (2.13) and (4.8) yield

(4.13) Ĝ(t) = A(t) cos π
2
(k + α − β) ,

where

(4.14) A(t) = π−12−α Γ(α + 1)P (2it)D(t)ch(πt) .

It is clear that P (2it) and D(t)ch(πt) are positive in the whole range (4.4)
and

P (2it) ≍ (|t| + 1)−2(α+1), D(t) ch(πt) ≍ (|t| + 1)k.

Hence

(4.15) A(t) ≍ (|t| + 1)k−2(α+1),

and the sign of Ĝ(t) is that of cos π
2
(k + α − β).
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Next, we deal with Ǧ(ℓ) which is given by (2.24). To this end we
use (4.10). Writing ℓ = 2a + k we get

Ǧ(ℓ) = π−1(−1)aG̃(ℓ − 1)
= π−22−α−1Γ(α + 1)Q(ℓ − 1) sin π

2
(β + α − k − 1)

where

Q(ℓ − 1) =
Γ
(

a + k−1+β−α
2

)

Γ
(

a + k−1−β−α
2

)

Γ
(

a + k−1+β+α
2

+ 1
)

Γ
(

a + k−1−β+α
2

+ 1
) .

Clearly, Q(ℓ − 1) is positive if a is large enough and the sign of Ǧ(ℓ) is that
of sin π

2
(β + α − k − 1). There is no choice of α > 0, β > α + 1 for which

Ǧ(ℓ) > 0 if a = 1, that is for ℓ = k + 2, but there are many easy choices if
a > 2. For simplicity we assume 0 < k < 2 and take

(4.16) 0 < α < k, β = k + 1 ,

getting

(4.17) Ǧ(ℓ) =
Γ(α + 1)

π22α+1

Γ(a + k − 1
2
α)Γ(a − 1 − 1

2
α)

Γ(a + k + 1 + 1
2
α)Γ(a + 1

2
α)

sin πα
2

.

This is positive if a > 2, that is for ℓ > k + 4, and

(4.18) Ǧ(ℓ) ≍ ℓ−2(α+1) .

Recall that the sign of Ĝ(t) is that of cos π
2
(k + α − β) = sin πα

2
> 0.

Gathering the above results we conclude the following.

Proposition 4.1. Let 0 < α < k and

(4.19) G(x) = x−αJk+1(x) .

Then, the conditions (4.1), (4.2), (4.3) hold. Moreover, for t in (4.4) and
ℓ in (4.5), except for ℓ = k + 2, the functions Ĝ(t), Ǧ(ℓ) are positive and
satisfy

(4.20) Ĝ(t) ≍ (|t| + 1)k−2(α+1),

(4.21) Ǧ(ℓ) ≍ ℓ−2(α+1).
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Note that for our choice β = k+1, Ǧ(ℓ) is given by (4.17) and the function
Ĝ(t) given by (4.13), (4.14), (4.9) and (2.12), becomes

(4.22) Ĝ(t) =
Γ(α + 1)

π32α
{. . .} ch(πt) sin πα

2
,

where

{. . .} =
Γ
(

k+1−α
2

+ it
)

Γ
(

k+1−α
2

− it
)

Γ
(

k+1
2

+ it
)

Γ
(

k+1
2

− it
)

Γ
(

k+1+α
2

+ 1 + it
)

Γ
(

k+1+α
2

+ 1 − it
) .

5 The Test Functions

Our goal here is to pick up fairly general test functions g(x) for which G(x)
given in (4.19) is a majorant, so that we can reduce the problem of estimat-
ing the sums Kg(m, n) to KG(m, m) and KG(n, n) by means of the Cauchy
inequality (3.7). For all the applications in mind we are satisfied with the
following choices:

Lemma 5.1. Let g(x) be a smooth function supported on X 6 x 6 2X with
X > 0, such that

(5.1) |g(x)| 6 1, x2|g′′(x)| 6 1.

Then, we have

(5.2) ĝ(t) ≪ (|t| + 1)k− 5
2 , t real,

(5.3) ĝ(t) ≪ Xr + X−r, −r 6 2it 6 r,

(5.4) ǧ(ℓ) ≪ Xσℓ−1−σ, ℓ > 4,

where 1 6 σ 6 2 and the implied constants are absolute.

We remark that the bound (5.4) is equivalent to ℓ−3X min(ℓ, X) which
for ℓ ≍ X becomes X−1, and this cannot be improved in general.

29



Proof. First we treat (5.3) by direct arguments. For −r 6 ν 6 r we have

Jν(x) ≪ xr + x−r

This follows by the power series expansion (8.440) of [GR] if 0 < x 6 1 and
by the trivial bound Jν(x) ≪ 1 if x > 1. Hence

g̃(ν) =

∫ ∞

0

Jν(x)g(x)x−1 dx ≪ Xr + X−r

and (5.3) follows by (2.12).

For the proof of (5.2) and (5.4) we consider the Mellin transform

Mg(s) =

∫ ∞

0

g(x)xs−1 dx.

Clearly Mg(s) is entire. By partial integration

Mg(s) =
1

s(s + 1)

∫ ∞

0

g′′(x)xs−1 dx.

Using both integrals we derive by (5.1) the following extimates:

|Mg(s)| 6
2σ−1

σ
Xσ min

(

1, 1
|s(s+1)|

)

≪ Xσ(|s| + 1)−2

where σ = Re s and the implied constant depends only on σ. By Mellin
inversion

g(x) =
1

2πi

∫

(σ)

Mg(s)x
−s ds.

Hence, if −3
2

< σ < Re ν we get by (6.561.14) of [GR]

g̃(ν) =
1

2πi

∫

(σ)

Mg(s)

∫ ∞

0

Jν(x)x−s−1 dx

=
1

2πi

∫

(σ)

Mg(s)2
−s−1Γ

(

ν−s
2

)

Γ
(

ν+s
2

+ 1
)−1

ds .

(5.5)

For ℓ > 4 the formula (5.5) with 1 6 σ 6 2 yields

g̃(ℓ − 1) ≪ Xσ

∫

(σ)

∣

∣

∣
s−2Γ

(

ℓ−s−1
2

)

Γ
(

ℓ+s+1
2

)−1
∣

∣

∣
|ds| ≪ Xσℓ−σ−1
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because Γ( )Γ( )−1 ≍ ℓ−σ−1 by (4.12). This shows (5.4) by (2.24).

Now let ν = 2it, t real. Write s = σ + 2iu in (5.5) with −1 6 σ < 0
giving

g̃(2it) ≪ Xσ

∫ ∞

−∞

(

1 + u2
)−1
∣

∣

∣
Γ
(

−σ
2

+ i(t − u)
)

Γ
(

σ
2

+ 1 + i(t + u)
)−1
∣

∣

∣
du

≍ Xσ

∫ ∞

−∞
(1 + u2)−1A(t, u)−

σ+1
2 exp π

2

(

|t + u| − |t − u|
)

du

by (4.12), where A(t, u) = (1 + |t − u|)(1 + |t + u|) ≫ 1 + |t|. Hence,

g̃(2it) ≪ Xσ(1 + |t|)−σ+1
2

∫ ∞

−∞
(1 + u2)−1 exp

(

π min(|t|, |u|)
)

du

≪
(

X√
1+|t|

)σ

(1 + |t|)− 5
2 exp(π|t|) .

(5.6)

Another estimate comes by moving the contour of integration in (5.5) to the
−σ line. The pole at s = ν has residue Mg(ν)/2νΓ(ν + 1) which is bounded
by

(5.7) (1 + |t|)− 5
2 exp(π|t|)

while the integral on the −σ line is estimated by (5.6), but with σ changed
to −σ. Combining both estimates we deduce that g̃(2it) is bounded by (5.7).
Hence (5.2) follows by (2.12).

Put σ = 1 + 2α in (5.4) with 0 < α 6
1
4
. Then Proposition 4.1 and

Lemma 5.1 show that our test function g(x) is “majorized” by G(x) up to a
scaling factor

(5.8) Xr + X−r + X1+2α

where r = |k − 1|, 0 < α 6
1
4
, α < k. The last component X1+2α looks

excessive even when we choose α arbitrarily small. However, in applications
we shall use (5.7) only when X is not large, covering the range of large X by
“ad hoc” arguments.
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6 Kloosterman - Salié–Weyl Sums

From now on we take k = 1
2
. An important example of an automorphic form

of weight one half is the standard theta series

θ(z) =
∞
∑

−∞
e(n2z) = 1 + 2

∞
∑

1

e(n2z)

on the group Γ0(4). This has multiplier given by

(6.1) ϑ(γ) = ε̄d

( c

d

)

if γ =

(

∗ ∗
c d

)

for c ≡ 0(mod 4) and (c, d) = 1. Recall that

(6.2) εd =

{

1 if d ≡ 1(mod 4) ,
i if d ≡ 3(mod 4)

and
(

c
d

)

denotes the Jacobi symbol if d > 1. If d < −1 we have c 6= 0 and

( c

d

)

=
c

|c|

(

c

−d

)

.

For d = ±1 we have c = 0 and
(

0
1

)

=
(

0
−1

)

= 1.

The corresponding Kloosterman sums are

(6.3) K(m, n; c) =
∑∗

d(mod c)

εd

( c

d

)

e

(

d̄m + dn

c

)

defined for c > 0, c ≡ 0(mod 4), where d̄d ≡ 1(mod c). They are closely
related (via quadratic reciprocity) with the Salié sums

(6.4) S(m, n; q) =
∑

d(mod q)

(

d

q

)

d

(

d̄m + dn

q

)

.

We need these sums only for q > 1, q odd, as defined above. By Lemma 2
of [I1] the Kloosterman sum factors as follows:

(6.5) K(m, n; c) = K ′(mq̄, nq̄; r)S(mr̄, nr̄; q)
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where c = qr with (q, r) = 1, r ≡ 0(mod 4). Here K ′(∗, ∗; r) is the Klooster-
man sum (6.3) with εd replacced by εq

d.

The Salié sums can be evaluated explicitly and then estimated trivially,
giving (cf [IK, Corollary 11.12])

(6.6) |S(m, n; q)| 6 (m, n, q)
1
2 q

1
2 τ(q).

One can also evaluate the Kloosterman sum to modulus r = 2α, α > 2, and
show that

(6.7) |K(m, n; r)| 6 4(m, n, r)
1
2 r

1
2 .

For the proof of (6.7) we can assume that α > 5, otherwise the result is trivial.
First consider (m, n, r) = 1. Put β =

[

α
2

]

, γ =
[

α+1
2

]

and d = a(1 + 2γb)
getting

K(m, n; r) =
∑

a(mod 2γ )

εa

(

2

a

)α
∑

b(mod 2β)

e

(

ā(1 − 2γb)m + a(1 + 2γb)n

c

)

= 2β
∑

a(mod 2γ )

ām≡an(mod 2β )

εa

(

2

a

)α

e

(

ām + an

c

)

.

The number of choices for a is at most four which proves (6.7) if (m, n, r) = 1.
In the general case, put (m, n, r) = r0, m1 = m/r0, n1 = n/r0, r1 = r/r0. If
4 | r1 then

|K(m, n; r)| = r0|K(m1, n1; r1)| 6 4r0r
1
2
1

which proves (6.7). If r1 = 1, 2 then (6.7) follows by the trivial bound
|K(m, n; r)| 6 r/2.

Now, by (6.5), (6.6), (6.7) we obtain

Lemma 6.1. For c ≡ 0(mod 4) we have

(6.8) |K(m, n; c)| 6 (m, n, c)
1
2 c

1
2 τ(c).

The Kloosterman sums are also related to the Weyl sums. Precisely, for
c ≡ 0 (mod4) and D ≡ 1 (mod 4) we have (see Proposition 1 of [DIT])

(6.9) W2h(D; c) = (1 − i)
∑

4vw=c
uw=h

K(u2, D; 4v)/(2, v)
√

v .
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Note that 1−i = e−πi/4
√

2 and e−πi/4 = e−πik/2 = γk is the same factor which
we have attached to the Kloosterman sums in Section 2.

One can express the Weyl sum (1.1) for any modulus c > 1 and any
frequency h by the somewhat special ones (6.9). Suppose D ≡ 1(mod 4).
Then we have

(6.10) Wh(D; c) =
1

2(2, c)
W4h(D; 4c).

Combining (6.9) and (6.10) we obtain

Lemma 6.2. Let D ≡ 1(mod 4). Then for any c > 1 and any h we have

(6.11) Wh(D; c) =
1 − i

2(2, c)

∑

vw=c
uw=2h

K(u2, D; 4v)/(2, v)
√

v .

7 Sums of Salié Sums

We need the Salié sums (6.4) only for m = n. To avoid confusion with our
previous notation we change the letters and recall the definition

(7.1) S(a, a; c) =
∑

d(mod c)

(

d

c

)

e

(

a(d̄ + d)

c

)

,

where c is any positive, odd number. There is a very simple formula for such
sums (see (12.43) of [IK]):

(7.2) S(a, a; c) = εcc
1
2

(a

c

)

∑

mn=c
(m,n)=1

e
(

2a
(m̄

n
− n̄

m

))

.

Hence, one can see the sign variation of S(a, a; c) pretty well; nevertheless
showing that it causes significant cancellation in sums over the modulus c is
by no means easy. The effect of such cancellation is measured in Theorem 4
of [DFI2]. We are going to use a slightly generalized version of this result in
which the coefficient a is replaced by aq̄ with q̄ standing for the multiplicative
inverse of q modulo c. Although q is relatively small in our applications, its
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inverse q̄ makes a difference in the behaviour of S(aq̄, aq̄; c) as c runs over
large segments. Fortunately, the proof of Theorem 4 of [DFI2] requires only
a little modification to accommodate this factor q̄. Here is the result in the
form we need.

Theorem 7.1. For positive integers a, q, r with aq not a square and 8 | r,
and for (b, r) = 1, we have

(7.3)
∑

c6x
(c,aq)=1

c≡b (mod r)

c−
1
2 S(aq̄, aq̄; c) ≪ qr

1
5 (x + a)

47
118 x

35
59

+ε

where the implied constant depends only on ε.

Note, by (7.2), that if a is a square the Salié sum S(a, a; c) does not
change sign significantly, so the condition aq not a square in (7.3) cannot be
neglected. Actually, in Theorem 4 of [DFI2] we gave a precise expression for
the extra term which occurs when aq is a square.

The proof of (7.3) follows closely on the lines of the proof of Theorem 4
of [DFI2] so we feel only the need to explain a few modifications. We begin
with the formula (7.2) with a replaced by aq̄. Using the relations

Ā

B
+

B̄

A
≡ 1

AB
(mod 1)

for A, B positive co–prime integers, and

qm

n
+

mn

q
≡ m̄

qn
(mod 1) ,

we obtain

S(aq̄, aq̄; c) = εc c
1
2

(aq

c

)

∑

mn=c
(m,n)=1

e

(

4a
qm

n

)

e

(

2a
mn

q
− 2a

qc

)

.

Next, in order to separate the variables m, n in the exponential e(2a mn/q)
we could split m, n into residue classes modulo q, but it is more economical
to apply Gauss sums:

e

(

2a
mn

q

)

=
1

ϕ(q)

∑

χ(mod q)

χ̄(2a)χ(mn)τ(χ).
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This application is not really essential because we can afford to lose a power
of q. Note that the other part of the exponential satisfies

e

(−2a

qc

)

= 1 + O

(

a

qmn

)

and can be incorporated by partial summation or other techniques of sep-
aration of variables. This issue was addressed at the end of Section 3 of
[DFI2].

Now, we are in a position to apply Theorem 3 of [DFI2] with M replaced
by qM . The result will be worse than Theorem 3 of [DFI2] by a factor of

q
1
2 q

1
2 = q, the first because of this change of variable m to qm and the second

because of the presence and the size of the Gauss sum. As in [DFI2] this
modified Theorem 3 applies to the proof of Theorem 4 except when one of
M, N is small and in these extreme cases we can use the Polya–Vinogradov
inequality in the same fashion as on page 39 of [DFI2]. Here we lose slightly

more in the q aspect, namely (q
1
2 log 2q)q

1
2 , the first because the relevant

modulus is larger by a factor q and the second due to the Gauss sums.
This leads to the current version of Theorem 4 of [DFI2] as stated here in
Theorem 7.1 (well, ignore log 2q which can be assumed to be ≪ xε, since
otherwise the result is trivial!).

8 Direct Estimation of Kg(m, m)

Recall that Kg(m, n) is defined by (2.1) as the sum of the Kloosterman sums
K(m, n; c) over the modulus c > 0, which is the lower–left entry of the
group elements γ = ( ∗ ∗

c ∗ ) ∈ Γ0(q) with 4 | q. For the theta multiplier ϑ(γ)
the Kloosterman sums K(m, n; c) are given by (6.3) for every c > 0, c ≡
0(mod q) and

(8.1) Kg(m, n) =
∑

c≡0(q)

1

c
K(m, n; c)g

(4π
√

mn

c

)

.

In this section we treat Kg(m, n) easily by applying the estimates for
individual Kloosterman sums given in Lemma 6.1. Suppose that the test
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function satisfies

(8.2) |g(x)| 6 min(x, x− 1
2 ) .

Hence, |g(x)| 6 x
1
2
+ε for any 0 < ε 6

1
2

and

|Kg(m, n)| 6 (4π
√

mn)
1
2
+ε
∑

c≡0(q)

τ(c)c−1−ε(m, n, c)
1
2 .

Here, the sum is bounded by

τ(q)

q
(m, n, q)

1
2

∞
∑

c=1

τ(c)c−1−ε(m, n, c)
1
2 .

The last sum is bounded by

∑

δ|(m,n)

τ(δ)δ−
1
2

∞
∑

c=1

τ(c)c−1−ε =
∏

p|(m,n)

(

1 − 1√
p

)−2

ζ(1 + ε)2 .

Choosing ε = 1/ log(8mn) we conclude

Lemma 8.1. Let m, n, q be positive integers with 4 | q. Suppose g(x) satis-
fies (8.2). Then

(8.3) Kg(m, n) ≪ τ(q)

q
(m, n, q)

1
2

∏

p|(m,n)

(

1 − 1√
p

)−2

(mn)
1
4 (log 2mn)2 ,

where the implied constant is absolute.

In particular the function H(x) given by (3.6) with ℓ = 5
2

and (4.19) with
k = 1

2
, 0 < α < 1

2
, satisfies

(8.4) H(x) ≪ min
(

x, x− 1
2

)

so Lemma 8.1 is applicable, giving

(8.5) KH(m, m) ≪ τ(q)

q
(m, q)

1
2

∏

p|m

(

1 − 1√
p

)−2

m
1
2 (log 2m)2 ,

where the implied constant is absolute.
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9 Estimation of KF (n, n)

Now, we give a more delicate treatment of sums of the Kloosterman sums
K(n, n; c), one which takes advantage of the sign variations. As we mentioned
earlier, this requires n not to be a square. For simplicity we assume that

(9.1) n is squarefree, n > 1 .

First, we are going to estimate the sum

(9.2) T (x) =
∑

c6x
c≡0 (mod q)

c−
1
2 K(n, n; c).

Here we need to factor the Kloosterman sums into the Salié sums which
appear in Theorem 7.1. To this end we write the modulus uniquely as cr
with

(9.3) (c, nq) = 1, r | (nq)∞, r ≡ 0 (mod q).

Note that nr can be a square only if r = ns2. According to (6.5) we have

K(n, n; cr) = K ′(nc̄, nc̄; r) S(nr̄, nr̄; c).

On the right side the Kloosterman sum K ′(nc̄, nc̄; r) does depend on c, but
only on its residue class modulo r. Hence

T (x) =
∑

r6x

r−
1
2

∑∗

b (mod r)

K ′(nb̄, nb̄; r)
∑

c6x/r
(c,n)=1

c≡b (mod r)

c−
1
2 S(nr̄, nr̄; c)

= T ′(x) + T ′′(x) + T ′′′(x)

say, where T ′(x) is the partial sum over r 6 R, T ′′(x) is the partial sum over
R < r 6 x such that nr is not a square and T ′′′(x) is the partial sum over
R < r 6 x such that nr is a square.

For the sum of Salié sums in T ′(x) we use Theorem 7.1 and for the
Kloosterman sum we use the trivial bound, getting

T ′(x) ≪
∑

r6R

r
3
2 r

6
5

(x

r
+ n
)

47
118
(x

r

)
35
59

+ε

≪
(

1 +
n

x

)
47
118

x1− 1
118

+ε
∑

r6R

r1243/590.
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Since, for α > 0, y > 1 we have

∑

r6y
r|(nq)∞

rα
6 yα+ε

∏

p|nq

(

1 − p−ε
)−1

6 yα+ετ(nq)
∏

pε<2

(

1 − p−ε
)−1

with any ε > 0, we get

(9.4) T ′(x) ≪ τ(nq)xε
(

1 +
n

x

)
47
118

x1− 1
118 R1243/590 .

Next we estimate T ′′(x) by using the following bounds for the individual
sums: |S(nr̄, nr̄; c)| 6 τ(c)

√
c and |K ′(nb̄, nb̄; r)| 6 r. We get

(9.5) T ′′(x) ≪
∑

R<r6x

r−
1
2 x log x ≪ τ(nq)x1+εR− 1

2 .

Finally, we estimate T ′′′(x) as follows:

T ′′′(x) ≪
∑′′′

r

r−
1
2 r
∑

c6x/r

τ(c) ≪
(

∑′′′

r

r−
1
2

)

x log x.

Here
∑′′′ runs over r = ns2 with s|(nq)∞. This gives

(9.6) T ′′′(x) ≪ n− 1
2

∏

p|nq

(

1 +
1

p

)

x log x.

We choose R which equalizes the bounds (9.4), (9.5):

(9.7) R =
(

1 +
n

x

)− 235
1538

x
5

1538 .

This gives

T ′(x) + T ′′(x) ≪ τ(nq)xε
(

1 +
n

x

)
235

2·1538
x1− 5

2·1538 ≪
(

1 +
n

x

)
1
13

x1− 1
616 .

Adding in (9.6) and sacrificing the exponents a bit, we obtain:
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Lemma 9.1. For n squarefree we have

(9.8) T (x) ≪
(

1 +
n

x

)
1
13

x1− 1
616 + n− 1

2 x(log x)2 ,

where the implied constant is absolute.

We remark that, in the above arguments we tacitly assumed that q 6 x and
1 < n 6 x2, as we may, since otherwise (9.8) is trivial.

By Lemma 9.1 we deduce (essentially by partial summation):

Lemma 9.2. Let n > 1 squarefree and q ≡ 0(mod 4). Let F (x) be a smooth
function on R+ such that

(9.9) |F (x)| 6 min
(

x, x− 1
2

)

,

(9.10) |F ′(x)| 6 min
(

1, x− 1
2

)

.

Then, we have

(9.11) KF (n, n) ≪ n
1
2
− 1

665 ,

where the implied constant is absolute.

Proof. We split

KF (n, n) =
∑

c≡0(q)

c−1K(n, n; c)F

(

4πn

c

)

=
∑

c6C

+
∑

c>C

,

where 1 6 C 6 n will be chosen later. In the first sum over c 6 C we apply
the individual estimates for K(n, n; c) getting

(9.12)
∑

c6C

≪
∑

c6C

τ(c)(n, c)
1
2 c−

1
2 (c/n)

1
2 ≪ τ(n)n− 1

2 C log 2n .

For the sum over c > C we write

∑

c>C

=

∫ ∞

C

x− 1
2 F
(

4πn
x

)

d T (x)
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and integrate by parts, showing this is bounded by

C− 1
2

∣

∣F
(

4πn
C

)

T (C)
∣

∣+

∫ ∞

C

(

1

x
3
2

∣

∣F
(

4πn
x

)
∣

∣ + 4πn

x
5
2

∣

∣F ′ (4πn
x

)
∣

∣

)

|T (x)| dx .

In the segment x > n the largest contribution comes from x ≍ n (see (9.9)
and (9.10)) which is of size

n− 1
2 n1− 1

616 = n
1
2
− 1

616 .

In the segment C < x < n we get by (9.9), (9.10), the bound

n
1
2

∫ n

C

x−2|T (x)| dx.

Now the largest contribution comes from x ≍ C, which is of size

(9.13) n
1
2 C−1

(

1 +
n

C

)
1
13

C1− 1
616 ≍ n

1
2

( n

C

)
1
13

C− 1
616 .

We choose C which equalizes (9.12), (9.13); precisely we take C = n1−13/8637.
This yields (9.11) because 13/8637 > 1/665.

Note that the function H(x) satisfies the conditions (9.9), (9.10) up to an
absolute constant factor, so in particular Lemma 9.2 yields

(9.14) KH(n, n) ≪ n
1
2
− 1

665 .

10 Proof of Theorem 1.2

Let H(x) be the function given by (3.6), (4.19) for k = 1
2
, 0 < α < 1

2
, ℓ = 5

2
,

that is

(10.1) H(x) = x−αJ 3
2
(x) ± 2πcJ 3

2
(x).

By the Cauchy inequality for sums of Kloosterman sums (3.7) and by esti-
mates (8.5), (9.14) we obtain

Kg(m, n) ≪
(

X− 1
4 + X

1
2
+α
)

(mn)
1
4 n− 1

1330

∏

p|m

(

1 +
1√
p

)

log 2m

(see the comments about the scaling factor (5.8)). This proves Theorem 1.2.
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11 Proof of Theorem 1.1

By Lemma 6.2 we express the sum (1.2) as

Wh(D) =
1 − i

2

∑

uw=2h

∑

v≡0 (q/(q,w))

f(vw)K(u2, D; 4v)/(2, v)(2, vw)
√

v .

Split the sum over v into odd and even numbers and arrange as follows:

∑

v

=
1

(2, w)

∑

v≡0 (q/(q,w))

f(vw)K(u2, D; 4v)/
√

v

+
(1

4
− 1

(2, w)

)

∑

v≡0 (q/(q,w))
v even

f(vw)K(u2, D; 4v)/
√

v .

Theorem 1.2 applies to both sums with the test functions f, g related by

f(yw)√
y

= y−1g
(4πu

√
D

4y

)

.

Since uw = 2h, we have

f(y) =
(w

y

)
1
2

g
(2πh

√
D

y

)

.

Whereas f(y) is supported on Y 6 y 6 2Y , the function g(x) is supported
on X 6 x 6 2X with X = πh

√
D Y −1. Moreover g(x) satisfies (1.7) up to a

scaling factor of size (Y/w)
1
2 . Therefore, (1.8) gives

∑

v

≪
(Y

w

)
1
2
[( Y

h
√

D

)
1
4

+
(h

√
D

Y

)
1
2
+ε]

(u2D)
1
4 D− 1

1330 τ(u2) log 2u .

Hence,

Wh(D) ≪ Y
1
2

[( Y

h
√

D

)
1
4

+
(h

√
D

Y

)
1
2
+ε]

h
1
2 D

1
4
− 1

1330 τ(h2) log 2h

≪
(

Y + h
√

D
)

3
4
h

1
4 D

1
8
− 1

1331 ,

because we can assume that h 6 D, since otherwise (1.4) is trivial.
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12 Proof of Theorem 1.3

Theorem 1.3 follows from Theorem 1.1 by Fourier analysis which is by now
fairly standard. It clearly suffices to prove (12.2) when the counting function
N(x; α, β) runs over the dyadic interval x < c 6 2x in place of 1 6 c 6 x,
which modification we assume for the proof without changing the notation.

To accelerate the convergence of Fourier series we first consider a smoothed
version of N(x; α, β), namely

N(f ; φ) =
∑

c≡0 (mod q)

f(c)
∑

b (mod c)
b2≡D (mod c)

φ(b/c) ,

where f(y) is as in Theorem 1.1 with Y ≍ x and φ(t) is a smooth compactly
supported function, such that

∫

∣

∣φ′′′(t)
∣

∣ dt 6 1 .

Therefore, its Fourier transform

φ̂(h) =

∫

φ(t)e(ht)dt

satisfies |φ̂(h)| 6 (2π|h|)−3, on integrating by parts three times. Applying
Poisson summation and then (1.4), we derive

N(f ; φ) =
∑

h

φ̂(h)
∑

c≡0 (mod q)

f(c)Wh(D; c)

= φ̂(0)
∑

c≡0 (mod q)

f(c)ρ(c) + O
(

(x +
√

D)
3
4 D

1
8
− 1

1331

)

,

where ρ(c) is the number of roots b (mod c) of the congruence b2 ≡ D (mod c).

Next, we require the sum of f(c)ρ(c). We shall evaluate this by means of
the L-function

L(s) =
∑

c≡0 (mod q)

ρ(c)c−s ,
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which can be expressed in terms of the zeta-function of the field Q(
√

D). We
postpone the relevant computations to the end of this section. By (12.3) and
a standard contour integration we derive that

∑

c≡0 (mod q)

f(c)ρ(c) = f̂(0)R + O
(

x
1
2 D

3
16

+ε
)

,

where R is the residue of L(s) given by (12.4) and the error term comes from
the Burgess bound for L(s, χD) on the critical line. Today, better bounds are
available (see [CI]), but these are not needed for our purpose here. However,
the convexity bound L(s, χD) ≪ (|s|D)1/4 would not be sufficiently strong.
We conclude that

(12.1) N(f ; φ) = f̂(0)φ̂(0)R + O
(

(x +
√

D)
3
4 D

1
8
− 1

1331

)

.

Now, we are going to replace the smoothing factors by sharp cuts. First,
let N(f ; [α, β]) denote the sum in which φ(b/c) is replaced by the condi-
tion α 6 b/c 6 β. The characteristic function of the interval [α, β] can be
majorized and minorized by functions φ(t) such that

φ̂(0) =

∫

φ(t) dt = β − α + O(∆) ,

∫

|φ′′′(t)| dt ≪ ∆−3 ,

where ∆ > 0 is at our disposal. Hence, re-normalizing φ(t) by the factor ∆3,
we find

N(f ; [α, β]) = f̂(0)
(

β − α + O(∆)
)

R + O
(

∆−3(x +
√

D) x−2/1331
)

.

Note that f̂(0) ≪ x. We choose ∆ = x−1/2662(1 +
√

D/x) getting

N(f ; [α, β]) = f̂(0)(β − α) R + O(∆x log D) .

Next, the characteristic function of the interval (x, 2x] can be majorized
and minorized by functions f(y) such that

f̂(0) =

∫

f(y) dy = x + O(z) ,
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f ′′(y) ≪ z−2, supp f ⊂ [ 1
2
x, 4x ] ,

where 0 < z 6 x is at our disposal. Hence, re-normaizing f(y) by the factor
(z/x)2 we obtain

N(x; α, β) =
(

x + O(z)
)

(β − α)R + O
(

(x/z)2∆x log D
)

.

We choose z = x∆1/3 (the condition z 6 x can be ignored by a trivial
estimation), getting

(12.2) N(x; α, β) = (β − α) R x + O
(

x1−1/7986(1 +
√

D/x)1/12 log D
)

.

This completes the proof of Theorem 1.3, modulo the demonstration of (12.3)
and (12.4).

12.1 Computing L(s)

We now give the computations on L(s) required for the above proof. These
will be needed as well in the next section. Recall that

L(s) =
∑

c≡0 (mod q)

ρ(c)c−s ,

with ρ(c) being the number of roots b (mod c) of b2 ≡ D (mod c), where D is
an odd, positive, fundamental discriminant and χ = χD = (D/n).

We have:

ρ(pα) = 1 + χ(p) for α > 1 if p 6| 2D ,

ρ(p) = 1, ρ(pα) = 0 for α > 2 if p | D ,

ρ(4) = 2, ρ(2α) = 2(1 + χ(2)) for α > 3 .

Let 4|q and (q, D) = 1. Then, the local factors of L(s) are:

For p|D,

Lp(s) = 1 + p−s =
(

1 − p−2s
)(

1 − p−s
)−1

;

for p 6| qD,

Lp(s) = 1 +
(

1 + χ(p)
)

p−s
(

1 − p−s
)−1

=
(

1 + χ(p)p−s
)(

1 − p−s
)−1

;
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for pβ|| q, p 6= 2, β > 1,

Lp(s) =
(

1 + χ(p)
)

p−βs
(

1 − p−s
)−1

;

for 2β|| q, β > 3,

L2(s) = 2
(

1 + χ(2)
)

2−βs
(

1 − 2−s
)−1

;

for 22|| q,

L2(s) = 21−2s +2
(

1+χ(2)
)

2−3s
(

1−2−s
)−1

= 21−2s
(

1+χ(2)2−s
)(

1−2−s
)−1

.

Hence, we have

L(s) = 2ζ(s) q−s
∏

p|D

(

1 − p−2s
)

∏

p 6|q

(

1 + χ(p)p−s
)

∏′′′

p|q

(

1 + χ(p)
)

,

where the superscript ′′′ indicates that the factor 1 + χ(2) must be replaced
1 + χ(2)2−s if 4|| q. Hence

L(s) =
2ζ(s)L(s, χ)

qsζ(2s)

∏

p|q

(

1 + χ(p)p−s
)−1
∏′′′

p|q

(

1 + χ(p)
)

.

Moreover, we have

ρ(q) = 2
∏′′

p|q

(

1 + χ(p)
)

,

where the superscript ′′ indicates that the factor 1 + χ(2) must be omitted if
4|| q. Hence, we conclude:

Lemma 12.2. Let D > 1, D ≡ 1 (mod 4), D squarefree, 4|q, (q, D) = 1.
Then,

(12.3) L(s) =
ζ(s)L(s, χ)

ζ(2s)

ρ(q)

qs

∏′

p|q

(

1 + χ(p)p−s
)−1

,

where the superscript ′ indicates that the factor 1 + χ(2)2−s must be omitted
if 4|| q.
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It is clear from (12.3) that L(s) is holomorphic in Res >
1
2

except for a
simple pole at s = 1 with residue

R = res
s=1

L(s) =
6

π2
L(1, χD)

ρ(q)

q

∏′

p|q

(

1 +
χ(p)

p

)−1

.

Naturally, we want ρ(q) 6= 0. This means that:

D ≡ 1 (mod8) if 8|q ,

and
χ(p) = 1 if p|q , p 6= 2 .

Assuming these conditions we find that

(12.4) R = res
s=1

L(s) =
3

π2
L(1, χD) cq 2ω(q) q−1

∏

p|q

(

1 +
1

p

)−1

,

where cq = 2 + (2, q/4), that is cq = 3 if 4|| q and cq = 4 if 8|q.

13 Distribution of Roots of Binary Quadratic

Forms

Now we proceed to the proofs of the asymptotic formula (1.18) and of The-
orem 1.4. These are really corollaries of the results in Section 12. Since the
arguments are very much the same, we shall be brief.

First, let us modify slightly the asymptotic formula (12.2). For a smooth
function W (u, v) compactly supported on R+ × R+ we consider the sum

(13.1) W(D) =
∑

b2−4ac=D

W
( a√

D
,

b√
D

)

.

Writing this in the form

W(D) =
∑

a

∑

b2≡D(mod 4a)

W
( a√

D
,

b√
D

)

,
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we see a similarity to N(f ; φ) in Setion 12. In fact both sums agree for the
test function

W (u, v) = f
(

4u
√

D
)

φ(v/4u).

Of course, not every W (u, v) can be factored as above, nevertheless the re-
sult (12.2) remains true with the main term f̂(0)φ̂(0) replaced by the integral

∫∫

W
(

y/4
√

D, ty/
√

D
)

dy dt = W
√

D ,

where

(13.2) W =

∫∫

W (u, v)u−1 du dv.

In our case q = 4, so the residue given by (12.4) becomes

(13.3) R = 3π−2L(1, χD)

and (12.2) becomes

(13.4) W(D) = RW
√

D + O
(

D
1
2
− 1

1331

)

.

It is important that we have saved a power of D in the error term of (13.4)
because, up to the current state of knowledge, we can only claim the lower
bound (due to C.L. Siegel) L(1, χD) ≫ D−ε. Thus, the asymptotic for-
mula (13.4) is meaningful; it implies

(13.5) W(D) ∼ 3

π2
W

√
DL(1, χD), as D → ∞,

provided W 6= 0.

Next, notice that |H(D; λ)| is just the sum (13.1) for the test function
W (u, v) being the characteristic function of the set

0 < v < 1, 1 − v < 2u < 1 + v, 1 <
v + 1

2u
< λ .

These conditions can be written in the following form:

(13.6) |2u − 1| < v < min(1, 2λu − 1).
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Note that the set (13.6) is not empty if and only if

(13.7)
1

λ + 1
< u < 1.

Because the characteristic function of the set (13.6) is not smooth, one cannot
apply (13.5) directly to it. However, we can smooth it out by modifying
(increasing or decreasing) it within a set of asymptotically shrinking measure.
This gives us (by positivity) an upper and a lower bound for |H(D; λ)|,
both asymptotically equal. Hence the formula (13.5) is justified also for the
characteristic function of (13.6). In this case we compute (13.2) as follows:

W =

∫ 1

1/(λ+1)

[

min(1, 2λu − 1) − |2u − 1|
]du

u

=

∫ 1

1/λ

du

u
+

∫ 1/λ

1/(λ+1)

(2λu − 1)
du

u
−
∫ 1

1/2

(2u − 1)
du

u
−
∫ 1/2

1/(λ+1)

(1 − 2u)
du

u

= log λ + 2λ
(

1
λ
− 1

λ+1

)

− log λ+1
λ

− 1 + log 2 − log λ+1
2

+ 1 − 2
λ+1

.

Hence,
W = 2 log 2λ

λ+1
→ 2 log 2 as 1 < λ → ∞.

This completes the proof of (1.18) and (1.20).

14 Application to Cycle Integrals

The proof of Theorem 1.5 is based on the following identity (1.24) of [DIT]:

TrD(jm) = −24 σ1(m)TrD(1) + D−1/2Zm(D)

where

(14.1) Zm(D) =
∑

c≡0 (mod 4)

W2m(D; c) sin
(4πm

√
D

c

)
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and the question of a non–trivial bound was raised. This would be a special
case of our sum (1.2) for

(14.2) f(y) = sin
(4πm

√
D

y

)

,

except that such a function is oscillatory and not compactly supported. To
overcome this obstacle we use a smooth partition of unity into dyadic seg-
ments. In fact, for c 6 C with an appropriate choice, we estimate trivially,
getting

Zm(D) ≪ C log C +
∞
∑

ℓ=0

∣

∣

∣

∣

∣

∑

c≡0 (mod 4)

W2m(D; c)fℓ(c)

∣

∣

∣

∣

∣

,

where fℓ(y) = f(y)Fℓ(y), and Fℓ(y) is a constituent of the partition, sup-
ported on Yℓ < y < 2Yℓ with Yℓ = 2ℓ/2C. Note that

yjf
(j)
ℓ (y) ≪ m

√
D

Yℓ

(

1 +
m
√

D

Yℓ

)2

, j = 1, 2 ,

so our Theorem 1.1 applies with fℓ(y) normalized by the above bounding
factor. Therefore, we obtain

Zm(D) ≪ C log C +
∞
∑

ℓ=0

m
√

D

Yℓ

(

1 +
m
√

D

Yℓ

)2 (

Yℓ + m
√

D
)

3
4
m

1
4 D

1
8
− 1

1331

≪ C log C +
m
√

D

C

(

1 +
m
√

D

C

)2 (

C + m
√

D
)

3
4
m

1
4 D

1
8
− 1

1331 .

We choose C = m
√

D D−1/4·1331, getting

Theorem 14.1. Let m > 1, D > 1, D ≡ 1(mod 4), D squarefree. Then

(14.3) Zm(D) ≪ m D
1
2
− 1

5325 ,

where the implied constant is absolute.

15 General Cusps and Prime Points

In the previous sections we have purposely chosen to present our main re-
sults in somewhat less generality than we might have, in order to avoid some
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ancillary arguments which would have impeded the flow of the main ideas.
Although sufficiently broad to capture our previous applications, for the prob-
lem of prime points on the sphere we need some further developments. In
this final section we present the new arguments needed to complete those
results. These new ingredients are mainly of an arithmetic nature whereas
the analytic aspects remain unchanged.

We now consider two cusps a, b of Γ which are singular for the multiplier
ϑ. Let σa, σb be the corresponding scaling matrices (these are unique up to
translations ( 1 t

1 ) , t ∈ R, from the right side). Let c run over positive real
numbers such that ( ∗ ∗

c ∗ ) ∈ σ−1
a

Γ σb. For every such c and integers n, m the
Kloosterman sum is defined by

(15.1) Kab(n, m; c) =
∑

τ

ϑ̄
(

σa τ σ−1
b

)

e
(αn + δm

c

)

,

where τ = ( α ∗
c δ ) runs over the double cosets B \ σ−1

a
Γ σb /B with respect to

B (the group of translations by integers). This means that α/c and δ/c run
modulo one.

The Fourier expansions of an automorphic form f at cusp a is just the
Fourier–Whittaker series for f(σaz); it runs over integer frequencies and has
the same shape at every singular cusp, but of course the coefficients are
different, depending on a and the choice of σa. In fact,the choice of σa has
only a mild effect. Precisely, the Fourier coefficients change by twisting with
an additive character e(ξn), ξ ∈ R, while the Kloosterman sum changes by a
factor e(νn+µm) with ν, µ real numbers independent of the varying modulus
c.

Now, for positive integers n, m we consider

(15.2) Kabg(n, m) =
∑

c

c−1Kab(n, m; c)g
(4π

√
nm

c

)

which is a generalization of the sum (2.1). The summation formula (2.27)
now holds for Kabg(n, m) with the spectral sums L, M, N having the Fourier
coefficients of the basic automorphic forms expanded at cusps a, b respec-
tively. Therefore, the Cauchy inequality (3.7) generalizes as follows:

(15.3) |Kabg(m, n)|2 6

(

| KaaH(n, n) | + c
)(

| KbbH(m, m) | + c
)

,
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where the function H(x) and the constant c are the same as in (3.7).

In Sections 8 and 9 we specialized to the conguence group Γ = Γ0(q) and
the cusp a = b = ∞. In this section we take the level to be

(15.4) q = rs with (r, s) = 1, 4|s

and the cusps a = ∞, b = 1/s with scaling matrices

(15.5) σa =

(

1
1

)

, σb =

(√
r

s
√

r 1/
√

r

)

.

For background material, see Section 2.4 of [I2], Section 4.2 of [I3] and Section
2 of [DI].

For the pair of cusps a, a we sum over the double cosets of our group
σ−1

a
Γ σa = Γ getting the standard Kloosterman sum (6.3)

(15.6) Kaa(n, n; c) = K(n, n; c)

of modulus c = γq with γ any positive integer. For the pair of cusps b, b we
sum over the double cosets of the conjugate group

σ−1
b

Γ σb =

{

(

α β/r
γq δ

)

; α, β, γ, δ ∈ Z

}

with α, β, γ, δ restricted by

αδ − βγs = 1, (α + γ)(δ − γ) ≡ 1 (mod r) .

Hence, the Kloosterman sum Kbb(m, m; c) also has modulus c = γq. This
sum satisfies the same bound (6.8) as does the standard Kloosterman sum
K(m, m; c).

By the above observations it follows that the bound (9.14) remains true for
KaaH(n, n) and the bound (8.5) remains true for Kbb(m, m; c). Consequently,
by Cauchy’s inequality (15.3) we conclude that the bound (1.8) remains true
for Kabg(n, m) under exactly the same conditions as in Theorem 1.2.

Next, we are going to express the Kloosterman sums Kab(n, m; c) for the
pair of cusps a, b in terms of the standard Kloosterman sums. Here, we sum
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over double cosets of the set (not a group)

σ−1
a

Γ σb =

{

(

α
√

r β/
√

r
γs

√
r δ/

√
r

)

; α, β, γ, δ ∈ Z

}

with α, β, γ, δ restricted by

αδ − βγs = 1, δ ≡ γ (mod r) .

Hence, the Kloosterman sum Kab(n, m; c) has modulus c = γs
√

r with γ any
positive integer, (γ, r) = 1. For τ in σ−1

a
Γ σb we compute

σa τ σ−1
b

=

(

α
√

r β/
√

r
γs

√
r δ/

√
r

)(

1/
√

r
−s

√
r

√
r

)

=

(

α − βs β
(γ − δ)s δ

)

.

Hence, for our theta multiplier we get

ϑ
(

σa τ σ−1
b

)

= ε̄δ

((γ − δ)s

δ

)

= ε̄δ

(γ

δ

)

.

Given c = γs
√

r with (γ, r) = 1 we have

Kab(n, m; c) =
∑∗

δ (mod γsr)
δ≡γ (mod r)

εδ

(γ

δ

)

e
( δ̄n

γs
+

δm

γsr

)

,

because αδ ≡ 1 (mod γs). Write δ ≡ γss̄ + xrr̄, where x runs over primitive
classes modulo γs. Then εδ = εx, (γ/δ) = (γ/x), δ̄ ≡ x̄ (mod γs). Hence,

Kab(n, m; c) = e
(ms̄

r

)

∑∗

x (mod γs)

εx

(γ

x

)

e
( x̄n

γs
+

xr̄m

γs

)

.

The last sum is the Kloosterman sum K(n, mr̄; γs). Hence, by the symmetry
K(a, b; c) = K(b, a; c), we have

Kab(n, m; c) = e
(ms̄

r

)

K(mr̄, n; γs) .

Therefore, our sum (15.2) becomes

(15.7) Kabg(n, m) =
1√
r
e
(ms̄

r

)

∑

c≡0 (mod s)
(c,r)=1

c−1K(mr̄, n; γc) g
(4π

√
mn

c
√

r

)

.
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To conform to our earlier style we remove the factor
√

r in the argument
of the test function g(x) by re-scaling its support. Then, we conclude the
following generalization of Theorem 1.2.

Theorem 15.1. Let m > 1, n > 1, s > 4, 4|s, (r, s) = 1, n squarefree. Let
g(x) be a smooth function supported on X 6 x 6 2X with X > 0 such that

|g(x)| 6 1, x2|g′′(x)| 6 1.

Then we have

∑

c≡0 (mod s)
(c,r)=1

c−1K(mr̄, n; γc) g
(4π

√
mn

c

)

≪ r
5
8

(

X− 1
4 + X

1
2
+ε
)

(mn)
1
4 n−1/1330τ(m) log 2m ,

(15.8)

where the implied constant depends only on ε.

The parameters r, s in (15.8) offer numerous possibilities for modifications
and applications, especially to sums of Weyl sums. In a fashion similar to the
derivation (in Section 11) of Theorem 1.1 from Theorem 1.2, we can derive
its following generalization.

Theorem 15.2. Let h, r, s > 1, (r, s) = 1, D > 1, D ≡ 1 (mod 4), D
squarefree. Let f(y) be a smooth function supported on Y 6 y 6 2Y with
Y > 1, such that

(15.9) |f(y)| 6 1, y2|f ′′(y)| 6 1 .

Then

(15.10)
∑

c≡0 (mod s)
(c,r)=1

f(c)Whr̄(D; c) ≪ h
1
4 r

5
4 (Y + h

√
D)

3
4 D

1
8
− 1

1331 ,

where the implied constant is absolute.

It is obvious that Theorem 15.2 implies Proposition 14.16 of [FI] and
hence Theorem 1.6.
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16 Negative Discriminants

Our assumption that D is positive is not at all essential. Most of the ar-
guments in this paper work as well for negative fundamental discriminants.
Actually, some of the arguments are simpler in their analytic aspects. For
m, n > 1 we consider

Kg(m,−n) =
∑

c≡0 (mod q)

c−1K(m,−n; c)g
(4π

√
mn

c

)

where g(x) is the same test function as before. Then, a spectral decom-
position like (2.27) holds but missing the last term which comes from the
contribution of the holomorphic forms. Of course, the integral transform
ĝ(t) needs to be replaced by another transform, say ğ(t) which is of the same
kind and satisfies similar estimates (see [DI] where Kg(m,−n) is considered
for k = 0). Now the Cauchy inequality (3.7) becomes

|Kg(m,−n)|2 6 | γk KH(m, m) + c || γk KH(−n,−n) + c | .

Here H(x) is given by (3.6) with G(x) being a majorant of g(x) in the
sense that |ğ(t)| 6 Ĝ(t) in place of (3.3) and Ǧ(ℓ) > 0 in place of (3.4),
except for one ℓ > 2, ℓ ≡ k (mod 2) for which |Ǧ(ℓ)|(ℓ − 1) 6 c in place
of (3.5). Note that, although the holomrphic cusp forms do not appear in
the spectral decomposition of Kg(m,−n), one still needs them for KH(m, m)
and KH(−n,−n).

The other parts of the work need only a little attention when tracking the
sign changes. Having gone through these points one arrives at the following
statements.

STATEMENT A: Assuming the conditions of Theorem 1.2, the sum
Kg(m,−n) satisfies the bound (1.8).

STATEMENT B: Let h > 1, q > 1 and D be a negative fundamental
discriminant. Let f(y) be as in (1.3). Then the sum of Weyl sums (1.2)
satisfies (1.4), but with D replaced by |D|.
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