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1. Introduction. For α ∈ R let {a} = a − ⌊a⌋. For α irrational and a
nonnegative integer n define

S(α, n) =

n∑
k=1

(
{kα} − 1

2

)
.

This deceptively simple looking sum has been thoroughly studied for a long
time (1), but it still presents attractive unsolved problems. It is well known
(see e.g. [10, p.104]) that |S(α, n)| is unbounded in n for a fixed irrational α.
Since it is obvious that S(α, n)+S(β, n) = 0 if α+β ∈ Z, a natural question
arises: is it possible for

|S(α, n) + S(β, n)|
to be bounded when α is irrational and α+ β ∈ Q is not an integer?

Theorem 1.1. Suppose that α is irrational and that α + β is rational.
Then the values of |S(α, n) + S(β, n)| are unbounded in n unless α+ β ∈ Z,
in which case the value is zero.

As a consequence, given any (irrational) real quadratic α, we find that
|S(α, n) + S(α′, n)| is bounded if and only if α + α′ ∈ Z, where α′ is the
conjugate of α. Under the additional assumption that αα′ = 1, this con-
sequence was conjectured in [3, Conj. 6.17] in relation to some interesting
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(1) See [10, IX, §2] for a summary of the classical literature on S up until about
1935. A more recent source is [11], especially Chapter 2. An elegant elementary approach
was given in [15] (see the Math. Review MR0006753 for some corrections). The book [1]
contains a striking central limit theorem for S(α, n) when α is real quadratic.
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problems in symplectic geometry about symplectic embeddings of ellipsoids
(see also [12]).

The sum S arises in the problem of counting lattice points in a right
triangle whose sides are on the positive axes. This connection is also behind
its appearance in [3]. Suppose that α, β > 0. Consider the counting function
of lattice points inside the closed triangle ∆ with vertices at (0, 0), (0, α) and
(0, β), when it is scaled by t > 0:

F (t) = #(t∆ ∩ Z2).

A very special case of a well-known result of Ehrhart (see [2]) implies that
for integers α, β and integral ℓ the function F (ℓ) is a quadratic polynomial
in ℓ. Explicitly, when gcd(α, β) = 1, we have

(1.1) F (ℓ) =
αβ

2
ℓ2 +

α+ β + 1

2
ℓ+ 1.

For general rational α, β, Ehrhart’s result is that (1.1) still holds provided
we replace 1 and the coefficient of ℓ by certain periodic functions of ℓ hav-
ing integral periods. Although they need not be constant, these periodic
coefficients are clearly still bounded.

Suppose now that α/β is irrational and define, for any t > 0,

(1.2) C(t) = F (t)−
(
αβ

2
t2 +

1

2
(α+ β)t

)
.

By [7, Theorem A1] we have C(t) = o(t). When is C(ℓ) bounded for inte-
gers ℓ? For certain α, β, the answer follows easily from Theorem 1.1.

Corollary 1.2. Suppose that α, β = α′ are the (real quadratic) solutions
to

ax2 − bx+ b = 0,

where a, b ∈ Z+ are such that b2− 4ab > 0 is not a square and gcd(a, b) = 1.
Then |C(ℓ)| is bounded if and only if α, β are real quadratic integers, in which
case C(ℓ) = 1.

Proof. For general α, β > 0 and m,n ∈ Z+ we have the identity

C

(
m

α
+

n

β

)
= 1− S

(
α

β
, n

)
− S

(
β

α
,m

)
.

For a proof see [16, Theorem I]. Our assumptions imply that 1/α+1/β = 1,
so

C(ℓ) = 1− S

(
α

β
, ℓ

)
− S

(
β

α
, ℓ

)
.

The result now follows from Theorem 1.1 after noting that α, β are real
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quadratic integers exactly when a = 1, while
α

β
+

β

α
=

(α+ β)2

αβ
− 2 =

b

a
− 2.

Remark. Under the assumptions of Corollary 1.2, if α, β are real qua-
dratic integers then for ℓ ∈ Z+ we have

F (ℓ) =
b

2
ℓ2 +

b

2
ℓ+ 1,

which is an example of the Ehrhart function of a pseudo-integral triangle
(see [4]).

2. Proof of Theorem 1.1. The theorem follows without difficulty from
a result of Schoißengeier [17], which is a reformulation of one of Oren [13].
These papers give very useful developments of earlier work on local discrep-
ancies of the sequence {kα}, especially [6, 8, 9, 14]. Here “local” refers to the
estimation of the discrepancy from uniform distribution of the sequence when
measured with respect to a fixed interval or, more generally, with respect to
integration of a fixed function.

Set D(α, γ, n) = S(α + γ, n) − S(α, n) where α is irrational and γ is
rational. We want to show that |D(α, γ, n)| is unbounded unless γ ∈ Z. Let
γ = p/q ∈ Q be in reduced form with q > 1. We have

D(α, γ, n) =
∑

1≤ℓ≤n

{
ℓ

(
α+

p

q

)}
− {ℓα}.

Write ℓ = qk − r and δ = qα. We may assume that 1 ≤ r ≤ q − 1 and
1 ≤ k ≤ m if n = mq − 1. Note that the terms with r = 0 are zero and can
be omitted. By splitting into arithmetic progressions modulo q, it follows
that

D(α, γ, n) =
∑

1≤r<q

∑
1≤k≤m

{
kδ − rα− pr

q

}
− {kδ − rα}.

Next apply the following elementary identity for x ∈ R:
{kδ + x} = {kδ}+ χ[0,{−x})(kδ)− {−x},

where χ is the usual characteristic function made Z-periodic. Thus

D(α, γ, n) =
∑

1≤k≤m

( ∑
1≤r<q

χ[0,{rα+pr/q})(kδ)− χ[0,{rα})(kδ)
)

−m
∑

1≤r<q

{
rα+

pr

q

}
− {rα}

=
∑
k≤m

f(kδ)−m

1�

0

f(x) dx,
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where f is a periodic step function. It follows from [17, Cor. 3] that D(α, γ, n)
is bounded if and only if f is in the space of periodic step functions generated
by functions of the form χI+Z(x), where I ⊂ [0, 1) is an interval whose length
is in Z + qαZ. Since α is irrational and 1 ≤ r < q, we see that f is not in
this space, proving Theorem 1.1. See Figure 1 for an illustration of a step
function f that arises.
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Fig. 1. The step function f when α =
√
2 and p/q = 4/7

In case q = 2 the above calculation is quite transparent and the result
is a consequence of [9] or [6]. For this, assume that p/q = 1/2 and that
0 < α < 1/2. Then

D

(
α,

1

2
, 2m− 1

)
=

∑
1≤k≤m

χ[α,α+1/2)(2kα)−
m

2
,

which is the local discrepancy of the sequence {2kα} for 1 ≤ k ≤ m in
[α, α+ 1/2). By [9] this is unbounded since 1/2 /∈ Z+ 2αZ.

Remark. An apparently difficult problem is to give criteria for the one-
sided boundedness of D(α, γ, n). In particular, the possible one-sided bound-
edness of C from (1.2) is of interest for the problems of [3] mentioned above.
This issue does not seem to have been extensively treated for general lo-
cal discrepancies. Even simple local discrepancies like that of {2kα} in the
interval [α, α+ 1/2) remain mysterious. Some results are given in [5].

Acknowledgements. I thank Peter Sarnak for informing me of the con-
jecture in [3], and Dan Cristofaro-Gardiner for some helpful comments. I also
thank the referee for a useful correction and comment.
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