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Abstract. The difference between the sums of the fractional parts of integer
multiples of two irrational numbers, when these irrationals differ by a rational
number, is unbounded unless the difference is an integer.

1. Introduction

For α ∈ R let {a} = a− bac. For irrational α and a nonnegative integer n define

S(α, n) =
n∑
k=1

({kα} − 1
2
).

This deceptively simple looking sum has been thoroughly studied for a long time,1

but it still presents attractive unsolved problems. It is well known (see e.g. [10,
p.104]) that |S(α, n)| is unbounded in n for a fixed irrational α. Since it is obvious
that S(α, n) + S(β, n) = 0 if α + β ∈ Z, a natural question arises: is it possible for

|S(α, n) + S(β, n)|
to be bounded when α is irrational and α + β ∈ Q is not an integer?

Theorem 1. Suppose that α is irrational and that α+β is rational. Then the values
of |S(α, n) +S(β, n)| are unbounded in n unless α+ β ∈ Z, in which case it is zero.

As a consequence, given any (irrational) real quadratic α, we have that |S(α, n)+
S(α′, n)| is bounded if and only if α+α′ ∈ Z, where α′ is the conjugate of α. Under
the additional assumption that αα′ = 1, this consequence was conjectured in [3,
Conj. 6.17] in relation to some interesting problems in symplectic geometry about
symplectic embeddings of ellipsoids (see also [12]).

The sum S arises in the problem of counting lattice points in a right triangle
whose sides are on the positive axes. This connection is also behind its appearance
in [3]. Suppose that α, β > 0. Consider the counting function of lattice points inside
the closed triangle ∆ with vertices at (0, 0), (0, α) and (0, β), when it is scaled by
t > 0:

F (t) = #(t∆ ∩ Z2).

A very special case of a well-known result of Ehrhart (see [2]) implies that for integers
α, β and integral ` the function F (`) is a quadratic polynomial in `. Explicitly, when
gcd(α, β) = 1, we have

(1) F (`) = αβ
2
`2 + α+β+1

2
`+ 1.

1See [10, IX, §2] for a summary of the classical literature on S up until about 1935. A more
recent source is [11], especially Chapter 2. An elegant elementary approach to their theory was
given in [15] (see the Math Review MR0006753 for some corrections). The book [1] contains a
striking central limit theorem for S(α, n), when α is real quadratic.
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For general rational α, β, Ehrhart’s result is that (1) still holds provided we replace
the coefficient of ` and 1 by certain periodic functions of ` having integral peri-
ods. Although they need not be constant, these periodic coefficients are clearly still
bounded.

Suppose now that α
β

is irrational and define, for any t > 0,

(2) C(t) = F (t)−
(
αβ
2
t2 + 1

2
(α + β)t

)
.

By [7, Theorem A1] we have that C(t) = o(t). When is C(`) bounded for integers
`? For certain α, β, the answer follows easily from Theorem 1.

Corollary 1. Suppose that α, β = α′ are the (real quadratic) solutions to

ax2 − bx+ b = 0,

where a, b ∈ Z+ are such that b2 − 4ab > 0 is not a square and gcd(a, b) = 1.
Then |C(`)| is bounded if and only if α, β are real quadratic integers, in which case
C(`) = 1.

Proof. For general α, β > 0 and m,n ∈ Z+ we have the identity

C(m
α

+ n
β
) = 1− S(α

β
, n)− S(β

α
,m).

For a proof see [16, Theorem I]. Our assumptions imply that 1
α

+ 1
β

= 1, so

C(`) = 1− S(α
β
, `)− S(β

α
, `).

The result now follows from Theorem 1 after noting that α, β are real quadratic
integers exactly when a = 1, while

α

β
+
β

α
=

(α + β)2

αβ
− 2 =

b

a
− 2.

�

Remark. Under the assumptions of Corollary 1, when α, β are real quadratic integers
we have for ` ∈ Z+ that

F (`) = b
2
`2 + b

2
`+ 1,

which is an example of the Ehrhart function of a pseudo-integral triangle (see [4]).

2. Proof of Theorem 1

Theorem 1 follows without difficulty from a result of Schoißengeier [17], which is
a reformulation of one of Oren [13]. These papers give very useful developments of
earlier work on local discrepancies of the sequence {kα}, especially [6], [8], [9], [14].
Here “local” refers to the estimation of the discrepancy from uniform distribution
of the sequence when measured with respect to a fixed interval or, more generally,
with respect to integration of a fixed function.

Set D(α, γ, n) = S(α+ γ, n)−S(α, n) where α is irrational and γ is rational. We
want to show that |D(α, γ, n)| is unbounded unless γ ∈ Z. Let γ = p

q
∈ Q be in

reduced form with q > 1. We have

D(α, γ, n) =
∑

1≤`≤n

{`(α + p
q
)} − {`α}.
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Write ` = qk− r and δ = qα. We may assume that 1 ≤ r ≤ q − 1 and 1 ≤ k ≤ m if
n = mq − 1. Note that terms with r = 0 are zero and can be omitted. By splitting
into arithmetic progressions modulo q, it follows that

D(α, γ, n) =
∑

1≤r<q

∑
1≤k≤m

{kδ − rα− pr
q
} − {kδ − rα}.

Next apply the elementary identity for x ∈ R:

{kδ + x} = {kδ}+ χ[0,{−x})(kδ)− {−x},
where χ is the usual characteristic function made Z-periodic. Thus

D(α, γ, n) =
∑

1≤k≤m

( ∑
1≤r<q

χ[0,{rα+ pr
q
})(kδ)− χ[0,{rα})(kδ)

)
−m

∑
1≤r<q

{rα + pr
q
} − {rα}

=
∑
k≤m

f(kδ)−m
∫ 1

0

f(x)dx,

where f is a periodic step function. It follows from Cor. 3 of [17] that D(α, γ, n)
is bounded if and only if f is in the space of periodic step functions generated by
functions of the form χI+Z(x), where I ⊂ [0, 1) is an interval whose length is in
Z + qαZ. Since α is irrational and 1 ≤ r < q, we see that f is not in this space,
proving Theorem 1. See Figure 1 for an illustration of a step function f that arises.
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Figure 1. The step function f when α =
√

2 and p
q

= 4
7

In case q = 2 the above calculation is quite transparent and the result is a conse-
quence of [9] or [6]. For this, assume that p

q
= 1

2
and that 0 < α < 1

2
. Then

D(α, 1
2
, 2m− 1) =

∑
1≤k≤m

χ[α,α+ 1
2
)(2kα)− m

2
,

which is the local discrepancy of the sequence {2kα} for 1 ≤ k ≤ m in [α, α + 1
2
).

By [9] this is unbounded since 1
2
/∈ Z + 2αZ. �
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Remark. An apparently quite difficult problem is to give criteria for the one-sided
boundedness of D(α, γ, n). In particular, the possible one-sided boundedness of C
from (2) is of interest for the problems of [3] mentioned above. This issue does not
seem to have been extensively treated for general local discrepancies. Even simple
local discrepancies like that of {2kα} in the interval [α, α + 1

2
) remain mysterious.

Some results are given in [5].
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