Journal de Théorie des Nombres
de Bordeaux 00 (XXXX), 000-000

Special values of multiple gamma functions

par W. DUKE et O. IMAMOGLU

RESUME. Nous donnons une formule de type Chowla-Selberg
qui relie une généralisation de 1'eta-fonction a GL(n) avec fonc-
tions gamma multiples. Nous présentons également quelques
identités de produit infinies pour certaines valeurs spéciales de
la fonction gamma multiple.

ABSTRACT. We give a Chowla-Selberg type formula that con-
nects a generalization of the eta-function to GL(n) with multiple
gamma functions. We also present some simple infinite product
identities for certain special values of the multiple gamma func-
tion.

1. Introduction.

The area of a quarter of the unit circle is fol V1 —1t2? dt = §. Less familiar
are the identities

1
(1) /0 Vi—t2dt=7% [] tanh*(%2) and

meZ+t
1
8 am 2/mm
(2) /0 V1i—t2dt = H+ tanh (ﬁ),
meZ

where o = (1 4 1/2)'/2. In terms of the gamma function I'(x) we have, for
any x > 0, that

1
o 2a—1 g, _ o2z—2 I?(x)
3) /O (12t ap = 22072 L),

and so (1) and (2) are equivalent to special infinite products for the values
I'(3) and I'(3). For instance, (1) is equivalent to

4) I(3) = @m)¥* J] tanh(Zg2)
meZt

after using the well known formula I'(1) = /7.

The research of both authors were partially supported by NSE. The first author thanks ETH for
providing hospitality and financial support.
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These facts are classical and go back, at least in principle, to Gauss and
Jacobi. Simple proofs are given in §4 below using the Kronecker limit for-
mula. This technique was introduced by Chowla and Selberg [10], who
showed how to obtain more general results of this type in terms of special
values of the Dedekind eta-function. This is defined for 7 € H, the upper
half plane by

(5) _ 7rz7'/12 H 27rzm7'

mezZt

Suppose that 7 = x + iy € H, the upper half-plane, is a root of the integral
quadratic equation

az’+bz+c=0

where D = b — 4ac < 0 is a fundamental discriminant. Let x(-) = (£)

be the Kronecker symbol, which is a Dirichlet character defined mod N =
|D|. Let h be the class number of Q(v/D) and w be the number of roots of
unity in Q(VD). The Chowla-Selberg formula [10] states that

r w/2h)x(r
r=1

for some explicitly computable algebraic number A.

In this article we will give a Chowla-Selberg type formula that connects
a generalization 7,, of the Dedekind eta-function to GL(n) with multiple
gamma functions I'y for / = 1,...k = n/2. More precisely, we prove in
Theorem 2 that for () a positive-definite even unimodular n x n matrix we
have

Cke

N[

k
ylnn(Q 4:%]_[

where A = 2 ©2¢=L'(0.1) for a certain L-function L(s, f) and Cy, Cj ¢ are
explicit rational numbers. Along the way we will present some simple
infinite product identities like (4) for certain special values of the multiple
gamma function.

2. The multiple gamma function

The multiple gamma functions we consider were first studied by Barnes
[2]. Set I'g(x) = x~! and fix n € Z*. As a real function, the multiple
gamma function I';,(z) can be defined as the unique positive real valued
n-times differentiable function on R with the property that

(—1)7”rl 4" log I(x)

dx™
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is increasing and that satisfies

7) To(z+1) = 52 and Ty(1) = 1.

The existence and uniqueness of I',,(z) follows from [8], which actually
produces a Weierstrass product expansion for I', (z + 1) ™! from these con-
ditions that shows it to be an entire function of order n with zeros at the
negative integers:

9 k+n72)

1 Pu() oy ) (nl
R ) 142 —zoy o2y (o)t
Iy(z+1) ¢ kl;[l <( +R)exp(—f + o + )> ’

(8)

for a certain polynomial P, (x) of degree n (see [18, p.241] for more details).
In particular,

Pi(z) =y
log 2
Py(z) = (P57 — 3) o — (3 +3) 2”
(-1 1 7r 1 T w2
Py(z) = (S loe2m Ty oy (vHlom2m 1y 52 (3 g1y 1) 3

where 7 is Euler’s constant. Clearly I'y (z) = I'(z), the usual gamma func-
tion.

It is obvious from (7) that I',,(z)"1)""" € Z* for 2 € Z* ; for instance
Ii(k+1) = kland To(k +2)7! = k!l = Hile ¢!, In this paper we are
interested in the value I',,(z) for x half an odd integer. Our first goal is
to show that the values I'>(3) = 1.65770324 ... and I'3(2) = .95609000. ..
can be evaluated as infinite products of the type occurring in (4). The
following are proven in §4.

Theorem 1. We have the identities

() To()'=(20¥ J[ tanh?(Zl) and

MEZLX2LX 27

() T =va? [ ennd(p)

me(V2Z)*xz
mpg odd

where the + superscript indicates that the product is taken over some choice of
+m and m is non-zero. Here |m| is the usual Euclidean norm.

It should be observed that these do not follow directly from the Weier-
strass product (8).

Many of the well known identities involving the gamma function have
generalizations to I'j, for n > 1, including the multiplication formula of
Gauss. However, there are no known generalizations of identities for pe-
riod integrals like (3). Nevertheless, special values of multiple gamma
functions like those in Theorem 1 occur in some geometric quantities, for
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instance the determinants of certain Laplacians. Recall that if M is a com-
pact n-dimensional Riemannian manifold, the Laplacian A = A4 (on
functions) on M has discrete spectrum

D= <A< <<\, <.l

Its associated spectral zeta-function

is absolutely convergent for Re(s) sufficiently large and has a meromor-
phic continuation in s to the entire s-plane with no pole at s = 0 [7]. This

allows one to define! the determinant of A y to be
det Ay = e ZmO)
In case M = S™ is the unit sphere with the standard metric, Vardi [16]

discovered that det Ag» can be expressed in the form

©9) det Agn = A, e H Ty
/=1

%)An,f

for certain rational numbers A,, and A,, , and an algebraic number \,,. This
result should be compared with the Chowla-Selberg formula (6) since, as
follows from (25) below,

det A g = y2n(7)[*,

where M = C/(Z + 77Z), a flat torus. Explicitly, det Ag1 = 472 and by [14,
p-321] and (14) and (15) below:

det Age = 2191277230y (1)8/3 = 319531149 . ..
det Ags = 7%/T'5(3)16/7 = 3.33885121......
Thus the identities of Theorem 1 can be put in the form

(det Ag2)® =37 l_IJr tanh‘%@) and
MELX2LX2L

+
(det Ags)" = 77 H coth%@),

me(V22) <z
mpg odd

where § = 211/6¢3/2

IWe write det A M in place of the more proper det’ A oq. See e.g. [9] for an exposition of the
theory of determinants of Laplacians and for further references.
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3. Derivatives of Dirichlet L-functions at non-positive integers

Let L(s, x) be a Dirichlet L-function with a Dirichlet character y defined
mod N. In this section we will give a general formula for L'(1—k, x), when
k € Z*, in terms of multiple gamma functions at rational arguments. This
formula largely accounts for the appearance of special values of the multi-
ple gamma function in number theory and is needed for our applications.>

Define the multiple Hurwitz zeta-function for # > 0 and Re(s) > n by:

Cn(s, ) Z Z mi+-Fmp+a) = Z ("N (m+ 2) 7

m1>0 mpn >0 m>0
Here (i(s,z) = ((s,z) is the usual Hurwitz zeta function. In general,
Cn(s,x) is easily seen to have a meromorphic continuation in s to the whole
s-plane with poles at s = 1,...,n. Also, it visibly satisfies

Cn(Sw%' + 1) - Cn(s,x) - Cn—1(37x)-
Writing (), (s, z) = %Cn(s, x), it is clear that F,,(x) = exp(¢},(0, x)) satisfies

F.(z+1)= % and (—1)""! dcf;;ll log F,(z) = n! (o(n+1,2) > 0.

As Vardi observed in [16], the criterion (7) implies that
log Fy,(z) = log 'y (x) + Ry ()

for a polynomial R, (z) of degree n — 1. By writing (x(s,z) in terms of
((s—£+1,z) for 1 < ¢ < k and then inverting these equations, Adamchik
[1] found an identity for {'(1 — k,z) — ¢'(1 — k) in terms of log I';(z) for
1 < ¢ < k. His result [1, Prop. 3] easily implies that fork > 0

(10) ((1—k,z) - ZPM )log T'y(z)

]+k ] —.%')k 1.

Me\

(11) where P (x
]:1

By using the relation ((s, 3) = (2°—1)((s) and the obvious formula L(s, x) =
=N X ()C(s, + ), we derive from (10) the following.

Proposition 3.1. For k € Z*

(12) (1—2F)¢'(1 —k) + (log2)((1 — k)
k VA

= (-1)F (2D (=17 (25 — 1) MogTe(3).
=1 j=1

25 generalization of the multiple gamma function as defined here, already introduced by Barnes
in [2], occurs in Shintani’s work on special values of Hecke L-functions [11].
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For x a nontrivial Dirichlet character mod N

k N

L'(1—k,x) + (log N)L(1 — k,x) = N* 237N "X (1) Pre(%) log Te(%),
(=1 r=1

where Py, ¢ is defined in (11).

In particular, with the well known values

(13) €(0) =—3 ((-1) = - C(~2)=0
we easily get from from (12) that ¢'(0) = —1 log 27 as well as
(14) ((—1) = —% log 2 + %logﬂ — %logFQ(%) and
(15) ('(=2) = — 44 logm + Blog a(3) — Blog T3(3).

4. Epstein’s zeta function and limit formula

In order to prove Theorem 1 we shall employ a generalization of the
Kronecker limit formula obtained by Epstein in 1903 [4]. Let P,, be the
set of all n x n positive definite symmetric matrices. For @ € P, with
@ = (¢i,;) we have the associated quadratic form Q(z) = >_, ; ¢;,j iz
The Epstein zeta function attached to @ is defined for Re(s) > § by

Cols) = > Qm)~.
mezZ™

It is well known [13] that (¢ (s) has meromorphic continuation to the entire
s-plane with only a simple pole at s = n/2 with residue

T21QI V2T (5),
where |Q| = det ), and that it satisfies the functional equation
7T (5)Cgo(s) = Q127" 2T(3 — 5)Co(2 — 5).

In particular, (o (0) = —1.
Suppose that n > 2. Then @) can be written uniquely in the form

-1 _
a9 o= (% v )

withy e Rt,z ¢ R" tand Y € P,_; . For m € R"! write

(17) Q{m} =m-x+i\/yY(m).

Clearly Q{m} € H, the upper half-plane, unless m = 0. After applying
the functional equation, Epstein’s generalization of the Kronecker limit
formula can be put in the form (cf. [15]):
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Proposition 4.1 (Epstein).

(2m)2y HJF (1 _ i Q{m}>4"

meZn—1

G(0) = —2m\/y ¢y (—3) — log

where the + superscript indicates that the product is taken over some choice of
+m and m is non-zero.

Let us write (g, ....0,)(s) = (g(s) if @ is the block-diagonal matrix with
Q1,...,Q, on the dlagonal The following simple product formula is an
easy consequence of Proposition 4.1 obtained by arranging that the terms
involving the Epstein zeta values (y(—1) cancel.

Corollary 4.1. Suppose that () € Py,. Then
18)  oxp (¢ (0) — 2¢0)(0) = = [ tanh* (2 /Qm)).
mezn

Before turning to the proof of Theorem 1, let us show how (1) follows
from this Corollary. We employ the well known identities

Cay(s) = 4C(s)L(s) and (uny(s) =2(1 —27° +2-27%)((s)L(s)
where for now we write L(s) = L(s, y_4). Using that L(0) = 1 we get
C(I171)(0) - 2((4,1)(0) =log & +2L'(0)

and hence by (18)
L'(0) — H tanh2 % ,

mezZt

from which (1) follows easily.

PROOF OF THEOREM 1. In order to prove (i) of Theorem 1, we use the
identities
(19) ((1,1,4 4)( ) 2(1— g5 + 555 — g5)C(8)C(s = 1) + 2L(s) L(s — 1)
(20) (a1 a,( (1—— st — 52)C(s)C(s = 1) + L(s)L(s — 1).

y Ly Ey

For (19) see [3, p.381], while (20) follows from Jacobi’s result for sums of 4
squares as in [17, p.202]. Thus we have

C1a0(0) =2 ((4144(0) = =% log2 +logm — 12¢ (1)

and upon using (14), (18) gives (i) of Theorem 1.
Turning now to the proof of (ii), classical results of Liouville [6, vol 9
p-273, p.257, p.421] imply, after some computation, the identities
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Ca22221)(8) =4 (s —2)L(s) —4-27 SC( )L(s —2)
C(4,2,2,2,2,4)(3) 8-27°C(s —2)L(s) —4-27 QSC(S)L(S —2)
C(1,2,2,2,2,4)(3) 2((s—2)L(s) —4-27 23(( )L(s —2)

A routine calculation using that L(—2) = —3 gives

A= C (1,2,2,2,2,4) (0) —2 C(4,2,2,2,2 4) (0) =log § — 2L/ (=2) = 7¢'(-2)
B = <122221)()_24(4222271)(0) 10g——2L’( 2)

YLy Ly Ly Ly

and hence we have by (15)

eA B = 2e7TD — o/ y(3)8

Now (ii) of Theorem 1 follows from (18). [J

We can derive (2) from the well known identity
C1,2)(8) =2 Cuz)(s) =2(1 —2-27°)((s)L—s(s),
where Lp(s) = L(s, x) for x(-) = (2). Now (18) gives, using that L_g(0) =
L
s0) = 7 H tanh4 ”m
m€Z+

from which (2) follows. A similar argument using
C(1,2,2,2)(3) =4 ((s—1)Ls(s) —2((s)Lg(s —1) and
C(4,2,272)(3) =277 (8¢(s—1)Ls(s) —2((s)Ls(s — 1)),
which follow from [6, vol 6. p.225], leads to the companion identity

oy . + xlm
e s — (V2 - 1)H tanh‘%%).

mez3

Several more examples can easily be given, but the eventual appearance
of cusp forms cannot be avoided.

5. The GL(n) eta-function at special points

We are now ready to define a generalization of the Dedekind eta-function
for GL(n) and give a formula of Chowla-Selberg type for it. For Q € P,
with n > 2 consider the function

(21) Ua(5,Q) = > (m-z+iy/Yi(m))Yi(m)™*

meanl
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where Y7 = yY with x,y and Y defined in (16), and the * indicates that the
sum is over m such that the first nonzero entry of m is positive. It can be
verified that

(22) Pa(s, Q) = Y1 °C(2s — 1)(x + i/ Y1)

A straightforward induction argument in n shows that ¢, (s, @) has a
meromorphic continuation in s and that ,,(s, @) is holomorphic at s = 0.
We define the GL(n) eta function on P,, by

(23) (@) = e 0@ TT" (1 - eQmQ{m}),
mezn—1
where Q{m} is defined in (17). Clearly n,(aQ) = 1,(Q) for a € R, so 7,
is well defined on similarity classes of quadratic forms.
In case n = 2 we can identify 7 € ‘H with

—1 _x
Q=) (b1
so that for g € SL(2,R) we have that Q -1, = ‘gQ-g, where g~ L7 is the
usual linear fractional action. It is easily checked using (22) that 72(Q,) =
n(7), the classical eta-function defined in (5).

Clearly Epstein’s limit formula in Proposition 4.1 can be written in the
form

(24) (2m) 2 e = y|n,.(Q)|".

It follows that 3y'/4|n,,(Q)| is invariant under Q — *gQg for any g € GL(n, Z).
It also follows that if M = R"/L, where L is a full lattice in R", then

(25) det Apg = y|n,(Q)|4,
where Q = («o; - a;) for {a,...,a,} any integral basis for L*, the lattice
dual to L.

Turning finally to the Chowla-Selberg formula, we will assume for sim-
plicity that Q is an even unimodular quadratic form, so that 8|n. Let

r(f) = #{m € Z"; 3Q(m) = {}.
It is known from the theory of modular forms [5] that for & = n/2
(26) ro(l) = ﬁ op—1(0) + a(?),

where o1 (€) = >y, d*~1, By is the (usual) Bernoulli number and f(7) =
>_e>1 a(b)e(fT) is a cusp form of weight k for the full modular group. Let

L(s, /)= a(t)t*

>1

3The same method applies to any even integral Q but leads to a very complicated general formula.
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be the associated Dirichlet series, known to be entire. Define the rational
numbers Cj, = (28 — 1)~! and

Theorem 2. For Q) € P, even unimodular we have

y|77n HFZ % Ckl

where k = n/2 and \ = 2 Ck—2e=L'(0.1),
Proof. By (26) we have the identity
Gols) = T 27°C(8)C(s + 1= k) + L(s, f).

Hence using that ((1 — k) = —% we have
C(0) = —logm — i C'(1— k) + L'(0, f)
The proof is finished by applying (12) and (24). O

For example, if n = 8 and @ is any even unimodular matrix in Pg then

Lo (Ta(d) T3
y|778(Q)|4= : 7r/ (F;(§)26 F?;( )48)

4 27509/255 (2) 7\2

y|7716(Q)| - < 2186 (%2 595728 21 3037440 645120
ToAnG) ) ) ()
!

If n = 16 and @ is any even unimodular matrix in P;¢ then
73752 1 1948800F 1 2257920 ) 16/17

If n = 24 then L'(0, f) = AgL'(0,n?
of Siegel’s main theorem [12] that

Z wélAQ =0
Q

where Ag € Q. Itis a consequence

where the sum is over representatives of the genus of even unimodular
matrices in Poy and wg = #{g € GL(n,Z);'9Qg = Q}. A similar result
holds in general.

We end by remarking that there might be some interest in the further
study of the general eta-function, including its analytic properties on vari-
ous restrictions of P,, and its transformation properties under appropriate
subgroups of SL(n, Z).
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