
RIESZ MEANS OF CERTAIN ARITHMETIC FUNCTIONS

WILLIAM DUKE AND HA NAM NGUYEN

Abstract. We give examples of completely multiplicative arithmetic functions that as-
sume only the values ±1 and that have bounded first Cesàro means. The method of proof
also yields some interesting identities involving special values of Dirichlet L-functions. In
particular, we present some new class number formulas for quadratic fields.

1. Introduction

An arithmetic function a : Z+ → {−1, 1} that is completely multiplicative is tantamount
to the assignment of ±1 to each prime. The value at any integer is then determined by its
unique factorization into primes. For example, if we assign −1 to each prime we get the
Liouville function

λ(n) = (−1)Ω(n),

where Ω(n) is the number of prime factors of n, counted with multiplicity.
A conjecture of Erdős (Problem #9 of [5]) proven a few years ago by Tao [13] implies

that for any such arithmetic function a(n) the partial sums

(1) s(n) =
∑

1≤k≤n

a(k)

are unbounded. A potential strengthening of this result would be the statement that the
(first) Cesàro mean

(2) c(n) = 1
n

∑
1≤m≤n

∑
1≤k≤m

a(k)

is also unbounded. This is true for the Liouville function. We will show in this paper that
there exist infinitely many completely multiplicative ±1 arithmetic functions for which the
Cesàro mean is bounded, hence that such a strengthening does not hold in general.

It is easy to describe these functions explicitly. Let q > 2 be a prime and
( ·
q

)
, the

Legendre symbol. Define aq(q) = −1 while for p 6= q set aq(p) =
(
p
q

)
and extend aq(n) to

be completely multiplicative. Clearly aq(n) ∈ {±1} for all n. We see directly that s(n) as
defined in (1) is unbounded, since for any positive integer m

s(1 + q2 + q4 + · · ·+ q2m) = m.
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Theorem 1. For any prime q > 2 there exists a constant Aq > 0 such that∣∣∣ 1
n

∑
1≤m≤n

∑
1≤k≤m

aq(k)
∣∣∣ ≤ Aq

for all n ∈ Z+.

Suppose now that q is any positive integer with q > 1 and that ψ(n) is a periodic
arithmetic function with period q. Say that ψ is admissible for q if either ψ = χ where χ
is a primitive Dirichlet character mod q or ψ = χ̃, where χ̃ is defined by setting χ̃(n) = 1
for q - n while otherwise χ̃(n) = 1 − q. The method of proof of Theorem 1 yields some
remarkable identities for special values of the L-function

L(s, ψ) =
∑
n≥1

ψ(n)n−s

when ψ is admissible for q. This series is absolutely convergent for Re(s) > 1 and has an
analytic continuation in s to an entire function of order one (see below in §3). Note that

(3) L(s, χ̃) = (1− q1−s)ζ(s).

Let (x)k = x(x+ 1) · · · (x+k−1) be the Pochhammer symbol and Hk = 1
1

+ 1
2

+ 1
3

+ · · ·+ 1
k

be the kth harmonic number.

Theorem 2. Let ψ be admissible for q > 1. For any k ∈ Z+ and α = πi
log q

we have∑
n∈Z
n odd

k!L(nα, ψ)

(nα)k+1

= − log q
∑

0≤j≤k−1

(−1)j
(
k
j

)L(−j,ψ)
qj+1

and

∑
n∈Z\{0}
n even

k!L(nα, ψ)

(nα)k+1

= −L′(0, ψ)− (1
2

log q −Hk)L(0, ψ)− log q
∑

1≤j≤k−1

(−1)j+1
(
k
j

)
L(−j,ψ)
qj−1

,

where the infinite sums are absolutely convergent.

These identities yield some new class number formulas for quadratic fields. Suppose that
D 6= 1 is a fundamental discriminant and

K = Q(
√
D).

Let σ : K→ K generate the Galois group of K/Q and for β ∈ K let N(β) = ββσ. Let Cl+D
be the group of (narrow) fractional ideal classes in K. Thus two ideals a and b are in the
same class if there is β ∈ K with N(β) > 0 so that a = (β)b. Let

h(D) = #Cl+D

be the class number and w = wD be the number of roots of unity in K. Thus w = 2 unless
D = −3,−4 when w = 6, 4, respectively. If D > 1 let εD be the smallest unit of norm 1 in
the ring of integers of K with εD > 1. Finally, let χD(·) be the Kronecker symbol, which is
a primitive Dirichlet character mod |D|.

The next corollary follows from Theorem 2 with k = 1 together with standard class
number formulas (see e.g. [4]).
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Corollary 1. For a fundamental discriminant D 6= 1 let α = πi
log |D| . Then

w−1
D h(D) log |D| = −

∑
n∈Z
n odd

L(nα, χD)

(nα)(nα + 1)
when D < 0 and

1
2
h(D) log εD = −

∑
n∈Z\{0}
n even

L(nα, χD)

(nα)(nα + 1)
when D > 0.

The following consequence of Theorem 2 and (13) below is of interest in connection with
the Chowla-Selberg formula.

Corollary 2. For D < 0∑
1≤n≤|D|

χD(n) log Γ( n
|D|) = −

∑
n∈Z\{0}
n even

L(nα, χD)

(nα)(nα + 1)
+ (1

2
log |D|+ 1)L(0, χD).

2. Exact formulas for Riesz means

Theorems 1 and 2 follow from formulas for certain Riesz means. For any sequence a(n)
and any non-negative integer k define the kth Riesz (arithmetic) mean of a(n) by

sk(x) =
∑
n≤x

(1− n
x
)ka(n)

(see [7, §5.16]). When k = 1 this is essentially the first Cesàro mean (2) in that

(4) c(n) = n+1
n
s1(n+ 1).

We give an explicit formula for sk(n) when a(n) = a±ψ (n) is defined through the formula

(5) a±ψ (n) =
∑
qm|n

(±1)mψ( n
qm

),

where ψ is admissible for q and a choice of ± is made.

Proposition 1. Let ψ be admissible for q > 1. For a positive integer k and x ≥ 1 we have

∑
n≤x

(1− n
x
)ka−ψ (n) = k!

log q

∑
n∈Z
n odd

L(nα,ψ)
(nα)k+1

xnα +
∑

0≤j≤k−1

(−1)j
(
k
j

)L(−j,ψ)
qj+1

x−j +O(x
3
4
−k) and(6)

∑
n≤x

(1− n
x
)ka+

ψ (n) = 1
log q

(log x+ 1
2

log q −Hk)L(0, ψ) + 1
log q

L′(0, ψ)(7)

+ k!
log q

∑
n∈Z\{0}
n even

L(nα,ψ)
(nα)k+1

xnα +
∑

1≤j≤k−1

(−1)j+1
(
k
j

)L(−j,ψ)
qj−1

x−j +O(x
3
4
−k),

where the infinite series are absolutely convergent and α = πi
log q

. When x is an integer these

hold as identities without an error term. The log x term occurs in (7) if and only if either
ψ = χ̃ or ψ = χ and χ(−1) = −1.
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Theorem 1 is an immediate consequence of (6) in Proposition 1 when we take q > 2
prime, ψ(·) =

( ·
q

)
and k = 1, since then a−ψ (n) = aq(n). We remark that another infinite

set of examples is provided by a+
ψ (n) for this ψ, provided we assume that p ≡ 1 (mod 4).

This follows by the second formula of Proposition 1. The multiplicative ±1 functions a+
ψ (n)

were studied in [1], where their partial sums to n were expressed in terms of the digits in
the base q expansion of n.

The exactness of the formulas of Proposition 1 when x is an integer is not important for
the proof of Theorem 1, but is crucial for that of Theorem 2 and its corollaries. In fact
Theorem 2 follows from Proposition 1 right away by taking x = 1.

Exact formulas of this type for arithmetic functions are unusual, but examples are well-
known when k = 1. Note that by (4)

(8) S(m)
def
=
∑
n≤m

(1− n
m

)a+
ψ (n) = 1

m

∑
1≤n≤m−1

s(n) where s(n) =
∑
`≤n

a+
ψ (`).

When ψ = χ̃ we have that s(n) gives the sum of the digits in the base q expansion of n.
Actually, (7) with k = 1 and ψ = χ̃ is equivalent to the well-known exact formula found
by Trollope [14] and by Delange [3] for S(m). In general, the partial sum s(n) of a±ψ (n) is
an example of a q-additive function and, as in (8), a formula for the first Riesz mean of
a±ψ (n) amounts to a formula for the partial sums of s(n). Exact formulas for the partial
sums of many q-additive functions are known (see e.g. [9], [8]) but apparently consequences
such as the corollaries to Theorem 2 have not been noticed. Also, formulas like those of
Proposition 1 when k > 1 seem to be new.

We use the Mellin transform and standard analytic number theory for the proof of
Proposition 1. This method was applied in [6] to several examples, including the Delange-
Trollope formula, and does a good job of explaining the mechanism behind the exact
formulas for the first Riesz means. The method is a bit more involved when k > 1.

3. Dirichlet L-functions

Throughout this section assume that q > 1 is fixed and that ψ is admissible for q. Note
that for any such ψ

(9)
∑

1≤n≤q

ψ(n) = 0.

We require some basic properties of the associated L-function

(10) L(s, ψ) =
∑
n≥1

ψ(n)n−s.

This series converges absolutely and uniformly on compact subsets of {s ∈ C; Re(s) > 1}.
The L-function has there the Euler product expansion

L(s, ψ) =

{∏
p(1− χ(p)p−s)−1, ψ = χ

(1− q1−s)
∏

p(1− p−s)−1, ψ = χ̃.
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A classical result is that L(s, ψ) has an analytic continuation to an entire function in s of
order one. In case ψ = χ set

ξ(s, ψ) =
(
π
q

)− s+aχ
2 Γ( s+aχ

2
)L(s, χ),

where aχ ∈ {0, 1} is such that χ(−1) = (−1)aχ . If ψ = χ̃ set

ξ(s, ψ) = (1− qs)π−
s
2 Γ( s

2
)L(s, χ̃).

Then we have the functional equation

(11) ξ(1− s, ψ) = εψξ(s, ψ)

where εχ is a certain root of unity with εχ̃ = 1. For proofs see [2]. We have the following
immediate consequence of the functional equation (11) together with the well-known fact
[2] that L(1 + it, ψ) 6= 0 for all t ∈ R.

Lemma 1. For non-zero t ∈ R we have that L(it, ψ) 6= 0. For j = 0, 1, 2, . . . we have that
L(−j, ψ) = 0 when ψ = χ if and only if aχ + j is even, while L(−j, χ̃) = 0 if and only if
j = −2,−4, . . . .

The functional equation and the Phragmén-Lindelöf theorem imply the following explicit
estimate [12].

Lemma 2. For 0 < ε ≤ 1
2

we have

|L(σ + it, ψ)| �

{
(|t|+ 1)

1
2
−σ, σ < −1

2

ζ(1 + ε)(|t|+ 1)
1−σ+ε

2 , −ε ≤ σ ≤ 1 + ε

where the implied constant depends only on q.

A useful tool to study these L-functions at non-positive integers is the Hurwitz zeta
function, which is defined for x > 0 and Re(s) > 1 by

ζ(s, x) =
∑
n≥0

(n+ x)−s.

See e.g. [10, §1.4] for the properties we quote below. For fixed x > 0 it has an analytic
continuation in s to an entire function except for a simple pole at s = 1. For j ∈ Z+ we
have

ζ(1− j, x) = −1
j
Bj(x),

where Bj(x) is the Bernoulli polynomial. Also

∂sζ(x, 0) = log
(
(2π)−

1
2 Γ(x)

)
.

Clearly

L(s, ψ) = q−s
∑

1≤r≤q

ψ(r)ζ(s, r
q
)

so that we get the following lemma.
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Lemma 3. For integral j ≥ 1 we have

L(1− j, ψ) = − qj−1

j

∑
1≤n≤q

ψ(n)Bj(
n
q
),(12)

where Bj(x) is the Bernoulli polynomial. Also we have

(13) L′(0, ψ) = −L(0, ψ) log q +
∑

1≤n≤q

ψ(n) log Γ(n
q
).

Note that we are using (9) to derive (13).
For convenience we record some properties of the Bernoulli polynomial Bk(x) that we

will need. A good reference is [10, §1.5.1]. For integral k ≥ 0 the following hold:

B′k+1(x) = (k + 1)Bk(x)(14)

Bk(x)−Bk(x− 1) = k(x− 1)k−1(15) ∑
0≤j≤k

(
k
j

)
Bj(x)yk−j = Bk(x+ y).(16)

4. Proof of Proposition 1

We will give details for (6) and simply indicate the small changes needed to prove (7).
Using (5) it is easy to check that for L(s, ψ) from (10)

(17)
∑
n≥1

a−ψ (n)n−s = (1 + q−s)−1L(s, ψ).

We use the following summation formula. For x ≥ 1 and c > 1 we have the absolutely
convergent integral representation [11, p.142]

1
k!

∑
n≤x

(1− n
x
)ka−q (n) =

1

2πi

∫ c+i∞

c−i∞

L(s, ψ)xs

(1 + q−s)(s)k+1

ds,

where we have applied (17).
Next, the idea is to apply the standard method of shifting the contour to the left, in our

case to the line Re(s) = 3
4
− k. Note that it is valid to do this in view of Lemma 2 and the

term (s)k+1 in the denominator of the integrand. In the process we will pass over simple
poles at zeros of 1 + q−s, namely s = πin

log q
for odd n ∈ Z. These are actual poles by Lemma

1. The residues at the poles are easily computed. This yields the asymptotic formula of
(6), upon estimating

(18)
1

2πi

∫ 3
4
−k+i∞

3
4
−k−i∞

L(s, ψ)(qx)s

(1 + qs)(s)k+1

ds

by Lemma 2. The absolute convergence of the series is also guaranteed by Lemma 2.
The statement that the formula holds without the error term when x is an integer comes

from the following lemma, after using

qs

1 + qs
=
∑
m≥1

(−1)m+1qms
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in (18) and integrating term by term, this being easily justified.

Lemma 4. For integers q, k, r with q > 1 and k, r ≥ 1 and for χ as above

1

2πi

∫ 3
4
−k+i∞

3
4
−k−i∞

L(s, ψ)(qr)s

(s)k+1

ds = 0.

Proof. As before, for c > 1 we have the absolutely convergent integral representation

1
k!

∑
n≤qr

(1− n
qr

)kψ(n) =
1

2πi

∫ c+i∞

c−i∞

L(s, ψ)(qr)s

(s)k+1

ds.

Shifting the contour to the line Re(s) = 3
4
− k, a calculation of residues shows that the

proof will be finished once we establish the following lemma. �

Lemma 5. Assumptions as above.∑
1≤n≤qr

ψ(n)(1− n
qr

)k =
∑

1≤j≤k

(qr)1−j(−1)j+1
(
k
j−1

)
L(1− j, ψ).(19)

Proof. Apply the binomial expansion and formula (12) to compute the coefficient of ψ(n)
for 1 ≤ n ≤ q on either side of (19), also using the q-periodicity of ψ. By (9) and (12) we
reduce the proof to the polynomial identity in x:∑

0≤`≤r−1

(x− r + `)k = −
∑

1≤j≤k

(−r)k−j+1
(
k
j−1

)
1
j
Bj(x) + Ck,r,(20)

where Ck,r is a constant. Then (19) follows by taking x = n
q
.

To establish (20), we need only show that the derivatives of both sides with respect to x
coincide. Thus we must show that

k
∑

0≤`≤r−1

(x− r + `)k−1 = −
∑

0≤j≤k−1

(−r)k−j
(
k
j

)
Bj(x),(21)

where we have applied (14) and then shifted indices in j. Now apply the identity (16) to
the right hand side of (21) to reduce the needed identity to

(22) k
∑

0≤`≤r−1

(x− r + `)k−1 = Bk(x)−Bk(x− r).

Then (22) follows by applying the identity (15) r times to the right hand side of (22). This
finishes the proof of (19).

Although we do not need it, the constant Ck,r can be evaluated as Ck,r = − (−r)k+1

k+1
. �

This completes the proof of (6) in Proposition 1. The proof of (7) is similar except that
we must account for a double pole at s = 0 since∑

n≥1

a+
ψ (n)n−s = (1− q−s)−1L(s, ψ).

The final statement of Proposition 1 follows by Lemma 1. �
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Remark: It can be shown that the union of all ψ that are admissible for some divisor q′ > 1
of a fixed q > 1 forms a C-basis for the space of all q-periodic arithmetic functions ψ(n)
that satisfy ∑

1≤n≤q

ψ(n) = 0.

It is therefore possible to extend much of our analysis to such arithmetic functions.
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