RIESZ MEANS OF CERTAIN ARITHMETIC FUNCTIONS

WILLIAM DUKE AND HA NAM NGUYEN

Abstract

We give examples of completely multiplicative arithmetic functions that assume only the values ± 1 and that have bounded first Cesàro means. The method of proof also yields some interesting identities involving special values of Dirichlet L-functions. In particular, we present some new class number formulas for quadratic fields.

1. Introduction

An arithmetic function $a: \mathbb{Z}^{+} \rightarrow\{-1,1\}$ that is completely multiplicative is tantamount to the assignment of ± 1 to each prime. The value at any integer is then determined by its unique factorization into primes. For example, if we assign -1 to each prime we get the Liouville function

$$
\lambda(n)=(-1)^{\Omega(n)}
$$

where $\Omega(n)$ is the number of prime factors of n, counted with multiplicity.
A conjecture of Erdős (Problem \#9 of [5]) proven a few years ago by Tao [13] implies that for any such arithmetic function $a(n)$ the partial sums

$$
\begin{equation*}
s(n)=\sum_{1 \leq k \leq n} a(k) \tag{1}
\end{equation*}
$$

are unbounded. A potential strengthening of this result would be the statement that the (first) Cesàro mean

$$
\begin{equation*}
c(n)=\frac{1}{n} \sum_{1 \leq m \leq n} \sum_{1 \leq k \leq m} a(k) \tag{2}
\end{equation*}
$$

is also unbounded. This is true for the Liouville function. We will show in this paper that there exist infinitely many completely multiplicative ± 1 arithmetic functions for which the Cesàro mean is bounded, hence that such a strengthening does not hold in general.

It is easy to describe these functions explicitly. Let $q>2$ be a prime and ($\dot{\bar{q}}$), the Legendre symbol. Define $a_{q}(q)=-1$ while for $p \neq q$ set $a_{q}(p)=\left(\frac{p}{q}\right)$ and extend $a_{q}(n)$ to be completely multiplicative. Clearly $a_{q}(n) \in\{ \pm 1\}$ for all n. We see directly that $s(n)$ as defined in (1) is unbounded, since for any positive integer m

$$
s\left(1+q^{2}+q^{4}+\cdots+q^{2 m}\right)=m
$$

Date: November 21, 2019.
1991 Mathematics Subject Classification. 11N60, 11M06.
Key words and phrases. Dirichlet L-functions, arithmetic functions, class number formulas, q-additive. Supported by NSF grant DMS 1701638 and the Simons Foundation.

Theorem 1. For any prime $q>2$ there exists a constant $A_{q}>0$ such that

$$
\left|\frac{1}{n} \sum_{1 \leq m \leq n} \sum_{1 \leq k \leq m} a_{q}(k)\right| \leq A_{q}
$$

for all $n \in \mathbb{Z}^{+}$.
Suppose now that q is any positive integer with $q>1$ and that $\psi(n)$ is a periodic arithmetic function with period q. Say that ψ is admissible for q if either $\psi=\chi$ where χ is a primitive Dirichlet character $\bmod q$ or $\psi=\tilde{\chi}$, where $\tilde{\chi}$ is defined by setting $\tilde{\chi}(n)=1$ for $q \nmid n$ while otherwise $\tilde{\chi}(n)=1-q$. The method of proof of Theorem 1 yields some remarkable identities for special values of the L-function

$$
L(s, \psi)=\sum_{n \geq 1} \psi(n) n^{-s}
$$

when ψ is admissible for q. This series is absolutely convergent for $\operatorname{Re}(s)>1$ and has an analytic continuation in s to an entire function of order one (see below in $\S 3$). Note that

$$
\begin{equation*}
L(s, \tilde{\chi})=\left(1-q^{1-s}\right) \zeta(s) \tag{3}
\end{equation*}
$$

Let $(x)_{k}=x(x+1) \cdots(x+k-1)$ be the Pochhammer symbol and $H_{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}$ be the $k^{\text {th }}$ harmonic number.
Theorem 2. Let ψ be admissible for $q>1$. For any $k \in \mathbb{Z}^{+}$and $\alpha=\frac{\pi i}{\log q}$ we have

$$
\begin{aligned}
& \quad \sum_{\substack{n \in \mathbb{Z} \\
n \text { odd }}} \frac{k!L(n \alpha, \psi)}{(n \alpha)_{k+1}}=-\log q \sum_{0 \leq j \leq k-1}(-1)^{j}\binom{k}{j} \frac{L(-j, \psi)}{q^{j+1}} \text { and } \\
& \sum_{\substack{n \in \mathbb{Z}\{0\} \\
n \text { even }}} \frac{k!L(n \alpha, \psi)}{(n \alpha)_{k+1}}=-L^{\prime}(0, \psi)-\left(\frac{1}{2} \log q-H_{k}\right) L(0, \psi)-\log q \sum_{1 \leq j \leq k-1}(-1)^{j+1}\binom{k}{j} \frac{L(-j, \psi)}{q^{j-1}}, \\
& \text { where the infinite sums are absolutely convergent. }
\end{aligned}
$$

These identities yield some new class number formulas for quadratic fields. Suppose that $D \neq 1$ is a fundamental discriminant and

$$
\mathbb{K}=\mathbb{Q}(\sqrt{D})
$$

Let $\sigma: \mathbb{K} \rightarrow \mathbb{K}$ generate the Galois group of \mathbb{K} / \mathbb{Q} and for $\beta \in \mathbb{K}$ let $N(\beta)=\beta \beta^{\sigma}$. Let Cl_{D}^{+} be the group of (narrow) fractional ideal classes in \mathbb{K}. Thus two ideals \mathfrak{a} and \mathfrak{b} are in the same class if there is $\beta \in \mathbb{K}$ with $N(\beta)>0$ so that $\mathfrak{a}=(\beta) \mathfrak{b}$. Let

$$
h(D)=\# \mathrm{Cl}_{D}^{+}
$$

be the class number and $w=w_{D}$ be the number of roots of unity in \mathbb{K}. Thus $w=2$ unless $D=-3,-4$ when $w=6,4$, respectively. If $D>1$ let ϵ_{D} be the smallest unit of norm 1 in the ring of integers of \mathbb{K} with $\epsilon_{D}>1$. Finally, let $\chi_{D}(\cdot)$ be the Kronecker symbol, which is a primitive Dirichlet character mod $|D|$.

The next corollary follows from Theorem 2 with $k=1$ together with standard class number formulas (see e.g. [4]).

Corollary 1. For a fundamental discriminant $D \neq 1$ let $\alpha=\frac{\pi i}{\log |D|}$. Then

$$
\begin{aligned}
w_{D}^{-1} h(D) \log |D|=- & \sum_{\substack{n \in \mathbb{Z} \\
n \text { odd }}} \frac{L\left(n \alpha, \chi_{D}\right)}{(n \alpha)(n \alpha+1)} \text { when } D<0 \text { and } \\
\frac{1}{2} h(D) \log \epsilon_{D} & =-\sum_{\substack{n \in \mathbb{Z}\{0\} \\
n \text { even }}} \frac{L\left(n \alpha, \chi_{D}\right)}{(n \alpha)(n \alpha+1)} \text { when } D>0
\end{aligned}
$$

The following consequence of Theorem 2 and (13) below is of interest in connection with the Chowla-Selberg formula.

Corollary 2. For $D<0$

$$
\sum_{\substack{1 \leq n \leq|D|}} \chi_{D}(n) \log \Gamma\left(\frac{n}{|D|}\right)=-\sum_{\substack{n \in \mathbb{Z} \backslash\{0\} \\ n \text { even }}} \frac{L\left(n \alpha, \chi_{D}\right)}{(n \alpha)(n \alpha+1)}+\left(\frac{1}{2} \log |D|+1\right) L\left(0, \chi_{D}\right)
$$

2. Exact formulas for Riesz means

Theorems 1 and 2 follow from formulas for certain Riesz means. For any sequence $a(n)$ and any non-negative integer k define the $k^{\text {th }}$ Riesz (arithmetic) mean of $a(n)$ by

$$
s_{k}(x)=\sum_{n \leq x}\left(1-\frac{n}{x}\right)^{k} a(n)
$$

(see $[7, \S 5.16]$). When $k=1$ this is essentially the first Cesàro mean (2) in that

$$
\begin{equation*}
c(n)=\frac{n+1}{n} s_{1}(n+1) . \tag{4}
\end{equation*}
$$

We give an explicit formula for $s_{k}(n)$ when $a(n)=a_{\psi}^{ \pm}(n)$ is defined through the formula

$$
\begin{equation*}
a_{\psi}^{ \pm}(n)=\sum_{q^{m} \mid n}(\pm 1)^{m} \psi\left(\frac{n}{q^{m}}\right), \tag{5}
\end{equation*}
$$

where ψ is admissible for q and a choice of \pm is made.
Proposition 1. Let ψ be admissible for $q>1$. For a positive integer k and $x \geq 1$ we have
(6) $\sum_{n \leq x}\left(1-\frac{n}{x}\right)^{k} a_{\psi}^{-}(n)=\frac{k!}{\log q} \sum_{\substack{n \in \mathbb{Z} \\ n \text { odd }}} \frac{L(n \alpha, \psi)}{(n \alpha)_{k+1}} x^{n \alpha}+\sum_{0 \leq j \leq k-1}(-1)^{j}\binom{k}{j} \frac{L(-j, \psi)}{q^{j}+1} x^{-j}+O\left(x^{\frac{3}{4}-k}\right)$ and
(7) $\sum_{n \leq x}\left(1-\frac{n}{x}\right)^{k} a_{\psi}^{+}(n)=\frac{1}{\log q}\left(\log x+\frac{1}{2} \log q-H_{k}\right) L(0, \psi)+\frac{1}{\log q} L^{\prime}(0, \psi)$

$$
+\frac{k!}{\log q} \sum_{\substack{n \in \mathbb{Z}\{0\} \\ n \text { even }}} \frac{L(n \alpha, \psi)}{(n \alpha)_{k+1}} x^{n \alpha}+\sum_{1 \leq j \leq k-1}(-1)^{j+1}\binom{k}{j} \frac{L(-j, \psi)}{q^{j}-1} x^{-j}+O\left(x^{\frac{3}{4}-k}\right),
$$

where the infinite series are absolutely convergent and $\alpha=\frac{\pi i}{\log q}$. When x is an integer these hold as identities without an error term. The $\log x$ term occurs in (7) if and only if either $\psi=\tilde{\chi}$ or $\psi=\chi$ and $\chi(-1)=-1$.

Theorem 1 is an immediate consequence of (6) in Proposition 1 when we take $q>2$ prime, $\psi(\cdot)=(\dot{\bar{q}})$ and $k=1$, since then $a_{\psi}^{-}(n)=a_{q}(n)$. We remark that another infinite set of examples is provided by $a_{\psi}^{+}(n)$ for this ψ, provided we assume that $p \equiv 1(\bmod 4)$. This follows by the second formula of Proposition 1. The multiplicative ± 1 functions $a_{\psi}^{+}(n)$ were studied in [1], where their partial sums to n were expressed in terms of the digits in the base q expansion of n.

The exactness of the formulas of Proposition 1 when x is an integer is not important for the proof of Theorem 1, but is crucial for that of Theorem 2 and its corollaries. In fact Theorem 2 follows from Proposition 1 right away by taking $x=1$.

Exact formulas of this type for arithmetic functions are unusual, but examples are wellknown when $k=1$. Note that by (4)

$$
\begin{equation*}
S(m) \stackrel{\text { def }}{=} \sum_{n \leq m}\left(1-\frac{n}{m}\right) a_{\psi}^{+}(n)=\frac{1}{m} \sum_{1 \leq n \leq m-1} s(n) \text { where } s(n)=\sum_{\ell \leq n} a_{\psi}^{+}(\ell) \text {. } \tag{8}
\end{equation*}
$$

When $\psi=\tilde{\chi}$ we have that $s(n)$ gives the sum of the digits in the base q expansion of n. Actually, (7) with $k=1$ and $\psi=\tilde{\chi}$ is equivalent to the well-known exact formula found by Trollope [14] and by Delange [3] for $S(m)$. In general, the partial sum $s(n)$ of $a_{\psi}^{ \pm}(n)$ is an example of a q-additive function and, as in (8), a formula for the first Riesz mean of $a_{\psi}^{ \pm}(n)$ amounts to a formula for the partial sums of $s(n)$. Exact formulas for the partial sums of many q-additive functions are known (see e.g. [9], [8]) but apparently consequences such as the corollaries to Theorem 2 have not been noticed. Also, formulas like those of Proposition 1 when $k>1$ seem to be new.

We use the Mellin transform and standard analytic number theory for the proof of Proposition 1. This method was applied in [6] to several examples, including the DelangeTrollope formula, and does a good job of explaining the mechanism behind the exact formulas for the first Riesz means. The method is a bit more involved when $k>1$.

3. Dirichlet L-Functions

Throughout this section assume that $q>1$ is fixed and that ψ is admissible for q. Note that for any such ψ

$$
\begin{equation*}
\sum_{1 \leq n \leq q} \psi(n)=0 \tag{9}
\end{equation*}
$$

We require some basic properties of the associated L-function

$$
\begin{equation*}
L(s, \psi)=\sum_{n \geq 1} \psi(n) n^{-s} \tag{10}
\end{equation*}
$$

This series converges absolutely and uniformly on compact subsets of $\{s \in \mathbb{C} ; \operatorname{Re}(s)>1\}$. The L-function has there the Euler product expansion

$$
L(s, \psi)= \begin{cases}\prod_{p}\left(1-\chi(p) p^{-s}\right)^{-1}, & \psi=\chi \\ \left(1-q^{1-s}\right) \prod_{p}\left(1-p^{-s}\right)^{-1}, & \psi=\tilde{\chi}\end{cases}
$$

A classical result is that $L(s, \psi)$ has an analytic continuation to an entire function in s of order one. In case $\psi=\chi$ set

$$
\xi(s, \psi)=\left(\frac{\pi}{q}\right)^{-\frac{s+a_{\chi}}{2}} \Gamma\left(\frac{s+a_{\chi}}{2}\right) L(s, \chi),
$$

where $a_{\chi} \in\{0,1\}$ is such that $\chi(-1)=(-1)^{a_{\chi}}$. If $\psi=\tilde{\chi}$ set

$$
\xi(s, \psi)=\left(1-q^{s}\right) \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) L(s, \tilde{\chi})
$$

Then we have the functional equation

$$
\begin{equation*}
\xi(1-s, \psi)=\varepsilon_{\psi} \xi(s, \psi) \tag{11}
\end{equation*}
$$

where ε_{χ} is a certain root of unity with $\varepsilon_{\tilde{\chi}}=1$. For proofs see [2]. We have the following immediate consequence of the functional equation (11) together with the well-known fact [2] that $L(1+i t, \psi) \neq 0$ for all $t \in \mathbb{R}$.

Lemma 1. For non-zero $t \in \mathbb{R}$ we have that $L(i t, \psi) \neq 0$. For $j=0,1,2, \ldots$ we have that $L(-j, \psi)=0$ when $\psi=\chi$ if and only if $a_{\chi}+j$ is even, while $L(-j, \tilde{\chi})=0$ if and only if $j=-2,-4, \ldots$

The functional equation and the Phragmén-Lindelöf theorem imply the following explicit estimate [12].

Lemma 2. For $0<\epsilon \leq \frac{1}{2}$ we have

$$
|L(\sigma+i t, \psi)| \ll \begin{cases}(|t|+1)^{\frac{1}{2}-\sigma}, & \sigma<-\frac{1}{2} \\ \zeta(1+\epsilon)(|t|+1)^{\frac{1-\sigma+\epsilon}{2}}, & -\epsilon \leq \sigma \leq 1+\epsilon\end{cases}
$$

where the implied constant depends only on q.
A useful tool to study these L-functions at non-positive integers is the Hurwitz zeta function, which is defined for $x>0$ and $\operatorname{Re}(s)>1$ by

$$
\zeta(s, x)=\sum_{n \geq 0}(n+x)^{-s}
$$

See e.g. $[10, \S 1.4]$ for the properties we quote below. For fixed $x>0$ it has an analytic continuation in s to an entire function except for a simple pole at $s=1$. For $j \in \mathbb{Z}^{+}$we have

$$
\zeta(1-j, x)=-\frac{1}{j} B_{j}(x)
$$

where $B_{j}(x)$ is the Bernoulli polynomial. Also

$$
\partial_{s} \zeta(x, 0)=\log \left((2 \pi)^{-\frac{1}{2}} \Gamma(x)\right) .
$$

Clearly

$$
L(s, \psi)=q^{-s} \sum_{1 \leq r \leq q} \psi(r) \zeta\left(s, \frac{r}{q}\right)
$$

so that we get the following lemma.

Lemma 3. For integral $j \geq 1$ we have

$$
\begin{equation*}
L(1-j, \psi)=-\frac{q^{j-1}}{j} \sum_{1 \leq n \leq q} \psi(n) B_{j}\left(\frac{n}{q}\right), \tag{12}
\end{equation*}
$$

where $B_{j}(x)$ is the Bernoulli polynomial. Also we have

$$
\begin{equation*}
L^{\prime}(0, \psi)=-L(0, \psi) \log q+\sum_{1 \leq n \leq q} \psi(n) \log \Gamma\left(\frac{n}{q}\right) . \tag{13}
\end{equation*}
$$

Note that we are using (9) to derive (13).
For convenience we record some properties of the Bernoulli polynomial $B_{k}(x)$ that we will need. A good reference is $[10, \S 1.5 .1]$. For integral $k \geq 0$ the following hold:

$$
\begin{align*}
B_{k+1}^{\prime}(x) & =(k+1) B_{k}(x) \tag{14}\\
B_{k}(x)-B_{k}(x-1) & =k(x-1)^{k-1} \tag{15}\\
\sum_{0 \leq j \leq k}\binom{k}{j} B_{j}(x) y^{k-j} & =B_{k}(x+y) . \tag{16}
\end{align*}
$$

4. Proof of Proposition 1

We will give details for (6) and simply indicate the small changes needed to prove (7). Using (5) it is easy to check that for $L(s, \psi)$ from (10)

$$
\begin{equation*}
\sum_{n \geq 1} a_{\psi}^{-}(n) n^{-s}=\left(1+q^{-s}\right)^{-1} L(s, \psi) \tag{17}
\end{equation*}
$$

We use the following summation formula. For $x \geq 1$ and $c>1$ we have the absolutely convergent integral representation [11, p.142]

$$
\frac{1}{k!} \sum_{n \leq x}\left(1-\frac{n}{x}\right)^{k} a_{q}^{-}(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{L(s, \psi) x^{s}}{\left(1+q^{-s}\right)(s)_{k+1}} d s
$$

where we have applied (17).
Next, the idea is to apply the standard method of shifting the contour to the left, in our case to the line $\operatorname{Re}(s)=\frac{3}{4}-k$. Note that it is valid to do this in view of Lemma 2 and the term $(s)_{k+1}$ in the denominator of the integrand. In the process we will pass over simple poles at zeros of $1+q^{-s}$, namely $s=\frac{\pi i n}{\log q}$ for odd $n \in \mathbb{Z}$. These are actual poles by Lemma 1. The residues at the poles are easily computed. This yields the asymptotic formula of (6), upon estimating

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\frac{3}{4}-k-i \infty}^{\frac{3}{4}-k+i \infty} \frac{L(s, \psi)(q x)^{s}}{\left(1+q^{s}\right)(s)_{k+1}} d s \tag{18}
\end{equation*}
$$

by Lemma 2. The absolute convergence of the series is also guaranteed by Lemma 2.
The statement that the formula holds without the error term when x is an integer comes from the following lemma, after using

$$
\frac{q^{s}}{1+q^{s}}=\sum_{m \geq 1}(-1)^{m+1} q^{m s}
$$

in (18) and integrating term by term, this being easily justified.
Lemma 4. For integers q, k, r with $q>1$ and $k, r \geq 1$ and for χ as above

$$
\frac{1}{2 \pi i} \int_{\frac{3}{4}-k-i \infty}^{\frac{3}{4}-k+i \infty} \frac{L(s, \psi)(q r)^{s}}{(s)_{k+1}} d s=0 .
$$

Proof. As before, for $c>1$ we have the absolutely convergent integral representation

$$
\frac{1}{k!} \sum_{n \leq q r}\left(1-\frac{n}{q r}\right)^{k} \psi(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{L(s, \psi)(q r)^{s}}{(s)_{k+1}} d s
$$

Shifting the contour to the line $\operatorname{Re}(s)=\frac{3}{4}-k$, a calculation of residues shows that the proof will be finished once we establish the following lemma.

Lemma 5. Assumptions as above.

$$
\begin{equation*}
\sum_{1 \leq n \leq q r} \psi(n)\left(1-\frac{n}{q r}\right)^{k}=\sum_{1 \leq j \leq k}(q r)^{1-j}(-1)^{j+1}\binom{k}{j-1} L(1-j, \psi) . \tag{19}
\end{equation*}
$$

Proof. Apply the binomial expansion and formula (12) to compute the coefficient of $\psi(n)$ for $1 \leq n \leq q$ on either side of (19), also using the q-periodicity of ψ. By (9) and (12) we reduce the proof to the polynomial identity in x :

$$
\begin{equation*}
\sum_{0 \leq \ell \leq r-1}(x-r+\ell)^{k}=-\sum_{1 \leq j \leq k}(-r)^{k-j+1}\binom{k}{j-1} \frac{1}{j} B_{j}(x)+C_{k, r}, \tag{20}
\end{equation*}
$$

where $C_{k, r}$ is a constant. Then (19) follows by taking $x=\frac{n}{q}$.
To establish (20), we need only show that the derivatives of both sides with respect to x coincide. Thus we must show that

$$
\begin{equation*}
k \sum_{0 \leq \ell \leq r-1}(x-r+\ell)^{k-1}=-\sum_{0 \leq j \leq k-1}(-r)^{k-j}\binom{k}{j} B_{j}(x), \tag{21}
\end{equation*}
$$

where we have applied (14) and then shifted indices in j. Now apply the identity (16) to the right hand side of (21) to reduce the needed identity to

$$
\begin{equation*}
k \sum_{0 \leq \ell \leq r-1}(x-r+\ell)^{k-1}=B_{k}(x)-B_{k}(x-r) \tag{22}
\end{equation*}
$$

Then (22) follows by applying the identity (15) r times to the right hand side of (22). This finishes the proof of (19).

Although we do not need it, the constant $C_{k, r}$ can be evaluated as $C_{k, r}=-\frac{(-r)^{k+1}}{k+1}$.
This completes the proof of (6) in Proposition 1. The proof of (7) is similar except that we must account for a double pole at $s=0$ since

$$
\sum_{n \geq 1} a_{\psi}^{+}(n) n^{-s}=\left(1-q^{-s}\right)^{-1} L(s, \psi)
$$

The final statement of Proposition 1 follows by Lemma 1.

Remark: It can be shown that the union of all ψ that are admissible for some divisor $q^{\prime}>1$ of a fixed $q>1$ forms a \mathbb{C}-basis for the space of all q-periodic arithmetic functions $\psi(n)$ that satisfy

$$
\sum_{1 \leq n \leq q} \psi(n)=0
$$

It is therefore possible to extend much of our analysis to such arithmetic functions.

References

[1] Borwein, P.; Choi, S. K. K.; Coons, M., Completely multiplicative functions taking values in $\{-1,1\}$, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6279-6291.
[2] Davenport, H., Multiplicative number theory, Third edition. Revised and with a preface by Hugh L. Montgomery. Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000. xiv+177 pp.
[3] Delange, H., Sur la fonction sommatoire de la fonction "somme des chiffres", Enseign. Math. (2) 21 (1975), no. 1, 31-47.
[4] Duke, W.; Imamō̄lu, Ö.; Tóth, Á., Kronecker's first limit formula, revisited, Res. Math. Sci. 5 (2018), no. 2, Paper No. 20, 21 pp.
[5] Erdős, P., Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.
[6] Flajolet, P.; Grabner, P.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F., Mellin transforms and asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), no. 2, 291-314.
[7] Hardy, G. H. Divergent Series, Oxford, at the Clarendon Press, (1949). xvi+396 pp.
[8] Kamiya, Y.; Murata, L., Relations among arithmetical functions, automatic sequences, and sum of digits functions induced by certain Gray codes, J. Théor. Nombres Bordeaux 24 (2012), no. 2, 307-337.
[9] Murata, L.; Mauclaire, J.-L., An explicit formula for the average of some q-additive functions, Prospects of mathematical science (Tokyo, 1986), 141-156, World Sci. Publishing, Singapore, 1988.
[10] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52 Springer-Verlag New York, Inc., New York 1966 viii+508 pp.
[11] Montgomery, H. L.; Vaughan, R. C., Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, (2007). xviii +552 pp.
[12] Rademacher, H., On the Phragmén-Lindelöf theorem and some applications, Math. Z 72 (1959/1960), 192-204.
[13] Tao, T., The Erdős discrepancy problem, Discrete Anal. (2016), Paper No. 1, 29 pp.
[14] Trollope, J. R. , An explicit expression for binary digital sums, Math. Mag. 41 (1968) 21-25.
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA
Email address: wdduke@ucla.edu
LACC Mathematics Department 855 N. Vermont Ave. Los Angeles, CA. 90029, USA
Email address: nguyenhn@laccd.edu

