RIESZ MEANS OF CERTAIN ARITHMETIC FUNCTIONS
WILLIAM DUKE AND HA NAM NGUYEN

ABSTRACT. We give examples of completely multiplicative arithmetic functions that as-
sume only the values +1 and that have bounded first Cesaro means. The method of proof
also yields some interesting identities involving special values of Dirichlet L-functions. In
particular, we present some new class number formulas for quadratic fields.

1. INTRODUCTION

An arithmetic function a : Z* — {—1, 1} that is completely multiplicative is tantamount
to the assignment of £1 to each prime. The value at any integer is then determined by its
unique factorization into primes. For example, if we assign —1 to each prime we get the
Liouville function

A(n) = (~1)°,

where Q(n) is the number of prime factors of n, counted with multiplicity.
A conjecture of Erdds (Problem #9 of [5]) proven a few years ago by Tao [13] implies
that for any such arithmetic function a(n) the partial sums

(1) s(n) = Z a(k)

1<k<n

are unbounded. A potential strengthening of this result would be the statement that the
(first) Cesaro mean

(2) cn)=75 > > alk)

1<m<n 1<k<m

is also unbounded. This is true for the Liouville function. We will show in this paper that
there exist infinitely many completely multiplicative 4+1 arithmetic functions for which the
Cesaro mean is bounded, hence that such a strengthening does not hold in general.

It is easy to describe these functions explicitly. Let ¢ > 2 be a prime and (;), the
Legendre symbol. Define a,(q) = —1 while for p # ¢ set a,(p) = (g) and extend a,(n) to
be completely multiplicative. Clearly a,(n) € {£1} for all n. We see directly that s(n) as
defined in (1) is unbounded, since for any positive integer m

s(U+q* +q" +- -+ ) =m.
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Theorem 1. For any prime q > 2 there exists a constant A, > 0 such that

LYY am| <4

1<m<n 1<k<m

for alln € Z+.

Suppose now that ¢ is any positive integer with ¢ > 1 and that ¥(n) is a periodic
arithmetic function with period q. Say that v is admaissible for q if either ¢ = x where x
is a primitive Dirichlet character mod ¢ or ¢ = x, where x is defined by setting y(n) = 1
for ¢ 1 n while otherwise y(n) = 1 — ¢. The method of proof of Theorem 1 yields some
remarkable identities for special values of the L-function

s, 0) =Y P(n)n

when 1) is admissible for q. This series is absolutely convergent for Re(s) > 1 and has an
analytic continuation in s to an entire function of order one (see below in §3). Note that

(3) L(s,X) = (1 = ¢'7)¢(s).
Let (2)r = x(x+1)--- (x+k—1) be the Pochhammer symbol and H, = 1 +35+35+---+1
be the £ harmonic number.

Theorem 2. Let v be admissible for ¢ > 1. For any k € Z* and o = =~ we have

log g
k! L(na, 1) )
———> = —logq 4 JN’ and
% (nQ) k41 0<]Z<; . G5
n odd
k! L(na, i
> % —L(0,¢) = (3logq — Hy) L(0, ) —logq Y (1) (528,
neZ\{0} kt1 1<j<k—1

n even

where the infinite sums are absolutely convergent.

These identities yield some new class number formulas for quadratic fields. Suppose that
D # 1 is a fundamental discriminant and

K = Q(VD).

Let 0 : K — K generate the Galois group of K/Q and for 8 € K let N(3) = 33°. Let Cl}
be the group of (narrow) fractional ideal classes in K. Thus two ideals a and b are in the
same class if there is § € K with N(8) > 0 so that a = (5)b. Let

h(D) = #CT},
be the class number and w = wp be the number of roots of unity in K. Thus w = 2 unless
D = —3,—4 when w = 6,4, respectively. If D > 1 let €p be the smallest unit of norm 1 in
the ring of integers of K with ep > 1. Finally, let xp(-) be the Kronecker symbol, which is
a primitive Dirichlet character mod |D].
The next corollary follows from Theorem 2 with & = 1 together with standard class
number formulas (see e.g. [4]).
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Corollary 1. For a fundamental discriminant D # 1 let a = log”fm. Then

L
wp'h(D)log |D| = — E % when D <0 and
neZ
n odd

L(na, xp)
1h(D)logep = — E —
2

ezl (na)(na + 1)

n even

when D > 0.

The following consequence of Theorem 2 and (13) below is of interest in connection with
the Chowla-Selberg formula.

Corollary 2. For D <0
L(n&7XD) 1
logl() = — 3 —BXD)_y (Liog | D] + 1) L(0, xp)-
> xo(mlogT(y) == 3= e K0+ (Flog D]+ 1) L(0, x»)
1<n<|D| neZ\{0}

n even

2. EXACT FORMULAS FOR RIESZ MEANS

Theorems 1 and 2 follow from formulas for certain Riesz means. For any sequence a(n)
and any non-negative integer k define the k' Riesz (arithmetic) mean of a(n) by

su() = S (1= 2)fa(n)

n<x
(see [7, §5.16]). When k = 1 this is essentially the first Cesaro mean (2) in that
(4) c(n) = 22 si(n +1).

We give an explicit formula for s;(n) when a(n) = ay, £(n) is defined through the formula

(5) at(n) = (L) p(5),

qm ‘TL

where 1) is admissible for ¢ and a choice of 4+ is made.

Proposition 1. Let ¢ be admissible for ¢ > 1. For a positive integer k and x > 1 we have

! nao,y e K0 —i 3_
(6) D0 =Drayn) =g D Gl @™+ D0 (VI T + 0@ ) and

n<x nez 0<j<k-1
n odd
(7) > (1= 2)Faj(n) = - (loga + 3log g — Hy) L(0, ) + - L'(0, ¢))
n<x
_k! L(na,y) i +1 L( ) — 3_p
+1ogq Z (na)k_,_l + Z j i) gi—1 j+0( 4 )7
neZ\{0} 1<j<k—1

n even

iy
logq”
hold as identities without an error term. The logx term occurs in (7) if and only if either

Y=xory=yxand x(—1) = —1.

where the infinite series are absolutely convergent and o = When x is an integer these
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Theorem 1 is an immediate consequence of (6) in Proposition 1 when we take g > 2
prime, ¥(:) = (5) and k = 1, since then a,(n) = a,(n). We remark that another infinite
set of examples is provided by a$(n) for this 1, provided we assume that p = 1 (mod 4).
This follows by the second formula of Proposition 1. The multiplicative £1 functions ag(n)
were studied in [1], where their partial sums to n were expressed in terms of the digits in
the base g expansion of n.

The exactness of the formulas of Proposition 1 when x is an integer is not important for
the proof of Theorem 1, but is crucial for that of Theorem 2 and its corollaries. In fact
Theorem 2 follows from Proposition 1 right away by taking x = 1.

Exact formulas of this type for arithmetic functions are unusual, but examples are well-
known when k = 1. Note that by (4)

(8) Sm) =D (1= 2yafm)=L > s(n) where s(n) =Y aj(0).

n<m 1<n<m—1 I<n

When 1) = x we have that s(n) gives the sum of the digits in the base ¢ expansion of n.
Actually, (7) with £ = 1 and 1) = x is equivalent to the well-known exact formula found
by Trollope [14] and by Delange [3] for S(m). In general, the partial sum s(n) of ai(n) is
an example of a g-additive function and, as in (8), a formula for the first Riesz mean of
ai(n) amounts to a formula for the partial sums of s(n). Exact formulas for the partial
sums of many g-additive functions are known (see e.g. [9], [8]) but apparently consequences
such as the corollaries to Theorem 2 have not been noticed. Also, formulas like those of
Proposition 1 when £ > 1 seem to be new.

We use the Mellin transform and standard analytic number theory for the proof of
Proposition 1. This method was applied in [6] to several examples, including the Delange-
Trollope formula, and does a good job of explaining the mechanism behind the exact
formulas for the first Riesz means. The method is a bit more involved when £k > 1.

3. DIRICHLET L-FUNCTIONS

Throughout this section assume that ¢ > 1 is fixed and that v is admissible for q. Note
that for any such

(9) > ¢n)=o.
1<n<q
We require some basic properties of the associated L-function
(10) L(s, ) = > _d(n)n".
n>1

This series converges absolutely and uniformly on compact subsets of {s € C;Re(s) > 1}.
The L-function has there the Euler product expansion

[1,(1 = x(p)p=)~",
(1-q¢) LA —-p)7"

(&
(8

> <

L(s, ) = {
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A classical result is that L(s, 1) has an analytic continuation to an entire function in s of
order one. In case ¥ = x set

§(s, ) = ()77 D(HR) L(s, ),
where a, € {0, 1} is such that y(—1) = (=1)™. If ¢ = x set
E(s,0) = (1= ¢*)m 20 (5)L(s,%)-
Then we have the functional equation
(11) (1= s,9) = eyé(s,9)

where ¢, is a certain root of unity with e; = 1. For proofs see [2]. We have the following
immediate consequence of the functional equation (11) together with the well-known fact
2] that L(1 +it,¢) # 0 for all t € R.

Lemma 1. For non-zero t € R we have that L(it,¢) # 0. For j =0,1,2,... we have that
L(—j7,v) = 0 when ¢ = x if and only if a, + j is even, while L(—j,x) = 0 if and only if
=2 4 ...

The functional equation and the Phragmén-Lindelof theorem imply the following explicit
estimate [12].

Lemma 2. for0 <e< % we have

(1t + 1)3. o<1
CA+e)(t|+1)5F", —e<o<l+e

|L(o + it, V)| < {

where the implied constant depends only on q.

A useful tool to study these L-functions at non-positive integers is the Hurwitz zeta
function, which is defined for x > 0 and Re(s) > 1 by

((s,2) = D (n+a)

See e.g. [10, §1.4] for the properties we quote below. For fixed z > 0 it has an analytic
continuation in s to an entire function except for a simple pole at s = 1. For j € Z* we
have

C(l —j,l‘) = _%Bj(x)?
where Bj(x) is the Bernoulli polynomial. Also

0s¢(z,0) = log ((2#)_% I(z)).

s)=q" Y b(r)((s,t

1<r<q

Clearly

so that we get the following lemma.
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Lemma 3. For integral j > 1 we have

(12) L —j) === 3" 9(n)B;(2),

1<n<q

where Bj(x) is the Bernoulli polynomial. Also we have

(13) L'(0,4) = —L(0,¢)logg+ > (n)logI'(%).

1<n<q

Note that we are using (9) to derive (13).
For convenience we record some properties of the Bernoulli polynomial By (z) that we
will need. A good reference is [10, §1.5.1]. For integral k& > 0 the following hold:

(14) By () = (k + 1) Bi(a)
(15) By(z) — By(z — 1) = k(z — 1)*
(16) Z () Bj(2)y" 7 = Bi(x +y).

4. PROOF OF PROPOSITION 1

We will give details for (6) and simply indicate the small changes needed to prove (7).
Using (5) it is easy to check that for L(s,) from (10)

(17) D ag(nn™ = (1+q°) " L(s,9).

We use the following summation formula. For x > 1 and ¢ > 1 we have the absolutely
convergent integral representation [11, p.142]

1 _ n\k, — _ L cHieo L(s,?/})xs
w2 (1= a;(n) = /Oo At (& ™

n<x

where we have applied (17).

Next, the idea is to apply the standard method of shifting the contour to the left, in our
case to the line Re(s) = % — k. Note that it is valid to do this in view of Lemma 2 and the
term ($)gy1 in the denominator of the integrand. In the process we will pass over simple
poles at zeros of 1+ ¢~%, namely s = 1222 for odd n € Z. These are actual poles by Lemma
1. The residues at the poles are easily computed. This yields the asymptotic formula of

(6), upon estimating

1 [ L5, 4)(gx)
27” —k—ioco (1+qs)(s)k+1

by Lemma 2. The absolute convergence of the series is also guaranteed by Lemma 2.
The statement that the formula holds without the error term when x is an integer comes
from the following lemma, after using

(18)
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in (18) and integrating term by term, this being easily justified.

Lemma 4. For integers q, k,r with ¢ > 1 and k,r > 1 and for x as above

3 .
1 4 —k+ioco L s
Ly CROIC N
2m 3 _k—ico (8)k+1

Proof. As before, for ¢ > 1 we have the absolutely convergent integral representation

c+1i00 s r)s
% Z(l_ q%)kzw(n) o 1 / L( 77vb>(q ) ds.

n<ar 20 e (8)k-+1

Shifting the contour to the line Re(s) = % — k, a calculation of residues shows that the
proof will be finished once we establish the following lemma. 0J

Lemma 5. Assumptions as above.

(19) Do) = 2 =Y (e (= (E) L - gw).

1<n<gr 1<j<k
Proof. Apply the binomial expansion and formula (12) to compute the coefficient of ¥ (n)
for 1 < n < g on either side of (19), also using the g-periodicity of . By (9) and (12) we
reduce the proof to the polynomial identity in x:
(20) doow—r+0F == (=) ) B(@) + oy,

0<t<r—1 1<j<k

where Cj, is a constant. Then (19) follows by taking = = rE

To establish (20), we need only show that the derivatives of both sides with respect to
coincide. Thus we must show that

(21) EY @err 0 == 3 (0 () B W),

where we have applied (14) and then shifted indices in j. Now apply the identity (16) to
the right hand side of (21) to reduce the needed identity to

(22) kY (w—r+0"" = Bu(z) — Bp(x — ).

0<e<r—1
Then (22) follows by applying the identity (15) 7 times to the right hand side of (22). This
finishes the proof of (19).

Although we do not need it, the constant Cj, can be evaluated as Cj, = — ()t

k+1

O

This completes the proof of (6) in Proposition 1. The proof of (7) is similar except that
we must account for a double pole at s = 0 since

S ai ()t = (1= ) Lis, ).

The final statement of Proposition 1 follows by Lemma 1. 0J
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Remark: It can be shown that the union of all ¢ that are admissible for some divisor ¢ > 1
of a fixed ¢ > 1 forms a C-basis for the space of all g-periodic arithmetic functions 1 (n)
that satisfy

> (n) =0.

1<n<q

It is therefore possible to extend much of our analysis to such arithmetic functions.

REFERENCES

Borwein, P.; Choi, S. K. K.; Coons, M., Completely multiplicative functions taking values in {—1,1},
Trans. Amer. Math. Soc. 362 (2010), no. 12, 6279-6291.

Davenport, H., Multiplicative number theory, Third edition. Revised and with a preface by Hugh L.
Montgomery. Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000. xiv+177 pp.
Delange, H., Sur la fonction sommatoire de la fonction “somme des chiffres” , Enseign. Math. (2) 21
(1975), no. 1, 31-47.

Duke, W.; Imamoglu, O.; Téth, A., Kronecker’s first limit formula, revisited, Res. Math. Sci. 5 (2018),
no. 2, Paper No. 20, 21 pp.

Erdés, P., Some unsolved problems, Michigan Math. J. 4 (1957), 291-300.

Flajolet, P.; Grabner, P.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F., Mellin transforms and
asymptotics: digital sums, Theoret. Comput. Sci. 123 (1994), no. 2, 291-314.

Hardy, G. H. Divergent Series, Oxford, at the Clarendon Press, (1949). xvi+396 pp.

Kamiya, Y.; Murata, L., Relations among arithmetical functions, automatic sequences, and sum of
digits functions induced by certain Gray codes, J. Théor. Nombres Bordeaux 24 (2012), no. 2, 307-337.
Murata, L.; Mauclaire, J.-L., An explicit formula for the average of some g-additive functions,
Prospects of mathematical science (Tokyo, 1986), 141-156, World Sci. Publishing, Singapore, 1988.
Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and theorems for the special functions of
mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften,
Band 52 Springer-Verlag New York, Inc., New York 1966 viii+508 pp.

Montgomery, H. L.; Vaughan, R. C., Multiplicative number theory. I. Classical theory. Cambridge
Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, (2007). xviii+552 pp.
Rademacher, H., On the Phragmén-Lindeldf theorem and some applications, Math. Z 72 (1959/1960),
192-204.

Tao, T., The Erdds discrepancy problem, Discrete Anal. (2016), Paper No. 1, 29 pp.

Trollope, J. R. , An explicit expression for binary digital sums, Math. Mag. 41 (1968) 21-25.

UCLA MATHEMATICS DEPARTMENT, BoX 951555, Los ANGELES, CA 90095-1555, USA
Email address: wdduke@ucla.edu

LACC MATHEMATICS DEPARTMENT 855 N. VERMONT AVE. LOS ANGELES, CA. 90029, USA
Email address: nguyenhn@laccd.edu



	1. Introduction
	2. Exact formulas for Riesz means
	3. Dirichlet L-functions
	4. Proof of Proposition 1 
	References

