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Abstract

Using only basic tools from the theory of modular forms, the rational
points of bounded height on the sphere are counted and shown to be
uniformly distributed. The more difficult case of points with a given
height is also treated.

1 Introduction.

The object of this paper is to give a short and reasonably self-contained treat-
ment of the distribution properties of the rational points on the sphere

S2 = {x ∈ R3;x2
1 + x2

2 + x2
3 = 1}

using only basic properties of modular forms, including the Shimura lift and
the fundamental work of Rankin. Consider the set R of rational points Q3 ∩
S2. By the height h(x) of a point x ∈ R we shall mean simply the least
common denominator of its coordinates in reduced form. First we shall count
the rational points of height ≤ T on S2 and show that they become uniformly
distributed with respect to (normalized) Lebesgue measure µ on S2 as T →∞.
Then we shall show that the rational points of a given height become uniformly
distributed as the height tends to infinity through odd values.

2 Rational points of bounded height.

For a function ψ on S2 define

A(T, ψ) =
∑

x∈R, h(x)≤T

ψ(x).

Thus A(T, 1) is the number of rational points on S2 with height ≤ T . The
following theorem counts these points and shows that they are uniformly dis-
tributed.
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Theorem 1 As T →∞ we have that A(T, 1) ∼ 3
2κ T

2, where κ = 1/12−1/32+
1/52 − 1/72 + · · · ' .9159 is Catalan’s constant. For any continuous function
ψ : S2 → C we have

A(T, ψ)/A(T, 1) →
∫

S2
ψdµ

as T →∞.

Proof: Define
a(n, ψ) =

∑
x∈R, h(x)=n

ψ(x) (1)

and consider the Dirichlet series

φ(s, ψ) =
∑
n≥1

a(n, ψ)n−s. (2)

This Dirichlet series enjoys nice analytic properties in case ψ = Pd is a ho-
mogeneous harmonic polynomial of degree d. That it is enough to restrict to
such ψ for the proof of the second statement of the theorem is a generalization
of Weyl’s [6] famous criterion for uniform distribution on a torus. In our present
context it follows from the classical fact that finite linear combinations of spher-
ical harmonics are dense in the space of continuous functions on S2 with respect
to the L∞ norm (Cor. 2.3 p. 141 of [5]).

Consider the set of integral vectors

N = {(x1, x2, x3, y) ∈ Z4;x2
1+x2

2+x2
3−y2 = 0, y > 0 and gcd(x1, x2, x3, y) = 1}

and observe that the map

(x1, x2, x3, y) → (
x1

y
,
x2

y
,
x3

y
)

gives a bijection fromN ontoR, where y is the height of the image of (x1, x2, x3, y).
Applying this bijection in (1) we derive that

r(n2, Pd) =
∑
`|n

a(
n

`
, Pd)

where
r(n, Pd) =

∑
x∈Z3, ‖x‖2=n

Pd(x/‖x‖) (3)

and ‖x‖2 = x2
1 + x2

2 + x2
3. Hence from (2) we have the identity

φ(s, Pd) = ζ(s)−1
∑
n≥1

r(n2, Pd)n−s. (4)
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Suppose first that Pd = 1. A formula due to Hurwitz (see p. 751 of [1]) for
r(n2, 1) = r3(n2) is equivalent to the identity∑

n≥1

r(n2, 1)n−s = 6(1− 21−s)
ζ(s)ζ(s− 1)
L(s, χ−4)

where χ−4(p) = (−4
p ) is the Kronecker symbol. This was thus an early precursor

of the Shimura lift and gives

φ(s, 1) = 6(1− 21−s)
ζ(s− 1)
L(s, χ−4)

, (5)

which is holomorphic for Re(s) > 1 except for a simple pole at s = 2 with
residue 3/κ. By a standard application of the Wiener-Ikehara theorem [2] one
derives the asymptotic relation

A(T, 1) ∼ 3
2κ

T 2

as T →∞. Of course, an estimate for the remainder term can be found as well.
To finish the proof of Theorem 1 we need only show that for any Pd with

d > 0 we have that

T−2A(T, Pd) = T−2
∑
n≤T

a(n, Pd) → 0 (6)

as T →∞, since for d > 0 ∫
S2
Pd dµ = 0.

Also, observe that we may assume that d is even for otherwise A(T, Pd) = 0. It
is classical (see [4]) that the theta series with spherical harmonic

f(z) =
∑
x∈Z3

Pd(x)e(‖x‖2z),

where as usual e(z) = e2πiz, is a holomorphic cusp form of weight 3/2 + d for
Γ0(4). It follows from (3) that

f(z) =
∑
n≥1

r(n, Pd)nd/2e(nz).

The Shimura lift [4] implies the identity

f(z) =
∑
n≥1

b(n)n−s = L(s− d, χ−4)
∑
n≥1

r(n2, Pd)n−s

where
F (z) =

∑
n≥1

b(n)e(nz)
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is a cusp form of weight k = 2d+ 2 for Γ0(2). Thus we get from (4) that

φ(s, Pd) =
∑
n≥1

a(n, Pd)n−s =
L(s− 1

2 , F )
ζ(s)L(s, χ−4)

(7)

where
L(s, F ) =

∑
n≥1

b(n)n−
k−1
2 n−s (8)

is the Dirichlet series associated to F . By the Rankin-Selberg method [3]∑
n≤x

|b(n)|2 = cxk +O(xk−2/5). (9)

for some positive constant c. By Cauchy’s inequality it follows that the Dirichlet
series (8) converges absolutely for Re(s) > 1, hence that for φ(s, Pd) in (7)
converges absolutely for Re(s) > 3/2. Now (6) follows easily.

3 Rational points of equal height.

The analysis of the previous section shows that in fact we may treat the distri-
bution of the rational points of a given height as the height gets large.

Theorem 2 For any continuous function ψ : S2 → C we have

a(n, ψ)/a(n, 1) →
∫

S2
ψdµ

as n→∞ through odd values.

Proof: As before it is enough to show that for d > 0

a(n, Pd)
a(n, 1)

→ 0 (10)

as n→∞ through odd values. From (5) we have

a(n, 1) = 6
∑

`|n, ` odd

` χ−4(n/`)µ(n/`).

This ”singular series” vanishes if and only if n is even, while for odd n it satisfies

a(n, 1) � n. (11)

By (7) we have for d > 0 that

a(n, Pd) =
∑

n=abc

b(n/ab)(n/ab)−dχ−4(a)µ(b)µ(c). (12)
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From (9) Rankin derived the non-trivial bound

b(n) � nk/2−1/5 (13)

which, when used in (12), yields

a(n, Pd) � n4/5.

Combining this with (11) gives (10) and hence Theorem 2.

Remarks:

1. Note that Hecke’s bound b(n) � nk/2 is not sufficient to prove Theorem 2.
Any substantial improvement, for example Rankin’s estimate (13), is sufficient.
Deligne gave the ultimate bound b(n) �ε n

k/2+ε.

2. The method of proof in Theorem 1 can be generalized to ellipsoids of the
form

Q(x) = 1

where Q is a positive integral quadratic form in m ≥ 2 variables. In case m is
even one must employ the symmetric square L-function in place of L(s, F ) from
(8). Similarly, the method of proof in Theorem 2 generalizes if m ≥ 3, with
Hecke’s bound being sufficient if m ≥ 4.
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