
RAMANUJAN AND MODULAR FORMS

WILLIAM DUKE

What follows is a selection of three topics from Ramanujan’s work that involve
modular forms, along with informal descriptions of some of their further develop-
ments.1 The topics chosen range from being famous to being relatively unknown.
Their presentations assume varying degrees of background knowledge of modular
forms, from minimal to moderate.

1. The tau function

For s ∈ C and n a positive integer let σs(n) =
∑

d|n d
s be the usual sum of

divisors arithmetic function. An identity from [14] that might be surprising at first
sight states that for each n,

(1) 12
n−1∑
m=1

σ1(m)σ1(n−m) = (1− 6n)σ1(n) + 5σ3(n).

This implies the elementary result that σ3(n) ≡ σ1(n) (mod 24) for n odd.
One of Ramanujan’s most influential papers [25] opens with a generalization of

(1). To state it, first extend the definition of σs(n) to n = 0 when s 6= −1 by
setting σs(0) = 1

2
ζ(−s), where ζ(s) is the Riemann zeta function. By the functional

equation, when s is odd,

(2) σs(0) =
(
i

2π

)s+1
Γ(s+ 1)ζ(s+ 1).

Theorem 1. [25] Suppose that r and s are positive odd integers and that n is a
non-negative integer. Then

n∑
m=0

σr(m)σs(n−m) = Γ(r+1)Γ(s+1)
Γ(r+s+2)

ζ(r+1)ζ(s+1)
ζ(r+s+2)

σr+s+1(n)(3)

+ ζ(1−r)+ζ(1−s)
r+s

nσr+s−1(n) + ar,s(n),

where ar,s(0) = 0 and ar,s(n) = 0 for all n when r + s ∈ {2, 4, 6, 8, 12}. In general,

ar,s(n) = O
(
n

2
3

(r+s+1)
)
.

Ramanujan concluded from Theorem 1 that

(4)
n∑

m=0

σr(m)σs(n−m) ∼ Γ(r+1)Γ(s+1)
Γ(r+s+2)

ζ(r+1)ζ(s+1)
ζ(r+s+2)

σr+s+1(n)

as n→∞, when r and s are positive odd integers.

1Several important areas of Ramanujan’s research involving modular forms are not discussed
here, including modular equations, partitions and mock theta functions.
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The tau function arises when r+s = 10, in which case ar,s(n) = ar,s(1)τ(n), where
τ(n) ∈ Z is defined by∑

n≥1

τ(n)qn = η24(z) = q
∏
m≥1

(1− qm)24(5)

=1− 24q + 252q2 − 1472q3 + 4830q4 − 6048q5 − 16744q6 + · · · .

For instance, when r = s = 5 the identity (3) yields

(6) 174132
n−1∑
m=1

σ5(m)σ5(n−m) = 65σ11(n) + 691σ5(n)− 756τ(n),

which implies the elegant congruence

(7) τ(n) ≡ σ11(n) (mod 691).

The identity of Theorem 1 is best understood as a relation between the Fourier
coefficients of modular forms for the full modular group. I will give a proof.

A holomorphic modular form F of weight k ∈ 2Z+ for the modular group is a
function on the upper half-plane H that satisfies

(8) F (az+b
cz+d

) = (cz + d)kF (z)

for a, b, c, d ∈ Z with ad− bc = 1 and has a convergent Fourier expansion

(9) F (z) =
∑
n≥0

aF (n)qn for q = e2πiz.

By the structure of the modular group we may simplify the requirement in (8) to

(10) F (−1
z
) = zkF (z).

The space Mk of all such forms is finite dimensional, which is the ultimate source
of identities like (3). A well-known argument using Cauchy’s theorem gives the
inequality (see e.g. [30, p. 10]),

(11) dimMk ≤

{
b k

12
c if k ≡ 2 (mod 12)

b k
12
c+ 1 otherwise.

Modular forms may be constructed as Eisenstein series. For k > 2 let

(12) Ek(z) = 1
2ζ(k)

∑
(m,n)∈Z2

(m,n)6=(0,0)

(mz + n)−k.

Clearly, Ek ∈Mk. Its Fourier expansion is a consequence of the Lipschitz formula:

(13) Ek(z) = 1 + 2
ζ(1−k)

∑
n≥1

nk−1qn

1−qn = 1 + 2
ζ(1−k)

∑
n≥1

σk−1(n)qn.

For the subspace Sk of cusp forms, which comprises those F ∈ Mk with aF (0) = 0,
we have that

(14) dimSk = dimMk − 1.

In fact, the Eisenstein series can be used to show that equality holds in (11).
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The important function

E2(z) = 1− 24
∑
n≥1

σ1(n)qn

is not quite modular but satisfies

(15) E2(−1
z

) = z2E2(z) + 6z
πi
.

A simple proof of this was given by Hurwitz in his dissertation [17] by using the
conditionally convergent version of (1),

E2(z) = 1 + 1
2ζ(2)

∑
m 6=0

∑
n∈Z

(mz + n)−2.

If F ∈Mk, then by differentiating (10) we see that F ′(z) := 1
2πi

d
dz
F (z) satisfies

F ′(−1
z

) = zk+2F ′(z) + k
2πi
zk+1F (z).

Thus (15) gives

(16) E ′2 =
E2

2−E4

12
and E ′k − k

12
E2Ek ∈Mk+2 for k > 2.

For positive odd s we have ζ(1− s) = 0 unless s = 1, when ζ(0) = −1
2
. By (16) we

see that for r, s odd

(17) F (z) = Er+1(z)Es+1(z)− Er+s+2(z) + 24(ζ(1−r)+ζ(1−s))
r+s

E ′r+s(z) ∈ Sr+s+2.

Therefore the first statement of Theorem 1 follows from (17), (11) and (14), after a
computation of the Fourier coefficients of F using (13) and (2) is performed.

Turning next to (5), it follows from (11) and (14) that

∆(z) = 1
1728

(
E3

4(z)− E2
6(z)

)
,

which is not identically zero, spans S12. Now (16) implies that ∆′(z)
∆(z)

= E2(z), which

gives the fundamental identity

∆(z) = η24(z) = q
∏
m≥1

(1− qm)24.

Ramanujan observed empirically that the L-function associated to ∆(z) has an Euler
product:

(18)
∑
n≥1

τ(n)n−s =
∏

p prime

(1− τ(p)p−s + p11−2s)−1.

This observation was quickly proven by Mordell [22] and then profoundly generalized
by Hecke [16]. The Euler product (18) became a paradigm for L-functions attached
to automorphic representations.

When k = r + s + 2 = 12, a computation using (17) shows that F (z) = cr,s∆(z)
where

c1,9 = 27 33 11
52 7·13B12

, c3,7 = − 26 32 52

7·13B12
, c5,5 = 25 34

5·13B12
,

with B12 = − 691
2730

the Bernoulli number and, of course, cr,s = cs,r. Now (3) gives

(19) c1,9 = 26 32 11 a1,9(1), c3,7 = 29 32 52 a3,7(1), c5,5 = 26 34 72 a5,5(1).



4 WILLIAM DUKE

Applying the value of a5,5(1) in the identity (3) leads to (6), hence (7). The other
two cases of (19) also imply congruences. More generally, we have that dimSk = 1
precisely for

k = r + s+ 2 ∈ {12, 16, 18, 22, 26}.
For such k this forces ar,s(n) = ar,s(1)τk(n), where

Ek−12(z)∆(z) =
∑
n≥1

τk(n)qn

and so τ(n) = τ12(n). The associated L-functions have Euler products and it can
be checked that the factorizations of Bk ar,s(1) still only involve small primes. The
congruence (7), along with others satisfied by τk(n), helped motivate the theory
connecting coefficients of modular forms to `-adic representations, c.f. [28].

The second statement of Theorem 1 is equivalent to the estimate

aF (n) = O
(
n

2
3

(k−1)
)

for the coefficient of the cusp form F in (17) for any k. Ramanujan’s proof of this
makes use of theta functions and elliptic function theory. Immediately after he
stated Theorem 1, Ramanujan made his famous conjecture, that for all ε > 0 we
have

aF (n) = Oε

(
n

1
2

(k−1)+ε
)
.

For τk(n) the conjecture is more precise (due to the Euler product):

|τk(n)| ≤ d(n)n
k−1
2 , d(n) = σ0(n).

As is well-known, this conjecture was proven by Deligne [6] as a special case of the
Riemann hypothesis for varieties over finite fields (Weil’s conjecture). This culmi-
nation came after a series of improvements, by a number of people, of Ramanujan’s
original estimate. The methods developed to attack the original conjecture, and
that only led to its approximation, are often the only ones known that can be used
to obtain nontrivial results for certain of its natural generalizations. This is true
for its generalization to Maass cusp forms [5] and to holomorphic cusp forms of
weight half an odd integer [18]. The (generalized) Lindelöf hypothesis for auto-
morphic L-functions, itself a consequence of the generalized Riemann hypothesis,
can be viewed as an analogue of the Ramanujan conjecture, one that includes the
half-integral weight example by Waldspurger’s theorem. Obtaining a subconvexity
bound for an L-function amounts to approximating this conjecture. An early paper
on automorphic L-function subconvexity, which is now an active area of research, is
[11]. An instructive overview can be found in the paper [19] of Iwaniec and Sarnak.

Sometimes an approximation to the conjecture implies an asymptotic formula.
For instance, (4) is an example where a weak estimate suffices. Such an asymptotic
formula can have interesting arithmetic consequences. This comment applies in
particular to problems around the representation of integers by a quadratic form
and the distribution of the representing vectors. As a relevant illustration, in a
footnote in another influential paper [26], Ramanujan wrote that the even numbers
which are not of the form x2 + y2 + 10z2 are the numbers 4λ(16µ+ 6), while the odd
numbers that are not of that form, viz.,

(20) 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391 . . .
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do not seem to obey any simple law. Dickson [7, p. 341] confirmed the observation
about even numbers by an elementary argument, but the problem of whether or
not there are infinitely many odd integers not represented remained open until [12],
whose main result implies the following as a very special case.

Theorem 2. The set of odd numbers not represented by Ramanujan’s form

x2
1 + x2

2 + 10x2
3

is finite.

The proof of this relies on the nontrivial approximation to the Ramanujan con-
jecture for half-integral weight Fourier coefficients of Iwaniec [18] mentioned above,
extended to weight 3

2
using [8]. It also relies on Siegel’s theorem, so the finiteness

statement is ineffective, meaning that the proof does not give an explicit bound for
the largest number not represented. Actually, the list (20) is incomplete and two
more exist: 679 and 2719. Ono and Soundararajan [23] showed that if one assumes
appropriate Riemann hypotheses, the new list is complete.

2. Special values of the Rogers-Ramanujan continued fraction

The most familiar infinite simple continued fraction is that of the golden ratio

1 +
√

5

2
= 1 +

1

1+

1

1+

1

1+
· · · :=

1

1 +
1

1 +
1

. . .

.

In Question 352 posed in the Journal of the Indian Mathematical Society in 1912
and then in his first letter to Hardy [15], Ramanujan gave the following analogue:

(21)

√
5+
√

5
2
− 1+

√
5

2
=
e−

2π
5

1+

e−2π

1+

e−4π

1+

e−6π

1+
· · · .

This delightful formula and others like it continue to captivate mathematicians.
Although he was strongly encouraged to do so by Hardy, apparently Ramanujan
never presented a rigorous proof of (21) (see [4, pp. 77, 87]). He rediscovered the
following identity, which is ultimately behind it and other such identities, and was
first given by Rogers [27].

Theorem 3.

(22) r(z) =
q

1
5

1+

q

1+

q2

1+

q3

1+
· · · = q

1
5

∏
n≥1

(1− qn)( 5
n

),

where ( 5
n
) is the Jacobi symbol.
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This result is a consequence of the Rogers-Ramanujan identities, which state that∑
n≥0

qn
2

(1− q) · · · (1− qn)
=
∏
n≥1

1

(1− q5n−1)(1− q5n−4)∑
n≥0

qn(n+1)

(1− q) · · · (1− qn)
=
∏
n≥1

1

(1− q5n−2)(1− q5n−3)
.

Since

R(t) =
∑
n≥0

tnqn
2

[(1− q) · · · (1− qn)]−1

satisfies the recurrence R(t) = R(tq) + tqR(tq2) we have that

r(z) = q
1
5R(q)/R(1),

which implies (22).
Using (22) it can be shown that r(z) is closely related to η(z) from (5), for instance

through

(23) r−1(z)− 1− r(z) =
η( z

5
)

η(5z)
.

Together with an identity of Jacobi, (23) was used by Watson [29] to prove (21).
Most proofs of such evaluations use modular equations in some form (see [1]).

Figure 1. Icosahedral tessellation

There is a unified way to derive identities for special values of r, which is also
in some ways simpler and more direct. This approach is explained in detail in
[9].2 The idea is to apply Klein’s theory of the icosahedron [20] and his use of
geometry and invariant theory. One shows that r is a Hauptmodul for Γ(5), the
principal congruence subgroup of level 5 of the modular group acting as a group of
transformations on H. The function r maps a fundamental domain for Γ(5) to C,

2In (7.4) of [9], τ/5 should be replaced by τ .
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resulting in an icosahedral tessellation of C by fundamental domains for the modular
group (see Figure 1). Explicitly, we have

Theorem 4. The function r defined in (22) satisfies the following transformations

r(z + 1) = e
2πi
5 r(z)

r(−1
z
) = −(1+

√
5)r(z)+2

2r(z)+1+
√

5

and the icosahedral equation

(24) (r20 − 228r15 + 494r10 + 228r5 + 1)3 + j(z)r5(r10 + 11r5 − 1)5 = 0,

where j(z) = E3
4(z)/∆(z) is the usual modular invariant.

From this we can easily derive (21), since r(i) is a fixed point of the second
transformation. The icosahedral equation (24) makes it easy to apply the classical
theory of complex multiplication to show, for example, that if z is in an imaginary
quadratic field, then r(z) is an algebraic number that can be expressed in terms of
radicals over Q. That this is true was asserted by Ramanujan in his first letter, at
least when z2 ∈ Q and provided that his words exactly found are interpreted in this
way. In his second letter to Hardy he provided the example

(25) r(
√
−5) =

√
5

1+
5
√

5
3
4 (
√
5−1
2

)
5
2−1
−
√

5+1
2
.

This identity can be verified using (24) together with the evaluation from [13, p.399],

j(
√
−5) = 8(25 + 13

√
5)3.

In fact, (24) shows that r(z) is an algebraic unit when z is imaginary quadratic,
since then j(z) is an algebraic integer. Another typical example, which is not in
Ramanujan’s work, is the evaluation

4 r(−1+
√
−19

2
) = −8− 3

√
5−

√
125 + 60

√
5

+

√
250 + 108

√
5 + (16 + 6

√
5)

√
125 + 60

√
5.

This is a also a consequence of (24), upon using that from [13, p.400],

j(−1+
√
−19

2
) = −21533.

There are other modular functions for genus zero subgroups of the modular group
that have continued fraction expansions, found by Ramanujan and others, including
Eisenstein and Selberg (see [9, §9]). Continued fractions representations of this kind
for modular functions are rare. However, expansions stemming from higher order
recurrences that naturally generalize continued fractions can sometimes be made.
A modular function for the group Γ(7) that occurs in a uniformization of the Klein
quartic is treated in this manner in [9].
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3. Integrals of Eisenstein series and hypergeometric functions

Hardy devoted a chapter of [15] to Ramanujan’s work on hypergeometric series
as presented in his notebooks. However, the notebooks contain some interesting
hypergeometric identities connected to modular forms that are not covered there,
nor in the standard reference of Bailey [2], and they are still not very well-known.

In [24, p.280 I] we find

(26)
∑
n≥1
n odd

1

n2
(
e
ny
2 + e−

ny
2

) =

√
x

4

1 + (2
3
)2x+ (2·4

3·5)2x2 + (2·4·6
3·5·7)2x3 + · · ·

1 + (1
2
)2x+ (1·3

2·4)2x2 + (1·3·5
2·4·6)2x3 + · · ·

where 0 < x < 1 and the value of y is given by

(27) y = π
1 + (1

2
)2(1− x) + (1·3

2·4)2(1− x)2 + · · ·
1 + (1

2
)2x+ (1·3

2·4)2x2 + · · ·
.

Although it might not be obvious, this identity belongs to the theory of modular
forms of level two. The usual theta constants are given by

ϑ2 =
∑
n∈Z

q(n+ 1
2

)2 , ϑ3 =
∑
n∈Z

qn
2

, ϑ4 =
∑
n∈Z

(−1)nqn
2

,

where, following Jacobi, we let q = eπiz for z ∈ H. This is the square-root of the q
we used before. Then

λ(z) = (ϑ2
ϑ3

)4 and 1− λ(z) = (ϑ4
ϑ3

)4

are both Hauptmoduls for Γ(2). The inverse of λ, when λ is restricted to a certain
fundamental domain for Γ(2), is given by the quotient of hypergeometric series

(28) z(λ) = i
2F1(1

2
, 1

2
; 1; 1− λ)

2F1(1
2
, 1

2
; 1;λ)

,

extended through analytic continuation to C \ ((−∞, 0)∪ (1,∞)). Further continu-
ation of the quotient is accomplished by moving the variable λ along loops around
0 and 1. These correspond to two linear fractional transformations of z that freely
generate Γ(2). After setting x = λ and y = −πiz in (27), Ramanujan’s identity (26)
can be expressed in the following way.

Theorem 5. For q = eπiz with z = z(λ) given in (28) we have the identity

(29)
∑
n≥1
n odd

q
n
2

n2(1 + qn)
=

√
λ

4

3F2(1, 1, 1; 3
2
, 3

2
;λ)

2F1(1
2
, 1

2
; 1;λ)

.

The LHS of (29) is an Eichler integral of an Eisenstein series of weight 3. It may
be thought of as giving a uniformization in z of the analytic continuation of the
RHS in λ. The three hypergeometric functions

√
λ 3F2(1, 1, 1; 3

2
, 3

2
;λ), 2F1(1

2
, 1

2
; 1;λ), 2F1(1

2
, 1

2
; 1; 1− λ),

give a basis of solutions to an inhomogeneous hypergeometric equation. The identity
(29) can be used to relate their projective monodromy to cocycles of the Eichler
integral, which in this case are linear polynomials.
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Ramanujan presented no proof of (29). The first was given by Berndt [3, III
p.153]. He deduced it from another entry in the notebooks (c.f. [3, II, p.88]), whose
proof makes use of non-homogeneous hypergeometric equations. This approach
generalizes nicely to prove the identities (32) and (34) given below.

Another proof of (29), which is perhaps closer to Ramanujan’s style, is given in
[10]. This proof, which I now recall, uses a continued fraction of Stieltjes that Ra-
manujan rediscovered and recorded in his second notebook shortly after the formula
(26), namely

4F√
λ

∑
n≥1
n odd

q
n
2

(1 + qn)(tF 2 + n2)
=

1

t+

12

1+

22λ

t+

32

1+

42λ

t+
· · · ,(30)

where F = 2F1(1
2
, 1

2
; 1;λ). See [10] for detailed references. The even part is

1

t+ 12−
1222λ

t+ 22λ+ 32−
3242λ

t+ 42λ+ 52−
5262λ

t+ 62λ+ 72−
· · ·

and this converges for t = 0 to

(31)
1

1−
(2

3
)2λ

1 + (2
3
)2λ−

(4
5
)2λ

1 + (4
5
)2λ−

(6
7
)2λ

1 + (6
7
)2λ−

· · · .

A well-known identity of Euler gives for complex a1, . . . , an that

1 +
n∑
`=1

a1a2 · · · a` =
1

1−
a1

1 + a1−
a2

1 + a2 − · · ·
an

1 + an
.

This implies that the continued fraction in (31) equals

1 + (2
3
)2λ+ (2·4

3·5)2λ2 + · · · = 3F2(1, 1, 1; 3
2
, 3

2
;λ).

Thus (29) follows from (30). �

Some new identities where generalized hypergeometric quotients are uniformized
by modular integrals are also proven in [10]. For instance, we have for the Eichler
integral of an Eisenstein series of weight 4 the following formula.

Theorem 6.

(32)
∑
n≥1
n odd

(−1)
n−1
2 q

n
2

n3(1 + qn)
=

√
λ(1− λ)

4

4F3

(
1, 1, 1, 1; 3

2
, 3

2
, 3

2
; 4λ(1− λ)

)
3F2

(
1
2
, 1

2
, 1

2
; 1, 1; 4λ(1− λ)

) .

Note that by identities of Gauss and Clausen we have for |λ| ≤ 1
2

3F2

(
1
2
, 1

2
, 1

2
; 1, 1; 4λ(1− λ)

)
= 2F1(1

2
, 1

2
; 1;λ)2.

For a recent application of (32) see [21].
Ramanujan apparently did not discover (32). He did attempt to evaluate the next

case in [24, I p.280], but the entry has a faint line through it:

(33)
∑
n≥1
n odd

q
n
2

n4(1 + qn)
=

√
λ

4

1 + (2
3
)2[1 + (2

3
)2{1 + (1

2
)2}]λ+ · · ·

2F1(1
2
, 1

2
; 1;λ)3

.
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This formula is not quite correct but it is close; its correct version is given in [10,
(2.8)]. It is not hypergeometric.

There are some cases where the modular integrals of cusp forms uniformize hy-
pergeometric quotients. One example is the following from [10]. Let an be defined
by ∑

n≥1

anq
n = q

∏
(1− q4n)6.

Then
∑

n≥1 ane
2πinz is the unique newform of weight 3 for Γ0(16) with character χ,

defined by χ(n) = (−1)
n−1
2 for n odd, χ(n) = 0 otherwise. It is shown in [10] that

(34)
∑
n≥1

anq
n
4 n−2 =

λ
1
4 3F2(3

4
, 3

4
, 1; 5

4
, 5

4
;λ)

2 2F1(1
2
, 1

2
; 1;λ)

.

Acknowledgment. I am grateful to Peter Paule for his helpful comments on an
earlier version of this paper.
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