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Abstract. Certain higher Rademacher symbols are defined that give class functions on
the modular group. Their basic properties are derived via a two-variable reformulation
of Eichler-Shimura cohomology. This reformulation better explains the role of cycle
integrals and leads to new evaluations. The Rademacher symbols determine the values
at non-positive integers of the zeta function for a narrow ideal class of a real quadratic
field. This result is equivalent to one of Siegel, but is proven in a new way by using an
identity for the value of such a zeta function at a positive integer greater than one as a
sum of certain double zeta values defined for the quadratic field.

1. Introduction

The main purpose of this paper is to define and study certain higher Rademacher
symbols that give class functions defined on the modular group Γ = PSL(2,Z). These
symbols generalize the classical Rademacher symbol and are defined in terms of general
Dedekind sums. While some versions of these symbols are well-known and have been
for a long time, our approach is intended to unify and clarify various aspects of their
theory. Some of their basic properties are obtained by using a two-variable reformulation
of Eichler-Shimura cohomology. This reformulation explicates the appearance of cycle
integrals in the classical theory of modular forms by interpreting them as giving a kind
of character of a cohomology class. Their structure yields some new formulas for the
symbols.

The Rademacher symbols determine the values at non-positive integers of the zeta
function for a narrow ideal class of a real quadratic field. This is perhaps their most
important property and is equivalent to a result of Siegel. We give a novel proof, which
uses an identity for the value of such a zeta function at a positive integer greater than one
as a sum of certain double zeta values defined for the quadratic field. These zeta values
are somewhat analogous to the usual double zeta values studied by Euler.

The rest of this Introduction gives a review of some of the properties of the classical
Rademacher symbol. The following two sections contain our results. The remainder of
the paper contains the proofs.

The Rademacher symbol. The Rademacher symbol is defined in terms of the Dedekind
symbol. The Dedekind symbol was introduced in [8] in connection with the transformation
law under the modular group of the logarithm of the Dedekind eta function. This symbol
is defined for a matrix A = ± ( a bc d ) = ±

(
aA bA
cA dA

)
∈ Γ by setting Φ(A) = b

d
if c = 0, and

otherwise

(1.1) Φ(A) = a+d
c
− 12 sgn(c)s(a, c),

where s(a, c) is the Dedekind sum, defined for gcd(a, c) = 1, c 6= 0 by

(1.2) s(a, c) =

|c|∑
n=1

((
n
c

))((
na
c

))
.
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Here ((x)) = 0 if x ∈ Z and otherwise ((x)) = x− bxc − 1/2.
Rademacher discovered that if we set

Ψ(A) = Φ(A)− 3 s(A)(1.3)

where s(A) = sgn(c(a+d)), then Ψ(A) is well defined on Γ and for all A,B ∈ Γ and k ∈ Z
the following hold:

Ψ(Ak) = kΨ(A) for A not elliptic(1.4)

Ψ(A) = Ψ(BAB−1)(1.5)

Ψ(A) ∈ Z.(1.6)

By (1.5), Ψ gives rise to a class function on Γ, called the Rademacher symbol.
The modular group Γ is a Fuchsian group; it has the presentation

Γ = 〈T, S, U | TSU2 = S2 = U3 = I〉,

where

T = ± ( 1 1
0 1 ) , S = ± ( 0 −1

1 0 ) , U = ± ( 1 −1
1 0 ) and I = ± ( 1 0

0 1 ) .

Therefore Γ is the free product of Z/2Z and Z/3Z, whose generators can be taken to be S
and U , respectively. It follows that Γ has no non-trivial homomorphisms to Q. However,
the Rademacher symbol induces a quasimorphism from Γ to Z:

Ψ(AB) = Ψ(A) + Ψ(B) + 3ω(A,B), where(1.7)

ω(A,B) = −sgn(cAcBcAB)− s(AB) + s(A) + s(B),

with s(A) ∈ {0,±1}. Here s(A) was defined below (1.3). In [26] and [27], Rademacher
gave proofs of (1.4)–(1.6) and (1.7) using elementary (but nontrivial) arithmetic properties
of the Dedekind sum (see also [13]). For example, (1.7) with A = S amounts to the
reciprocity formula for the Dedekind sum.

The Rademacher symbol gives a class invariant of primitive binary quadratic forms of
a given (non-square) discriminant D > 1. For A = ± ( a bc d ) ∈ Γ define

u(A) = gcd(c, b, d− a) and v(A) = c sgn(a+d)
u(A)

.(1.8)

Associate to a hyperbolic A = ± ( a bc d ) ∈ Γ the primitive form

(1.9) q(x, y) = [a′, b′, c′] = u(A)−1sgn(a+ d)(cx2 + (d− a)xy − by2).

Let (t0, u0) be the fundamental solution of t2 − u2D = 4. The map A 7→ q induces a
bijection from the set of conjugacy classes of primitive hyperbolic A with

(1.10) |Tr(A)| = t0 and u(A) = u0

and the set of Γ-classes of primitive integral binary quadratic forms with discriminant D.
By (1.5), we see that Ψ(q) = Ψ(A) is a class invariant of q.

Since T = US and V = U−1S, where V = ± ( 1 0
1 1 ), it follows from the structure of Γ

that any hyperbolic or parabolic conjugacy class is represented by an A where

(1.11) A = T n1V m1 · · ·T nrV mr ,

with r, nj,mj ∈ Z+ unless A is parabolic, in which case r = 1 and one of n1,m1 is zero.
The representation is unique up to cyclic permutations of the blocks T njV mj . A useful
aspect of this decomposition is that all of the entries in a hyperbolic A are strictly positive.
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Also, if ω′ < ω are the fixed points of A, then ω has a purely periodic simple continued
fraction with period (n1,m1, . . . , nr,mr):

(1.12) w = n1 +
1

m1 +
1

n2 +
1

m2 + · · ·

.

In addition, the continued fraction of aA
cA

is simply the termination of (1.12) at mr. By

(1.7), if A,B are both of the form (1.11) then

Ψ(AB) = Ψ(A) + Ψ(B).

Since Ψ(T ) = −Ψ(V ) = 1, for A from (1.11) we have the formula

(1.13) Ψ(A) =
∑

nj −
∑

mj.

Using that V = TST we can derive from (1.11) another well-known decomposition;
every hyperbolic conjugacy class is represented by an A where

(1.14) A = T n1ST n2 · · ·ST nrS

with r ∈ Z+ and nj ≥ 2, except that n1 > 2 if r = 1. Now we have the purely periodic
minus continued fraction1 with period ((n1, . . . , nr)) for the fixed point ω > ω′ of A:

ω = n1 −
1

n2 −
1

n3 − · · ·
and the formula

(1.15) Ψ(A) =
∑
j

nj − 3r.

The Rademacher symbol has proven to be of fundamental importance in arithmetic,
geometry and topology. It evaluates at s = 0 the zeta function of a (narrow) ideal class of
a real quadratic field. The symbol has applications to modular knots [12], the topology of
Hilbert modular surfaces for a real quadratic field [18] and occurs in several other related
topics (e.g. [1], [2], [5], [20], [28]).

2. Higher Rademacher symbols

In this section I will define for each n ∈ Z+ a certain higher Rademacher symbol Ψn

and present for it generalizations of the properties (1.4)–(1.5), (1.13) and (1.15) of Ψ. Our
definition of Ψn directly generalizes that of Ψ; it is given in terms of general Dedekind
sums and Ψ1 = Ψ. When n > 1 it appears to be difficult to obtain the basic properties
of Ψn using only elementary methods, as Rademacher did for Ψ, and connections with
modular forms and cohomology become invaluable.

For a, c, r, s ∈ Z with c 6= 0, gcd(a, c) = 1 and r, s ≥ 0, the general Dedekind sum is
defined by

(2.1) Sr,s(a, c) =
∑

h (mod |c|)

Pr(
ah
c

)Ps(
h
c
),

where Pr(t) is the periodic Bernoulli function:

Pr(x) = Br(x− bxc),
1Study of the “minus” continued fraction goes back at least to Möbius [25].
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except that P1(x) = 0 for x ∈ Z. Here Br is the usual Bernoulli polynomial

Br(t) =
∑

0≤n≤r

(
r
n

)
Bnt

r−n

with Bn the Bernoulli number. Thus

B0(t) = 1, B1(t) = t− 1
2
, B2(t) = t2 − t+ 1

6
, B3(t) = t3 − 3

2
t2 + 1

2
t, . . . .

Clearly, S1,1(a, c) = s(a, c) from (1.2).
Define the important integers ın, n with n > 0 by writing

−B2n

2n
= ζ(1− 2n) =

ın
n

in lowest form. Here ζ(s) is the usual Riemann zeta function. By von Staudt’s second
theorem [37] (see [6])

(2.2) n =
∏

(p−1)|2n

p1+νp(2n),

where νp(2n) is the highest power of p dividing 2n.

Table 1. Values of ın and n

n 1 2 3 4 5 6 7 8 9 10

−B2n

2n
= ın

n
−1
12

1
120

−1
252

1
240

−1
132

691
32760

−1
12

3617
8160

−43867
14364

174611
6600

For r + s = 2n with n ≥ 1 and integers r, s ≥ 0 define the hypergeometric polynomial

(2.3) Fr,s(t) = Γ(2n−1)
Γ(s+1)Γ(r+1) 2F1(1− s, 1− r; 3

2
− n, t

4
+ 1

2
).

Clearly Fr,s(t) has rational coefficients and Fr,s = Fs,r. For example when n = 3

F0,6(t) = − 1
360

(t5 − 10t3 + 30t), F1,5(t) = 1
5
, F2,4(t) = − t

4
, F3,3(t) = 1

9
(t2 + 2).

We are now ready to define the higher Rademacher symbol Ψn(A) for n ∈ Z+ and

A = ± ( a bc d ) ∈ Γ.

Recall that v(A) was defined in (1.8).

Definition. Set Ψn(I) = 0. If c 6= 0 let

(2.4) Ψn(A) = −sgn(c) n v(A)n−1
∑

r+s=2n
r,s≥0

Fr,s(a+ d)Sr,s(a, c),

where, if n = 1, we must subtract 3 s(A) from the RHS. If c = 0 so that A = T k set

Ψn(A) = (−1)nΨn(V k).

It is easy to see that Ψn is well-defined on Γ since for r, s as in (2.4)

Fr,s(−t) = (−1)r+1Fr,s(t) and Sr,s(−a,−c) = (−1)rSr,s(a, c).

A calculation gives the values

(2.5) Ψn(V k) = k ın for k > 0 and Ψn(V −1) = |ın|.
It follows from (2.4) and (1.1) that Ψ1 = Ψ by using the evaluations

F2,0(t) = F0,2(t) = − t
4
, F1,1(t) = 1 and S2,0(a, c) = S0,2(a, c) = 1

6|c| .
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Theorem 1. For A,B ∈ Γ and n ∈ Z+ the following hold:

Ψn(Ak) = kΨn(A) for integral k ≥ 0 and non-elliptic A when n = 1(2.6)

Ψn(A−1) = (−1)nΨn(A)

Ψn(A) = Ψn(BAB−1)

Ψn(A) > 0 for n even.(2.7)

By (2.6), if n > 1 then Ψn(A) = 0 for elliptic A. Experimental and theoretical evidence
suggests that the generalization of (1.6) holds for all Ψn.

Conjecture. For each fixed n ∈ Z+ and all A ∈ Γ we have that Ψn(A) ∈ Z.

For any fixed n there is a procedure using a finite calculation to verify that this holds for
all A. This procedure involves the application of analogues of the formulas (1.13) and
(1.15). In addition, it appears to be true that the set of values of Ψn for a fixed n have
no common divisor > 1.

Analogues of (1.13) and (1.15) for a fixed n > 1. Clearly we need only consider hyperbolic

or parabolic classes. First we define a “main term” Ψ
(0)
n of Ψn. Suppose that a conjugacy

class is represented by A as in (1.11):

A = T n1V m1 · · ·T nrV mr with t =
∑

1≤i≤r

(ni +mi) letters.

Let Aj be the jth cyclic permutation of the word from left to right, letter by letter. For
instance, when A = ± ( 7 4

5 3 ) = TV 2TV we have

A0 = A, A1 = V 2TV T, A2 = V TV TV, A3 = TV TV 2, A4 = V TV 2T.

Define

(2.8) Ψ(0)
n (A) =

∑
0≤j≤t−1

(
cn−1
j + (−1)nbn−1

j

)
,

where bj = 1
u(A)

bAj
, cj = 1

u(A)
cAj
∈ Z with u(A) from (1.8). Clearly Ψ

(0)
n (A) ∈ Z. Further-

more, it follows from known results (and will be shown here) that for n = 2, 3, 4, 5, 7

(2.9) Ψn(A) = ınΨ(0)
n (A) = (−1)nΨ(0)

n (A)

holds for all A, which shows that Ψn(A) is integral in these cases. This motivates the
definition of the “parabolic” symbol

(2.10) Ψ′n(A) = Ψn(A)− ınΨ(0)
n (A),

for which it can be checked using (2.5) that Ψ′n(A) = 0 for parabolic A.
For any given n, we can derive many explicit formulas for Ψ′n(A) of the same general

shape as the RHS of (2.8). There is a large degree of freedom in the choice of formula in
general, and it appears that we may always choose one that is clearly integral valued and
has a nice form.2 Define for each n > 1 (for brevity I leave out the subscripts j):

Ψ(1)
n (A) =

∑
j

(cn−3 + (−1)nbn−3)(n−2
2
a2 − (n− 1)ad+ n−2

2
d2 + 1).(2.11)

For n < 12 we have

(2.12) Ψ′n(A) = κnΨ(1)
n (A)

2This freedom is a result of the fact that the dimension of the space of polynomials available to
construct Ψ′

n is in general larger than the dimension of a certain cohomology group determined by these
polynomials.
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with integers κn, where κn = 0 for n = 2, 3, 4, 5, 7. It is not surprising that beginning
with n = 12 new secondary terms appear. For instance, we have

Ψ′12(A) = κ12Ψ
(1)
12 (A) + 50697900(c7 + b7)(2.13)

×
(
6a4 − 33a3d+ 55a2d2 − 33ad3 + 6d4 + 9a2 − 20ad+ 9d2 + 1

)
Ψ′14(A) = κ14Ψ

(1)
14 (A) + 168058800(c9 + b9)

×
(
55a4 − 286a3d+ 468a2d2 − 286ad3 + 55d4 + 66a2 − 144ad+ 66d2 + 1

)
.

For each n that I have checked, a formula with integral coefficients of this general type
exists, although of course new secondary terms necessarily arise as n increases.

Table 2. Values of κn.

n 6 8 9 10 11 12 14

κn 180 1260 −18000 79380 −39375 165079530 2787335460

The correspondence from (1.9) allows us to write these formulas for primitive A as sums
over the forms

(2.14) a′jx
2 + b′jxy + c′jy

2,

corresponding to the cyclic permutations Aj. The resulting set of forms consists of all the
simple forms of their class, where [a′, b′, c′] is simple if c′ < 0 < a′.

Suppose that C1, . . . Ch are a complete set of representatives of hyperbolic conjugacy
classes that satisfy the relations corresponding to (1.10), where D > 1 is a discriminant.
For even n, we can derive the following identities using (2.8), (2.11) and these simple
forms: ∑

1≤j≤h

Ψ(0)
n (Cj) = 2

∑
b≡D (mod 2)

σn−1(D−b
2

4
),(2.15)

∑
1≤j≤h

Ψ(1)
n (Cj) = 1

2

∑
b≡D (mod 2)

(
(2n− 3)b2 −D

)
σn−3(D−b

2

4
),

where σn−1 is the usual sum of divisors function. For the first identity, apply (2.8) together
with (1.9), then translate to a sum over all simple forms of discriminant D from (2.14).
This yields∑

1≤j≤h

Ψ(0)
n (Cj) =

∑
c′<0<a′

D=b′2−4a′c′

(a′)n−1 + (−c′)n−1 = 2
∑

b≡D (mod 2)

σn−1(D−b
2

4
).

The second identity of (2.15) follows similarly from (2.11).
By employing the decomposition in (1.14) we can give a single explicit formula for

Ψ′n(A) that holds for all n and that appears to always be integral. The formula is not, in
general, as concise as those that can be derived for a fixed n as above, but it is uniform
over n. For 0 ≤ r ≤ 2n− 2 and x = (x1, x2) let

(2.16) Gn,r(x) =
(
(x1x2)

r
2 + (−1)r+1(x1x2)n−1− r

2

)
C(1−n)
r ( x1+x2

2
√
x1x2

),

where C
(1−n)
r (t) is the Gegenbauer polynomial, defined through

(2.17) (1− 2tz + z2)n−1 =
∑

0≤r≤2n−2

C(1−n)
r (t)zr.
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It can be checked that Gn,r is a symmetric polynomial that has integral coefficients. It
satisfies

Gn,r(x) = (−1)r+1Gn,r∗(x) where r∗ = 2n− 2− r.
For example when n = 3,

G3,0 = 1− (x1x2)2, G3,1 = −2(x1 + x2)(1 + x1x2), G3,2 = 0, G3,3 = G3,1.

Now suppose a hyperbolic conjugacy class is represented by A in (1.14) and let A(j) be the
jth cyclic permutation of the blocks T niS from left to right. Define in terms of Bernoulli
numbers

(2.18) hn(r) = n
2

(2− δr,n)
(
B2n

2n

(
Br

r
+ B2n−r

2n−r

)
− Br

r
B2n−r

2n−r

)
+ ın

2n−2
δr,2,

where δr,n is the Kronecker delta. Set

(2.19) Gn(x) =
∑

2≤r≤n
r even

hn(r)Gn,r−1(x).

Recall that Ψ′n(A) was defined in (2.10).

Theorem 2. For each n > 1 and hyperbolic

A = T n1ST n2 · · ·ST nrS

we have the identity

(2.20) Ψ′n(A) =
∑

0≤j≤r−1

cn−1
j Gn(ωj, ω

′
j),

where (ωj, ω
′
j) are fixed by A(j) and cj = u−1cA(j) ∈ Z.

It appears that Gn(x) ∈ Z[x1, x2] for all n ≥ 2. I have verified this for a large number of
n, although the coefficients of the polynomials quickly become enormous.3 It is straight-
forward to show that for any n where it holds we have that Ψ′n(A) ∈ Z, hence also that
Ψn(A) ∈ Z, for all A.

A calculation yields an expression for Ψ
(0)
n (A) from (2.8) in terms of the decomposition

(1.14). In the notation of Theorem 2 we have:

(2.21) Ψ(0)
n (A) = −ın

∑
j

cn−1
j

∑
1≤r≤2n−1

(nr
j

r
− Br

r
− B2n−r

2n−r + νr
)
Qn,r−1(ωj, ω

′
j),

where νr = −1
2
(δr,1 + δr,2n−1) + 1

2n−2
(δr,2 + δr,2n−2). By (2.8) this is integral valued, which

is not at all obvious from the expression (2.21).
The formulas (2.20) and (2.21) can be written in terms of the entries of A(j). For

example,

Ψ′6(A) = 3
∑

(a− d)(60 + 40a2+2a4 − 50b2 − 25a2b2 + 24b4 − 50c2

−25a2c2 + 24c4 − 200ad−48a3d+ 100ab2d+ 100ac2d+ 40d2

+152a2d2 − 25b2d2−25c2d2 − 48ad3 + 2d4),

where again we sum over j and leave out the subscripts. Each formula can also be written
as a sum over the associated quadratic forms [a′, b′, c′] from (1.9). These now comprise all
reduced forms, where [a′, b′, c′] is reduced if

a′, c′ > 0 b′ > a′ + c′.

3E.g. the coefficient of x1 in G24(x) is 5932154033364156392062962058217938594635552972840.
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3. Double zeta values for a real quadratic field

Another goal of the paper is to introduce some analogues for a real quadratic field F of
the double zeta values studied by Euler. In addition to having independent interest, these
zeta values are used to give a new proof of a formula, which is a more symmetric and
somewhat simpler version of one first obtained by Siegel. The formula relates the higher
Rademacher symbol defined in the previous section to the value of the zeta function of a
narrow ideal class of F at a non-positive integer.

The double zeta value studied by Euler [11] is given by

ζ(r, s) =
∑

m1>m2>0

m−r1 m−s2 ,

where r, s ∈ Z+ with r ≥ 2. Among the identities relating these values to values at integers
of ζ(s) is

ζ(2n) = 2
∑

n<r≤2n−1

(
n−1
n−r

)
ζ(r, 2n− r)(3.1)

for integral n > 1. Loosely speaking, one can regard

ζ(2s) = ζ(s)
∏
p

(1 + p−s)−1

as the zeta function of a “degenerate” real quadratic field in which every rational prime
is inert.

The aim is to establish formulas for a genuine real quadratic field that are somewhat
analogous to the formula (3.1). For t ∈ Z with t > 2 and a, c ∈ Z with c > 0 and
gcd(a, c) = 1 the double zeta value we need is given by

(3.2) ζt(r, s; a, c) =
∑

m1,m2>0
m2

1+m2
2<tm1m2

m2≡am1 (mod c)

m−r1 m−s2 ,

for suitable r, s ∈ Z+. Clearly

ζt(s, r; a, c) = ζt(r, s; a, c) where aa ≡ 1 (mod c).

Define for n, r ∈ Z+ with 0 < r < 2n the polynomial of degree r − 1 in t by

(3.3) cn,r(t) = Γ(r)Γ(2n−r)
Γ(n)2

C
(1−n)
r−1 (− t

2
),

where again C
(1−n)
r−1 (x) is the Gegenbauer polynomial with negative index. It can be

shown by induction using the recurrence relations satisfied by Gegenbauer polynomials
that cn,r(t) has positive integral coefficients. Also

cn,r(−t) = (−1)r+1cn,r(t) cn,r(t) = cn,2n−r(t).

For example,

c2,1(t) = 2 c2,2(t) = t c2,3(t) = 2

c3,1(t) = 6 c3,2(t) = 3t c3,3(t) = t2 + 2 c3,4(t) = 3t c3,5(t) = 6

c4,1(t) = 20 c4,2(t) = 10t c4,3(t) = 4t2 + 4 c4,4(t) = t3 + 6t c4,5(t) = 4t2 + 4 . . . .

Let F be a real quadratic field with discriminant D, ring of integers OF and totally
positive fundamental unit

(3.4) ε = 1
2
(t+ u

√
D),



HIGHER RADEMACHER SYMBOLS 9

where t, u ∈ Z+. Let A be any (narrow) ideal class of F. It is known that A contains
(fractional) ideals a with

a = Z + ωZ
where ω = α+ β

√
D ∈ F satisfies ω > ω′ = α− β

√
D. Let a, b, c, d ∈ Z be determined by

εω = dω + b and ε = cω + a. Then ( a bc d ) ∈ SL(2,Z) with c > 0 and the values are given
by

(3.5) a =
ε′ω − εω′

ω − ω′
b =

ε′ − ε
ω − ω′

ωω′ c =
ε− ε′

ω − ω′
d =

εω − ε′ω′

ω − ω′
.

The zeta function of the class A is

ζ(s,A) =
∑
b∈A

N(b)−s,

where b ⊂ OF runs over all nonzero integral ideals in A. As is well-known, ζ(s,A) has a
meromorphic continuation in s to an entire function with a simple pole at s = 1. Suppose
that J is the class that contains the different d = (

√
D). Thus J 2 = I, where I is the

principal class and J = I if and only if ε is a square in F.
The analogue of (3.1) is given in the following result, which is proven in §4.

Theorem 3. Notation as above, for integral n > 1 we have the evaluation

ζ(n,JA) = u( c
u
)nD

1
2
−n

∑
1≤r≤2n−1

cn,r(t)ζt(r, 2n− r; a, c).

Example. Suppose that D = (t − 2)(t + 2) is fundamental so u = 1. The first 15 such t
are given by

t = 3, 4, 5, 8, 9, 12, 13, 15, 17, 19, 21, 24, 28, 31, 32, . . . .

For F = Q(
√
t2 − 4), Theorem 3 gives for n > 1

(3.6) Dn− 1
2 ζ(n,J ) =

∑
1≤r≤2n−1

cn,r(t)ζt(r, 2n− r) for ζt(r, s) =
∑

m1,m2>0
m2

1+m2
2<tm1m2

m−r1 m−s2 .

In case t = 3 so F = Q(
√

5), for which J = I, we have that ζ(s,JA) = ζF(s), the
Dedekind zeta function of F. Thus we get

5n−
1
2 ζF(n) =

∑
1≤r≤2n−1

cn,r(3)ζ3(r, 2n− r), where ζ3(r, s) =
∑

m1,m2>0
m2

1+m2
2<3m1m2

m−r1 m−s2

satisfies ζ3(r, s) = ζ3(s, r). In particular we have

5
3
2 ζF(2) = 4ζ3(1, 3) + 3ζ3(2, 2) = 2π4

15

5
5
2 ζF(3) = 12ζ3(1, 5) + 18ζ3(2, 4) + 11ζ3(3, 3) = 57.4417 . . . .

Perhaps the most important application of Ψn is that is gives a formula for ζ(1−n,A).
As an application of Theorem 3 and its proof we will derive the following.

Theorem 4. For any A and n ∈ Z+ we have

(3.7) ζ(1− n,A) = 1
n

Ψn(A),

where the entries in A = ± ( a bc d ) ∈ Γ are determined by (3.5).
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The case n = 1 is due to Hecke [14], [15] (see also [23]). Theorem 4 is essentially
equivalent to a special case of Siegel’s formula from [33]. Our proof differs from Siegel’s
and also from that given by Shintani [31, p. 410]. In fact, in his last mathematical paper
[35], Siegel used an elementary method that is somewhat similar in spirit to our proof.
Also, Siegel’s and Shintani’s formulas apply to zeta functions for ray classes. It is not
difficult to generalize our arguments to cover these as well.

Example (continued). For F = Q(
√
D) with fundamental D = t2 − 4 the formula (3.7)

becomes

(3.8) ζ(1− n, I) = −
∑
r+s=n
r,s≥0

F2r,2s(t)B2rB2s

where, when n = 1, we must subtract 1
4

from the RHS. In particular, we have the following
simple evaluations of the zeta function of the principal class:

ζ(0, I) = 1
12

(t− 3)

ζ(−1, I) = 1
720

t (t2 − 1).

ζ(−2, I) = 1
7560

t (t2 − 1)(t2 − 9).

It is known ([4], see also [3]) that the (wide) class number of F is one exactly for the
discriminants D = 5, 12, 21, 77, 437 corresponding to t = 3, 4, 5, 9, 21. In these cases (3.8)
yields special values of the Dedekind zeta function of F and the simplest Hecke L-function
with a genus character.

A calculation combining the formula of Theorem 2 and (2.21) results in Zagier’s elegant
formula for ζ(1−n,A) given in Corollaire on p. 149 of [40]. In terms of the decomposition
(1.14) and in the notation of Theorem 2 this can be written

(3.9) ζ(1− n,A) =
∑
j

cn−1
j

∑
1≤r≤2n−1

(
B2n

2n

nr
j

r
− Br

r
B2n−r

2n−r

)
Qn,r−1(ωj, ω

′
j).

This result is derived in another way in the recent paper [38].4 As discussed at the end
of [40], it is not in general easy to estimate the denominator of ζ(1 − n,A) for a fixed n
by using the RHS of (3.9). On the other hand, by (2.10) and Theorem 4

(3.10) ζ(1− n,A) = ζ(1− 2n)Ψ(0)
n (A) + 1

n
Ψ′n(A).

Here Ψ
(0)
n (A) ∈ Z and it can be checked numerically for a given n whether of not Gn from

(2.19) is integral. If it is, which seems to always be true, then Ψ′n(A) ∈ Z for all A ∈ Γ.
In this case we see that the denominator of ζ(1− n,A) always divides that of ζ(1− 2n),
namely n from (2.2).

For the Dedekind zeta function

ζF(s) =
∑
A

ζ(s,A)

we have that nζF(1−n) ∈ Z for any n ∈ Z+ (see [41] and its references, e.g. [29]). In case
n ∈ {2, 4, 6, 8, 10} we can apply the formulas (2.15) and (2.12) to obtain the following

4Examples show that the related formulas given in Theorem 8 of [21] and in the example that follows
it need to be corrected.
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evaluation, which yields more information in these cases:

nζF(1− n) = 2ın
∑

b≡D (mod 2)

σn−1(D−b
2

4
) + κnbn(D), where(3.11)

bn(D) = 1
2

∑
b≡D (mod 2)

(
(2n− 3)b2 −D

)
σn−3(D−b

2

4
).

For n = 2, 4 when κn = 0 and ın = 1, this is a well-known formula of Siegel [34]. For
these n it was obtained in a different way in [9].

Remarks. i) When n is even, after Siegel’s work [32] the value ζF(1 − n) is a positive
multiple of the co-volume of a discrete subgroup of an orthogonal group which, after
Theorem 4, also explains the positivity of Ψn(A) asserted in (2.7) of Theorem 1.

ii) When n = 6, 8, 10 the numbers bn(D) are the Fourier coefficients of a cusp form
of weight n + 1

2
, a multiple of which gives the well known Shimura correspondent to the

unique cusp form (Hecke eigenform) of weight 2n for Γ, giving an explicit and attractive
example of a general and well-known phenomenon.

In the next section I will prove Theorems 3 and 4. Then, in §5, I will give a reformulation
of Eichler-Shimura cohomology in terms of polynomials in two variables. This yields a
proof of Theorem 1, the method for deriving the formulas (2.12), (2.13) and the proof of
Theorem 2.

4. Proofs of Theorems 3 and 4

The derivation of (3.1) uses partial fractions. Our proof of Theorem 3 relies on the
following decomposition, which applies naturally to a real quadratic field, where nontrivial
units must be accounted for.

Lemma 1. Fix any ε > 1 and set t = ε+ ε−1. Choose µ, ν ∈ C∗ and n ∈ Z+ with n ≥ 2.
If εjµ+ ε−jν 6= 0 for all j then

(4.1)
1

(µν)n
= (ε− ε−1)

∑
r+s=2n
r,s≥1

cn,r(t)
∑
j∈Z

1

(εjµ+ ε−jν)r(εj+1µ+ ε−j−1ν)s
.

If µ+ ν = 0 then εjµ+ ε−jν 6= 0 for j 6= 0 and

1

(µν)n
= (ε− ε−1)

∑
r+s=2n
r,s≥1

cn,r(t)
∑
j∈Z

j 6=0,−1

1

(εjµ+ ε−jν)r(εj+1µ+ ε−j−1ν)s
(4.2)

+(ε2 − ε−2)
∑

r+s=2n
r,s≥1

cn,r(t
2 − 2)

1

(ε−1µ+ εν)r(εµ+ ε−1ν)s
.

Proof. Assume first that µ, ν > 0. Define for j ∈ Z

Ij(x, y; s) =

∫
Cj

(u1v1)se−u1x−v1ydu1 dv1

where Cj is the sector in the first quadrant of the (u1, v1) plane bounded by the lines
u1 = (ε2)j+1v1 and u1 = (ε2)jv1. Summing this integral over j ∈ Z we get

(4.3)
∑
j∈Z

Ij(x, y; s) =

∫ ∞
0

∫ ∞
0

(u1v1)se−u1x−v1ydu1 dv1 = Γ(s+ 1)2(xy)−s−1.
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Make the change of variables in Ij(x, y; s):

u1 =εju+ εj+1v

v1 =ε−ju+ ε−j−1v.

Then du1 dv1 = (ε− ε−1)du dv and

Ij(x, y; s) =

(ε− ε−1)

∫ ∞
0

∫ ∞
0

(u2 + v2 + tuv)se−u(εjy+ε−jx)−v(εj+1y+ε−j−1x)du dv.

The formula (4.1) follows from (4.3) using (2.17) and (3.3). It holds by analytic continu-
ation for all µ, ν ∈ C that satisfy εjµ+ ε−jν 6= 0 for all j ∈ Z.

If µ + ν = 0 then clearly εjµ + ε−jν 6= 0 for j 6= 0 since ε > 1. Now we give the same
proof except that we make a single change of variable for C−1 ∪ C0. �

Let a be a non-zero ideal in F. The complementary ideal is given by

a∗ = {α ∈ F; Tr(αβ) ∈ Z for all β ∈ a}.

It is known (see e.g. [36, p.135]) that aa∗ is independent of a and that aa∗ = d−1, where

d is the different of F, which, as was already mentioned, is explicitly given by d = (
√
D).

Now let ε be the unit from (3.4). If a = [α1, α2] = α1Z + α2Z then

(4.4) a∗ =
[

α′2
α1α′2−α2α′1

,
−α′1

α1α′2−α2α′1

]
.

A calculation gives

(4.5) N(a) = |D|−
1
2 |α1α

′
2 − α2α

′
1|.

We may assume that a = Z+ωZ where ω = d−a+
√
t2−4

2c
with t = a+d and t2−4 = u2D.

Here a, c, d coincide with those from (3.5). Then by (4.5)

(4.6) N(a) = u
c
.

By (4.4) we have

a∗ =
[

1
2

+ a−d
2u
√
D
, c
u
√
D

]
.

For α ∈ a∗

(4.7) α = x1(1
2

+ a−d
2u
√
D

) + x2( c
u
√
D

) = x1
2

+ 2x2c+(a−d)x1
2u
√
D

for some x1, x2 ∈ Z. Set m1 = Tr(α) = x1 and

m2 = Tr(αε) = Tr
((

x1
2

+ 2cx2+x1(a−d)

2u
√
D

)(
t+u
√
D

2

))
= 1

2
(t+ a− d)x1 + cx2 = ax1 + cx2.

Thus

m2 ≡ am1 (mod c).

The system is easily solved for x1, x2 in terms of m1,m2 as

(4.8) x1 = m1 and x2 =
m2 − am1

c
.

Furthermore, a computation using (4.7) and (4.8) gives that N(α) =
−m2

1−m2
2+tm1m2

u2D
. Thus

we have the following result.
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Lemma 2. Assumptions as above, let a =
[
1, d−a+

√
t2−4

2c

]
where t = a+d and t2−4 = u2D.

Then the map α 7→ (Trα,Trαε) gives a bijection from a∗ to

{(m1,m2) ∈ Z2;m2 ≡ am1 (mod c)}.

In addition

N(α) =
−m2

1 −m2
2 + tm1m2

u2D
.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Since d ∈ J , we have a bijection induced by α 7→ b = (α)ad from

{α ∈ a∗;N(α) > 0}/U+ to {b ∈ JA; b integral and nonzero}.

Here N(α) = αα′ and U+ is the group of units with norm 1. Therefore we have

(4.9) ζ(s,JA) = N(a)−sD−s
∑

α∈a∗/U+

N(α)>0

N(α)−s.

By (4.9) and the first statement (4.1) of Lemma 1 we deduce that for integral n > 1

ζ(n,JA) = N(a)−nD−n(ε− ε−1)
∑

r+s=2n
r,s≥1

cn,r(t)

×
∑
j∈Z

∑
α∈a∗/U+

N(α)>0

1

(εjα + ε−jα′)r(εj+1α + ε−j−1α′)s

= N(a)−nD−n(ε− ε−1)
∑

1≤r≤2n−1

cn,r(t)
∑
α∈a∗
N(α)>0

1

(Trα)r(Trαε)2n−r .(4.10)

From (3.2) we have

ζt(r, 2n− r; a, c) =
∑

m1,m2>0
m2

1+m2
2<tm1m2

m2≡am1 (mod c)

m−r1 mr−2n
2 .

Theorem 3 now follows from Lemma 2 applied in (4.10), together with (4.6) and the fact
that

ε− ε−1 = u
√
D.

�
Next we further develop the method just used to prove Theorem 3 in order to prove

Theorem 4.

Proof of Theorem 4. A derivation similar to that of (4.9) yields

(4.11) ζ(s,A) = N(a)−sD−s
∑

α∈a∗/U+

N(α)<0

|N(α)|−s.

Assume that n > 1. From (4.9) and (4.11) we have

(4.12) ζ(n,JA) + (−1)nζ(n,A) = N(a)−nD−n
∑

α∈a∗/U+

α 6=0

N(α)−n.
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By Lemmas 1 and 2 we deduce

N(a)−nD−n
∑

α∈a∗/U
α6=0

N(α)−n = 1
2
u1−nD

1
2
−n
(
cn

∑
r+s=2n
r,s≥1

cn,r(t)
∑′

m1,m2∈Z
m2≡am1 (mod c)

m−r1 m−s2(4.13)

+ 2ζ(2n)tc−n
∑

r+s=2n
r,s≥1

(−1)rcn,r(t
2 − 2)

)
,

where as usual the prime indicates that terms resulting in division by zero are omitted
from the sum. Here the terms in the first sum over r when r = 1 or r = 2n− 1 are to be
interpreted as limits. Now by using basic Fourier analysis with e(z) = e2πiz∑′

m1,m2∈Z
m2≡am1 (mod c)

m−r1 m−s2 =1
c

∑
h(c)

∑
m1

e(−ahm1

c
)
∑
m2

e(m2h
c

)m−r1 m−s2(4.14)

=
(2πi)2n

r!s! c

∑
h(c)

Pr(−ah
c

)Ps(
h
c
) = (−1)r (2πi)2n

r!s! c
Sr,s(a, c),

where Sr,s(a, c) was given in (2.1). Here we have applied the following well-known Fourier
expansion

Pr(u) = −r!
∑
k 6=0

e(ku)(2πik)−r,

where, when r = 1 we collect the terms indexed by k and −k. Thus by (4.12) – (4.14) we
get

ζ(n,A) + (−1)nζ(n,JA) = 1
2
u1−nD

1
2
−ncn−1(2π)2n

( ∑
r+s=2n
r,s≥1

cn,r(t)(−1)r 1
r!s!
Sr,s(a, c)

(4.15)

+ 2(−1)n+1(2π)−2nζ(2n)tc1−2n
∑

r+s=2n
r,s≥1

(−1)rcn,r(t
2 − 2)

)
.

The following elementary identities are easily proven.

Lemma 3. Let Fr,s(t) be defined in (2.3) and cn,r(t) defined in (3.3). For r + s = 2n,
when r, s > 0 we have

Fr,s(t) = (−1)r+1Γ2(n)
Γ(r+1)Γ(s+1)

cn,r(t).

In addition,

F2n,0(t) = F0,2n(t) = Γ2(n)
2Γ(2n+1)

t
∑

r+s=2n
r,s≥1

(−1)r cn,r(t
2 − 2).

Using Lemma 3 we get from (4.15) the identity

ζ(n,A) + (−1)nζ(n,JA) = −1
2
u1−nD

1
2
−ncn−1(2π)2nΓ(n)−2(4.16)

×
( ∑
r+s=2n
r,s≥1

Fr,s(t)Sr,s(a, c) + 2(−1)n+1(2π)−2nζ(2n)c1−2n2Γ(2n+ 1)Fr,s(t)
)
.

Next we apply the easily established result

2Γ(2n+ 1)(2π)−2n(−1)n+1c1−2nζ(2n) = c1−2nB2n = S0,2n(a, c) = S2n,0(a, c)
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so from (4.16)

ζ(n,A) + (−1)nζ(n,JA) = −1
2
u1−nD

1
2
−ncn−1(2π)2n 1

Γ2(n)

∑
r+s=2n
r,s≥0

Fr,s(t)Sr,s(a, c).(4.17)

After Hecke (see e.g. [10, (59),(6)] and [36]) the completions

(4.18) D
s
2π−sΓ( s

2
)2
(
ζ(s,A) + ζ(s,JA)

)
and D

s
2π−sΓ( s+1

2
)2
(
ζ(s,A)− ζ(s,JA)

)
.

are invariant under s 7→ 1− s. In particular we have that

ζ(1− n,A) = (−1)nζ(1− n,JA).

To finish the proof of Theorem 4 use the functional equation (4.18) to derive that

(4.19) ζ(1− n,A) = 2Dn− 1
2 (2π)−2nΓ2(n)

(
ζ(n,A) + (−1)nζ(n,JA)

)
and apply this in (4.17). �

Remark. A version of Lemma 1 was given in [39], based on [7], but it does not seem to
deal with or imply the crucial second part of Lemma 1.

5. A reformulation of Eichler-Shimura cohomology

We now present a reformulation of Eichler-Shimura cohomology for the modular group
given in terms of polynomials in two variables and associate to each cohomology class a
kind of character, which is a class function on Γ. For a particular (Eisenstein) cohomology
class this character yields the higher Rademacher symbol. As will be apparent, many of
the arguments we use apply to more general Fuchsian groups. This section contains a
proof of Theorem 1.

For A = ± ( a bc d ) ∈ PSL(2,R) and x = (x1, x2) ∈ R2 let

JA(x) = (cx1 + d)(cx2 + d).

Then for any A,B ∈ PSL(2,R) we have the cocycle relation

(5.1) JBA(x) = JB(Ax)JA(x)

where
Ax = (Ax1, Ax2) = (ax1+b

cx1+d
, ax2+b
cx2+d

).

For a fixed n ∈ Z+ let Pn be the (2n − 1)-dimensional C-vector subspace of C[x1, x2]
spanned by the polynomials having degree r∗ = 2n− 2− r for 0 ≤ r ≤ 2n− 2 determined
by

(5.2)
(
(τ − x1)(τ − x2)

)n−1
=

∑
0≤r≤2n−2

Qn,r(x)τ r.

We have Q0,0(x) = 1 and for n > 1

(5.3) Qn,r(x) = (x1x2)n−1− r
2C(1−n)

r ( x1+x2
2
√
x1x2

),

where C
(1−n)
r (t) is the Gegenbauer polynomial. In general, Pn is a proper subspace of the

space of all symmetric polynomials in x1, x2 of degree at most 2n− 2, while P2 contains
all such polynomials. For instance P3 is spanned by

{Q3,0, Q3,1, Q3,2, Q3,3, Q3,4} = {(x1x2)2,−2x1x2(x1 + x2), x2
1 + 4x1x2 + x2

2,−2(x1 + x2), 1}.
The space Pn is closed under the action

(5.4) Q(x) 7→ Q|A(x) := Jn−1
A (x)Q(Ax)
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of A = ± ( a bc d ) ∈ PSL(2,R). This is easily checked using the identity

(cτ + d)2JA(x)(Aτ − Ax1)(Aτ − Ax2) = (τ − x1)(τ − x2).

Let σ ∈ Z(Γ,Pn), the usual space of 1-cocycles so σ : Γ→ Pn with

(5.5) σAB(x) = σA|B(x) + σB(x)

for all A,B ∈ Γ. For such σ and A = ± ( a bc d ) ∈ Γ with cA 6= 0 define

(5.6) ψσ(A) = v(A)n−1σA(α),

where α = αA = (α1, α2) ∈ C2 are the fixed points of A and v(A) was defined in (1.8).
Here α1 = α2 when A is parabolic. Set ψσ(I) = 0 and for n ∈ Z

ψσ(T n) = ψσ(V −n).

Note that V −1 = STS−1. It is clear that σA(α) = 0 for any elliptic A, so ψσ(A) = 0 for
elliptic A.

Lemma 4. For all A,B ∈ Γ and n ∈ Z we have for

u(A) = u(BAB−1)(5.7)

v(An) = sgn(n)v(A).(5.8)

Proof. For (5.7), if C = BAB−1 a computation shows that

gcd(bA, cA, dA − aA)| gcd(bC , cC , dC − aC).

The result follows by symmetry. The proof of (5.8) is similar. �

Lemma 5. For all A,B ∈ Γ and n ∈ Z+ the following hold:

ψσ(An) = nψσ(A)(5.9)

ψσ(A−1) = (−1)nψσ(A)(5.10)

ψσ(BAB−1) = ψσ(A).(5.11)

Proof. We may suppose that cA, cBAB−1 6= 0. Let α satisfy Aα = α.
A calculation shows that

(5.12) cBAB−1 = cAJB(α).

In particular,

(5.13) JA(α) = 1.

Next (5.9) and (5.10) follow from (5.8) and the fact that from the cocycle relation (5.5)
and (5.13)

σAn(α) = nσA(α)

for any n ∈ Z.
To prove (5.11), another application of the cocycle relation yields

σBAB−1(Bα) =σB|AB−1(Bα) + σAB−1(Bα)(5.14)

=σB|AB−1(Bα) + σA|B−1(Bα) + σB−1(Bα).

By (5.4) and (5.1)

σB|AB−1(Bα) + σB−1(Bα) = Jn−1
AB−1(Bα)σB(Aα)− J1−n

B (α)σB(α)

= J1−n
B (α)

(
Jn−1
A (α)σB(α)− σB(α)

)
= 0

since JA(α) = 1 and JB(α) 6= 0 by assumption and (5.12). Thus (5.14) gives

σBAB−1(Bα) = σA|B−1(Bα) = JB(α)1−nσA(α)
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and so by (5.12)

(cBAB−1)n−1σBAB−1(Bα) = (cA)n−1σA(α).

Finally, αBAB−1 = Bα and both sgn(a+ d) and u(A) are invariant under conjugation.
�

Let H1(Γ,Pn) be the first cohomology group. For a fixed 1-cocycle σ, the function ψσ is
well-defined on the class of H1(Γ,Pn) represented by σ since from (5.6) and (5.13) we have
that ψσ(A) = 0 for a co-boundary σ. By (5.11) the function ψσ induces a Q-valued class
function on Γ. Let H1

par(Γ,Pn) be the subgroup represented by parabolic cocycles. Thus

each element of H1
par(Γ,Pn) can by represented by a cocycle σ that satisfies σT (x) = 0.

The map Q 7→ Q(x1, x1) is a vector space isomorphism from Pn onto the space of all
polynomials in x1 of degree at most 2n − 2 that maps the action Q|A to the usual one
on polynomials in one variable. Thus H1(Γ,Pn) and H1

par(Γ,Pn) are isomorphic to the
usual Eichler-Shimura cohomology groups on all polynomials of degree at most 2n− 2 in
one variable. The advantage of working with two-variable polynomials Pn is the natural
appearance of the class function ψσ, which we will refer to as the character of (the class
represented by) σ.

For k ∈ 2Z let Mk be the C-vector space of all holomorphic functions f on the upper
half-plane H that satisfy

f |kA(τ) = (cτ + d)−kf(Aτ) = f(τ),

for τ ∈ H and all A ∈ Γ and that have a Fourier expansion

(5.15) f(τ) =
∑
r≥0

a(r)qr q = e(τ),

with a(r) ∈ C for all r. The space of cusp forms Sk consists of those f ∈Mk with a(0) = 0.
Then for k > 2

(5.16) ` = dimSk =

{
b k

12
c − 1, if k ≡ 2 (mod 12)

b k
12
c, otherwise

and dimMk = `+ 1.
Any f ∈Mk gives rise to the 1-cocycle σ ∈ Z(Γ,Pk/2) defined by

(5.17) σ
(f)
A (x) = σA(x) =

∫ τ0

A−1τ0

f(τ)
(
(τ − x1)(τ − x2)

) k
2
−1
dτ,

where τ0 ∈ H is fixed. Note that

σA(x1, x1) =

∫ τ0

A−1τ0

f(τ)(τ − x1)k−2dτ

is the usual Eichler integral. For A = ± ( a bc d ) ∈ Γ with c 6= 0 the character value at A of
σ from (5.6) is given by

(5.18) ψσ(A) = v(A)
k
2
−1

∫ τ0

A−1τ0

f(τ)
(
(τ − ω)(τ − ω′)

)k
2
−1
dτ,

where (ω, ω′) is fixed by A. Here v(A) was defined in (1.8). Also ω′ = ω if ω is not real
and ω = ω′ if A is parabolic. Since ψσ(A) is well-defined on a cohomology class, this
integral (5.18) is independent of τ0. For hyperbolic A with associated binary quadratic
form q from (1.9) the integral may be identified with a cycle integral:

(5.19) ψσ(A) =

∫ τ0

A−1τ0

f(τ)q(τ, 1)
k
2
−1dτ.
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The Eisenstein series can be defined for any k ∈ 2Z by

(5.20) Ek(τ) = 1 + 2
ζ(1−k)

∑
r≥1

σk−1(m)qr σk−1(r) =
∑
d|r

dk−1

and Ek ∈Mk if k > 2.

Lemma 6. Let ψk be the character determined by (5.18) when f = Ek with k > 2. For
A ∈ Γ with cA 6= 0 we have

(5.21) v(A)−
k
2

+1ψk(A) =
sgn(c)

ζ(1− k)

∑
r+s=k
r,s≥0

Fr,s(t)Sr,s(a, c).

Proof. For hyperbolic A the formula (5.21) follows from [33, Hilfsatz 5 and §3]. In his proof
Siegel applies the standard Riemann-Dedekind-Hecke method to compute the invariant
integral ∫ τ0

A−1τ0

Ek(τ)q(τ, 1)
k
2
−1dτ.

A similar argument gives the result for all A with cA 6= 0.
�

Proof of Theorem 1 for n > 1. For the higher Rademacher symbol by Lemma 6 we have
the identity

(5.22) Ψn(A) = ınψ2n(A).

Thus all parts of Theorem 1 follow from Lemma 5 except for (2.7), which is a consequence
of Theorem 4 and (4.19), since n is even. �

For a 1-cocycle σ denote by σ the 1-cocycle determined by conjugating coefficients:

σA(x) = σA(x1, x2).

In view of the isomorphism mentioned at the end of §5 induced by taking x1 = x2, the
following result is a direct consequence of the well-known Eichler-Shimura isomorphism.

Proposition 1. The map (f, g) 7→ (σ(f), σ(g)) determined by (5.17) induces isomorphisms
from Mk ⊕ Sk to H1(Γ,Pn) and from Sk ⊕ Sk to H1

par(Γ,Pn).

The next result is crucial for our method of establishing decomposition formulas for
Ψn(A).

Lemma 7. If a character of H1
par(Γ,Pn) vanishes for T jV or T j+1S for j = 1, . . . then

it vanishes for all A ∈ Γ.

Proof. By Proposition 1 we see that a character of H1
par(Γ,Pn) can be expressed in the

form (5.18) for a cusp form f and A ∈ Γ with cA 6= 0. Now by interpreting the character
value as a cycle integral, the result follows from [17, Thm. 5], which is an improvement of
earlier results from numerous papers cited there, e.g. [16], [22], [19]. In fact, it is shown
that we only need to assume that the character vanishes for bn

2
c values of j to conclude

that it is identically zero, if n ≥ 6. �
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Remarks. i) The proof by Siegel of his version of (5.21) is part of the derivation of his
version of Theorem 4. The proof we gave of Theorem 4 does not use the cycle integral
representation of Ψn(A) given in Lemma 6. However, we certainly need it to prove our
other results.

ii) Siegel treated the case k = 2 of Lemma 6 using a limit formula. Some of the
differences between Ψn for n = 1 and n > 1 are reflected in the fact that E2 as defined by
(5.20) is not modular and that its modular version E∗2 is not holomorphic. For a discussion
and references see e.g. [10].

iii) The bn(D) in (3.11) are sums of cycle integrals of a cusp form, that is sums of
characters of a parabolic class. Their interpretation as Fourier coefficients of a cusp form
of half-integral weight mentioned in ii) of the Remarks after (3.11) is originally due to
Shintani [30].

6. Proofs of (2.12), (2.13) and Theorem 2

First we will justify our derivation of (2.12) and (2.13). For that we give a formula for
any character ψσ(A) in terms of the decomposition (1.11). Let

(6.1) WS
n = {Q ∈ Pn;Q|S = −Q}.

Lemma 8. Fix n ∈ Z with n > 1.

i) Every class in H1(Γ,Pn) is represented by a cocycle σ where σS ∈ WS
n and σU = 0.

ii) Conversely, given Q ∈ WS
n there is a class of H1(Γ,Pn) represented by the cocycle

σ defined by setting σS = Q and σU = 0.

iii) Suppose that the cocycle σ has σS ∈ WS
n and σU = 0. For A given in (1.11), i.e.

A = T n1V m1 · · ·T nrV mr with t =
∑

1≤i≤r

(ni +mi)

and Aj the jth cyclic permutation, we have

(6.2) ψσ(A) = u1−n
∑

0≤j≤t−1

cn−1
j σS(ωj, ω

′
j),

where (ωj, ω
′
j) is fixed by Aj and cj = cAj

.

Proof. The statement i) follows from Proposition 1 upon using the choice

τ0 = ρ = 1
2
(1 +

√
−3)

in (5.17), since ρ is fixed by U and σS(x) ∈ WS
n . The statement ii) is straightforward.

Turning to iii), set

M0 = A, M1 = T n1−1V m1 · · ·T nrV mr , M2 = T n1−2V m1 · · ·V mr , . . . ,Mt−1 = V,

so that Mj is obtained from A by deleting the first j letters. Then for 0 ≤ j ≤ t− 1

(6.3) Aj = MjAM
−1
j .

Therefore by the cocycle relation (5.5) and the easily verified fact that σT = σV = σS we
have

(6.4) σA(ω0, ω
′
0) = σS|M1(ω0, ω

′
0)+σS|M2(ω0, ω

′
0)+· · ·+σS|Mt−1(ω0, ω

′
0)+σS|M0(ω0, ω

′
0).

Next for 0 ≤ j ≤ t− 1 the following hold:

(6.5) Mj(ω0, ω
′
0) = (ωj, ω

′
j), cAj

= cAJMj
(ω0, ω

′
0) and v(A) = u−1cA.
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The first equation is a consequence of (6.3). For the second, apply (5.12) and (6.3). For
the third refer to the definition (1.8) and use that the entries of A are positive. Now (6.2)
follows from (6.4), (6.5) and (5.6). �

Recall that Gn,r(x) was defined for 0 ≤ r ≤ 2n − 2 in (2.16). Clearly Gn,r ∈ WS
n . In

fact a basis forWS
n is obtained by taking 0 ≤ r ≤ n− 1 when n is even and 0 ≤ r ≤ n− 2

when n is odd. By (ii) of Lemma 8 there is a cohomology class of H1(Γ,Pn) represented
by a 1-cocycle σ with σS(x) = Gn,r(x) and σU(x) = 0. By (i) of Lemma 8 every class

is represented this way. A calculation using (iii) of Lemma 8 shows that Ψ
(0)
n defined in

(2.8) gives the character that comes from Gn,0.
It can be checked that if r > 0 then the cocycle associated to Gn,r is represents an

element of H1
par(Γ,Pn). Denote by Ψ

(r)
n the associated character. After Proposition 1, a

comparison of dimensions shows that in general the classes represented are not indepen-
dent, and this is the source of the freedom to find desirable decomposition formulas for

Ψn. In particular, it can be shown that Ψ
(r)
n = 0 for odd r.

In view of Lemma 7 we may limit ourselves to computing character values on

T t−2V = T t−1ST

for t > 2.

Lemma 9. For even 0 ≤ j ≤ n− 2 and t > 2

Ψ(j)
n (T t−2V ) = 2

∑
j≤r≤2n−2

r even

(2n− r)
(
r
r−j

)
Br−jFr,2n−r(t)

− 2
∑

2≤r≤j+2
r even

r
(

2n−r
j+2−r

)
Bj+2−rFr,2n−r(t).

Proof. By (iii) of Lemma 8

Ψ(j)
n (T t−2V ) =

∑
1≤g≤t−1

Gn,j(ωg, ω
′
g),

where

(6.6) ωg = 1
2

(
− 2g + t+

√
t2 − 4

)
so ωg, ω

′
g are the fixed points of

Ag = T gS = T t−g−1V T g−1,

which has Tr(Ag) = t.
Recall that r∗ = 2n− 2− r. We have for Qn,j defined in (5.2) or (5.3)

(6.7) Gn,r(x) = Qn,r∗(x) + (−1)r+1Qn,r(x).

We are reduced to showing that for an even integer j with 0 ≤ j ≤ 2n− 2∑
1≤g≤t−1

Qn,j(ωg, ω
′
g) = 2

∑
j≤r≤2n−2

r even

(r − 2n)
(
r
r−j

)
Br−jFr,s(t)(6.8)

− (j + 1)(2n− j − 1)Fj+1,2n−j−1(t).

It is convenient to define when r, s > 0

(6.9) F ∗r,s(t) = r(2n− r)Fr,s(t) = Γ(2n−1)
Γ(s)Γ(r) 2F1(1− s, 1− r; 3

2
− n, t

4
+ 1

2
).
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We have (
(τ − ωg)(τ − ω′g)

)n−1
=

∑
1≤r≤2n−1

(g − τ)r−1F ∗r,2n−r(t).

In particular, for even j with 0 ≤ j ≤ 2n− 2

Qn,j(ωg, ω
′
g) =

∑
1≤r≤2n−1

gr−1−j(r−1
j

)
F ∗r,2n−r(t).

After summing over g we apply the well-known identity of Faulhaber-Bernoulli: for inte-
gers k, t with k ≥ 1 and t > 1∑

1≤g≤t−1

gk−1 = 1
k

∑
0≤h≤k−1

(
k
h

)
Bh t

k−h − δk,1.

In the resulting equation we employ the next readily proven identity in order to finish the
proof of (6.8), hence of Lemma 9:

Lemma 10. For even integers h, j with 0 ≤ h ≤ 2n− 2− j and 0 ≤ j ≤ 2n− 2

2n−1∑
r=h+j+1

tr−j−h
(
r−j
h

)(
r−1
j

)
1
r−jF

∗
r,2n−r(t) = 2(h+ j − 2n)

(
j+h
h

)
Fh+j,2n−j−h(t).

�

Next we apply Lemma 9 to evaluate Ψ′n(T t−2V ) = Ψ′n(T tS) as a polynomial in t.

Lemma 11. The function Ψ′n(A) defined in (2.10) gives the character value of a parabolic
cohomology class. For t > 2 we have

Ψ′n(T t−2V ) = Ψ′n(T tS) = 2
∑

2≤r≤n
r even

hn(r)F ∗r,2n−r(t),(6.10)

where hn(r) was defined in (2.18).

Proof. As mentioned before, Ψ
(0)
n is the character that comes from Gn,0 by Lemma 8.

That Ψ′n(A) is a character now follows from (2.10) and (5.22). Finally, (2.5) shows that
Ψ′n(A) is the character of a parabolic class.

By (2.4) we have

(6.11) Ψn(T t−2V ) = −n
∑
r+s=n
r,s≥0

F2r,2s(t)B2rB2s.

By Lemma 9 when j = 0

Ψ(0)
n (T t−2V ) = 2

∑
0≤r≤2n−2

r even

(2n− r)BrFr,2n−r(t)− 4F2,2n−2(t).

Therefore

Ψ′n(T t−2V ) = −n
( ∑
r+s=n
r,s≥2

F2r,2s(t)B2rB2s + 2B2n

∑
2≤r≤2n−2

r even

BrF
∗
2,2n−2(t)

)
− 4ınF2,2n−2(t).

from which (6.10) follows. �

Now it is clear how (2.12) and (2.13) are derived. We apply Lemma 7 to reduce the
problem to linear algebra, i.e. equating polynomials in t by using Lemma 11 and Lemma
9 with some of the j > 0. For the formulas we give one takes the minimal range of j
required, which is j = 2 for (2.12) and j = 2, 4 for (2.13).
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Proof of Theorem 2. To prove Theorem 2 we make use of the “period polynomials” in
two variables defined by

Wn = {Q ∈ Pn;Q|(S + 1) = 0 and Q|(1 + U + U2) = 0}.
We have the following analogue of Lemma 8:

Lemma 12. Fix n ∈ Z with n > 1.
i) Every class in H1

par(Γ,Pn) is represented by a cocycle σ where σS ∈ Wn and σT = 0.

ii) Conversely, given Q ∈ Wn there is a class of H1
par(Γ,Pn) represented by the cocycle

σ defined by setting σS = Q and σT = 0.

iii) Suppose that the cocycle σ has σS ∈ Wn and σT = 0. For A given in (1.14), i.e.

A = T n1ST n2 · · ·ST nrS

and A(j) the jth cyclic permutation of (1.14) from left to right, we have

ψσ(A) = u1−n
∑

0≤j≤r−1

cn−1
j σS(ωj, ω

′
j),

where (ωj, ω
′
j) is fixed by A(j) and cj = cA(j).

Proof. The statement i) follows from Proposition 1 upon using the choice τ0 = i∞ in
(5.17), which is valid if f is a cusp form. The statement ii) is straightforward after noting
that the assumptions σS ∈ Wn and σT = σUS = 0 imply σU = σS. The proof of statement
iii) is similar to that of iii) of Lemma 8, where now we define

M0 = A, M1 = T n2S · · ·T nrS, . . . , Mr−1 = S

so A(j) = MjAM
−1
j . Proceed using the cocycle relation and that σT = 0,TrA > 0. �

Now for even r with 2 ≤ r ≤ 2n− 2

Gn,r−1(ω0, ω
′
0) = Gn,r−1

(
1
2
(t+
√
t2 − 4), 1

2
(t−
√
t2 − 4)

)
= 2F ∗r,2n−r(t).

Thus by Lemma 11 for t > 2

Ψ′n(T tS) =
∑

2≤r≤n
r even

hn(r)Gn(ω0, ω
′
0).

Theorem 2 is a consequence of Lemmas 7, 12 and the following result. Recall that Gn(x)
was defined in (2.19).

Lemma 13. For each n > 1 we have that Gn(x) ∈ Wn.

Proof. This follows by an elementary computation involving Bernoulli polynomials. A
proof can be extracted from that of the first statement of Theorem 1’ of [21] with, in the
notation there, n = w.

�

Some Questions.

(1) What is the arithmetic significance of the integers κn from (2.12)? Do they have
properties in common with the numerators ın of ζ(1− 2n)? What is their impact
in the equations (3.11)?

(2) To what extent do the the values of Ψn for all n separate conjugacy classes of Γ, or
equivalently classes of primitive binary quadratic forms? See [24] for a treatment
of this question for the usual Rademacher symbol (n = 1), which certainly does
not distinguish classes. One may ask the same question about all the characters
of H1(Γ,Pn).
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