A quadratic divisor problem

W. Duke ${ }^{\star}$, J.B. Friedlander*» and H. Iwaniec**ぇ
Department of Mathematics, Rutgers University, New Brunswich, NJ 08903, USA
Department of Mathematics, University of Toronto, Toronto, Canada MS5 1A1

Oblatum 28-IV-1993

1. Introduction

A great many problems in analytic number theory lead indirectly to counting 2×2 matrices having fixed determinant and integral entries over various ranges. More explicitly, one often encounters sums of the type

$$
\sum_{a u v \neq b r s=h} f(u, v, r, s),
$$

where a, b, h are fixed positive integers and f is a smooth function whose partial derivatives are under control. This may be viewed as counting the representations by a quadratic form $Q(u, v, r, s)$, a study initiated by H. Kloostermann [KI]. A special case of the above sum, known as the additive divisor problem

$$
\sum_{n \leqq x} \tau(n) \tau(n+h),
$$

where $\tau(n)$ stands for the number of positive divisors of n was investigated by A. Ingham [In] who first gave an asymptotic formula and then by T. Estermann [Es] who established the asymptotic expansion

$$
\sum_{n \leqq x} \tau(n) \tau(n+h)=x P_{h}(\log x)+O\left(x^{11 / 12} \log ^{3} x\right),
$$

where $P_{h}(T)$ is a quadratic polynomial with leading coefficient $6 \pi^{-2} \sigma_{-1}(h)$. The key ingredient in Estermann's paper is an estimate for Kloostermann sums

$$
S(m, n ; q)=\sum_{d(\bmod q)}^{*} e\left(\frac{d m+\bar{d} n}{q}\right),
$$

[^0]where, as usual, the asterisk restricts the summation to reduced classes. After A. Weil established the best bound
$$
S(m, n ; q) \ll(m, n, q)^{1 / 2} q^{1 / 2} \tau(q)
$$
substantial improvements on the error term of Estermann became possible, cf. [HB], [Wi]. Further advances have been made by J.-M. Deshouillers and H . Iwaniec [DeI_{1}] by exploring the spectral theory of automorphic forms; see also N.V. Kuznetsov [Ku]. The state of the art of this approach is reached in works of M. Jutila [Ju_{2}] and Y. Motohashi [Mo].

As usual in practice one needs asymptotic formulas with a good error term which are valid uniformly in the parameters a, b, h of considerable size. These can be very difficult problems indeed. Motohashi's result [Mo] is very strong with respect to h, but unfortunately for us he considers only the case $a=b=1$. For other relevant results see [He], [Sm].

Motivated by specific applications in mind $\left[\mathrm{DFI}_{2}\right]$ in this paper we investigate sums of type

$$
\begin{equation*}
D_{f}(a, b ; h)=\sum_{a m+b n=h} \tau(m) \tau(n) f(a m, b n), \tag{1}
\end{equation*}
$$

where f is nice smooth function on $R^{+} \times R^{+}$. Not only do we allow the coefficients a, b to be large but also f to oscillate mildly. In fact all the properties of f to be used are expressed in the following estimate for partial derivatives

$$
\begin{equation*}
x^{i} y^{j} f^{(i j)}(x, y) \ll\left(1+\frac{x}{X}\right)^{-1}\left(1+\frac{y}{Y}\right)^{-1} P^{i+j}, \tag{2}
\end{equation*}
$$

with some $P, X, Y \geqq 1$ for all $i, j \geqq 0$, the implied constant depending on i, j alone. We shall use Weil's bound for Kloosterman sums rather than the spectral theory of automorphic forms since the latter approach would require us to deal with the congruence group $\Gamma_{0}(a b)$ facing intrinsic difficulties with small eigenvalues. The results obtained this way would not be good enough for large a, b. However, if an averaging over a, b was included then the density theorems for small eigenvalues might help (see [DeI_{2}]). Such a result is given by N. Watt [Wa].

Our objective here is to quickly get results useful for applications without straining for the best from available technologies. As in [DFI_{1}], [DuI] we have chosen to use the δ-method which is a simple alternative for the circle method. A direct approach starting from the definition of the divisor function is also a possibility, however it could not generalize to the corresponding problem with $\tau(m)$ replaced by the Fourier coefficients of cusp forms. We anticipate applying the δ-method for the latter problem elsewhere. Yet, in this case the results of J. Hafner [Ha] can be used as well.

2. Statement of results

The main term in our asymptotic formula will be expressed in terms of the series

$$
\begin{equation*}
\Lambda_{a b h}(x, y)=\frac{1}{a b} \sum_{q=1}^{\infty} q^{-2}(a b, q) c_{q}(h)\left(\log x-\lambda_{a q}\right)\left(\log y-\lambda_{b q}\right), \tag{3}
\end{equation*}
$$

where $c_{q}(h)=S(h, 0 ; q)$ denotes the Ramanujan sum and $\lambda_{a q}, \lambda_{b q}$ are constants given by

$$
\begin{equation*}
\lambda_{a q}=2 \gamma+\log \frac{a q^{2}}{(a, q)^{2}} \tag{4}
\end{equation*}
$$

Theorem 1. Suppose $a, b \geqq 1,(a, b)=1, h \neq 0$ and f satisfies (2). Then we have

$$
\begin{equation*}
D_{f}(a, b ; h)=\int_{0}^{\infty} g(x, \pm x \mp h) \mathrm{d} x+O\left(P^{5 / 4}(X+Y)^{1 / 4}(X Y)^{1 / 4+\varepsilon}\right) \tag{5}
\end{equation*}
$$

where $g(x, y)=f(x, y) A_{a b n}(x, y)$ and the implied constant depends on ε only.
Remarks. Since the main term has the order of magnitude of $(a b)^{-1} \min (X, Y)$ the result is valuable only if

$$
a b<P^{-5 / 4}(X+Y)^{-5 / 4}(X Y)^{3 / 4-\varepsilon} .
$$

Notice that the error term in (5) does not depend on h but it is a trivial result whenever $|h|>(a b)^{-2}(X+Y)^{3 / 2}$.

The exponent $5 / 4$ in (5) can be replaced by $3 / 4$ by refining the argument and, we expect, by $1 / 2$ with more elaborate refinements.

Corollary. For $a, h, M \geqq 1$ we have

$$
\begin{equation*}
\sum_{m \leq M} \tau(m) \tau(a m+h)=\int_{0}^{M} \hat{\lambda}(x, a x+h) \mathrm{d} x+O\left(a^{1 / 9}(a M+h)^{2 / 9} M^{2 / 3+\varepsilon}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda(x, y)=\sum_{q=1}^{\infty} q^{-2}(a, q) c_{q}(h)\left(\log x-2 \gamma-2 \log \frac{q}{(a, q)}\right)(\log y-2 \gamma-2 \log q) \tag{7}
\end{equation*}
$$

Remark. The error term in (6) is smaller than the main term provided $a<M^{1 / 3-\varepsilon}$ and $h<a^{-1 / 2} M^{3 / 2-\varepsilon}$.

Proof. Apply Theorem 1 for the test function $f(x, y)=f_{1}(x) f_{2}(y)$ where f_{1}, f_{2} are single variable functions, smooth, non-negative, supported on $\left[0, X+X P^{-1}\right]$, [$0,2 Y$] respectively, such that

$$
f_{1}(x)=1 \quad \text { if } 0 \leqq x \leqq X, \quad f_{1}^{(j)} \ll P^{f} X^{-j}
$$

and

$$
\begin{equation*}
f_{2}(y)=1 \quad \text { if } 0 \leqq y \leqq Y, \quad f_{2}^{(j)} \ll Y^{-j} \tag{8}
\end{equation*}
$$

We take $X=a M$ and $Y=a M+h$, so the sum (6) is majorized by $D_{f}(a, 1 ; h)$. Since f satisfies the hypothesis (2), by (5) we get

$$
D_{f}(a, 1 ; h)=\int+O\left(P^{5 / 4}(a M+h)^{1 / 2}(a \mathbf{M})^{1 / 4+\varepsilon}\right)
$$

Here the integral differs from that in (6) by $<P^{-1} M \log ^{2} M$. We make the optimal choice $P=a^{-1 / 9} M^{1 / 3}(a M+h)^{-2 / 9}$. This yields the upper bound in (6). The proof of the lower bound is similar.

3. The δ-symbol

Take a smooth, compactly supported function $w(u)$ on R such that $w(u)=w(-u)$ and $w(0)=0$. Normalize $w(u)$ by requiring

$$
\begin{equation*}
\sum_{q=1}^{\infty} w(q)=1 \tag{9}
\end{equation*}
$$

Then for any $n \in Z$ we have

$$
\delta(n)=\sum_{q \mid n}\left(w(q)-w\left(\frac{n}{q}\right)\right)= \begin{cases}1 & \text { if } n=0 \\ 0 & \text { if } n \neq 0\end{cases}
$$

Using additive characters to detect the divisibility $q \mid n$ we get

$$
\begin{equation*}
\delta(n) \sum_{q=1}^{\infty} \sum_{d(\bmod q)}^{*} e\left(\frac{d n}{q}\right) \Delta_{q}(n) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{q}(u)=\sum_{r=1}^{\infty}(q r)^{-1}\left(w(q r)-w\left(\frac{u}{q r}\right)\right) \tag{11}
\end{equation*}
$$

Lemma 1. For any $f \in C_{0}^{\infty}(R)$ we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} f(u) \Delta_{q}(u) \mathrm{d} u= f(0) \\
& \int_{0}^{\infty} w(r) \mathrm{d} r \tag{12}\\
&-q^{j} \int_{0}^{\infty} \psi_{j}\left(\frac{r}{q}\right) \int_{-\infty}^{\infty}\left(f(u)\left(\frac{w(r)}{r}\right)^{(j)}-w(u) u^{j} f^{(j)}(r u)\right) \mathrm{d} u \mathrm{~d} r
\end{align*}
$$

where $j \geqq 1$ and

$$
\psi_{j}(z)=-\sum_{m=1}^{\infty}(2 \pi i m)^{-j}\left(e(m z)+(-1)^{j} e(-m z)\right)
$$

Proof. We split into two parts and change the variable in the second one getting

$$
\int_{-\infty}^{\infty} f(u) \Delta q(u) \mathrm{d} u=\int_{-\infty}^{\infty} f(u)\left(\sum_{r=1}^{\infty}(q r)^{-1} w(q r)\right) \mathrm{d} u-\int_{-\infty}^{\infty} w(u)\left(\sum_{r=1}^{\infty} f(q r u)\right) \mathrm{d} u .
$$

Then we evaluate the sums over r by the Euler-Maclaurin formula (cf. [Ra, p. 14]). For the first sum it gives

$$
\sum_{r=1}^{\infty}(q r)^{-1} w(q r)=\int_{0}^{\infty} \frac{w(q r)}{q r} \mathrm{~d} r+\int_{0}^{\infty} \psi_{j}(r) \frac{\partial^{j}}{\partial r^{j}}\left(\frac{w(q r)}{q r}\right) \mathrm{d} r
$$

Since $w(u)$ is even we can write the second part as follows

$$
f(0) \int_{0}^{\infty} w(u) \mathrm{d} u-\int_{0}^{\infty} w(u)\left(\sum_{r=-\infty}^{\infty} f(q r u)\right) \mathrm{d} u
$$

Next by the Euler-Maclaurin formula we get

$$
\sum_{r=\infty}^{\infty} f(q r u)=\int_{-\infty}^{\infty} f(q r u) \mathrm{d} r+\int_{-\infty}^{\infty} \psi_{j}(r) \frac{\partial^{j}}{\partial r^{j}} f(q r u) \mathrm{d} r
$$

Combining these formulas we arrive at (12) after an obvious change of variables and observation of the cancellation of the leading integrals.

Now, suppose $w(u)$ is supported in $Q \leqq|u| \leqq 2 Q$ and it has derivatives bounded by

$$
\begin{equation*}
w^{(j)} \ll Q^{-j-1}, \quad j \geqq 0 \tag{13}
\end{equation*}
$$

Since $\left|\psi_{j}(z)\right| \leqq 1$ the terms on the right side of (12) are bounded by

$$
\begin{gather*}
f(0)\left(1+O\left(Q^{-j-1}\right)\right) \tag{14}\\
q^{j} Q^{-j-1}\left|\int f(u) \mathrm{d} u\right| \tag{15}\\
\left.q^{j} Q^{j-1} \int \mid f^{(j)}(u)\right] \mathrm{d} u \tag{16}
\end{gather*}
$$

respectively. We also have

$$
\begin{equation*}
f(0) \ll \int\left(|f(u)|+\left|f^{(j)}(u)\right|\right) \mathrm{d} u \tag{17}
\end{equation*}
$$

Then there follows from (12)-(17) the following
Corollary. Let $j \geqq 1$. We have

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(u) \Delta_{q}(u) \mathrm{d} u=f(0)+O\left(Q^{-1} q^{j} \int\left(Q^{-j}|f(u)|+Q^{j}\left|f^{(j)}(u)\right|\right) \mathrm{d} u\right) \tag{18}
\end{equation*}
$$

If $q<Q^{1-\varepsilon}$ this shows that $\Delta_{q}(u)$ approximates to the Dirac distribution very well on test functions such that $f^{(j)} \ll\left(q Q^{1+\varepsilon}\right)^{-j}$.
Lemma 2. We have

$$
\begin{equation*}
\Delta_{q}(u) \ll\left(q Q+Q^{2}\right)^{-1}+(q Q+|u|)^{-1} \tag{19}
\end{equation*}
$$

Proof. By the Euler-Maclaurin formula we get

$$
\begin{equation*}
\Delta_{q}(u)=\int_{0}^{\infty}\left\{\frac{r}{q}\right\} \mathrm{d} \frac{w(r)-w(u / r)}{r} \tag{20}
\end{equation*}
$$

where $\{x\}$ denotes the fractional part of x. Hence we infer by (17) that

$$
\begin{aligned}
\left|\Delta_{q}(u)\right| \leqq & \int_{0}^{\infty} \min \left(1, \frac{r}{q}\right)\left|\mathrm{d} \frac{w(r)-w(u / r)}{r}\right| \\
& \leqq \int_{0}^{\infty} \min \left(1, \frac{2 Q}{q}\right)\left|\mathrm{d} \frac{w(r)}{r}\right|+\int_{0}^{\infty} \min \left(\frac{1}{|u|}, \frac{1}{q Q}\right)|\mathrm{d} r w(r)| \\
& \ll \min \left(\frac{1}{Q^{2}}, \frac{1}{q Q}\right)+\min \left(\frac{1}{|u|}, \frac{1}{q Q}\right)
\end{aligned}
$$

which gives (19).

4. Applying the δ-symbol

We shall present only the case $a m-b n=h$ since the other one of $a m+b n=h$ is obtained by changing signs in relevant places of our arguments.

Using a smooth partition of unity for the proof of Theorem 1 we may assume that $f(x, y)$ is supported in the box $[X, 2 X] \times[Y, 2 Y]$. We may also attach to
$f(x, y)$ a redundant factor $\varphi(x-y-h)$, where $\varphi(u)$ is a smooth function supported on $|u|<U$ such that $\varphi(0)=1$ and $\varphi^{(i)} \ll U^{-i}$. This, of course, does not alter $D_{f}(a, b ; h)$ nevertheless it will help to improve the forthcoming performance by taking U optimally. The new function $F(x, y)=f(x, y) \varphi(x-y-h)$ has partial derivatives bounded by

$$
\begin{equation*}
F^{(i j)} \ll\left(\frac{1}{U}+\frac{P}{X}\right)^{i}\left(\frac{1}{U}+\frac{P}{Y}\right)^{j} \ll U^{-i-j} \tag{21}
\end{equation*}
$$

provided $U \leqq P^{-1} \min (X, Y)$ which condition we henceforth assume to hold. Next we apply (10) to detect the equation $a m-b n=h$. For the test function $w(u)$ we choose $Q=U^{1 / 2}$, so $\Delta_{q}(u)$ vanishes if $|u| \leqq U$ and $q \geqq 2 Q$. Therefore we get

$$
\begin{align*}
D_{f}(a, b ; h) & =D_{F}(a, b ; h) \\
& =\sum_{1 \leq q<2 Q} \sum_{d(\bmod q)}^{*} e\left(\frac{-d h}{q}\right) \sum_{m} \sum_{n} \tau(m) \tau(n) e\left(\frac{d a m-d b n}{q}\right) E(m, n), \tag{22}
\end{align*}
$$

where $E(x, y)=F(a x, b y) \Delta_{q}(a x-b y-h)$.

5. Applying poisson summation

We shall execute the summation over m, n in (22) by means of the following Poisson type formula (cf. Jutila [Ju_{1}], Theorem 1.7)

Proposition 1. Let $g(x)$ be a smooth, compactly supported function on R^{+}and let $(d, q)=1$. Then we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \tau(n) e\left(\frac{d n}{q}\right) g(n)= & \left.\frac{1}{q} \int \log x+2 \gamma-2 \log q\right) g(x) \mathrm{d} x \\
& +\sum_{+-} \sum_{n=1}^{\infty} \tau(n) e\left(\frac{ \pm d n}{q}\right) g^{ \pm}(n)
\end{aligned}
$$

where

$$
\begin{aligned}
g^{-}(y) & =-\frac{2 \pi}{q} \int g(x) Y_{0}\left(\frac{4 \pi \sqrt{x y}}{q}\right) \mathrm{d} x, \\
g^{+}(y) & =\frac{4}{q} \int g(x) K_{0}\left(\frac{4 \pi \sqrt{x y}}{q}\right) \mathrm{d} x,
\end{aligned}
$$

and $Y_{0}(z), K_{0}(z)$ are the Bessel functions.
By Proposition 1 applied once to each variable, we get

$$
\begin{align*}
\frac{q^{2}}{(a b, q)} \sum_{m} \sum_{n}= & I+\sum_{m=1}^{\infty} \tau(m) e\left(-m \frac{\overline{a d}}{q}\right) I_{a}(m)+\sum_{n=1}^{\infty} \tau(n) e\left(n \frac{\overline{b d}}{q}\right) I_{b}(n) \\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tau(m) \tau(n) e\left(-m \frac{\overline{a d}}{q}+n \frac{\overline{b d}}{q}\right) I_{a b}(m, n)+* * * * * \tag{23}
\end{align*}
$$

where $a / q, b / q$ have to be put in reduced forms before taking the inverses, and

$$
\begin{aligned}
I & =\iint\left(\log a x-\lambda_{a q}\right)\left(\left(\log b y-\lambda_{b q}\right) E(x, y) \mathrm{d} x \mathrm{~d} y,\right. \\
I_{a}(m) & =-2 \pi \iint Y_{0}\left(\frac{4 \pi(a, q) \sqrt{m x}}{q}\right)\left(\log b y-\hat{\lambda}_{b q}\right) E(x, y) \mathrm{d} x \mathrm{~d} y, \\
I_{b}(n) & =-2 \pi \iint\left(\log a x-\lambda_{a q}\right) Y_{0}\left(\frac{4 \pi(b, q) \sqrt{n y}}{q}\right) E(x, y) \mathrm{d} x \mathrm{~d} y, \\
I_{a b}(m, n) & =4 \pi^{2} \iint Y_{0}\left(\frac{4 \pi(a, q) \sqrt{m x}}{q}\right) Y_{0}\left(\frac{4 \pi(b, q) \sqrt{n y}}{q}\right) E(x, y) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

As it is evident from Proposition 1 there are five more terms $* * * * *$ in (23) involving the K_{0}-Bessel function. These can be estimated by the same method as we use for the ones displayed.

Inserting (23) into (22) we get from the summation in $d(\bmod q)$ complete Kloosterman sums. We obtain the following formula:

$$
\begin{align*}
D(a, b ; h)= & \sum_{q<2 Q} q^{-2}(a b, q)\left\{S(h, 0 ; q) I+\sum_{m=1}^{\infty} \tau(m) S(h . \bar{a} m ; q) I_{a}(m)\right. \\
& +\sum_{n=1}^{\infty} \tau(n) S(h,-\bar{b} n ; q) I_{b}(n) \\
& \left.+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \tau(m) \tau(n) S(h, \bar{a} m-\bar{b} n ; q) I_{a b}(m, n)+* * * * *\right\} . \tag{24}
\end{align*}
$$

To the Kloosterman sums in this formula we shall apply Weil's bound

$$
\begin{equation*}
S(h, \bar{a} m-\bar{b} n ; q) \ll(h, q)^{1 / 2} q^{1 / 2} \tau(q) \tag{25}
\end{equation*}
$$

In case $m=n=0$ we get the Ramanujan sum for which we have a simple formula and a better bound

$$
\begin{equation*}
S(h, 0 ; q)=\sum_{v \mid(h, q)} v \mu\left(\frac{q}{v}\right) \ll(h, q) . \tag{26}
\end{equation*}
$$

6. Evaluating the main term

First we evaluate the integral I. We have

$$
\begin{aligned}
a b I & =\iint C(x, y) \Delta_{q}(x-y-h) \mathrm{d} x \mathrm{~d} y \\
& =\iint C(x, x-h+u) \Delta_{q}(u) \mathrm{d} u \mathrm{~d} x
\end{aligned}
$$

where $C(x, y)=\left(\log x-\lambda_{a q}\right)\left(\log y-\lambda_{b q}\right) F(x, y)$. By (18) and (21) we get

$$
\int C(x, x-h+u) \Delta_{q}(u) \mathrm{d} u=C(x, x-h)+O\left(\left(\frac{q}{Q}\right)^{j}\right) .
$$

Assuming $q<Q^{1-\varepsilon}$ we make the error term above very small by taking j large. Hence we obtain

$$
a b I=\int C(x, x-h) \mathrm{d} x+O\left(Q^{-A}\right) .
$$

We also have the bound $a b I \ll(X+Y)^{-1} X Y \log Q$, which is valid for all q, see (30). Therefore the first part of (24) yields

$$
\begin{equation*}
(a b)^{-1} \sum_{q=1}^{\infty} q^{-2}(a b, q) c_{q}(h) \int C(x, x-h) \mathrm{d} x+O\left((a b)^{-1} \frac{X Y}{X+Y} Q^{-1+\varepsilon}\right) \tag{27}
\end{equation*}
$$

where the error term takes care of the tail $q>Q^{1-\varepsilon}$.

7. Estimating the error term

We need estimates for $I_{a}, I_{b}, I_{a b}$ To this end we integrate by parts in x, y using the bound

$$
\begin{equation*}
E^{(i j)} \ll \frac{1}{q Q}\left(\frac{a b}{q Q}\right)^{i+j} \tag{28}
\end{equation*}
$$

and the recurrence formula $\left(z^{v} Y_{v}(z)\right)^{\prime}=z^{v} Y_{v-1}(z)$. In this way we show that these integrals are very small unless

$$
\begin{equation*}
m<a X Q^{-2+\varepsilon}, \quad n<b Y Q^{-2+\varepsilon} \tag{29}
\end{equation*}
$$

For m, n in this range we estimate the integrals trivially using the bound $Y_{0}(z) \ll z^{-1 / 2}$, which gives

$$
\begin{aligned}
I_{a}(m) & \ll\left(\frac{a q^{2}}{m X}\right)^{1 / 4}(\log Q) \iint, \\
I_{b}(n) & \ll\left(\frac{b q^{2}}{n Y}\right)^{1 / 4}(\log Q) \iint, \\
I_{a b}(m, n) & \ll\left(\frac{a b q^{4}}{m n X Y}\right)^{1 / 4}(\log Q) \iint,
\end{aligned}
$$

where

$$
\begin{align*}
\iint & =\iint\left|F(a x, b y) A_{q}(a x-b y-h)\right| \mathrm{d} x \mathrm{~d} y \\
& =(a b)^{-1} \iint\left|F(x, x-h-u) \Delta_{q}(u)\right| \mathrm{d} x \mathrm{~d} u \\
& \leqslant(a b)^{-1} \min (X, Y) \int_{-U}^{v}\left|\Delta_{q}(u)\right| \mathrm{d} u \ll(a b)^{-1}(X+Y)^{-1} X Y \log Q \tag{30}
\end{align*}
$$

by (19). Next summing over m, n in the range (29) we obtain

$$
\begin{aligned}
\sum_{m} \tau(m)\left|I_{a}(m)\right| & \ll \frac{q^{1 / 2}}{b} \frac{X^{3 / 2} Y}{X+Y} Q^{-3 / 2+\varepsilon}, \\
\sum_{n} \tau(n)\left|I_{b}(n)\right| & \ll \frac{q^{1 / 2}}{a} \frac{X Y^{3 / 2}}{X+Y} Q^{-3 / 2+\varepsilon}, \\
\sum_{m} \sum_{n} \tau(m) \tau(n)\left|I_{a b}(m, n)\right| & \ll q \frac{(X Y)^{3 / 2}}{X+Y} Q^{-3+\varepsilon} .
\end{aligned}
$$

Introducing these bounds into (24) we get (5) with the error term

$$
(a b)^{-1} \frac{X Y}{X+Y} Q^{-1+\varepsilon}+\frac{(X Y)^{3 / 2}}{X+Y} Q^{-5 / 2+\varepsilon} .
$$

On taking $U=Q^{2}=P^{-1}(X+Y)^{-1} X Y$ the above error term becomes that of (5). This completes the proof of Theorem 1 in case $f(x, y)$ is supported in a dyadic box.

Finally Theorem 1 in its general form is derived from the dyadic version by breaking smoothly the summation in (1) into boxes $\left[X^{\prime}, 2 X^{\prime}\right] \times\left[Y^{\prime}, 2 Y^{\prime}\right]$ and using (2) to determine that the worst case is $X^{\prime} \sim X, Y^{\prime} \sim Y$.

References

[DeI ${ }_{1}$] Deshouillers J.-M., Iwaniec, H: An additive divisor problem. J. London Math. Soc. 26, 1-14 (1982)
[Del_{2}] Deshouillers J.-M. Iwaniec, H: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math 70, 219-288 (1982)
[DFI_{1}] Duke, W., Friedlander, J., Iwaniec, H: Bounds for automorphic L-functions. Invent. Math. 112, 1-8 (1993)
[DFI_{2}] Duke, W., Friedlander, J., Iwaniec H: Bounds for automorphic L-functions II Invent. Math. 115, 219-239 (1994)
[DuI] Duke, W., Iwaniec, H: Convolution L-series (to appear)
[Es] Estermann, T: Über die Darstellung einer Zahl als Differenz von swei Produkten. J. Reine Angew. Math. 164, 173-182 (1931)
[Ha] Hafner, J.L.: Explicit estimates in the arithmetic theory of Poincare series, Math. Ann. 264, 9-20 (1983)
[HB] Heath-Brown, D.R.: The fourth power moment of the Riemann zeta-function, Proc. London Math. Soc. 38, $385-422$ (1979)
[He] Hejhal, D.: Sur certaines séries de Dirichlet dont les pôles sont sur les lignes critiques. CR Acad. Sci. Paris, Sér A 287, 383-385 (1978)
[In] Ingham, A.E.: Some asymptotic formulae in the theory of numbers. J. London Math. Soc. 2, 202-208 (1927)
$\left[J u_{1}\right] \quad J u t i l a, ~ M: ~ A ~ m e t h o d ~ i n ~ t h e ~ t h e o r y ~ o f ~ e x p o n e n t i a l ~ s u m s, ~ T a t a ~ L e c t . ~ N o t e s ~ M a t h . ~ 80, ~$ Bombay (1987)
[Ju_{2}] Jutila, M: The additive divisor problem and exponential sums. In: Advances in Number Theory, 113-135. Proc Conf. Kingston Ont., 1991, Oxford (1993)
[KI] Kloosterman, H.D.: On the representation of numbers in the form $a x^{2}+b y^{2}+c z^{2}$ $+d t^{2}$. Acta Math. 49, $407-464$ (1926)
[Ku] Kuznetsov, N.V: Convolution of the Fourier coefficients of the Eisenstein-Maass series. Zap. Nauk Sem. LOMI 129, 43-84 (1983)
[Mo] Motohashi, Y: The binary additive divisor problem (to appear).
[Ra] Rademacher, H: Topics in Analytic Number Theory, New York: Springer 1973
[Sm] Smith, R.A: The circle problem in an arithmetic progression, Can. Math. Bull. 11, 175-184 (1968)
[Wa] Watt, N: (preprint).
[Wi] Wirsing, E: (unpublished manuscript).

[^0]: * partially supported by NSF grant DMS-9202022
 ** partially supported by NSERC grant A5123
 *** partially supported by each of the above

