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Abstract

After a review of the quadratic case, a general problem about the exis-
tence of number fields of a fixed degree with extremely large class numbers
is formulated. This problem is solved for abelian cubic fields. Then some
conditional results proven elsewhere are discussed about totally real num-
ber fields of a fixed degree, each of whose normal closure has the symmetric
group as Galois group.

1 Introduction.

It was Littlewood who first addressed the question of how large the class number
h of an imaginary quadratic field Q(

√
d) can be as a function of |d| as d →

−∞ through fundamental discriminants. In 1927 [14] he showed, assuming the
generalized Riemann hypothesis (GRH), that for all fundamental d < 0

h ≤ 2(c + o(1))|d| 12 log log |d|, (1)

where c = eγ/π, where γ is Euler’s constant. Furthermore he showed, still under
GRH, that there are infinitely many such d with

h ≥ (c + o(1))|d| 12 log log |d|. (2)

He deduced these results from the class number formula of Dirichlet, which for
d < −4 states that

h =
|d| 12
π

L(1, χ)

for χ(·) =
(

d
·
)

the Kronecker symbol, and corresponding results about the
Dirichlet L-value L(1, χ). His analysis is based on the idea that under GRH one
can approximate log L(s, χ) by a very short sum over primes of the type1

log L(1, χ) =
∑

p≤(log |d|)
1
2

χ(p)p−1 + O(1). (3)

∗Research supported in part by NSF grant DMS-98-01642. This paper is an expanded
version of a lecture given at the CNTA 7 in Montreal in May 2002. I thank the CNTA for
providing generous financial support for this conference.

1In fact, Littlewood used a more elaborate approximation in order to obtain good constants.
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This easily gives (1) up to the constant, since∑
p≤x

p−1 ∼ log log x

as x →∞. To prove (2) using (3), again up to the constant, one must produce
infinitely many d < 0 with χ(p) = 1 for all p with p ≤ (log |d|) 1

2 , which is easily
accomplished. Later Chowla [3, 4] proved (2) unconditionally.

In questions about the size of the class number of real quadratic fields the
distribution of the regulator R = log ε, for ε a fundamental unit for the field,
causes new problems in the class number formula for d > 0 :

h =
|d| 12
R

L(1, χ).

For example, the conjecture of Gauss that h = 1 for infinitely many d > 0
is at present insurmountable, even under GRH. However, the obvious bound
R � log d and Littlewood’s [14] GRH result L(1, χ) � log log d give, for d > 0,
the conditional upper bound

h � d
1
2 (log log d/log d).

In 1977 Montgomery-Weinberger [16] proved unconditionally that

h � d
1
2 (log log d/log d)

for infinitely many d > 0, thereby showing that this conditional upper bound is
best possible, up to the constant. They make use of the special sequence of d,
studied first by Chowla, namely square-free d = 4t2+1, for which ε = 2t+

√
d and

hence R ≤ log d. They use zero-density estimates for Dirichlet L-functions to
allow short approximations to enough log L(1, χ) , even in a quadratic sequence
of discriminants, to produce large values of L(1, χ).

2 A general problem

Surprisingly little is known about such extremal class number problems for
number fields of degree n > 2. First we must define a suitable family of number
fields with which to work.

Given a number field K of degree n let G be the Galois group of its normal
closure K̂ over Q. If H ⊆ G is the subgroup fixing K pointwise, then G acts on
G/H as a permutation group. Given an ordering of the cosets of G/H we thus
associate to K an embedding G ↪→ Sn. As is well known, the resulting cycle
structure of the Frobenius of an unramified prime determines its splitting type
in K and that of complex conjugation (the Frobenius at ∞) the signature of K.

Given any subgroup G ⊆ Sn we define K(G) to be the set of all number
fields K of degree n that have an ordering of their cosets so that their associated
embedding is G. In order for there to be a uniform upper bound for the class
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number we need to further restrict the family K(G). Suppose, for example, that
G is primitive as a permutation group (see [24]) and that K+(G) consists of the
totally positive fields in K(G). By the class number formula for K ∈ K+(G) we
have

h =
d1/2

2n−1R
L(1, χ) (4)

where d = disc(K) is the discriminant, R is the regulator and

L(s, χ) = ζK(s)/ζ(s) (5)

is an Artin L-function, ζK(s) being the Dedekind zeta function of K. In general,
it is not even known that L(s, χ) is entire, although it is conjectured that it is
(Artin), and further that GRH holds for these L(s, χ). If we assume this, then
the method of Littlewood shows that

L(1, χ) � (log log d)n−1.

Remak [17] proved that if K contains no non-trivial subfields (which is true if
G is primitive) then

R � (log d)n−1, (6)

with the implied constants depending only on n. Thus, under GRH, we have
the upper bound for the class number of K ∈ K+(G)

h � d
1
2 (log log d/ log d)n−1. (7)

More generally, by prescribing the location in G of complex conjugation and
applying the more general estimates for regulators given by Silverman [20],
we could formulate such an estimate for an imprimitive G and an arbitrary
signature. In any case, it seems to be extremely difficult to prove any result as
strong as (7) unconditionally.

The problem arises to show that (7) is sharp, that is, that there exist K ∈
K+(G) with arbitrarily large discriminant for which

h � d
1
2 (log log d/ log d)n−1. (8)

At this level of generality this is clearly difficult since it subsumes the inverse
Galois problem. However, for certain G we have enough examples of K ∈ K+(G)
to make progress, as in the quadratic case. We remark that in such cases the
main difficulty (and interest) of this problem is to show that the conditional
upper bound (7) cannot be improved upon, apart from the constant.

3 Abelian cubic fields

The simplest case to consider after the quadratic is that of abelian cubic fields,
that is K+(G) where G is the cyclic group of order 3 in S3. In this section we
will prove the following unconditional result.
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Theorem 1 There is an absolute constant c > 0 such that there exist abelian
cubic fields with arbitrarily large discriminant d for which

h > c d
1
2 (log log d/log d)2.

First we must construct a sequence of abelian cubic fields for which we have a
good upper bound for the regulator. Consider the polynomial for t ∈ Z+ defined
by

ft(x) = x3 − tx2 − (t + 3)x− 1,

easily checked to be irreducible over Q. The discriminant of ft is given by
disc(ft) = g(t)2 where

g(t) = t2 + 3t + 9.

Thus ft defines an abelian cubic field K = Kt obtained by adjoining to Q any
root of ft. These fields have been studied extensively after Shanks’ paper [19].
It can be checked that exactly one of these roots, say ε, is positive and satisfies

t + 1 < ε < t + 2. (9)

The other roots are −1/(1 + ε) and −1 − 1/ε. As shown in [22], ε and ε + 1
give a basis for the units of the order Z[ε]. The regulator R of this order thus
satisfies

R = log2 ε + log2(ε + 1)− log ε log(ε + 1) ∼ log2 t

as t →∞, as is easily seen from (9). It is shown in the Corollary to Proposition
1 of [23] that, if g(t) = t2 + 3t + 9 is square-free, then Z[ε] is the maximal order
in K (see also [8]). Thus we can state the following lemma.

Lemma 1 For t ∈ Z+ let K be the splitting field of ft(x). Then K is an abelian
cubic number field. If g(t) = t2 + 3t + 9 is square-free then Z[ε] is the maximal
order in K and we have that d = disc(K) = g(t)2 and

R = reg(K) =
1
16

(1 + o(1)) log2 d.

For these K the class number formula (4) can be written

h =
d

1
2

4R
|L(1, χ)|2 (10)

where now χ denotes a primitive Dirichlet character of order 3 and conductor
m = g(t). In order to force |L(1, χ)|2 to be large we will need to show that
enough square-free values of g(t) = t2 + 3t + 9 exist when t is restricted to
arithmetic progressions. This will allow us to produce many primes p that split
completely in K and hence for which χ(p) = 1.

The following lemma is a modification of Lemma 1 of [16].
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Lemma 2 Suppose that q, a ∈ Z+ satisfy 6|q and (g(a), q) = 1 and let

N(x; q, a) = #{1 ≤ t ≤ x : t ≡ a(mod q) with g(t) square-free}.

Then for x ≥ 2
N(x; q, a) =

x

q
cq + O(x

2
3 log x),

where cq is given in (13) below and satisfies 1
2 < cq < 1. The implied constant

is absolute.

Proof: We have that

N(x; q, a) =
∑

1≤t≤x
t≡a(mod q)

∑
r2|g(t)
(r,q)=1

µ(r),

where we may assume that (r, q) = 1 in the second sum since (g(t), q) = 1 for
t ≡ a(mod q). Thus rearranging gives

N(x; q, a) =
∑

r≤g(x)
(r,q)=1

µ(r) #{1 ≤ t ≤ x : t ≡ a(mod q) and g(t) ≡ 0(mod r2)}.

For a value of y with 1 ≤ y ≤ x to be chosen later the above sum over r > y is

≤
∑

s≤g(x)y−2

#{(t, r) : 1 ≤ t ≤ x and g(t) = r2s}

≤
∑

s≤14x2y−2

#{(u, v) : 1 ≤ u ≤ 2x + 3 and u2 − 4sv2 = 27},

on using that g(t) = ((2t + 3)2 + 27)/4. For x ≥ 2 this is � (x/y)2 log x since,
by Hilfssatz 2 p.660. of [10], we have that

#{(u, v) : 1 ≤ u ≤ 2x + 3 and u2 − 4sv2 = 27} � log x,

with an absolute constant (note that in case s is a square this is trivial). Thus
we have for x ≥ 2

N(x; q, a) =
∑
r≤y

(r,q)=1

µ(r)#{1 ≤ t ≤ x : t ≡ a(q) and g(t) ≡ 0(r2)} (11)

+O(x2y−2 log x).

For (m, 6) = 1 the number of solutions to the congruence g(t) ≡ 0(modm)
is given by

c(m) =
∏
p|m

(
1 +

(
−3
p

))
, (12)
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which is multiplicative and satisfies c(m) = c(m2). Thus from (11)

N(x; q, a) =
∑
r≤y

(r,q)=1

µ(r) c(r)(
x

qr2
+ O(1)) + O(x2y−2 log x)

since by assumption 6|q and so (r, 6) = 1. Clearly c(r) ≤ d(r), where d(r) is the
number of divisors of r, so

N(x; q, a) =
x

q

∑
(r,q)=1

µ(r) c(r)r−2 + O(x2y−2 log x) + O(y log y)

+O(xq−1y−1 log y).

Choosing y = x
2
3 gives the result since by (12)

cq =
∑

(r,q)=1

µ(r) c(r)r−2 =
∏
p-q

(
1−

(
1 +

(
−3
p

))
p−2

)
(13)

≥
∏
p≥7

(
1− 2p−2

)
> 1/2,

completing the proof of Lemma 2. �

Proof of Theorem 1: We shall apply Lemma 2 with

q =
∏
p≤y

p,

where p runs over primes and y = α log x for an appropriately chosen α. We
want to choose a so that all p with 5 ≤ p ≤ y split completely in K when
t ≡ a(mod q). To force this, observe that

ft(x) = x3 − tx2 − (t + 3)x− 1 = 0

defines a rational (genus 0) curve over Q and that for p ≥ 5 there will always
be points (x, t) on this curve over Fp with g(t) = t2 + 3t + 9 6= 0. In fact, one
computes that the number of t(mod p) for which ft(x) factors into 3 distinct
linear factors (mod p) is {

p−4
3 if p ≡ 1(mod 3),

p−2
3 if p ≡ 2(mod 3).

Hence, for such t, p will split completely in the Galois extension K. For each p
with 5 ≤ p ≤ y fix such a tp. By the Chinese remainder theorem we can find
a with a ≡ 1(mod 6) and a ≡ tp(mod p) for each such p. Then (g(a), q) = 1
and so by Lemma 2 we conclude that there will exist � x/q values of t ≤ x
for which all primes p with 5 ≤ p ≤ y split completely in K and for which
d = disc(K) = g(t)2 with g(t) square-free, provided that q � x

1
4 , say. This can

be ensured by taking y = 1
5 log x. By Lemma 1 we conclude the following.
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Lemma 3 There exists an absolute constant c > 0 so that there are at least cx
3
8

distinct cubic abelian fields K, each with discriminant d = m2 and conductor
m for some m with 1 < m ≤ x, and in which all primes p with 5 ≤ p ≤ 1

5 log x

split completely and whose regulator R satisfies R � log2 d.

Returning to (10) we next show that the proof of Theorem 1 follows from
Lemma 3 and the following result, which is Lemma 2 of [16].

Lemma 4 (Montgomery-Weinberger) Suppose that 0 < δ < 1. Then for (log m)δ ≤
y ≤ log m, and χ a primitive Dirichlet character (modm) with m > 1, we have

log L(1, χ) =
∑
p≤y

χ(p)p−1 + Oδ(1),

unless χ lies in an exceptional set E(δ). The set E(δ) contains � xδ primitive
characters χ with conductor m such that 1 < m ≤ x.

Take δ < 3/8 and y = 1
5 log x in Lemma 4 to conclude that there is an absolute

constant c1 > 0 so that for at least c1x
3
8 of the fields in Lemma 3 the associated

Dirichlet L value satisfies

|L(1, χ)|2 � log log d.

Theorem 1 now follows from (10). �

4 Non-abelian fields and L-functions

For number fields whose normal closure is non-abelian much less is known about
our problem. The easiest non-abelian situation in which to produce fields with
class numbers as large as predicted in (8) is when the Galois group is the full
symmetric group, this being the “generic” case in view of well known results of
probabilistic Galois theory (see [11]). Let Kn = K+(Sn), the set of all totally
real number fields K of degree n whose normal closure K̂ has Galois group Sn.
As in §2, let L(s, χ) = ζK(s)/ζ(s) be the associated Artin L-function. The
following result is proven in [9] and shows (conditionally) that for G = Sn the
upper bound (7) is sharp up to the constant.

Theorem 2 Fix n ≥ 2 and assume that each L(s, χ) is entire and satisfies the
GRH. Then there is a constant c > 0 depending only on n such that there exist
K ∈ Kn with arbitrarily large discriminant d for which

h > c d
1
2 (log log d/log d)n−1.
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A previously known result in this direction, due to Ankeny-Brauer-Chowla [1],
states that for any ε > 0 there are infinitely many totally real fields K of degree
n with h > d

1
2−ε. It imposes no condition on Gal(K̂/Q) and is not sharp, but

it is unconditional. Later Sprindžuk [21]2 strengthened this result by giving
an upper bound for the density (when measured in terms of the regulator) of
totally real number fields of degree n with h ≤ d

1
2−ε. It should be observed,

however, that the upper bound (7) likely does not hold in general for all totally
real fields of degree n > 3. In Lemma 3 of [8] an infinite family of totally real
biquadratic fields is constructed whose regulators satisfy R � log2 d and in this
family there are likely infinitely many that violate (7) with n = 4.

As in the proof of Theorem 1, in order to prove Theorem 2 we construct the
needed fields as specializations of a function field. Specifically, we define K by
adjoining to Q a root α of

ft(x) = (x− t)(x− 22t) . . . (x− n2t)− t.

If t > 1 is square-free then ft(x) is an Eisenstein polynomial. This allows us to
use the fact that p with p | t ramifies completely in K to bound from below the
discriminant d of K in terms of disc(ft), and hence t. A frequent difficulty in
doing so in such problems is due to the index of Z[α] in the ring of integers in
K. This family has another needed feature; if t is sufficiently large, then K is
totally real and

R �n (log d)n−1

since it is possible to write down a system of n− 1 multiplicatively independent
units with a determined asymptotic behavior as t →∞, a property reminiscent
of the cyclic cubic example discussed above. A difficulty not present in the
cyclic cubic case, since it is automatic, is the need to control the Galois group
of K̂/Q. Here we show that f(t, x) = ft(x) is irreducible over C and that the
monodromy group of the Riemann surface defined by f(t, x) = 0 is Sn, using
old techniques of Jordan and Hilbert. Then we apply a result of S.D Cohen [7],
which is a quantitative form of Hilbert’s Irreducibility Theorem, to show that
for most integral specializations of t, the Galois group of K̂/Q is maximal, that
is Sn. The proof of this uses the multi-dimensional large sieve inequality in a
way first done by Gallagher [11].

The technique used in the abelian cubic case to produce many split primes
by restricting the parameter t to certain arithmetic progressions continues to
work but the genus of the needed curve is no longer zero and the Riemann
Hypothesis for curves must be invoked. The relatively mild condition that t be
square-free may be imposed without difficulty. 3 This ingredient in the proof of
Theorem 2 is an analogue of a classical result of Bohr and Landau [5], as refined
by Littlewood [13], which is used to find small values of ζ(1 + it):

2I thank C. Levesque for pointing out this reference.
3The construction of Theorem 2 in case n = 2 provides a simplification of that of [16] since

it is unnecessary to force d to be square-free, only t.
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Classical Bohr-Landau: If y is sufficiently large then there is a positive inte-
ger t with log t � y so that pit is uniformly close to -1 for each prime p ≤ y, the
implied constants depending on how good the approximation is required to be.

This part of the proof is generalized in [9] to families of continuous Galois
representations

ρ : Gal(Q̄/Q) → GL(n, C)

whose image is a fixed finite group G with property GalT . To say that G has
property GalT means that G is the Galois group of a finite regular extension
E of Q(t), so Q̄ ∩ E = Q. 4 Here as usual Q̄ is a fixed algebraic closure of Q.
The “size” of such a representation is measured by its conductor. Choose a(p)
to be, for each prime p, the trace of an arbitrary element of G. Then we have

Bohr-Landau for Galois: If y is sufficiently large, then there is a Galois
representation of conductor N whose image is G and such that log N � y and
χ(σp) = a(p) for 1 � p ≤ y, where σp is any Frobenius element over p.

The final ingredient needed to prove Theorem 2 is an approximation of log L(1, χ)
as a short sum over primes. This can be done for any Artin L-function associ-
ated to ρ. Denoting the character of ρ by χ, this is given for Re(s) > 1 by the
formula

log L(s, χ) =
∑

p

∞∑
m=1

1
m

χ(pm)p−ms

where
χ(pm) =

1
|Ip|

∑
ι∈Ip

χ(σm
p ι)

where Ip is the inertia group of any of the primes lying over p. In general,
L(s, χ) is known to be meromorphic [6] and to satisfy the functional equation
[2]

Λ(1− s, χ̄) = εχNs− 1
2 Λ(s, χ)

where |εχ| = 1 and

Λ(s, χ) = π
ns
2 Γ(s/2)

n+`
2 Γ((s + 1)/2)

n−`
2 L(s, χ)

where ` is the value of χ on complex conjugation and N is the conductor of ρ.
Artin conjectured that L(s, χ) is entire unless ρ contains trivial components, in
which case it should only have a pole at s = 1. Assuming this and GRH for
L(s, χ), it is shown in [9] that (3) generalizes in a straightforward way to give

log L(1, χ) =
∑

p≤(log N)
1
2

χ(p)p−1 + On(1),

4It has been conjectured (see p.35. of [18]) that every finite group G has property GalT .
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which then allows the completion of the proof of Theorem 2.
One is led naturally to consider the extreme values of such a family of Artin

L-functions at s = 1 and this can be done, at least conditionally. We immedi-
ately get the upper bound (under GRH)

L(1, χ) �n (log log N)n (14)

and prove in [9] the following result showing that this is best possible, up to the
constant.

Theorem 3 Suppose that G ⊂ GL(n, C) is non-trivial, irreducible and has
property GalT . Assume that every Artin L-function L(s, χ) whose Galois rep-
resentation has image G is entire and satisfies GRH. Then there is a constant
c > 0, depending only on G, so that there exist such L-functions with arbitrarily
large conductor N that satisfy

L(1, χ) > c(log log N)n. (15)

5 Further prospects

It would obviously be desirable to prove Theorems 2 and 3 unconditionally, at
least in some non-abelian cases. Clearly what is needed is a generalization of
Lemma 4 to families of Artin L-functions. The proof of Lemma 4 is based on
zero density estimates for Dirichlet L-functions. Proofs of these estimates in-
volve orthogonality properties of distinct Dirichlet characters. This aspect can
sometimes be found on the side of automorphic representations. In particular, it
would be interesting to establish zero density estimates for families of automor-
phic L-functions chosen to include, at least conjecturally, the Artin L-functions.
In some cases, for example non-abelian cubic extensions, the degree two Artin
L-functions that arise in (5) are known to come from classical automorphic
forms of weight 1 after Hecke, and the type of orthogonality needed would be
over varying levels. Similarly, for certain quartic extensions, the associated
degree three Artin L-functions that arise are known after Jacquet, Piatetski-
Shapiro and Shalika [12] to come from GL(3) automorphic forms. Langlands
has conjectured that every Artin L-function should come from an automorphic
representation on GL(n) for some n.

Another direction of interest is to consider other groups G than the symmet-
ric group for the problem outlined in §2. For such generalizations the construc-
tion of fields with small regulators seems to be quite an interesting problem.
As we have seen, the existence of Artin L-functions in rather general families
with extremal values can be proven conditionally. There might also be some
interest in obtaining good constants in (14) and (15) as was done in case n = 2
by Littlewood, and in studying the finer behavior of these L-values along the
lines of [15]
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