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Abstract. The space of all weakly holomorphic modular forms and the space of all holo-
morphic period functions of a fixed weight for the modular group are realized as locally
convex topological vector spaces that are topologically dual to each other. This framework
is used to study the kernel and range of a linear differential operator that preserves modu-
larity and to define and describe its adjoint. The main results are an index formula for such
a differential operator that is holomorphic at infinity and the identification of the co-kernel
of the operator as a cohomology group of the modular group acting on the kernel.

1. Introduction

The theory of meromorphic differential equations was one of Varadarajan’s many math-
ematical interests [42], [43]. In this paper I will present some new results about ordinary
differential operators that act on modular forms. The main results are a formula for the
index of certain of these operators that remains invariant under perturbations and the iden-
tification of the co-kernel of such an operator as a cohomology group of the modular group
acting on the kernel.

Suppose that k ∈ 2Z and that f is a holomorphic function on the upper half-plane H that
satisfies for all z ∈ H the functional equations

(1.1) f(z)− z−kf(−1
z
) = 0 and f(z) = f(z + 1).

Since f is periodic and holomorphic on H it has a convergent Fourier expansion

(1.2) f(z) =
∑
n∈Z

a(n)qn.

Assume that f is meromorphic at i∞, meaning that this series satisfies

ord∞f := min{n; a(n) 6= 0} > −∞.
Here q = e(z) := e2πiz. Denote by Mk the space of all such f , which are called weakly
holomorphic modular forms of weight k for the modular group Γ = PSL(2,Z).

On the other hand, denote by Wk the space of all ψ : H → C holomorphic that satisfy the
two functional equations

ψ(z) + z−kψ(−1
z
) = 0 and ψ(z) + z−kψ(1− 1

z
) + (z − 1)−kψ( −1

z−1
) = 0.(1.3)

Such a ψ is an example of a period function of weight k that is holomorphic on H. For our
purposes we will refer to ψ as a holomorphic period function of weight k.

For any f, g holomorphic on H define

(1.4) 〈f, g〉 =

∫ ρ

i

f(z)g(z)dz,
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where the integral is over any smooth curve from i to ρ = e(1/6) = 1
2

+ i
√

3
2

in H. Clearly
〈f, g〉 is well-defined.

Both Mk and Wk are infinite dimensional vector spaces over C. We may consider W2−k
to be a subspace of the (algebraic) dual space ofMk by restricting 〈·, ·〉 toMk ×W2−k. We
show in Corollary 1 below that by means of 〈·, ·〉 the spaceW2−k separates points inMk and
that Mk separates points in W2−k. It follows (see e.g. [38, Example 1, p. 127]) that Mk

becomes a locally convex topological vector space with topology generated by the semi-norms

ρψ(f) = |〈f, ψ〉|

for ψ ∈ W2−k, and that W2−k may be identified with the topological dual of Mk. Similar
considerations apply to W2−k, whose topological dual can be identified with Mk.

In this paper continuity of an operator is always taken to be in terms of these topologies.
A standard reference for the theory of linear operators on topological vector spaces is [39].
In particular, any linear and continuous operator

T :M2−k →Mk

has a unique linear adjoint T ′ :W2−k →Wk defined through

〈Tf, ψ〉 = 〈f, T ′ψ〉.

Also, T ′ is continuous and (T ′)′ = T . If α(T ) := dim kerT and α(T ′) := dim kerT ′ are finite,
it is of interest to determine them. While they will change under certain perturbations of T ,
one may hope that their difference

(1.5) indT = α(T )− α(T ′),

which we take to define the index of T , remains invariant. Clearly indT ′ = −indT.
When k > 0 consider a linear differential operator of order k−1 acting on any holomorphic

f on H by

(1.6) Tf = h0f
(k−1) + h1 f

(k−2) + · · ·+ hk−2 f
′ + hk−1f,

where each hj is holomorphic on H, periodic and meromorphic at i∞. Assume that h0 is a

non-zero constant. Here and throughout the paper we write f ′ = 1
2πi

df
dz

and f (2) = f ′′ etc.
Say that T in (1.6) is modular if

(1.7) T
(
zk−2f(−1

z
)
)

= z−k(Tf)(−1
z
)

and that T is holomorphic if in addition ord∞ hj ≥ 0 for each j. It is easy to see that such
a modular T defines a linear operator from M2−k to Mk and we show in Lemma 4 that T
is continuous. It is apparent that α(T ) is the dimension of the space of modular solutions to
the differential equation Tf = 0. By the standard theory of linear ODE’s we know that

α(T ) = dim kerT ≤ k − 1.

To interpret α(T ′) we employ the classical Lagrange adjoint of T , which acts on any f
holomorphic on H by

(1.8) T ∗f = −h0f
(k−1) + (h1f)(k−2) − · · · − (hk−2f)′ + hk−1 f

(see e.g. [22]). Now T ∗ is modular when T from (1.6) is modular; this is shown in Lemma
3. In Lemma 4 we prove that the adjoint T ′ : W2−k → Wk is given by T ′ = T ∗, when T ∗ is
restricted to W2−k. Therefore α(T ′) is the dimension of the space of all holomorphic period
functions ψ ∈ W2−k that satisfy T ∗ψ = 0, and again α(T ′) ≤ k − 1.
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For a fixed k the quantities α(T ) and α(T ′) are certainly sensitive to T . We will illustrate
this in an example below. Our first main result shows that the index is an invariant, at least
when T is holomorphic. Define

(1.9) `k =

{
b k

12
c − 1 if k ≡ 2 (mod 12)

b k
12
c otherwise.

Theorem 1. For T a holomorphic modular differential operator of the form (1.6) we have

indT = −2`k − 1.

A consequence of Theorem 1 is that for any holomorphic modular T of the form (1.6)
there will exist a non-zero holomorphic period function ψ of weight 2− k such that Tψ = 0,
provided that k > 2.

Example 1.1. For any m = 0, 1, 2, . . . Bol’s identity [7, p. 28] states that

(1.10)
(
zm−1f(−1

z
)
)(m)

= z−m−1f (m)(−1
z
).

For a direct proof see Lemma 5 of [1]. In particular, T defined by Tf = f (k−1) is modular
and holomorphic. Since there are no modular polynomials of non-zero weight, we have that
α(T ) = 0 unless k = 2, when α(T ) = 1. On the other hand, since T ∗f = −f (k−1), we know
that α(T ′) is the dimension of the space of ψ ∈ W2−k that are polynomials of degree at most
k − 2. These ψ are called period polynomials. By Theorem 1 we see that α(T ′) = 2`k + 1
when k > 2, while α(T ′) = 0 when k = 2. This is well known. See [11] for another proof due,
essentially, to Poincaré [35] and for further references.

By (1.10) it is straightforward to verify that if T is defined by

(1.11) Tf = f (k−1) + gf ′ + (1
2
g′ + h)f,

where g ∈ M2k−4 and h ∈ M2k−2, then T is modular. The Lagrange adjoint of this T is
determined by

(1.12) T ∗f = −f (k−1) − gf ′ + (−1
2
g′ + h)f.

To illustrate how α(T ) and α(T ′) may vary with T we need some classical modular forms.
The Eisenstein series may be defined for any k ≥ 0 by

(1.13) Ek(z) = 1 + 2
ζ(1−k)

∑
n≥1

σk−1(n)qn.

Here σ is the sum of divisors function. When k 6= 2 it is well-known that Ek ∈Mk. Also

(1.14) ∆(z) = 1
123

(
E3

4(z)− E2
6(z)

)
= q

∏
m≥1

(1− qm)24

is in M12. We have Ramanujan’s formulas

(1.15) E ′2 = 1
12

(E2
2 − E4), E ′4 = 1

3
(E2E4 − E6), E ′6 = 1

2
(E2E6 − E2

4).

For proofs of these standard facts see [45].
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Example 1.2. Now consider (1.11) when k = 4, g = c1E4 and h = c2E6 :

Tf = f (3) + c1E4f
′ + ( c1

2
E ′4 + c2E6)f.

For c1 = c2 = 0 we saw in Example 1.1 that α(T ) = 0 and α(T ′) = 1. Here kerT ′ is spanned
by ψ(z) = 1− z2.

On the other hand, when c1 = −31
36

and c2 = 5
36

we have that Tf = 0 for

f =
E4E6

∆
∈M−2.

This can be checked by using (1.15). Therefore α(T ) ≥ 1. In fact α(T ) = 1 since a compu-
tation shows that α(T ′) = dim kerT ′ ≤ 2. See around (3.20) in Example 3.4 for details.

It is also natural to consider the ranges and cokernels of the maps T : M2−k →Mk and
T ′ : W2−k → Wk for a holomorphic modular T . For any modular T let PT be the space of
all solutions f of the equation Tf = 0. Now PT and PT ∗ are naturally acted on by Γ and
dimPT = dimPT ∗ = k− 1. A crucial role in understanding the relationship between PT and
PT ∗ is played by the bilinear concomitant, which for our T is defined for f and g holomorphic
on H by

[f, g]T = gf (k−2) +
(
h1g − g′

)
f (k−3) + · · ·+

(
hk−2g − (hk−3g)′ + · · ·+ g(k−2)

)
f.

An identity of Lagrange (see (4.3) below ) gives that

g T f − f T ∗g = 1
2πi

d
dz

[f, g]T .

It follows that [f, g]T is a scalar when f ∈ PT and g ∈ PT ∗ . In fact, as will be shown below,
PT and PT ∗ are dual with respect to [f, g]T . If {f0, . . . , fk−2} and {g0, . . . , gk−2} are dual
bases with [fm, gn]T = δm,n, consider the kernel function

kT (z, τ) =
k−2∑
n=0

fn(z)gn(τ).

By the classical method of variation of parameters the inhomogeneous equation TF = f ,
when f ∈Mk, is solved by the generalized Eichler integral

F (z) =

∫ z

z0

kT (z, τ)f(τ) dτ,

where the integral is over any smooth curve from z0 to z in H. For A = ± ( a bc d ) ∈ Γ let

(1.16) σA(z) =

∫ A−1z0

z0

kT (z, τ)f(τ) dτ.

We will see that A → σA determines a cohomology class in H1(Γ,PT ), whose definition is
recalled in §5. For Tf = f (k−1) we have that

kT (z, τ) = 1
(k−2)!

(z − τ)k−2,

so the generalized Eichler integral becomes the usual Eichler integral of f . The generalized
version together with Theorem 1 yield a proof of the following result.

Theorem 2. Suppose that T is a holomorphic modular differential operator of the form
(1.6). Then the map f → σA gives an isomorphism from Mk/TM2−k to H1(Γ,PT ). Their
dimension is 2`k + 1 + α(T ).
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When Tf = f (k−1) the result of Theorem 2 is close to, but not equivalent to, the special-
ization of Eichler’s main result in [13] to the modular group. See also his exposition [14].
Eichler’s version of Mk/TM2−k is in terms of meromorphic modular forms and he must
restrict to those that have well-defined Eichler integrals. Eisenstein series are not admitted
and his isomorphism is with the parabolic cohomology group. Multi-valued Eichler integrals
do not occur for weakly holomorphic forms.

Eichler applied his theory to give trace formulas for Hecke operators and most further
developments on the number-theoretic side have been formulated in terms of cusp forms,
mainly due to their connection with L-functions. Some classical references are [37], [32] and
[28]. More recently, aspects of the Eichler–Shimura theory have been generalized to mock-
modular forms [8]. Earlier, Eichler’s theory was taken in a different direction by Ahlfors [2]
and Bers [6] to study Kleinian groups. See also [29] and the more recent survey [30] and its
references to this large body of research.

The study of indices of operators is of course also extensive; one need only mention the
famous results of Atiyah and Singer beginning with [4], that determine the indices of certain
elliptic operators on a manifold. Rather general linear differential operators in one variable
with appropriate domains may be treated using the theory of unbounded linear operators in
a Banach space. For more on this see [18] and its references.

For our modular differential operators, whose domain consists of analytic functions, it
seems better to use topological vector spaces and semi-norms. This set-up also clarifies the
role period functions play in the theory of these differential operators. If T were a (certainly
unbounded) Fredholm operator on a Banach space the index of T could be equivalently
defined to be α(T )− β(T ), where

(1.17) β(T ) = codimT,

rather than α(T )−α(T ′), as we have done. By Theorems 1 and 2 it is true that β(T ) = α(T ′)
for T a holomorphic modular differential operator1, but already in the simplest case where
Tf = f ′ we have that β(T ′) = ∞ while α(T ) = 1. See Example 3.5 below. Therefore the
definition we give of the index seems appropriate for modular differential operators T since
indT ′ = −indT.

Linear differential equations whose solution spaces are stable under a modular action have
been much studied in recent years. References include the influential paper of Kaneko and
Zagier [25]. Some other recent works are [19], [23], [24]. One natural problem that is treated
in these papers is to find explicit solutions of specific equations that are modular or quasi-
modular for the modular group or for a subgroup of finite index.

In the next section some standard facts from the theory of meromorphic modular forms for
the full modular group are reviewed. This is followed by §3, which contains a needed result
(Proposition 1) about holomorphic period functions. Since this result is of independent
interest we illustrate it with several examples. In §4 the theory of modular differential
operators and their Lagrange adjoints is developed. We prove Theorem 1 in §5 by utilizing
a formula of Weil [44] for the dimension of a certain parabolic cohomology group. In §6 we
apply generalized Eichler integrals together with Theorem 1 and a formula of Curran [9] for
the dimension of the full cohomology group to prove Theorem 2.

1After seeing a preprint of this paper, Toshiteru Kinjo has given a direct proof that α(T )−β(T ) = −2`k−1.
I thank Masanobu Kaneko for showing this to me.
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2. Weakly holomorphic modular forms

In the study of modular forms it is convenient to employ slash operators. For k ∈ 2Z and
A = ± ( a bc d ) ∈ G = PSL(2,R) define the weight k slash operator of A on f by

(f |kA)(z) = (cz + d)−kf(Az),

where Az = az+b
cz+d

. Note that f |k(AB) = (f |kA)|kB for all A,B ∈ G and we may extend the
slash operator to the group ring Z[G]. For simplicity we write as the default

f |2−kA = f |A.
The modular group Γ = PSL(2,Z) ⊂ G is a Fuchsian group. As such it has the presentation

(2.1) Γ = 〈T, S, U | TSU2 = S2 = U3 = 1〉
where2 T = ± ( 1 1

0 1 ) , S = ± ( 0 −1
1 0 ) and U = ± ( 1 −1

1 0 ) . Thus Γ is generated by any two
of T, S, U and may also be presented as the free product of the cyclic groups (S) and (U)
generated by S and U , respectively.

Let F be the usual fundamental domain for Γ given by

(2.2) F = {z ∈ H; 0 ≤ Re z ≤ 1
2
, |z| ≥ 1} ∪ {z ∈ H;−1

2
< Re z < 0, |z| > 1}.

A meromorphic modular form of weight k ∈ 2Z for Γ is a meromorphic function on H that
satisfies

f |k(1− A) = 0

for all A ∈ Γ and is meromorphic at i∞, meaning that its Fourier expansion (1.2) converges
for Re z sufficiently large and that ord∞f > −∞. The divisor of a non-zero meromorphic
modular form f , denoted (f), is defined multiplicatively in the usual way by its zeros and
poles in F ∪ {i∞}, except that at i or ρ we define the exponent by multiplying the usual
order of f by 1

2
or 1

3
, respectively. Denote by |d| the degree of a divisor d, defined to be

the sums of its exponents. The valence formula states that for any non-zero meromorphic
modular form f

(2.3) |(f)| = k

12
.

One obtains (2.3) by integrating the Γ-invariant differential (f
′(z)
f(z)
− k

4πIm z
)dz around the

boundary of F , with the usual detours. For any divisor d on F ∪ {i∞} let Mk(d) denote
the space of meromorphic modular forms f of weight k for Γ that satisfy d|(f). A version
of the Riemann-Roch theorem that is useful in the context of modular forms was given by
Petersson [34], who refers to his earlier work [33]. The theorem gives an invariant formula
for the difference between the dimensions of two “dual” spaces of modular forms. For Γ and
any k ∈ 2Z it takes the following elegant form. Note that `2−k = −`k − 1.

Theorem. [34, Satz 1.12 p. 20] If the divisor d on F has integral exponents then

(2.4) dimMk(d)− dimM2−k(d
′) = −|d|+ `k + 1,

where d′ = (i∞)/d and `k is from (1.9).

2There is little danger that this T will be confused with a differential operator.



THE INDEX OF A MODULAR DIFFERENTIAL OPERATOR 7

For n ∈ Z let Mk,n = Mk((i∞)n). In the usual notation

Mk =Mk,0 and Sk =Mk,1.

By (2.4) and (2.3) we obtain the dimension formula

(2.5) dimMk,n = 1− n+ `k

for even k and n ≤ k + 1.
Now Mk has a simple algebraic structure and (2.5) can also be established constructively

(still using (2.3)). Since ∆ from (1.14) does not vanish on H the j-function

j =
E3

4

∆
=

E2
6

∆
+ 123

is in M0. It has integral Fourier coefficients

j(z) = q−1 + 744 + 196884q + · · · .
Let k′ ∈ {0, 4, 6, 8, 10, 14} be uniquely determined by the equation k = 12`k + k′ and set

(2.6) fk = ∆`kEk′ ∈Mk,`k .

Observe that these Ek′ , together with E2, are precisely those Eisenstein series that have
integral Fourier coefficients. By (2.3) we have that

(2.7) ord∞ f ≤ `k.

for non-zero f ∈Mk. We can now easily establish that

Mk = fk C[j].

In fact, Mk has a natural basis B = {fk,m}m≥−`k with fk,m given by

(2.8) fk,m(z) = fkPk,m(j) = q−m +
∑
n>`k

ak(m,n) qn,

where Pk,m is a unique monic polynomial of degree `k+m called a Faber polynomial. Clearly
{fk,−m}n≤m≤`k give a basis for Mk,n, where k > 2 and n ≤ 1, so (2.5) follows.

The Fourier coefficients of fk,m are integers that satisfy the duality relation

(2.9) ak(m,n) = −a2−k(n,m).

This is a consequence of the generating function (see [3], [12])

(2.10)
fk(τ)f2−k(z)

j(z)− j(τ)
=
∑

m≥−`k

fk,m(τ)qm,

where fk is defined in (2.6).

3. Holomorphic period functions

Denote by W2−k the space of all holomorphic functions ψ on H that satisfy

(3.1) ψ|(1 + S) = ψ|(1 + U + U2) = 0.

Recall our convention that ψ|A = ψ|2−kA. As mentioned above, we refer to ψ ∈ W2−k as a
holomorphic period function of weight 2− k.

Any ψ ∈ W2−k satisfies the three term functional equation of a period function:

(3.2) ψ|(1− T − V ) = 0,

where V = T>. This follows from the identity

1− (T + V ) = 1 + S − (1 + U + U2)S.
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Conversely, if ψ satisfies (3.2) then

F = ψ|(1 + S) = ψ|(1 + U + U2)

must satisfy F |(1− A) = 0 for all A ∈ Γ. This argument is from [31, p. 249], where general
period functions are studied.

If F is a periodic holomorphic function on H then

(3.3) ψ = F |(1− S) ∈ W2−k.

To see this, observe that the first relation in (3.1) is trivial and the second follows by using

T−1 = SU2 and U − S = TS − S = (T − 1)S.

We next show the converse; given ψ ∈ W2−k there exists F that is meromorphic at i∞
where

ord∞F ≥ −`k,
for which (3.3) holds. It follows from (2.7) applied with weight 2 − k that such an F must

be unique, so we denote it ψ̂.

Proposition 1. For any k ∈ 2Z let ψ ∈ W2−k. Then there exists a unique

ψ̂(z) =
∑
n≥−`k

b(n)qn

convergent on H such that ψ(z) = ψ̂|(1− S). The Fourier coefficients of ψ̂ are given by

(3.4) b(n) = 〈fk,n, ψ〉,

where fk,n is defined in (2.8). In general, if f(z) =
∑

m a(m)qm ∈Mk then

(3.5) 〈f, ψ〉 =
∑

n+m=0

a(m)b(n),

where the sum is finite. We also have

(3.6) 〈f, ψ〉 =

∫ ρ

ρ2
f(z)ψ̂(z)dz.

Proof. Denote by C the directed circular path from i to ρ on the edge of F , where F was
given in (2.2). Since the Faber expansion (2.10) converges uniformly on compact subsets in
τ provided that Im(z) is sufficiently large, the integral

(3.7) F (z) = f2−k(z)

∫
C

fk(τ)ψ(τ)

j(z)− j(τ)
dτ

will have the desired Fourier expansion for Im(z) sufficiently large. We must show that F
has an analytic continuation and that it satisfies

(3.8) ψ = F |(1− S).

We can do this by showing that we may continue F to the neighborhood of any point of H.
By the monodromy theorem we will get a unique continuation since H is simply connected.

For fixed z with E14(z) = E2
4(z)E6(z) 6= 0 the integrand of (3.7) has a simple pole at τ = z.

Now for fk defined in (2.6) we have

f2−k(z)fk(z) = E14(z)/∆(z) = −j′(z).
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Hence

(3.9) Resτ=z
f2−k(z)fk(τ)

j(z)− j(τ)
= lim

τ→z

(τ − z)f2−k(z)fk(z)

j(z)− j(τ)
=

1

2πi
.

The zeros of E14 are exactly the elliptic points.
The images of C under Γ decompose H into infinitely many connected components. Let Ω1

be any component and let Ω2 be an adjacent component. Let Fj(z) be the analytic function
in Ωj defined by the integral in (3.7). Choose any non-elliptic point z1 on an edge between
Ω1 and Ω2. Make a small semi-circular deformation3 of C so that the new integral continues
F1(z) to a neighborhood N of z1. For each z in N ∩Ω2 the value of the analytic continuation
of F1 is given by

(3.10) F1(z) = F2(z)± ψ(z),

coming from the pole of the integrand at τ = z. Here the sign is the same for all such z and
depends only on the orientation of the edge containing z0. Since ψ is holomorphic in H, this
provides an analytic continuation of F to a neighborhood of every non-elliptic point of H.
We want to show that this continuation is unique. We do this by continuing the original F
to every point of H.

So far we have not used that ψ is a holomorphic period function. By the first formula in
(3.1) we see that we may write

(3.11) F (z) = 1
2
f2−k(z)

∫ ρ

ρ2

fk(τ)ψ(τ)

j(z)− j(τ)
dτ,

where now we take a straight line segment between ρ2 and ρ, whose images under Γ thus
avoid images of i. By the same procedure as before, we may now continue F to every image
of i. To treat the images of ρ, observe that by the second formula in (3.1) we have

3

∫ ρ

i

fk(τ)ψ(τ)

j(z)− j(τ)
dτ =

(
2

∫ ρ

i

−
∫ ρ

1+i

−
∫ ρ

1
2

+ i
2

) fk(τ)ψ(τ)

j(z)− j(τ)
dτ.

Hence

F (z) = 1
3
f2−k(z)

(∫ 1+i

i

fk(τ)ψ(τ)

j(z)− j(τ)
dτ +

∫ 1
2

+ i
2

i

fk(τ)ψ(τ)

j(z)− j(τ)
dτ
)
,

where now the contours are chosen as line segments in each integral to avoid images of ρ
under Γ. In this way we may also continue F to each image of ρ. Thus we have continued F
to all of H. In particular we know that its Fourier series converges in H.

The functional equation now also follows. For z in an open disc contained in F ⊂ Ω1, we
have by (3.10) that

F (z) = (F |S)(z) + ψ(z),

since for such z we have that F |S = F2 by (3.7) and the choice of sign of ψ(z) is easily
verified. Thus (3.8) holds throughout H by analytic continuation and we have that

(3.12) ψ̂(z) = f2−k(z)

∫ ρ

i

fk(τ)ψ(τ)

j(z)− j(τ)
dτ.

The last two statements of Proposition 1 now follow easily. �

3The deformation can be either away from or toward the origin depending on the orientation of the arc
on which z1 lies.
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Remarks.

(1) Proposition 1 was first proven shortly after [11] was written and was motivated by

conversations with Özlem Imamoḡlu and Árpad Tóth. It remained unpublished until
now.

(2) The bilinear form 〈f, ψ〉 when written in the form (3.6), where ψ is a period polyno-
mial, is essentially one used by Eichler [13]. When k = 2 this form occurs in a paper
of Hecke [20].

The following corollary of Proposition 1 justifies the claims made in the introduction about
Mk andW2−k that follow from their being a dual pair with respect to the bilinear form 〈·, ·〉.

Corollary 1. Fix k ∈ 2Z. Then

i) Fix ψ ∈ W2−k. If 〈f, ψ〉 = 0 for all f ∈Mk then ψ = 0.

ii) Fix f ∈Mk. If 〈f, ψ〉 = 0 for all ψ ∈ W2−k then f = 0.

Proof. We will use the basis {fk,m}m≥−`k for Mk, where

fk,m(z) = q−m +
∑
n>`k

ak(m,n) qn.

For i), if 〈f, ψ〉 = 0 for all f ∈ Mk then 〈fk,m, ψ〉 = 0 for all m ≥ −`k so from (3.4) we
have that b(m) = 0 for all m, hence ψ = 0.

For ii), suppose that 〈f, ψ〉 = 0 for all ψ ∈ W2−k. Write

f =
∑

m≥−`k

c(m)fk,m,

a finite sum. Then choose ψ = ψ̂|(1− S) where ψ̂(q) =
∑

m c(m)e2πimz. Using (3.4) again,

0 =
∑

c(m)〈fk,m, ψ〉 =
∑

c(m)b(m) =
∑
|c(m)|2,

so for all m we have c(m) = 0. �

Example 3.1. Period polynomials are of basic arithmetic interest. Suppose that

L(s) =
∑
n≥1

a(n)n−s

converges for Re(s) sufficiently large and that its completion Λ(s) = (2π)−sΓ(s)L(s) is entire

and satisfies the functional equation Λ(k − s) = (−1)
k
2 Λ(s). Then

(3.13) ψ(z) = (−1)
k
2

k−2∑
m=0

(2πi)m

m!
L(k −m− 1)zm ∈ Wk.

In fact, Hecke’s converse theorem [21] together with a standard calculation of the Eichler
integral gives that

ψ̂(z) =
∑
n≥1

a(n)n1−kqn.

Thus by Proposition 1 we get the pretty formula

n1−ka(n) = (−1)
k
2

k−2∑
m=0

(2πi)mL(k−m−1)
m!

∫ ρ

i

zmfk,n(z)dz.
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Example 3.2. In case k = 0 it is usual to write

f0,m = P0,m(j) = jm,

where the first few Faber polynomials P0,m are given by

P0,0(x) = 1, P0,1(x) = x− 744, P0,2(x) =x2 − 1488x+ 159768,

P0,3(x) =x3 − 2232x2 + 1069956x− 36866976.

The real vector space MR
0 consisting of f ∈ M0 with real Fourier coefficients is an inner

product space with the inner product defined by

(f, g) = 6
π

∫ π
2

π
3

f(eiθ)g(eiθ)dθ.

A calculation using (1.13) and (1.14) gives the relation ∆′

∆
= E2, which implies Hurwitz’s

result

(3.14) z−2E2(−1
z
) = E2(z)− 6i

πz
.

Note that this shows that E2 = ψ̂, where ψ(z) = 6i
πz
∈ W2 is the simplest holomorphic

period function that is not a polynomial. Since f(eiθ), g(eiθ) are real if f, g ∈ MR
0 , we have

(f, g) = 〈fg, ψ〉. Thus if f(z)g(z) =
∑

n c(n)qn then by (3.5) we reproduce the known formula
of Atkin (see [25])

(f, g) =
∑

n+m=0

c(n)σ′(n),

where σ′(1) = 1 and σ′(n) = −24σ(n) for n > 1. The monic polynomials Am in the orthogonal
basis {Am(j)}m≥0, formed by orthogonalizing {jm}m≥0 with respect to (·, ·), have numerous
interesting arithmetic properties. They are called Atkin polynomials. The first few are given
by

A0(j) = 1, A1(j) = j − 720, A2(j) = j2 − 1640j + 269280.

A recent paper [15] has related the Atkin polynomials to associated Jacobi polynomials.

Example 3.3. Indefinite binary quadratic forms yield a general construction of holomorphic
period functions that are rational functions of z. For d a positive discriminant let

Q(x, y) = ax2 + bxy + cy2 = [a, b, c]

be an integral binary quadratic form of discriminant b2 − 4ac = d and (Q) the class of forms
(under the usual action of Γ) that contains Q. Then for any k ∈ 2Z

ψ2−k,Q(z) =
∑

[a,b,c]∈(Q)
ac<0

sgn(c)(az2 + bz + c)
k
2
−1 ∈ W2−k.

When k > 2 the associated holomorphic period functions are polynomials that were intro-
duced and studied in [28]. For k < 2 they are rational period functions and were introduced
by Knopp [27] and have been much studied since. For some references see [11]. It was shown

in [11, Theorem 3] that for any k ∈ 2Z the Fourier coefficients of ψ̂2−k,Q are given by certain
invariant cycle integrals of the fk,n:

(3.15) ψ̂2−k,Q(z) =
∑

m≥−`k

rQ(fk,m)qm where rQ(f) =

∫ Aτ

τ

f(z)Q(z, 1)
k
2
−1dz.

Here the integral is over any smooth curve from some τ ∈ H to Aτ , where A ∈ Γ is a
certain hyperbolic element determined by Q. Theorem 1 actually implies the formulas of
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(3.15). To see this, apply Proposition 1 to ψ2−k,Q, making use of the well-known fact that we
may assume that A is a word in T and V , then transform the integral in (3.12) to the cycle
integral. Details are readily supplied. The proof is somewhat similar to that of Theorem 7
in [28, p. 233].

Example 3.4. There exist explicit holomorphic period functions that are also modular
forms. For any k ∈ R define, using the principal branch of the logarithm,

(3.16) ∆k := exp( k
12

log ∆).

When k ∈ 2Z satisfies k ≡ ±2 (mod 12) then ψ = ∆k ∈ Wk. This is an easy consequence of
the fact that

(3.17) ∆k|kA = χk(A)∆k with A = ± ( a bc d )

defines a character χk of Γ with χk(S) = ik and χk(U) = ρk = e(k
6
). These period functions

are modular forms for the commutator subgroup Γ′ of Γ.
For example, if ψ = ∆−2 then ψ ∈ W−2. By changing variables x 7→ J(τ) = 1

1728
j(τ) we

get by (3.12)

(3.18) ∆2(z)ψ̂(z) =
E10(z)

∆10(z)

∫ ρ

i

E4(τ)∆(τ)−
1
6

j(z)− j(τ)
dτ = t

1
3 (t− 1)

1
2

∫ 1

0

x−
1
3 (x− 1)−

1
2 (x− t)−1 dx,

where t = J(z). The right-hand side of (3.18) is, after a linear change of variables, a Jacobi

function of the second kind (see e.g. [41]). For ψ̂1 := cψ̂, where

c =
√

π
3

Γ
(

7
6

)
Γ
(

2
3

)−1
,

we get after a calculation the formula

ψ̂1(z) = E6(z)
E4(z)2 2F1

(
2
3
, 1; 7

6
; 1
J(z)

)
(3.19)

= 1 + 24
7
q + 1080

91
q2 + 8160

247
q3 + 741576

8645
q4 + 7776432

38285
q5 +O(q6).

It can be checked that for T from the second part of Example 1.2

(3.20) T ∗ψ1 = −ψ(3)
1 + 31

36
E4ψ

′
1 + (31

72
E ′4 − 5

36
E6)ψ1 = 0.

Therefore ψ1 ∈ kerT ′, given that T ′ = T ∗. The claim made there that dim kerT ′ ≤ 2 can
be checked numerically since if ψ ∈ kerT ′ then T ∗ψ̂ ∈ M4. The resulting recursion formula
shows that there are at most two linearly independent solutions to the equation T ∗ψ = 0,
where we use that M4 is spanned by E4. For example, T ∗ψ̂1 = 36

5
E4. In fact, kerT ′ is spanned

by ψ1 and ψ2 where

ψ̂2(z) = q + 8640
221

q2 + 75074580
96577

q3 + 146742747136
14003665

q4 + 47154337662474
434113615

q5 +O
(
q6
)

satisfies T ∗ψ̂2 = 0.

Example 3.5. As was mentioned at the end of the Introduction around (1.17), for Tf = f ′

we have that

β(T ′) = codimT ′ = dimW2/T
′W0 =∞.

We claim that for any ψ ∈ W2 with ψ = ψ̂|(1− S), where

ψ̂(z) =
∑
n≥0

b(n)qn
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has the property that b(0) 6= 0, there is no φ ∈ W0 such that T ′φ = −φ′ = ψ. For φ we would

have φ = φ̂|0(1− S) with φ̂(z) =
∑

n≥−1 c(n)qn. Then ψ̂ = −(φ̂)′ + f for some f ∈M2, and

such ψ̂ has zero constant term. Finally, we may choose the b(n) in ψ̂ arbitrarily.

4. Modular differential operators and their Lagrange adjoints

We need some results about differential operators, in particular properties of the Lagrange
adjoint and the bilinear concomitant. Let D be the linear differential operator of order m ≥ 0
defined by

(4.1) Df = h0f
(m) + h1f

(m−1) + · · ·+ hmf,

where now we only assume that each hj is holomorphic on H and that h0 6= 0. Then the
Lagrange adjoint of D is defined by

D∗f = (−1)m(h0f)(m) + (−1)m−1(h1f)(m−1) + · · ·+ hmf.

A basic result due to Lagrange is that (see [36, p. 38])

(D∗)∗ = D.

The bilinear concomitant associated to D is defined by [f, g]D = 0 if D has order zero and
otherwise

[f, g]D = gf (m−1)(4.2)

+
(
h1g − (h0g)′

)
f (m−2)+

...

+
(
hm−1g − (hm−2g)′ + · · ·+ (−1)m−1(h0g)(m−1)

)
f.

We have Lagrange’s identity (see e.g. [22]):

(4.3) g D f − f D∗g = 1
2πi

d
dz

[f, g]D.

This implies that [f, g]D is a scalar if Df = 0 and D∗g = 0 and that [f, g]D = ∓[g, f ]D when
D∗ = ±D. The following additional facts were given by Frobenius [17] (see also [36]):

Lemma 1. Let D,E be linear differential operators. Then

a) (D + E)∗ = D∗ + E∗,

b) (DE)∗ = E∗D∗,

c) [f, g]D+E = [f, g]D + [f, g]E,

d) [f, g]DE = [Ef, g]D + [f,D∗g]E.

Definition. The differential operator D from (4.1) is modular of order m and weight k if

(4.4) D(f |kA) = (Df)|k+2mA

for all A ∈ Γ and each hj, which is necessarily periodic, is meromorphic at i∞. We also sup-
pose that h0 is a non-zero constant. Such an operator is said to be holomorphic if ord∞ hj ≥ 0
for each j.

To compare with our earlier convention, a modular differential operator of the form (1.6)
is modular of order k − 1 and weight 2− k.
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It is very convenient to express these modular differential operators in terms of a special
modular derivative, usually called the Serre derivative. The Serre derivative of weight k for
any real k is defined by

(4.5) Dkf := f ′ − k
12
E2f,

where E2 was given above in (1.13). Using (3.14) it is easy to see that for k ∈ 2Z the Serre
derivative Dk is modular of order 1 and weight k. Also, for k1, k2 ∈ R it obeys the product
rule

(4.6) Dk1+k2(fg) = g(Dk1f) + f(Dk2g).

Define the higher derivatives by

(4.7) Dm
k := Dk+2m−2 · · ·Dk+2Dk

where m ∈ Z+. Clearly Dm
k is modular of order m and weight k.

Lemma 2. A differential operator D of the form (4.1), where h0 is a non-zero constant, is
modular of order m ≥ 0 and weight k if and only if

(4.8) D = f0D
m
k + f1D

m−1
k + · · ·+ fm−1D

1
k + fm

where fj ∈M2j for j = 0, . . . ,m with f0 a non-zero constant. In this case D is holomorphic
if and only if fj ∈M2j for each such j.

Proof. The “if” part of the first statement is clear. For the converse, observe that if D defined
by

Df = h0f
(m) + h1 f

(m−1) + · · ·+ hm−1 f
′ + hmf

is modular of order m and weight k, then by (4.4)

(4.9) D
(
z−kf(−1

z
)
)

= z−k−2m(Df)(−1
z
).

Choose f0 = h0. Now define f1 by

(4.10) (D − f0D
m
k )f = f1f

(m−1) + lower order terms.

We claim that f1 ∈M2. By (4.9) we must have

f1(z)
(
z−kf(−1

z
)
)(m−1)

= z−k−mf1(−1
z
)z−m−2f (m−1)(−1

z
) + lower order terms

= z−k−mf1(−1
z
)
(
zm−2f(−1

z
)
)(m−1)

+ lower order terms,

by (1.10) and so

f1(z)
(
z−kf(−1

z
)
)(m−1)

= z−2f1(−1
z
)
(
z−kf(−1

z
)
)(m−1)

+ lower order terms.

Since f1 is periodic and meromorphic at i∞, it follows that f1 ∈M2. Of course it is possible
that f1 = 0, which in fact must hold if each hj is holomorphic at i∞ since then f1 ∈M2 = {0}.
By continuing this process we are led ultimately to the desired representation.

The final statement follows easily. �

For results related to Lemma 2 in cases m = 2 and m = 3 see [23] and [24].

Lemma 3. Suppose that

(4.11) T = f0D
k−1
2−k + · · ·+ fk−1

is modular of order k − 1 and weight 2− k.
i) The Lagrange adjoint T ∗ of T is determined by

T ∗f = −f0D
k−1
2−k(f) +Dk−2

4−k(f1f) + · · · −D1
k−2(fk−2f) + fk−1f.
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ii) T ∗ is modular of order k − 1 and weight 2− k.

Proof. The proof of i) uses a) and b) of Lemma 1. From (4.5) we have D∗k = −D−k. Using
b) of Lemma 1 we get

(Dk+2m−2 · · ·Dk+2Dk)
∗ = (−1)m(D−kD−k−2 · · ·D−k−2m+2)

and for fm ∈M2m with m = 0, . . . , k − 1 we deduce that

(fmD
k−1−m
2−k )∗ = (−1)mDk−1−m

2−k+2mfm.

Thus by this and a) of Lemma 1 the proof of i) is finished.

Now ii) follows easily from the formula in i) and (4.6). �

Example 4.1. Consider (1.11) when k = 4:

Tf = f (3) + gf ′ + (1
2
g′ + h)f,

where g ∈M4 and h ∈M6. We have

T = D3
−2 + f2D−2 + f3,

where f2 = 1
36
E4 + g ∈M4 and f3 = h− 1

216
E6 + 1

2
D4g ∈M6. Also,

T ∗f = −f (3) − gf ′ + (−1
2
g′ + h)f = −D3

−2f −D−2(f2f) + f3f.

We now can justify the other basic statements made about T and T ′ in the introduction.

Note. From now on we always assume without saying so that T denotes a modular differ-
ential operator of order k − 1 and weight 2− k, where k is a positive even integer.

Lemma 4. The operator T is a continuous linear map from M2−k to Mk. The adjoint
T ′ :W2−k →Wk is given by T ′ = T ∗.

Proof. First note that T maps W2−k to Wk. Thus by ii) of Lemma 3 the Lagrange adjoint
T ∗ maps W2−k to Wk. If f ∈M2−k and ψ ∈ Wk then by Proposition 1 and (4.3)

(4.12) 〈Tf, ψ〉 =

∫ ρ

ρ2
ψ̂(z)Tf(z) dz =

∫ ρ

ρ2
f(z)T ∗ψ̂(z) dz = 〈f, T ∗ψ〉,

since [f, ψ̂]T is periodic. By (4.12) we have that

|〈Tf, ψ〉| = |〈f, φ〉|
where φ = T ∗ψ so from e.g. [38, Thm V.2] it follows that T is continuous. Furthermore, we
must have T ∗ = T ′. �

By default we write [f, g] = [f, g]T .

Lemma 5. For f, g holomorphic on H and A ∈ Γ we have

[f |A, g|A] = [f, g] |0A.

Proof. It follows from (4.3) and the fact that both T and T ∗ are modular that
d
dz

[f |A, g|A] = (g|A)(T f)|k − (f |A) (T ∗g)|kA = d
dz

[f, g]|2A.
Thus for some c(A) ∈ C

[f |A, g|A] = [f, g]|0A+ c(A).

Now for A,B ∈ Γ we have that c(AB) = c(A)+c(B). Since Γ has no nonzero homomorphisms
into C we must have c(A) = 0. �



16 W. DUKE

Example 4.2. For Tf = f (k−1), the bilinear concomitant coincides with a special Rankin-
Cohen bracket denoted in this case by [f, g]k−2 (see [45, p. 53]):

(4.13) [f, g]T =
∑
r,s≥0

r+s=k−2

(−1)rf (r)g(s).

When restricted to polynomials f(z) =
∑

m≤k−2 amz
m and g(z) =

∑
n≤k−2 bnz

n it reads

[f, g] =
k−2∑
n=0

(−1)n(k−2
n )−1anbk−2−n,

which is a well-known symmetric, Γ-invariant and non-degenerate pairing (see [28, p. 243]).

Example 4.3. We can apply c) and d) of Lemma 1 to compute [f, g]T when T is written as
in (4.11). For instance, when T = Dk−1

2−k we derive a formula similar to (4.13):

[f, g]T =
∑
r,s≥0

r+s=k−2

(−1)rDr
2−k(f)Ds

2−k(g).

Let PT be the space of all solutions f of the equation Tf = 0. It follows from the standard
theory of ordinary differential equations (see e.g. [22] or [36]) that dimPT = dimPT ∗ = k−1.
When restricted to PT × PT ∗ the bilinear concomitant is scalar valued. Since PT is acted on
by the weight 2 − k slash operator, the monodromy map f 7→ f |A for f ∈ PT and A ∈ Γ
defines a representation Γ→ GL(PT ).

Lemma 6. The spaces PT and PT ∗ are dual with repect to the bilinear concomitant [·, ·]T .
The dual of the monodromy map f 7→ f |A on PT for A ∈ Γ is given on PT ∗ by g 7→ g|A−1.

Proof. This is a “modern” formulation of classical results due to Jacobi, Fuchs and Frobenius.
Let

W (z) =

∣∣∣∣∣∣∣∣∣
f0 f1 · · · fk−2

f ′0 f ′1 · · · f ′k−2
...

...
. . .

...

f
(k−2)
0 f

(k−2)
2 · · · f

(k−2)
k−2

∣∣∣∣∣∣∣∣∣
be the Wronskian of the basis {f0, . . . , fk−2} for PT . Now define for each m = 1, . . . , k − 1

(4.14) gm(z) = Wm(z)
W (z)

,

where Wm(z) is the cofactor of the element f
(k−2)
m . In other words, let {g0, . . . , gk−2} be

the final row of W (z)−1. It is a classical result (see e.g. [40, p. 62]) easily proven that
{g0, . . . , gk−2} is a basis for PT ∗ . A computation shows it to be a dual basis for {f0, . . . , fk−2}
so that [fm, gn] = δm,n, thereby making PT ∗ dual to PT .

The second statement of the Lemma was pointed out by Fuchs and Frobenius.4 It now
follows immediately from Lemma 5 applied to the scalar [f, g]:

[f |A, g] = [f, g|A−1].

�

4See the footnote on p.408 of the paper [17]. For another proof see [40, p.65].
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For a subgroup Γ1 ⊂ Γ let

PΓ1
T = {f ∈ PT ; f |A = f for all A ∈ Γ1}.

Lemma 7. We have that
dim (P′T )Γ = dimPΓ

T ∗ ,

where P′T is the dual of PT . If T is holomorphic then any f ∈ P
(T )
T must be meromorphic at

i∞. In particular,
PΓ
T ⊂M2−k.

Proof. The first statement follows from Lemma 6.
If T is holomorphic then the equation Tf = 0 takes the following form in the variable q:

dk−1

dqk−1f + g1q
−1 dk−2

dqk−2f + · · ·+ q1−kgk−1f = 0,

where each gm is holomorphic at q = 0. This equation is regular in |q| < 1 except that it has
a regular singularity at q = 0. By a fundamental theorem of Fuchs (see [22, p. 365]) every
solution has the form

f(z) = p(z)qα
∑
n≥0

a(n)qn,

where p ∈ C[z] has degree at most k− 2 and α ∈ C. The rest of the lemma now follows. �

For ∆k from (3.16) we have Dk ∆k = 0 and so deduce from (4.6) that

Dk1+k2(∆k1f) = ∆k1Dk2(f).

From this we have

(4.15) Dm
k1+k2

(∆k1f) = ∆k1D
m
k2
f.

This formula may be used to shift the weight of a modular differential operator.

Example 4.4. Consider the operator

T = D3
−2 − κE4D−2 + 1

6
κE6,

where κ is a constant. The equation Tf = 0 is by (4.15) equivalent to

D3
0φ− κE4(D0φ) + 1

6
κE6 φ = 0

for φ = ∆2f. Changing variables t = J(z) we get for w(t) = φ(z) the third-order equation

(4.16) t2(1− t)w′′′ − 1
2
(7t− 4)t w′′ − 1

9

(
(14− 9κ)t− 2

)
w′ + 1

6
κw = 0.

Here we have used that (J ′)2

J(1−J)
= −E4 and (J ′)3

J2(1−J)
= E6.

When κ = 1
3
n(1 + 3n) a calculation shows that (4.16) is satisfied by the generalized

hypergeometric series

3F2(−n, 1
3

+ n, 1
6
; 1

3
, 2

3
| t).

For each n = 0, 1, 2, . . . this series terminates and becomes a polynomial of degree n in t.
Thus we have

ψn(z) := ∆−2(z)Pn
(
J(z)

)
∈ W−2 ∩ PT ,

where Pn is this polynomial normalized in some way by multiplying it by a non-zero constant.
Actually we may take

Pn(t) =


(
P

(− 1
2
,− 1

3
)

n
2

(1− 2t)
)2

, n even

(1− t)
(
P

( 1
2
,− 1

3
)

n−1
2

(1− 2t)
)2

, n odd,
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where P
(α,β)
n (t) is the usual Jacobi polynomial. By Proposition 1 we get the following gener-

alization of (3.18), which is the n = 0 case:

(4.17) ∆2(z)ψ̂n(z) = cnt
1
3 (t− 1)

1
2

∫ 1

0

Pn(x)x−
1
3 (x− 1)−

1
2 (x− t)−1 dx,

where t = J(z) and cn is a constant. We can show that ψ̂n ∈ PT since the integral on the
right hand side of (4.17) satisfies (4.16) for each n, when κ = 1

3
n(3n+ 1).

Example 4.5. Using (4.15) repeatedly, a calculation shows that for T = Dk−1
2−k a basis for

PT is given by {v1, . . . , vk−2}, where

vj(z) = ∆2−k(z)uj(z)

and

(4.18) u(z) = 2πi

∫ z

i∞
∆2(τ) dτ = q

1
6 (6− 24

7
q + 12

13
q2 · · · ).

It is well-known that z 7→
(
℘(u(z)), ℘′(u(z))

)
maps Γ′\H to the elliptic curve given by

y2 = 4x3 − 4
27
,

where Γ′ is the commutator subgroup of Γ. Using this correspondence we may interpret our
results in terms of operators on elliptic functions having extra symmetries inherited from this
CM curve. Roughly speaking, the iterated Serre operator of order m in z corresponds to dm

dum
.

5. Parabolic cohomology

In this section we prove Theorem 1. For this we apply a formula of Weil [44] for the
dimension of the parabolic cohomology group of Γ acting on PT . This formula also depends
on the action of Γ on the dual space P′T .

After Weil, a 1-cocycle on Γ with coefficients in PT is a map σ : Γ→ PT with the property
that for each A ∈ Γ

(5.1) f 7→ f |A+ σA

gives an affine automorphism of PT . Equivalently, for all A,B ∈ Γ

(5.2) σAB = σA|B + σB.

A cocycle σ is a coboundary if the associated affine map (5.1) is conjugate under translation
by some fixed h ∈ PT to the linear map f 7→ f |A. This is equivalent to the condition that

σA = h|(1− A)

for all A ∈ Γ. The space of all 1-cocycles is denoted by Z(Γ,PT ), while the subspace of
coboundaries is denoted by B(Γ,PT ). The first cohomology group is defined to be

H1(Γ,PT ) = Z(Γ,PT )/B(Γ,PT ).

Since Γ is a Fuchsian group with presentation (2.1), after Weil again we say σ ∈ Z(Γ,PT )
is a parabolic5 cocycle provided that there exist h1, h2, h3 ∈ PT depending on σ such that

σT = h1|(1− T ) σS = h2|(1− S) and σU = h3|(1− U).

5We emphasize that the parabolic condition requires the presentation of Γ as a Fuchsian group.
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Since S and U have finite order, h2 and h3 exist for all σ. Also a coboundary is automatically
parabolic. Let Zpar(Γ,PT ) denote the space of parabolic cocycles and

H1
par(Γ, PT ) = Zpar(Γ,PT )/B(Γ,PT )

be the parabolic first cohomology group. Clearly H1
par(Γ,PT ) is a subgroup of H1(Γ,PT ).

Lemma 8. We have

(5.3) dimH1
par(Γ,PT ) = k − 1 + dimPΓ

T + dimPΓ
T ∗ − dimP

(S)
T − dimP

(U)
T − dimP

(T )
T .

Proof. From Weil [44, p. 156] we have

dimH1
par(Γ,PT ) = k − 1 + dimPΓ

T + dim (P′T )Γ − dimP
(S)
T − dimP

(U)
T − dimP

(T )
T .

Clearly (5.3) follows from this and the first statement of Lemma 7. �

Let P
†
T =W2−k ∩ PT be the kernel of T acting on W2−k and set

P
‡
T = {ψ ∈ W2−k;T ψ̂ = 0}.

Since ψ = ψ̂|(1− S), it follows that P
‡
T ⊂ P

†
T .

Lemma 9. H1
par(Γ,PT ) is isomorphic to P

†
T/P

‡
T . Also,

dimP
‡
T = dimP

(T )
T − dimPΓ

T .

Proof. For the first statement, map ψ ∈ P
†
T to σ ∈ Zpar(Γ,PT ) defined by σA = ψ̂|(1 − A).

This σ is a coboundary if and only if ψ ∈ P
‡
T . Observe that a parabolic cohomology class for

Γ is always represented by a cocycle σ with σT = 0 and so is completely determined by σS.

For the second statement, map F ∈ P
(T )
T to ψ = F |(1− S) ∈ P

‡
T and note that the kernel

of this surjective homomorphism is PΓ
T .

�

We need to determine dimP
(S)
T and dimP

(U)
T .

Lemma 10. We have

k − 1− dimP
(S)
T − dimP

(U)
T = 2`k + 1.

Proof. This follows easily by induction on k once we show the following formulas:

dimP
(S)
T = 2bk−2

4
c+ 1

dimP
(U)
T = 2bk−2

6
c+ 1.

These are proven by computing the indicial equations in the z variable of Tf = 0 around
and z = i and z = ρ. Thus around z = i we have the expansion

f(z) = (z − i)r
∑
m≥0

a(n)(z − i)n.

The indicial equation for Tf = 0 is

(5.4) r(r − 1)(r − 2) · · · (r − (k − 2)) = 0.

To be fixed under S is equivalent to having r ≡ k
2
− 1 (mod 2). The number of such r is

2bk−2
4
c+ 1, which gives dimP

(S)
T . Around z = ρ we have the expansion

f(z) = (z − ρ)r
∑
m≥0

a(n)(z − ρ)n,
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for which the indicial equation is again (5.4). To be fixed under U is equivalent to having

r ≡ 2k − 1 (mod 3). The number of such r is 2bk−2
6
c+ 1, which gives dimP

(U)
T .

�

Proof of Theorem 1. It follows from Lemma 4 that

(5.5) dim kerT ′ = dimP
†
T ∗ .

Also, since T is assumed to be holomorphic, by Lemma 7 we know that

(5.6) dim kerT = dimPΓ
T .

By Lemmas 8 and 9 we have

dimP
†
T ∗ = dimH1

par(Γ,PT ∗) + dimP
(T )
T ∗ − dimPΓ

T ∗

= k − 1 + dimPΓ
T − dimP

(S)
T ∗ − dimP

(U)
T ∗ .

By (5.5) and Lemma 10 we have that

(5.7) dim kerT ′ = 2`k + 1 + dimPΓ
T .

Thus by (5.6)
dim kerT − dim kerT ′ = −2`k − 1,

as desired. �

6. Generalized Eichler integrals

We now prove Theorem 2. Again let {f0, . . . , fk−2} be a fixed basis for PT . In addition
to its role in the proof of Lemma 7, another application of the dual basis {g0, . . . , gk−2} for
PT ∗ defined in (4.14) is an integral formula for a particular solution to the inhomogeneous
equation TF = f. Define the kernel function

kT (z, τ) =
k−2∑
n=0

fn(z)gn(τ).

Note that kT is independent of the choice of dual bases since a change of basis of PT is
matched by its inverse transpose to get the dual basis for PT ∗ . Therefore by Lemma 5

(6.1) kT (Az,Aτ) = (cz + d)2−k(cτ + d)2−k kT (z, τ)

for A = ± ( a bc d ) ∈ Γ.
By the classical method of variation of parameters (see e.g. [5]) we have

(6.2) F (z) =

∫ z

z0

kT (z, τ)f(τ) dτ,

where the integral is over any smooth curve from z0 to z, all in H. In case f ∈ Mk the
integral in (6.2) is a generalized Eichler integral of f . Making a change of variables and using
(6.1) we get

σA(z) = F |(1− A)(z) =

∫ A−1z0

z0

kT (z, τ)f(τ) dτ.

Example 6.1. For T = Dk−1
2−k a calculation shows that

kT (z, τ) = ∆2−k(z)∆2−k(τ)
(
u(z)− u(τ)

)k−2
,

where u was given in (4.18).
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Proof of Theorem 2. There is also a formula for the dimension of the full first cohomology
group. Since Γ is the free product of (S) and (U) it follows from [9], Lemma 7 and (5.7) that

(6.3) dimH1(Γ,PT ) = 2`k + 1 + dimPΓ
T .

Therefore by (5.7)

(6.4) dimH1(Γ,PT ) = dim kerT ′.

It is easy to see that
f 7→ σA

defines a homomorphism fromMk to H1(Γ,PT ). It is well-defined since a different choice of
z0 ∈ H leads to an equivalent cocycle. Also its kernel is precisely TM2−k. Thus

(6.5) dim(Mk/TM2−k) ≤ dim kerT ′.

We want to show that the homomorphism is surjective.
There is a natural map from kerT ′ to the dual ofMk/TM2−k defined by sending ψ ∈ kerT ′

to the functional λ determined by

λ(g + TM2−k) = 〈g, ψ〉,
where either g ∈ Mk or g + TM2−k ∈ Mk/TM2−k. This map is well-defined, since for
f ∈M2−k we have 〈Tf, ψ〉 = 〈f, T ′ψ〉 = 0 by Lemma 4. It is also injective by i) of Corollary
1. Hence

dim(Mk/TM2−k) ≥ dim kerT ′,

which by (6.5), (6.4) and (6.3) completes the proof. �

Remarks.

(1) It would be interesting to have a direct proof of Theorem 2. The main difficulty in any
case is to show that the map f 7→ σA is surjective. We use Theorem 1 and proceed by
comparing dimensions in a manner that is close in spirit to Eichler’s original proof of
his result. See [26] and [30] for other approaches when Tf = f (k−1). We remark that
our proof of Theorem 2 may be generalized to differential operators that intertwine
other Fuchsian groups.

(2) For simplicity we have only considered even weights k in our main theorems. Gener-
alizations that include odd weights are certainly possible.

(3) There are Fuchsian equations that are uniformized by the modular group and that
correspond to differential operators on H whose coefficients have poles at elliptic fixed
points. It is a natural problem to extend the framework and results of this paper to
cover these more general modular operators.
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10. Duke, W.; Imamoḡlu, Ö.; Tóth, Á. Cycle integrals of the j-function and mock modular forms. Ann. of
Math. (2) 173 (2011), no. 2, 947–981.
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