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Résumé. La châıne Hurwitz donne une séquence de paires d’approximations de Farey à un
nombre réel irrationnel. Minkowski a donné un critère pour qu’un nombre soit algébrique en
utilisant une certaine généralisation de la châıne Hurwitz. Nous appliquons la généralisation
de Minkowski (la châıne de Minkowski) pour donner des critères une vraie forme linéaire
qui soit mal approximable ou singulière. Les preuves reposent sur des propriétés de minima
successifs et de bases de réseaux réduites.

Abstract. The Hurwitz chain gives a sequence of pairs of Farey approximations to an
irrational real number. Minkowski gave a criterion for a number to be algebraic by using
a certain generalization of the Hurwitz chain. We apply Minkowski’s generalization (the
Minkowski chain) to give criteria for a real linear form to be either badly approximable or
singular. The proofs rely on properties of successive minima and reduced bases of lattices.
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1. Introduction

Every irrational α ∈ R has a unique expansion as an infinite regular continued fraction

α = a0 +
1

a1+

1

a2+

1

a3+
· · ·

where aj are integers called the partial quotients of α with aj > 0 for j ≥ 1. A striking result of
elementary number theory, going back to Euler and Lagrange, is that α is algebraic of degree two
over Q if and only if this expansion is eventually periodic.

More generally, suppose that α ∈ R is such that {αn, αn−1, . . . , α, 1} are linearly independent
over Q. The n = 1 case above leads naturally to the following problem. Find an algorithm, like
the regular continued fraction, which provides a criterion for α to be algebraic of degree ` = n+ 1
over Q. Since Jacobi [13], most investigations of multi-dimensional generalizations of continued
fractions, as applied to characterizing algebraic numbers, have concentrated on periodicity. This
approach has had only limited success.

However, already in 1899 Minkowski [19]1 found such an algorithm that produces a sequence
of nonsingular ` × ` integral matrices, the Minkowski chain, which characterizes algebraic α not
through periodicity but rather a certain finiteness condition. The Minkowski chain generalizes
the Hurwitz chain, itself a refinement of the regular continued fraction. In a speech appearing as
the preface to Minkowski’s collected papers,2 Hilbert said that “Der Minkowskische Algorithmus
ist nicht ganz einfach....” One goal of our paper is to revive interest in the Minkowski chain and
its applications. In particular, Minkowsi’s criterion for an algebraic number has not received the
attention we think it deserves. Another goal is to supplement Minkowsi’s criterion by characterizing
badly approximable and singular real linear forms in several variables in terms of the Minkowski
chain.

In the next section we recall the definitions of the Hurwitz and Minkowski chains, formulate their
relationships to each other and to the regular continued fraction and state Minkowski’s criterion.
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We also give some illustrative examples. Then in §3 we state our results on Diophantine approxi-
mations by linear forms. The remainder of the paper contains the proofs. We have tried to make
the presentation as self-contained as is feasible and we provide proofs of all numbered theorems,
corollaries and lemmas.

2. The Minkowski chain

Suppose that α ∈ (0, 1) is irrational. A natural way to approximate α by rational numbers, while
controlling the size of the denominators, is to use Farey fractions. For m ∈ Z+ let Fm be the mth

Farey set, which consists of all rational numbers in [0, 1] in increasing order whose denominators
are at most m. Thus

F1 = {0
1 ,

1
1}, F2 = {0

1 ,
1
2 ,

1
1}, F3 = {0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1}, F4 = {0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1}, . . . .

For a fixed m let (pq ,
p′

q′ ) be the unique pair of successive Farey fractions in Fm with p
q < α < p′

q′ .

After m = 2 the pair of surrounding fractions might not change as m increases to m+ 1, but when

it does one fraction will remain and the new one will be p+p′

q+q′ . This process was studied in some

detail by Hurwitz [12] in 1894 and the sequence of (distinct) Farey pairs is called the Hurwitz chain
for α by Philippon in [23].

We can encode the Hurwitz chain of an irrational α ∈ (0, 1) by a unique infinite word in the
letters R and L. We label a pair with R if within the pair the old fraction is to the right of the
new one and L if it is to the left. We label the first pair (0

1 ,
1
1) with L and the next with R if it is

(1
2 ,

1
1) and with L if it is (0

1 ,
1
2).

For example, the Hurwitz chain for α = 1
2(−1 +

√
5) begins

(2.1) (0
1 ,

1
1), (1

2 ,
1
1), (1

2 ,
2
3), (3

5 ,
2
3), (3

5 ,
5
8), ( 8

13 ,
5
8), . . .

with corresponding word LRLRLR . . . .
The word corresponding to the Hurwitz chain for α ∈ (0, 1) determines the partial quotients aj

in the regular continued fraction

(2.2) α =
1

a1+

1

a2+

1

a3+
· · · .

It follows from standard properties of the convergents of the continued fraction that aj is given by

the number of successive L’s or R’s in the jth block of the word. Thus the partial quotients for
α = 1

2(−1+
√

5) are aj = 1 for all j. Clearly α is quadratic over Q if and only if the word associated
to the Hurwitz chain for α is eventually periodic.

Minkowski discovered that to detect algebraic numbers of degree greater than two it is better to
abandon periodicity. His algorithm is readily described. We give it in a slightly generalized form
that we need later. Suppose that (α1, α2, . . . , αn) ∈ Rn is such that {α1, . . . , αn, 1} are linearly
independent over Q. Set

` = n+ 1.

Define for any real matrix A = (ai,j) the norm ‖A‖∞ = max(|ai,j |). For ` ≥ 2 and m ∈ Z+ let Am
consist of all integral `× ` matrices A with detA 6= 0 and ‖A‖∞ ≤ m. Write

(2.3) A(α1, . . . , αn, 1)> = (β1, β2, . . . , β`)
>.

Let Am,1 ⊂ Am be those A ∈ Am that minimize ‖A(α1, . . . , αn, 1)>‖∞ and for which the minimum
is |β1|. This fixes the first row of A by the linear independence assumption, provided we make
some sign convention, for example that the first non-zero entry in the first row is positive. Next
let Am,2 ⊂ Am,1 be those A ∈ Am,1 for which |β2| gives the minimal value thereby with the
corresponding convention fixing the second row of A. Continue this process of defining rows of A.
Then Am,` contains exactly one element which we will call Am. The matrices Am need not change
as m goes to m+ 1. Let Bk = Amk

, where k = 1, 2, . . . , define the subsequence of distinct matrices
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starting with B1 = A1. The sequence {B1, B2, . . . } of matrices is what we will call the Minkowski
chain for (α1, . . . , αn).

When n = 1 and α ∈ (0, 1) the Minkowski chain corresponds to the Hurwitz chain for α. More
precisely, we have the following result.

Theorem 1. Let the kth matrix in the Minkowski chain for an irrational α ∈ (0, 1) be

Bk =

(
q −p
q′ −p′

)
.

Then the kth pair in the Hurwitz chain is either (pq ,
p′

q′ ) or (p
′

q′ ,
p
q ).

An immediate corollary is the following fact which, as far as we know, need not hold in general
for n > 1.

Corollary 1. When n = 1 we have that | detBk| = 1 for all k.

Let any `×` matrix B = (bi,j) act on an n-tuple (x1, x2, . . . , xn) projectively as a linear fractional
map:

B[(x1, . . . , xn)] =
(∑n

j=1 b1,jxj+b1,`∑n
j=1 b`,jxj+b`,`

, . . . ,
∑n

j=1 bn,jxj+bn,`∑n
j=1 b`,jxj+b`,`

)
.

For each k ∈ Z+ set

(2.4) Bk[(α1, . . . , αn)] = (αk,1, . . . , αk,n) =
(βk,1
βk,`

, . . . ,
βk,n
βk,`

)
where Bk is the kth matrix in the Minkowski chain for (α1, . . . , αn) and where

Bk(α1, . . . , αn, 1)> = (βk,1, βk,2, . . . , βk,`)
>.

Clearly we have that
0 < |αk,1| < |αk,2| < · · · < |αk,n| < 1.

We are mostly interested in properties of the sequence {(αk,1, . . . , αk,n)}k≥1 of n-tuples attached
to (α1, . . . , αn). Minkowski realized that it is the finiteness of the set of n-tuples Bk[(α

n, . . . , α)],
rather than periodicity determined by the chain, which characterizes algebraic α of degree `.

Theorem 2 (Minkowski [19]). Suppose that α ∈ R and that {αn, αn−1, . . . , α, 1} are linearly in-
dependent over Q. Then α is algebraic of degree ` = n + 1 over Q if and only if the sequence
{Bk[(αn, αn−1, . . . , α)]}k≥1 contains only finitely many different n-tuples.

Actually, Minkowski’s formulation allows α to be complex. He also did not assume that {αn, . . . , α, 1}
are linearly independent over Q, but by using the algorithm with smaller n we may assume this
without any loss and with uniqueness of the expansion. In another paper [20] he considered when
there can exist subsequences of {Bk+1B

−1
k } that are eventually periodic and found that for real α

this is possible only when K is quadratic or real cubic with negative discriminant.

Examples:

(i) The Minkowski chain for α = −1+
√

5
2 is

B1 =
(

1 −1
1 0

)
, B2 =

(
2 −1
1 −1

)
, B3 =

(
3 −2
2 −1

)
, . . . , Bk =

(
Fk+1 −Fk

Fk −Fk−1

)
, . . . ,

which corresponds to (2.1). Here Fk is the kth Fibonnaci number and for each k

Bk[(
−1+

√
5

2 )] = 1−
√

5
2 .

(ii) Let θ = 2 cos
(

2π
7

)
so that Q(θ) is the real cubic field of discriminant 49, i.e. the splitting field

of x3 + x2 − 2x− 1. The Minkowski chain for (θ2, θ) begins

B1 =
( 0 1 −1

1 −1 0
1 −1 −1

)
, B2 =

( 1 −2 1
2 −1 −2
0 1 −1

)
, B3 =

( 1 −2 1
3 −3 −1
2 0 −3

)
, B4 =

( 1 2 −4
1 −2 1
3 −3 −1

)
, . . . .
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Figure 1. The sequences |λk,1| for n = 1, 2, 3.

By Theorem 2 we know that the set of values {Bk[(θ2, θ)]} is finite. Among the first 30 terms there
are only six distinct pairs up to sign, namely

(0.15883..., 0.64310...), (0.24698..., 0.55496...), (0.35690..., 0.44504...),

(0.44504..., 0.80194...), (0.55496..., 0.69202...), (0.64310..., 0.80194...).

(iii) Suppose that α is transcendental, so {αn, . . . , α, 1} are linearly independent over Q for any
positive integer n. For a fixed n let Bk[(α

n, . . . , α)] = (αk,1, . . . , αk,n) come from the Minkowski
chain for (αn, . . . , α) as above. By Theorem 2 we know that

{(αk,1, . . . , αk,n)}k≥1

is an infinite set.
Recall that α ∈ R is a Liouville number if, for every positive integer m, there exist infinitely

many relatively prime integers p, q with q > 0 such that

0 < |α− p
q | < q−m.

Liouville’s theorem on Diophantine approximation implies that a Liouville number α is transcen-
dental. If α is a Liouville number and n ∈ Z+ is fixed, our main result stated below implies that
not only is {(αk,1, . . . , αk,n)}k≥1 infinite, but also |αk,1| gets arbitrarily close to zero as k →∞. For
the Liouville constant

λ =
∑
m≥1

10−m! = 0.11000100000000000000000100 . . .

and the cases n = 1, 2, 3, the behavior of |λk,1| is shown in Figure 1.

3. Applications to Diophantine approximation

We now turn to the application of the Minkowski chain to Diophantine approximation by badly
approximable and by singular real linear forms in two or more variables.

Associate to any α = (α1, . . . , αn) ∈ Rn the linear form3

Lα(x) = α1x1 + · · ·+ αnxn.

Those {α1, . . . , αn, 1} that give a basis over Q for a real number field have the following well-known
Diophantine approximation property [25, Thm 4A p. 42]. There is a constant c = cα > 0 so that
for any non-zero q = (q1, . . . , qn) ∈ Zn

(3.1) ‖Lα(q)‖ ≥ c‖q‖−n∞ .

Here ‖t‖ denotes the distance from a real t to the nearest integer. For any α ∈ Rn if the form Lα(x)
satisfies (3.1) then Lα is said to be badly approximable. For simplicity we shall also sometimes
say that α is badly approximable. It is known that the set of all badly approximable α ∈ Rn
has Lebesgue measure zero [14] yet has full Hausdorff dimension n, hence includes α for which

3Our abuse of notation in using α as an n-tuple of real numbers and as a number, depending on the context, is convenient

and should not cause confusion.
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{α1, . . . , αn, 1} does not give a Q-basis for a number field [24]. For more on the history of these
results see [25] and its references.

A natural problem presents itself; can we formulate a criterion for a real linear form in n variables
to be badly approximable using the Minkowski chain?

Theorem 3. Suppose that {α1, . . . , αn, 1} are linearly independent over Q and that αk,1 is given by
the Minkowski chain for α. Then the form Lα is badly approximable if and only if |αk,1| is bounded
away from 0.

Theorem 3 generalizes the well-known characterization of badly approximable numbers in case
n = 1 that an irrational α ∈ R is badly approximable if and only if the partial quotients in its
regular continued fraction expansion are bounded (see Lemma 4.2). For the standard direct proof
see [25, Thm 5F p. 22].

For a Liouville number α it is well-known that L(αn,...,α) is not badly approximable for any n
(see e.g. [1]). The claim made in example (iii) from the previous section, that for any fixed positive
integer n the value |αk,1| gets arbitrarily close to zero as k →∞, is thus a consequence of Theorem
3.

An important property of any badly approximable Lα, discovered by Davenport and Schmidt,
is that Dirichlet’s approximation theorem can be improved for it (see [8]). By this we mean that
there exists a µ < 1 such that for every sufficiently large Q there exists a q ∈ Zn such that

0 < ‖q‖∞ ≤ Q and ‖Lα(q)‖ ≤ µQ−n.
When n = 1 every irrational α for which Dirichlet’s theorem can be improved is badly approximable.
However, for n > 1 there exist Lα with {α1, . . . , αn, 1} linearly independent over Q that are not
badly approximable but for which Dirichlet’s theorem can be improved. In fact, Dirichlet’s theorem
can sometimes be “infinitely improved.” More precisely say Lα (or α) is singular if for any ε > 0
there is a Qε so that if Q ≥ Qε there is a q ∈ Zn with

0 < ‖q‖∞ ≤ Q such that ‖Lα(q)‖ ≤ εQ−n.
Such forms are clearly not badly approximable. Starting with work of Khinchine [15] it is known
that singular Lα with {α1, . . . , αn, 1} linearly independent over Q exist if n > 1. It has recently

been shown that when n > 1 the set of singular α ∈ Rn has Hausdorff dimension n2

n+1 (see [3], [4],

and [6]). The Minkowski chain also gives a criterion for Lα to be singular.

Theorem 4. Suppose that {α1, . . . , αn, 1} are linearly independent over Q. Then the form Lα is
singular if and only if |αk,1| → 0 as k →∞.

Remarks:

(i) Theorems 3 and 4 differ substantially from the dynamical criteria for bad approximability
and singularity given (more generally for systems of forms) by Dani [5]. Roughly speaking, he
showed that badly approximable systems of forms correspond to certain bounded trajectories
in the space of unimodular lattices while singular systems correspond to divergent trajectories.
A version of these criteria in the case of a single form is one ingredient in our proofs of
Theorems 3 and 4. More generally, the fact that the βk,j coming from Minkowski’s algorithm
are not the successive minima of the natural corresponding convex body must be dealt with.
This kind of problem is familiar in the subject and is treated in the parametric geometry of
numbers (see [26]). For completeness we give independent proofs.

(ii) In all cases that we have checked numerically, each matrix in the Minkowski chain has been
in GL(`,Z). In connection with this as a possible general property see [17].

(iii) It was shown by Khintchine [15] that the linear form Lα is badly approximable if and only if α
is a badly approximable n-tuple. See also [25, p. 100]. Davenport and Schmidt [9, Theorem 2]
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gave the deeper result that Dirichlet’s theorem can be improved for the linear form Lα if and
only if it can be improved in the form of simultaneous approximation of α by n rationals.

4. The Hurwitz chain

In this section we prove Theorem 1 and a lemma relating the partial quotients of α ∈ (0, 1) to
the Minkowski chain of α when n = 1. We require an elementary lemma about Farey fractions.
We always assume that rational fractions are in lowest form.

Lemma 4.1. Suppose that p
q <

p′

q′ is a pair of successive fractions in Fm and that α ∈ (pq ,
p′

q′ ) is

irrational. Then
(i) |qα− p| < |q′α− p′| if and only if α ∈ (pq ,

p+p′

q+q′ )

(ii) The fraction p+p′

q+q′ is the unique fraction with the smallest denominator greater than m that

is closer to α than at least one of p
q ,

p′

q′ .

Proof. (i) If α ∈ (pq ,
p+p′

q+q′ ) then |α − p′

q′ | > |
p+p′

q+q′ −
p′

q′ | = 1
q′(q+q′) so |q′α − p′| > 1

(q+q′) . Similarly

|qα− p| < 1
(q+q′) so |qα− p| < |q′α− p′| in this case. The converse is similar using α ∈ (p+p

′

q+q′ ,
p′

q′ ).

(ii) It is well-known (see e.g. [25, p. 4]) that p+p′

q+q′ is the unique fraction with the smallest

denominator greater than m that is between p
q and p′

q′ . Thus we need only show that p+p′

q+q′ is closer

to α than any other p′′

q′′ with m < q′′ ≤ q + q′ and either p′′

q′′ <
p
q or p′′

q′′ >
p′

q′ .

Suppose that p′′

q′′ <
p
q . If α > p+p′

q+q′ we are done so assume that

(4.1) p
q < α < p+p′

q+q′ .

Now
|α− p′′

q′′ | > |
p′′

q′′ −
p
q | ≥

1
q′′q ≥

1
q(q+q′)

while by (4.1)

|α− p+p′

q+q′ | < |
p+p′

q+q′ −
p
q | =

1
q(q+q′) .

The case p′′

q′′ >
p′

q′ is similar. �

Proof of Theorem 1. We want to show that if

Bk =

(
qk −pk
q′k −p′k

)
then the kth pair in the Hurwitz chain is either (pkqk ,

p′k
q′k

) or (
p′k
q′k
, pkqk ).

This follows by induction on k. It holds for k = 1. Suppose it holds for some k ≥ 1. Thus pk
qk
,
p′k
q′k

or
p′k
q′k
, pkqk are successive Farey fractions in Fm where m = max(qk, q

′
k).

By the definition of the Minkowski chain given around (2.3) we know that the first row of Bk
(the one with |qkα − pk| minimal) must appear in Bk+1 as either the first row or the second row.
Now (i) of Lemma 4.1 implies that the fraction associated to the row retained is the one retained
by the Hurwitz chain.

Thus we must show that the new row of Bk+1, say (q′′,−p′′), is precisely (qk + q′k,−(pk + p′k)).
By the definition of the Minkowski chain q′′ > m and certainly

|q′′α− p′′| < |q′kα− p′k|.

Thus |α− p′′

q′′ | < |α−
p′k
q′k
| so by (ii) of Lemma 4.1 we know that q′′ ≥ qk + q′k. Now

(4.2) |(qk + q′k)α− (pk + p′k)| = |(qkα− pk) + (q′kα− p′k)|.
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Also, α − pk
qk

and α − p′k
q′k

have different signs hence so do qkα − pk and q′kα − p′k. By construction

of Bk we know that |qkα− pk| < |q′kα− p′k|. Therefore by (4.2) we have that

|(qk + q′k)α− (pk + p′k)| < |q′kα− p′k|.

It follows that (q′′,−p′′) = (qk + q′k,−(pk + p′k)). This completes the proof of Theorem 1. �

It is easy to give a formula for the kth pair in the Hurwitz chain for α ∈ (0, 1) in terms of the
partial quotients aj of α. For a fixed k ∈ Z+ write k = a1 + · · ·+ aj + a where 0 ≤ a < aj+1. Set

R = ( 1 1
0 1 ) and L = ( 1 0

1 1 ) and let A = L if j is even and A = R if j is odd. Then the kth pair in the

Hurwitz chain for α ∈ (0, 1) is given by (pkqk ,
p′k
q′k

), where

(4.3)
(
p′k pk
q′k qk

)
= La1Ra2 · · ·Aa.

Let b = a if a > 0 and b = aj otherwise. Then by Theorem 1 we have for Bk from the Minkowski

chain the formula Bk = MBk−b, where M is either Lb, Rb, ( 0 1
1 0 )Lb, or ( 0 1

1 0 )Rb.
The following consequence of these formulas gives the usual characterization of badly approx-

imable irrationals.

Lemma 4.2. An equivalent criterion for the boundedness of the partial quotients of an irrational
α ∈ (0, 1) is that |αk,1| from the Minkowski chain for α is bounded away from zero.

Proof. If M = Lb =
(

1 0
b 1

)
then

αk,1 =
qkα− pk
q′kα− p′k

=
qk−bα− pk−b

(qk−bα− pk−b) + b(q′k−bα− p′k−b)
=

1

1 + bαk−b,1
.

The other three cases are similar. In each case we see that |αk,1| is bounded below if and only if
sup{aj} is finite. �
Remark: The original paper by Hurwitz [12] is still a good reference for the Hurwitz chain. A
modern reference is [23], which also details its relation to semi-regular continued fractions. The
dynamical properties of the Hurwitz chain are discussed in [16], where it is called the additive
continued fraction.

5. Successive minima

In this section we will give what is essentially Minkowski’s proof of Theorem 2. A crucial
ingredient is his theorem on successive minima in the geometry of numbers.

For a general norm F on R` and any full lattice Λ ⊂ R` let

µ1 ≤ µ2 ≤ · · · ≤ µ`
be the successive minima of Λ with respect to F . This means that µj is the infimum over all µ > 0
such that there are j linearly independent points v ∈ Λ with F (v) ≤ µ. There exist (not necessarily
unique) minimizing vectors w1, . . . , w` ∈ Λ, which means that they are linearly independent and
satisfy F (wj) = µj for j = 1, . . . , `. Note that {w1, . . . , w`} do not necessarily form a Z-basis for Λ.

The following fundamental result was first proved in [22, Kap. V]. Shorter proofs were given by
Davenport [7] and Weyl [28]. See also [2].

Theorem (Minkowski’s Theorem on Successive Minima). Suppose that Λ has determinant one.
Then

vol(B)µ1 · · ·µ` ≤ 2`,

where vol(B) is the volume of B = {x ∈ R`;F (x) < 1}.
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We remark that for the proof of Theorem 2 we can get by with a weaker result that replaces 2`

by a larger constant. In fact, Minkowski gives a proof of this result in his paper with the constant

2``! in place of 2`. See also [25, Cor. 2B p.88] for a proof with the constant 2``
`
2 , which is based on

the case of an ellipsoid and a theorem of Jordan.
For r = (q1, . . . , qn, p) ∈ Z` define

(5.1) ξ(r)
def
= p+ Lα(q1, . . . , qn).

For m ∈ Z+ recall the integral `× ` matrix Am = (ai,j) defined above. From (2.3) we have for each
i = 1, . . . , ` that

(5.2) βi(m) = βi = ξ(ai,1, . . . , ai,`).

Note that we will often suppress in the notation the dependence of βi on m (or on k).

Lemma 5.1. Fix m ∈ Z+ and suppose that r1, . . . , r` ∈ Z` are linearly independent and satisfy
‖ri‖∞ ≤ m for i = 1, . . . , `. Let them be ordered so that

(5.3) |ξ(r1)| ≤ |ξ(r2)| ≤ · · · ≤ |ξ(r`)|.
Then for each i = 1, . . . ` we have that

|βi| ≤ |ξ(ri)|.

Proof. For a fixed m ∈ Z+ let wj = (ai,1, . . . ai,`) denote the ith row of Am, which is the integral
vector produced by the Minkowski algorithm. Thus for j = 1, . . . , `, we know that |βj | gives

the smallest value of |ξ(w)| for any w ∈ Z` with ‖w‖∞ ≤ m that is linearly independent of
{w1, . . . , wj−1}.

Note that at least ` − 1 of the {r1, . . . , r`} are independent of w1 and so each of those rk
satisfies |ξ(rk)| ≥ |β2|. At least `− 2 of the rk are independent of {w1, w2} and so these rk satisfy
|ξ(rk)| ≥ |β3|. Continue this process until we have at least one rk that satisfies |ξ(rk)| ≥ |β`|. By
(5.3) we know that this last set of r′s must contain r` and so |ξ(r`)| ≥ |β`|. Working backward we
can finish the proof. �

Lemma 5.2. Fix m ∈ Z+ and let Am = (ai,j) and β1, . . . , β` be from the Minkowski algorithm.

Let Λ = Z` and define the norm on R` by

Gm(x1, . . . , x`) = max
(
|x1|, . . . , |x`|, m

|β`| |Lα(x1, . . . , xn) + x`|
)
.

Let µ1 ≤ µ2 ≤ · · · ≤ µ` be the successive minima of Gm. Then

(5.4) µ` ≥ m.

Proof. Note that for r = (q1, . . . , qn, p) ∈ Z` we have

(5.5) Gm(r) = max
(
|q1|, . . . , |qn|, |p|, |ξ(r)|m|β`|

)
where ξ(r) was defined in (5.1). Suppose that {r1, . . . , r`} are independent and such that for each
j we have Gm(rj) = µj . By (5.5) we see that if ‖rj‖∞ > m for any j = 1, . . . , ` then µ` > m.
Otherwise apply Lemma 5.1 to {r1, . . . , r`} to conclude that |ξ(rj)| ≥ |βj | for each j = 1, . . . , `.
Therefore in particular for j = ` we get by (5.5) again that µ` = Gm(r`) ≥ m. Thus in any case we
have (5.4). �

Minkowski only proved the following result for L(α,...,αn) where α is algebraic of degree `, but his
proof extends naturally.

Lemma 5.3. Suppose that α = (α1, . . . , αn) ∈ Rn. If Lα is badly approximable then there are
constants c, C > 0 depending only on α such that

(5.6) cm−n < |β1| < · · · < |β`| < Cm−n.
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Proof. In this proof and those that follow we usually name and keep track of constants that depend
only on α, even though it would be cleaner to use the � or � notation. We do this to help the
reader verify inequalities.

Fix m ∈ Z+ and let Am = (ai,j) and β1, . . . , β` be from the Minkowski algorithm. Let now

Λ = Z` and Gm the norm on R` in Lemma 5.2. The form Lα being badly approximable means that
there is a c > 0 so that

(5.7) |ξ(r)| > c‖q‖−n∞
for all r = (q1, . . . , qn, p) ∈ Z`, where q = (q1, . . . , qn). By the definition of β1 and (5.7) we have
that

(5.8) |β1| = min
‖r‖∞≤m

|ξ(r)| ≥ min
‖q‖∞≤m

|ξ(r)| > c
mn .

Now Gm(r1) = µ1 and so (5.5) implies that

(5.9) |ξ(r1)| ≤ µ1|β`|
m

and also that ‖r1‖∞ ≤ µ1. Thus by (5.7) again we also have that

(5.10) |ξ(r1)| ≥ c
µn1
.

By (5.9) and (5.10) we conclude that

(5.11)
(µ`1|β`|

m

)n
≥ cn,

which is the form we will need.
A straightforward calculation shows that

vol({x ∈ R`;Gm(x) < 1}) ≥ V |β`|m ,

where V > 0 is a constant depending only on α. By Minkowski’s theorem on successive minima we
have

V |β`|m µn1µ` ≤ 2`

so that using (5.11) we have for M = 2`
2
V −` that

cn |β`|m µ`` ≤
(
|β`|
m µn1µ`

)`
≤M.

Thus |β`| ≤ Cm
µ``

for C = M
cn . Finally, from Lemma 5.2 we derive that |β`| ≤ C

mn . Together with

(5.8), this finishes the proof of Lemma 5.3. �

Proof of Theorem 2. The proof of the implication algebraic implies finite works the same for
the Minkowski chain for any Q-basis {α1, α2, . . . , αn, 1} of a real number field K. Recall that for
each k we have

(β1, . . . , β`) = Bk[(α1, . . . , αn, 1)],

where again we suppress the dependence of βj on k in the notation. Clearly βj ∈ K and there is a
positive integer b such that bβj is an algebraic integer for any j, k, so we must have NK/Q(bβj) ≥ 1.

Denote by {β(j)
i ; j = 1, . . . , `} the set of Galois conjugates of βi = β

(1)
i . Set C1 = maxj=1,...,`(1 +

|α(j)
1 |+ · · ·+ |α

(j)
n |). Clearly

(5.12) |β(j)
i | ≤ C1m,

where m = mk from the algorithm.
We know that L(α1,...,αn) is badly approximable so by Lemma 5.3 we have that for each i

(5.13) |βi| ≤ Cm−n.
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Therefore we have that

(5.14) b−` ≤ |NK/Q(βi)| = |
∏̀
j=1

β
(j)
i | ≤ C C

n
1 .

From the first inequality of (5.14), (5.12) and (5.13) we get that for k > 1

(5.15) |β(k)
i | ≥ C2m

for some constant C2 > 0 depending only on α. Here we have used (5.13) for the first factor in the
product and (5.12) for all of the remaining factors except for the kth. Recall from (2.4) that

(αk,1, . . . , αk,n) = (β1β` , . . . ,
βn
β`

) ∈ Kn.

Let γk,i = b`NK/Q(β`)αk,i. Then γk,i is an algebraic integer in K. From (5.6), (5.12), (5.14) and

(5.15) we have for each i, j, k that |γ(j)
k,i | ≤ C3 for some C3 > 0 that depends only on α. It follows

that there are only finitely many such (γk,1, . . . , γk,n) hence only finitely many (αk,1, . . . , αk,n).
For the converse, we need to assume that (α1, α2, . . . , αn) = (αn, . . . , α) and suppose that there

are only finitely many values of the sequence {Bk[(αn, . . . , α)]}k≥1. Then for some k′ > k we have
Bk[(α

n, . . . , α)] = Bk′ [(α
n, . . . , α)]. Hence

B−1
k Bk′ [(α

n, . . . , α)] = (αn, . . . , α),

which implies that

(5.16) B−1
k Bk′(α

n, . . . , α, 1)> = θ(αn, . . . , α, 1)>

for some θ ∈ R with |θ| ≤ 1. Write B−1
k Bk′ = (ci,j) so that for each k = 1, . . . , n we can write two

successive rows of (5.16) as

ck,1α
n + · · ·+ (ck,k − θ)αn−k+1 + · · ·+ ck,nα+ ck,` = 0

ck+1,1α
n + · · ·+ (ck+1,k+1 − θ)αn−k + · · ·+ ck+1,nα+ ck+1,` = 0.

Multiply the first equation by α and subtract rows to get for each k = 1, . . . , n that

ck,1α
` + (ck,2 − ck+1,1)αn + · · ·+ (ck,k − ck+1,k+1)αn−k + · · ·+ (ck,` − ck+1,n)α− ck+1,` = 0.

Unless all of these vanish identically we see that α is algebraic of degree `, upon using that we are
assuming that {αn, . . . , α, 1} are linearly independent over Q. If they all vanish it follows easily
that ci,j = δi,jc for some c ∈ Q. Thus c = θ and Bk′ = θBk with |θ| < 1, which contradicts that
k′ > k. �

6. Reduced bases

In this section we present several well-known results from the theory of reduced bases that we
need. Perhaps the best reference for this material is a set of unpublished notes from a seminar
given at IAS in 1949 [29]. Because these notes might not be readily available we have included here
all proofs. Another reference is [10].

Let Λ ⊂ R` be a full lattice and F a norm on R`. The lattice points in Λ taking on the successive
minima on F are linearly independent but do not necessarily form a basis for Λ. Minkowski’s
second theorem implies, with some extra work, a substitute that bounds the product of values of
F of the elements of a reduced basis. In case F is a positive definite quadratic form the theory was
developed by Minkowski [21].

Suppose that {v1, . . . , v`} is an ordered Z-basis for Λ. Define for k = 1, . . . , `

(6.1) Rk = {a1v1 + · · ·+ a`v`; aj ∈ Z with gcd(ak, ak+1, . . . , a`) = 1} ⊂ Λ.

Note that vj /∈ Rk for j < k.
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In general, an (ordered) Z-basis {v1, . . . , v`} for Λ is reduced with respect to F if for each k =
1, . . . , ` we have that for all v ∈ Rk

F (v) ≥ F (vk).

It follows that if {v1, . . . , v`} is reduced with respect to F and λk = F (vk) then

λ1 ≤ λ2 ≤ · · · ≤ λ`.

Lemma 6.1. For any norm F and full lattice Λ ⊂ R` reduced bases {v1, . . . , v`} exist.

Proof. The beginning of the proof is similar to the construction of the Am in Minkowski’s algorithm
except that now we demand that A ∈ GL(`,Z). Let {u1, . . . , u`} be any Z-basis for Λ. We construct
A = (r1, . . . , r`) ∈ GL(`,Z) where ri is a column vector. Choose r1 so that

λ1 = F (v1) = F
(
(u1, . . . , u`)r1

)
is minimal. Note that this exists by convexity. Now choose r2 to minimize λ2 = F (v2) =
F ((u1, . . . , u`)r2). Thus λ1 ≤ λ2. Continue this process to determine A and the basis {v1, . . . , v`}
where for λk = F (vk) we have that λ1 ≤ λ2 ≤ · · · ≤ λ`. We want to show that {v1, . . . , v`} is
reduced.

Fix k with 1 ≤ k ≤ `. By construction if s is any column of a matrix in GL(`,Z) that is linearly
independent of {r1, . . . , rk−1} then

(6.2) F
(
(u1, . . . , u`)s

)
≥ F

(
(u1, . . . , u`)rk

)
.

Let q> = (q1, . . . , q`) ∈ Z` be any integral vector such that gcd(qk, . . . , q`) = 1. Fix a matrix of the
form

A′ =

(
I B
0 C

)
∈ GL(`,Z)

where I is the (k−1)× (k−1) identity matrix and where the kth column of A′ is q. This is possible
by our assumption on q. Clearly the first k − 1 columns of AA′ coincide with those of A. Hence if
s is the kth column of AA′ then by (6.2)

F (vk) = F
(
(u1, . . . , u`)rk

)
≤ F

(
(u1, . . . , u`)s

)
= F

(
(u1, . . . , u`)Aqk

)
= F

(
(v1, . . . , v`)qk

)
.

It follows that {v1, . . . , v`} is reduced. �
The statement of Part (i) of the following lemma is given in [27, Lemma 2 p. 100] with a different

proof than the one we give below. Our proof is adapted from the proof of Part (ii) given in [29].

Lemma 6.2. Let F : R` → [0,∞) be a norm and Λ ⊂ R` be a full lattice. Suppose that v1, . . . , v`
is a reduced basis for Λ with respect to F so that for λi = F (vi)

λ1 ≤ λ2 ≤ · · · ≤ λ`.

(i) If u1, . . . , u` ∈ Λ is any linearly independent set in Λ ordered so that for νj = F (uj)

ν1 ≤ ν2 ≤ · · · ≤ ν`
then for each k = 1, . . . , ` we have that λk ≤ (3

2)k−1νk.
(ii) If w1, . . . , w` ∈ Λ are minimizing vectors in Λ with successive minima µj = F (wj)

µ1 ≤ µ2 ≤ · · · ≤ µ`
then λ1 = µ1 and for each k = 2, . . . , ` we have that λk ≤ (3

2)k−2µk.

Proof. (i). There are ai,j ∈ Z such that for each i

ui =
∑

1≤j≤`
ai,jvj .
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Fix k with 1 ≤ k ≤ `. Since {u1, . . . , u`} are linearly independent there is a j with 1 ≤ j ≤ k so
that

aj,k, aj,k+1, . . . , aj,`

are not all zero. Thus for any such j let d = gcd(aj,k, aj,k+1, . . . , aj,`) > 0.
If d = 1 then uj ∈ Rk and hence

λk ≤ F (uj) = νj ≤ νk.

If d > 1 define for m = 1, . . . , k − 1 the integer rm with |rm| ≤ d
2 so that

aj,m + rm ≡ 0 (mod d).

Then y = 1
d(vj + r1v1 + · · ·+ rk−1vk−1) ∈ Rk. Hence we have

λk ≤F (y) ≤ 1
dF (uj) + r1

d λ1 + · · ·+ rk−1

d λk−1

≤νk
2 + 1

2(λ1 + · · ·+ λk−1).

Therefore in any case for k = 1, . . . ` we have

λk ≤ νk + 1
2(λ1 + · · ·+ λk−1).(6.3)

Suppose now that for j = 1, . . . , k − 1

λj ≤ (3
2)j−1νj .

Then by (6.3) we deduce that

λk ≤ νk + 1
2

(
(3

2)0 + (3
2)1 + · · ·+ (3

2)k−2
)
νk = (3

2)k−1νk.

Since λ1 ≤ ν1 the result (i) follows by induction.
The proof of (ii) is similar except that we use the fact that λ1 = µ1. �
The following result was found independently by Mahler [18] and Weyl [28].

Theorem 5 (First Finiteness Theorem). Let Λ ⊂ R` be a full lattice with determinant 1. For a
reduced basis {v1, . . . , v`} with λk = F (vk) we have

(6.4) 2`

`! ≤ vol(B)λ1 · · ·λ` ≤ 2`(3
2)

(`−1)(`−2)
2 ,

where vol(B) is the volume of B = {x ∈ R`;F (x) < 1}.

Proof. The first inequality is a consequence of the fact that the closure of B contains the octahedron
with vertices at the points

{± v1
λ1
, . . . ,± v`

λ`
}

and this octahedron has volume 2`

`!λ1···λ` , which is easily found by computing the determinant of the

linear transformation that maps the kth standard unit vector to vk
λk

for each k.

The second inequality is an immediate consequence of (ii) of Lemma 6.2 and Minkowski’s Second
Theorem. �

We remark that we could also apply (i) of Lemma 6.2 to get the second inequality in (6.4) with
the right hand side multiplied by 3

2 , which would be sufficient for our purposes.
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7. Criteria for badly approximable and singular forms

In this section we will prove Theorems 3 and 4. We make use of the lattice Λt(α) ⊂ R` defined
in terms of α for a fixed parameter t > 0 by

(7.1) Λt = Λt(α) = (t−1, 0, . . . , 0, α1t
n)Z + · · ·+ (0, 0, . . . , t−1, αnt

n)Z + (0, 0, . . . , 0, tn)Z.
Clearly det(Λt) = 1. Consider the norm on R` given by

(7.2) F∞(x1, . . . , xn, y) = ‖(x1, . . . , xn, y)‖∞.
The next lemma follows as a special case from results of [5]. For convenience we give the proof

here, which for our case is quite simple.

Lemma 7.1. For the lattice Λt(α) defined above let

λ1(t) = min
v∈Λt(α)
v 6=0

F∞(v).

(i) The form Lα is badly approximable if and only if there is a c > 0 depending only on α such
that λ1(t) > c for all t ≥ 1.

(ii) The form Lα is singular if and only if λ1(t)→ 0 as t→∞.

Proof. Part (i): First suppose that α is badly approximable, so that (3.1) holds with some cα > 0.
Fix t ≥ 1 and v = (x1, . . . , xn, y) ∈ Λt(α). If x1, . . . , xn = 0 then yt−n is a non-zero integer so

F∞(v) ≥ 1. Thus suppose that x = (x1, . . . , xn) 6= 0, set c = c
1
`
α and µ = ‖x‖∞ > 0.

If µ ≤ c then tn‖Lα(tx)‖ > c, so that F∞(v) > c. If µ > c then again F∞(v) > c. In either case
it follows that λ1(t) > c.

For the converse assertion, suppose that λ1(t) > c. Fix non-zero q = (q1, . . . , qn) ∈ Zn. Assume
that c < 1. Next choose t = c−1‖q‖∞ so that t > 1 and t−1‖q‖∞ = c. For any integer p we have
(t−1q1, . . . , t

−1qn, t
n(p+ Lα(q))) ∈ Λt(α) hence tn|Lα(q) + p| > c, which implies that

‖Lα(q)‖ > c`‖q‖−n∞ ,

so Lα is badly approximable.

Part (ii): Suppose that Lα is singular and ε > 0 is fixed. For sufficiently large t there exists q ∈ Zn

and p ∈ Z such that ‖q‖∞ ≤ tε
1
` and

|p+ Lα(q)| ≤ t−nε1−n
` = t−nε

1
` .

Let v = (t−1q1, . . . , t
−1qn, t

n(p + Lα(q))) ∈ Λt(α); for sufficiently large t we have F∞(v) ≤ ε
1
` ,

proving that λ1(t)→ 0 as t→∞.
The converse is similar and is left to the reader. �

Proof of Theorem 3. We have shown in Lemma 5.3 that if Lα is badly approximable then

|β1|
|β`|
≥ c

C
.

Now suppose that Lα is not badly approximable. By (i) of Lemma 7.1, for any ε > 0 there exists
some t ≥ 1 and v ∈ Λt(α) so that F (v) < ε where again

F (v) = F∞(v) = ‖v‖∞.
Let {v1, v2, . . . , v`} be a reduced basis for Λt(α) with respect to F and such that for λi = F (vi) we
have λ1 ≤ · · · ≤ λ`.

Now v1 = (t−1q1, . . . , t
−1qn, t

nξ(r)) for some non-zero r = (q1, . . . , qn, p) ∈ Z`, where ξ(r) was
defined in (5.1). Clearly we have

(7.3) λ1 = F (v1) ≤ F (v) < ε
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so from the definition of F

(7.4) t−1|qj | < ε for j = 1, . . . , n and tn|ξ(r)| < ε.

Next set m = dκtεe, where κ is a constant depending only on α chosen to be large enough so that
max(|q1|, . . . , |qn|, |p|) ≤ m, which is possible by (7.4). For Am = (ai,j) from Minkowski’s algorithm
let for each i = 1, . . . , `

(7.5) ui = (t−1ai,1, . . . , t
−1ai,n, t

nβi) ∈ Λt(α).

By the definition of β1 and (7.4) again we have that

(7.6) |β1| ≤ |ξ(r)| < t−nε.

By construction

(7.7) tn|β1| < tn|β2| < · · · < tn|β`|,
but we do not know that necessarily

F (u1) ≤ F (u2) ≤ · · · ≤ F (u`).

Let k ∈ {1, . . . , `} be such that F (uk) = max(F (u1), . . . , F (u`)). Since {u1, . . . , u`} are linearly
independent in Λt(α), by (i) of Lemma 6.2 we have that

(7.8) F (uk) ≥ (2
3)nF (v`).

By the first inequality of the First Finiteness Theorem and (7.3) we see that F (v`) > ( 1
`!ε)

1/n and
therefore by (7.8)

(7.9) F (uk) > (2
3)n( 1

`!ε)
1/n.

Now

max(t−1|ak,1|, . . . , t−1|ak,n|) ≤ m
t ≤ κε+ t−1 < (2

3)n( 1
`!ε)

1/n

for ε > 0 sufficiently small. Hence by this, (7.9) and (7.7) we have

(7.10) |β`| ≥ |βk| > t−n(2
3)n( 1

`!ε)
1/n,

after referring again to (7.5). By (7.6) we conclude that for sufficiently small ε

|β1β` | < (3
2)n(`!ε)1/nε.

It follows that if Lα is not badly approximable then |β1β` | can be made arbitrarily small for some m,

hence |αk,1| can be made arbitrarily small for some k. �

Proof of Theorem 4. Suppose that α is singular and let ε ∈ (0, 1). Then there exists a t0 such
that

λ1(t) < ε for all t ≥ t0.
This is the analogue of (7.3) but now the inequality holds for all sufficiently large t. Let m be
any positive integer greater than t0 and let t = m/ε ≥ t0. If Am = (ai,j) is the m-th matrix from
Minkowski’s algorithm, then by following the argument between (7.5) and (7.10) above we find that

|β1| <
ε

tn
and |β`| >

c

tnε1/n

for some c > 0. It follows that
∣∣∣β1β` ∣∣∣ can be made arbitrarily small for all sufficiently large m, hence

|αk,1| can be made arbitrarily small for all sufficiently large k.
Conversely, suppose that α is not singular. Then there exists a c > 0 and a sequence {Qj}

tending to infinity such that for each j there are infinitely many q ∈ Zn with

‖q‖∞ ≤ Qj and ‖Lα(q)‖ ≥ cQ−nj .
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Fix one of these Qj and let m = Qj . Then

β1 = min
q∈Zn\{0}
‖q‖∞≤m

|ξ(q)| ≥ c

mn
.

This is analogous to (5.8) but now the lower bound only holds for a sequence of m tending to
infinity. Note that (5.4) is true for these m, and following (5.9)–(5.11) we find that |β`| ≤ C

m holds

here as well. It follows that for infinitely many m we have
∣∣∣β1β` ∣∣∣ ≥ c′ for some c′ > 0 and thus |αk,1|

is bounded away from zero for infinitely many k. �

Acknowledgements: We thank the anonymous referee for several helpful comments.
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[6] Das, T., Fishman, L., Simmons, D. & Urbański, M., A variational principle in the parametric geometry of numbers, with

applications to metric Diophantine approximation.C. R. Math. Acad. Sci. Paris 355 (2017), 835–846.

[7] Davenport, H., Minkowski’s inequality for the minima associated with a convex body. Quarterly J. of Math., Volume os-10,
Issue 1, (1939), 119–121.

[8] Davenport, H. & Schmidt, W. M., Dirichlet’s theorem on Diophantine approximation. 1970 Symposia Mathematica, Vol.

IV (INDAM, Rome, 1968/69) pp. 113–132 Academic Press, London.
[9] Davenport, H. & Schmidt, W. M., Dirichlet’s theorem on Diophantine approximation. II. Acta Arith. 16 1969/1970 413–424.

[10] Gruber, P. M. & Lekkerkerker, C. G., Geometry of numbers. Second edition. North-Holland Mathematical Library, 37.

North-Holland Publishing Co., Amsterdam, 1987. xvi+732 pp.
[11] Hancock, H., Development of the Minkowski geometry of numbers. Vols. One, Two. Dover Publications, Inc., New York

1964 Vol. One: xix+pp. 1–452. Vol. Two: ix+pp. 453–839.
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