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Abstract. In the first part of this work [3], a quantitative supplement to the Hasse
principle was given for the count of the number of automorphic orbits of primitive zeros
of a genus of ternary quadratic forms. This sequel contains, for certain special forms,
an independent and elementary proof of this result. When combined with other results
of [3], this proof also leads to a refinement of an asymptotic result of [3] and some
corollaries for these special forms.

1. Introduction

One of the main results of [3] is that the number of (Z-automorphic) orbits of primitive
integral zeros of a genus of isotropic ternary quadratic forms equals the product, taken
over primes p, of the number of orbits of these zeros under Zp-automorphs. In more
detail, let S be a symmetric 3× 3 matrix with integral entries and with detS = D > 0.
Associated to S is the nonsingular ternary quadratic form

S(x) := xSxt = x
(
a d e
d b f
e f c

)
xt = ax2

1 + bx2
2 + cx2

3 + 2dx1x2 + 2ex2x3 + 2fx1x3,

where x = (x1, x2, x3) and a, b, c, d, e, f ∈ Z. Two forms S, S ′ are in the same class if
there is an A ∈ GL3(Z) with

(1.1) AtSA = S ′.

They are in the same genus if for each prime p (and p = ∞) there is an A ∈ GL3(Zp)
such that (1.1) holds. The genus G of S consists of finitely many, say h, classes [1, Cor
1, p.139]. The form S is isotropic if S(x) = 0 for some primitive x ∈ Z3. Let C(S) be the
set of all primitive x ∈ Z3 with S(x) = 0 and O the group of integral automorphs of S,
which is given by

(1.2) O = O(S) = {A ∈ GL3(Z); AtSA = S}.

Say x, x′ ∈ C(S) are in the same Z-orbit if there is an A ∈ O such that xAt = x′. Let
c(S) denote the number of Z-orbits. For a prime p or p =∞ denote by cp(S) the number
of Zp-orbits, which is defined similarly. Here cp(S) 6= 1 for at most finitely many p. The
following result, which was given as Theorem 2 of [3], is a quantitative supplement to
the Hasse principle for ternary quadratic forms.

Theorem. For S(x) a nonsingular integral ternary quadratic form associated to a matrix
S as above we have

(1.3)
∑
S′∈G

c(S ′) =
∏
p

cp(S),

where G is the genus containing S.
1
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Implicit here is the statement that each c(S ′) is finite. The proof of this theorem
given in [3] combines algebraic and analytic methods. In this companion paper to [3], I
will restrict attention to S that satisfy certain conditions that are special but not overly
restrictive. The goal is twofold. First I give a proof of this result for these S that
is independent of [3] and is more elementary and direct. The idea is to use the extra
conditions on S to extend the reduction process used in §5 of [3] and explicitly classify
the orbits. Second, for such S, I will refine an asymptotic formula of [3] to show that the
solutions are uniformly distributed across the orbits, which is a property that does not
hold for a general S. Also, I deduce from this a simple explicit formula for the number of
orbits. These new results follow easily once we have the elementary proof of the theorem
and can use it in combination with statements from [3].

2. New results for special forms

Suppose that S is primitive and isotropic with D = detS > 0. Let −Ω > 0 be the
GCD of the 2× 2 minors of S. It is classical, and will be recalled below, that for some
∆ ∈ Z+

D = detS = Ω2∆.

Note that the sign of Ω is chosen to be negative so that is conforms to the classical
convention made in [8] and [2]. The values Ω and ∆ are genus invariants. For convenience,
in this paper I will use the following terminology.

Definition. Say that S is special if it is primitive, isotropic with D > 0 and if

N := gcd(Ω,∆), Ω
N

and ∆
N

are square-free.

In particular, S is special if Ω and ∆ are square-free and this certainly holds if D is
square-free. In the next section we will give an elementary and independent proof of the
Theorem of the Introduction for special S(x).

Theorem 1. For special S(x) with odd D we have

(2.1)
∑
S′∈G

c(S ′) =
∏
p

cp(S),

where G is the genus containing S.

In fact, the proof yields that for these forms

(2.2)
∑
S′∈G

c(S ′) =
∏
p|N

p−1
2
.

The proof of the theorem given in [3] makes use of an asymptotic formula that counts
primitive points in an orbit. For special S the constant in this asymptotic depends only
on the genus G. Let

S∗ = (detS)S−1

be the adjugate of S. Choose y ∈ R3 such that S∗(y) = 4D. It is easy to show that are
at most finitely many x ∈ C(S) with 0 < xyt ≤ T for T > 0. For x ∈ C(S) its orbit is
defined by

C(S, x) = {x′ ∈ C(S);x′ = xAt for some A ∈ O(S)},
where O(S) was defined in (1.2).
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Theorem 2. Let S be special and fix y ∈ R3 with S∗(y) = 4D. Then for any x ∈ C(S)
we have

(2.3) #{x′ ∈ C(S, x); 0 < x′yt ≤ T} ∼ κT,

as T →∞, where κ > 0 depends only on the genus G of S.

The value of κ can be given explicitly in terms of h, the class number of G, and the
primes dividing 2D. In case Ω and ∆ are square-free and odd, it is given by

(2.4) κ = 3h
2π
√
D

∏
p|D

2p
p+1

∏
p|N

2
p−1

.

Since for special S the constant κ in (2.3) does not depend on x, the following conse-
quence is immediate.

Corollary 1. For special S the distribution of the primitive solutions is uniform across
the orbits. Explicitly,

ρ(x) := lim
T→∞

#{x′ ∈ C(S, x); 0 < x′yt ≤ T}
#{x′ ∈ C(S); 0 < x′yt ≤ T}

=
1

c(S)
.

This corollary is not true for general S.

Example i). It will be shown in §4 that the orbits of

(2.5) S(x) = −33x2
1 + x2

2 − x2
3,

which is not special, are represented by x, x′, x′′ ∈ C(S) where

(2.6) ρ(x) = ρ(x′) = 1
5

and ρ(x′′) = 3
5
.

Theorem 2, together with (2.2) and the fact that the constant in the asymptotic of
the full count given in Theorem 3 of [3] is a genus invariant, imply the following simple
formula for the number of orbits of S.

Corollary 2. Let S be special with D = detS odd. Then

c(S) = h−1
∏
p|N

p−1
2
,

where h is the class number of the genus of S and N = gcd(Ω,∆).

This result leads to different justifications of Examples i) and ii) given in [3] after
Theorem 1 and makes it easy to give more.

Example ii). Consider the Legendre equation

S(x) = q2x2
1 − qx2

2 − x2
3 = 0,

where q is a product of ν distinct primes, each ≡ 1 (mod 8) and each a quadratic residue
of every other. It follows from [6, p.188] that h = 2ν . This S is special with N = q.
Thus by Corollary 2 we have that

c(S ′) =
∏
p|q

p−1
4

for any S ′ in the genus of S.



4 W. DUKE

3. Elementary proof of Theorem 1

The proof relies on ideas from papers of Eisenstein [4], Smith [9] and especially A.
Meyer [6]. Part of it, specifically i) of Lemma 1, will also be used in the proof of
Theorem 2. In addition, (2.2) comes out automatically. The proof can be simplified if
we assume that Ω and ∆ are square-free, but for the statement of Theorem 2 and its
corollaries it is desirable to make as few assumptions as is possible.

Recall that D = det S > 0. The primitive adjugate of S is

S† := Ω−1S∗,

which has discriminant Ω−3D2. The GCD of the 2× 2 minors of S∗ is D so the GCD of
the entries of the adjugate of S† is the integer ∆ = DΩ−2. Therefore D = Ω2∆.

We are assuming that

N = gcd(Ω,∆), Ω
N
, ∆
N

are square-free.

Define N5 = gcd(N, Ω
N

), N4 = gcd(N, ∆
N

) and positive integers N1, N2, N3 through

(3.1) N = N3N4N5, Ω = −NN5N2, ∆ = NN4N1.

Then N1, N2, N3, N4, N5 are square-free and relatively prime in pairs. Also,

(3.2) D = N1N
2
2N

3
3N

4
4N

5
5 ,

which explains the choice of subscripts of the N ′js. Note that from (3.1) we have

(3.3) Ω = −N2
5N4N3N2 and ∆ = N2

4N5N3N1.

In case Ω and ∆ are square-free we have that N4 = N5 = 1 and N = N3 so

Ω = −NN2 and ∆ = NN1.

Lemma 1. Suppose that S is special with D = Ω2∆.
i) To each orbit of primitive solutions x of S(x) = 0 corresponds ` ∈ Z such that S is

properly equivalent to

(3.4) S3 =

(
0 0 N3N5N2

4N2

0 −N3N3
5N1 0

N3N5N2
4N2 0 N4N2`

)
.

Here S3 is uniquely determined up to the value of `.
ii) If D is odd we may assume that 0 ≤ ` < N with gcd(`,N) = 1 and then ` is

uniquely determined.
iii) The primitive adjugate of S3 is given by

(3.5) S†3 =

( −`N5N1 0 N3N2
5N4N1

0 −N3N3
4N2 0

N3N2
5N4N1 0 0

)
.

Proof. Choose any primitive x ∈ Z3 with S(x) = 0. Completing xt to M1 ∈ SL(3,Z) we
have

S[M1] =
(

0 s1 s2
s1 ∗ ∗
s2 ∗ ∗

)
.

Suppose a = gcd(s1, s2). Choose u, v ∈ Z with us1 + vs2 = a. Define

M2 =

(
1 0 0
0

s2
a

u

0 − s1
a
v

)
∈ SL(3,Z)
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so that M1M2 still has xt as its first column and

(3.6) S1 = S[M1M2] =
(

0 0 a
0 −b c
a c d

)
.

This shows that we may find an equivalent S1 of the form (3.6) whose associated orbit
of primitive zeros obviously contains (1, 0, 0). It easily follows that a, b > 0 are uniquely
determined, and that c is determined modulo gcd(a, b), by the orbit of the solution.

We will show that our conditions on S imply that a and b are determined by Ω and
∆ and can be written in terms of the N ′s. Explicitly, we will show that

(3.7) a = N3N5N
2
4N2 and b = N3N

3
5N1.

Recall that −Ω is the gcd of the entries of S∗, hence of

(3.8) S∗1 =
( −bd−c2 ac ab

ac −a2 0
ab 0 0

)
.

In particular, Ω|a2. It follows from (3.3) that the square part of Ω is N2
5 , so

(3.9) a = N5N4N3N2a
′

for some a′ ∈ Z. From (3.2)

(3.10) a′2b = N1N3N
2
4N

3
5 .

Hence (N3N5N1)|b. Next we show that N3
5 |b. Otherwise there would be a prime p|N5

and p|b such that p2 - b. But from the divisibility of each entry of S∗1 in (3.8) by Ω
in particular that p2|(−bd − c2), we would have that p|d and p|c. Also, N5|a so p|a,
contradicting the primitivity of S. Therefore by (3.10) we have

(3.11) b = N3N
3
5N1b

′2

for some b′ ∈ Z and also a′b′ = N4. We claim that b′ = 1 and so a′ = N4. For this, note
that b′ is square-free and

N4|(−bd− c2)

so b′|c. Now b′|N4 and so b′2 - Ω and from (3.9) we have that b′|a. It follows that b′

divides all coefficients of S†1, a contradiction. Thus (3.7) follows from (3.9) and (3.11).
Furthermore, from Ω|(−bd− c2), (N3N5)|Ω and (N3N5)|b we have for c given in (3.6):

(3.12) c = N3N5c
′.

for some c′ ∈ Z. Next we want to transform S1 in (3.6) so that c becomes zero. For
t1 ∈ Z and

T1 =
(

1 0 0
0 1 t1
0 0 1

)
we have S2 = S1[T1] =

(
0 0 a
0 −b c−bt1
a c−bt1 d′

)
,

where
d′ = −bt21 + 2ct1 + d.

From (3.7) and (3.12) we obtain

c− bt1 = N3N5(c′ −N2
5N1t1).

Choose t1 so that N2
4N2|(c′ − N2

5N1t1). Then for some a′′ ∈ Z we have c − bt1 = a′′a.
Now for

T2 =
(

1 −a′′ 0
0 1 0
0 0 1

)
it holds that S3 = S2[T2] =

(
0 0 a
0 −b 0
a 0 d′

)
.

A calculation shows that

S∗3 =
( −bd′ 0 ab

0 −a2 0
ab 0 0

)
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so Ω|(bd′) or (N2
5N4N3N2)|(N3N

3
5N1d

′), hence d′ = N4N2` for some ` ∈ Z. Expressed in
terms of the N ′js we have (3.4). This gives the first statement of the lemma.

Suppose now that D is odd. Now for

T3 =

(
1 N2

5N1
1
2

(1+N2
5N

2
4N2N1)

0 1 N2
4N2

0 0 1

)
,

which is integral since D is odd, and k ∈ Z we have

S3[T k3 ] =

(
0 0 N3N5N2

4N2

0 −N3N3
5N1 0

N3N5N2
4N2 0 N4N2(`+kN)

)
.

Thus we can find a k to reduce S3 to the form (3.4) where 0 ≤ ` < N . Now S†3 in (3.5)

is easily computed. Using the primitivity of both S3 and S†3 we see that gcd(`,N) = 1.
The value of ` is uniquely determined by S3 in (3.4) since the residue class of ` modulo
N is preserved under all transformations of S3 that fix all but its (3, 3)-entry.

�

In order to prove (2.1), it is convenient to relate the definition of genus for ternary
quadratic forms given above with that introduced by Eisenstein and further developed
by Smith. Their definition is in terms of characters and was modelled on that of Gauss
for binary quadratic forms. For ternary forms we must consider simultaneously the form
S and its primitive adjugate S†. The definition is based on the identities

S(x)S(y)− 1
4

(
x1∂s1S(y) + x2∂y2S(y) + x3∂y3S(y)

)2

= ΩS†(x2y3 − x3y2, x3y2 − x1y3, x1y2 − x2y1)

S†(x)S†(y)− 1
4

(
x1∂y1S

†(y) + x2∂y2S
†(y) + x3∂y3S

†(y)
)2

= ∆S(x2y3 − x3y2, x3y2 − x1y3, x1y2 − x2y1),

where x = (x1, x2, x3) and y = (y1, y2, y3). For odd D, let p, q be primes with p|Ω and
q|∆. Using these identities we see that for m with p - m represented by S, the value(
m
p

)
is independent of the choice of m, as is

(
n
q

)
when n is represented by S† and q - n.

In the Eisenstein/Smith definition, the genus of S consists of all S ′ with invariants Ω,∆
and these character values for each p, q and where, when p = q, we have two character
values.

In [9] Smith showed that, by this definition, S and S ′ are in the same genus if and only
if there is a rational transformation A, whose entries have denominators prime to 2Ω∆,
with S ′ = S[A]. As a consequence, the Eisenstein/Smith definition of genus coincides
with the usual one. For a proof see e.g. Theorem 50 on p.78. of [10] (see also the note
on §5 on p. 138).

Smith [8] also gave explicit conditions for a ternary form to represent zero nontrivially,
which generalize those in Legendre’s theorem. Under our assumptions, S represents zero
nontrivially if and only if(S(x)

p

)
=
(
N3N5N1

p

)
,
(−S†(y)

q

)
=
(
N3N4N2

q

)
and

(S(z)
r

)(−S†(z)
r

)
=
(−N5N4N2N1

r

)
for all primes p, q, r with p|N4N2 and x with p - S(x), q|N5N1 and y with q - S†(y) and
r|N3 and z with r - S(z)S†(z).

It follows that the genus characters of S are determined by the values of(S(x)
p

)
and

(−S†(y)
q

)
,
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for primes p|N5N3, q|N4N3 and any x with gcd
(
S(x), N3N5

)
= 1 and y for which

gcd
(
S†(y), N3N4

)
= 1. Referring to Lemma 1 and the (3, 3)-entry of S3, together with

the (1, 1)-entry of S†3, we see that the genus of S is completely determined by the values
of (

N2N4`
p

)
and

(
N1N5`
q

)
or, equivalently, by the values of

(
`
p

)
, for p|N.

When another S ′ with corresponding `′ 6= ` is properly equivalent to S, then ` and `′

belong to two different orbits of solutions of the same form. All forms in the genus of S
will be represented. The total number of orbits of solutions from forms of the genus of
S is thus

2−ν(N)φ(N) =
∏
p|N

p−1
2
,

where ν and φ are the usual arithmetic functions. To finish the proof of Theorem 1,
repeat the above reduction argument over Zp for each p|N to show that

cp(S) = p−1
2
.

�

4. Proof of Theorem 2

Theorem 2 is an easy consequence of results of [3] when combined with the argument
above. For special S the values a, b, c of (3.6) are completely determined by the genus
G, as follows from i) of Lemma 1. Then by Lemmas 3 and 4 of [3], we see that the value
δp(S, x) is also determined by G. It is clear that the value σp given in (3.1) of [3] depends
only on G. Thus Theorem 2 follows from Theorem 4 of [3] and its Corollary 2. �

The formula (2.4) can be derived by using computations of δp from [7]1 and of δp(S, x)
from §3 of [3].

Justification of Example i). It is known (see e.g. [2, Thm 47]) that h = 1 for S from
(2.5). It can be checked that inequivalent orbits are represented by

S1 =
(

0 0 3
0 −3 1
3 1 0

)
, S ′1 =

(
0 0 3
0 −3 2
3 2 0

)
and S ′′1 =

(
0 0 1
0 −33 1
1 1 1

)
.

From Lemmas 3 and 4 of [3] we have that
∏

p δp(S1, x0) =
∏

p δp(S
′
1, x0) = 2 · 34 while∏

p δp(S
′′
1 , x0) = 2 · 33, where x0 = (1, 0, 0). Using [7] and [5] in the verification that

δ2 = 2, we have that ∏
p

δp = 8
3ζ(2)

34

4
.

Also, it can be shown easily that ∏
p

σp = 8
3ζ(2)

5
4
.

Now an application of Theorems 2, 3 and 4 of [3] verifies (2.6) and also that all orbits
have been represented.

1In [7] note the corrections: (ns − 1) in (23) should be (ns + 1) and in the formula for zi below (47),
the number 8 should be 3 and 4 should be 2. These corrections were given in [11].
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