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Abstract. A new local-global result about the primitive representations of
zero by integral ternary quadratic forms is proven. By an extension of a result of
Kneser (given in the Appendix), it yields a quantitative supplement to the Hasse
principle on the number of automorphic orbits of primitive zeros of a genus of
forms. One ingredient in its proof is an asymptotic formula for a count of the zeros
of a given form in such an orbit.

1 Introduction

Let S be a symmetric 3 × 3 matrix with integral entries and with detS = D > 0.
Associated to S is the nonsingular ternary quadratic form

S(x) := xSxt,

where x = (x1, x2, x3). All ternary quadratic forms we consider here are assumed to
arise this way. We will sometimes refer to them simply as forms. Two forms S, S′

are said to be in the same class if there is an A ∈ GL3(Z) such that

(1.1) S[A] := AtSA = S′.

They are in the same genus if, for any prime p or p = ∞, there is an A ∈ GL3(Zp)
such that (1.1) holds. Here Z∞ = R. The genus G of S consists of finitely many,
say h, classes. Forms in the same genus have the same determinant.

The form S is isotropic if and only if S(x) = 0 has primitive solutions x ∈ Z3.
Hasse’s principle applied to S says that S is isotropic if and only if S(x) = 0 is
non-trivially solvable over Zp for all primes p and p = ∞. This result is equivalent
to Legendre’s theorem, which states that for abc square-free the equation

(1.2) ax2
1 + bx2

2 + cx2
3 = 0
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has primitive solutions if and only if a, b, c are not all of the same sign and
−bc,−ac,−ab are quadratic residuesmodulo |a|, |b|, |c|, respectively.1 TheHasse
principle implies that isotropy is a property of the genus of S.

A primitive representation of zero by an isotropic form S is a pair (x, S),
with x ∈ Z3 primitive such thatS(x) = 0. Two such (x, S) and (x′, S′) are equivalent
over Z if there exists A ∈ GL3(Z) so that

(1.3) S′[A] = S and xAt = x′.

They are equivalent over Zp for a prime p (including p = ∞) if (1.3) holds with
A ∈ GL3(Zp). The first goal of this paper is to prove the following supplement to
the Hasse principle for isotropic ternary forms.

Theorem 1. Two primitive representations of zero by ternary quadratic forms

are equivalent over Z if and only if they are equivalent over Zp for all p, includ-
ing ∞.

Theorem 1, together with Corollary 2 of the Appendix, yields a quantitative
result about the orbits of primitive zeros of a genus of ternary forms. Say primitive
x, x′ ∈ Z3 with S(x) = S(x′) = 0 are in the same Z-orbit if (x, S) and (x′, S)
are equivalent over Z. Clearly this happens precisely when there is an integral
automorph A of S (see (2.1) below) such that xAt = x′. There are at most finitely
many, say c(S), such orbits. For a prime p or p = ∞ say that these x, x′ are in
the same Zp-orbit if (x, S) and (x′, S) are equivalent over Zp. Let cp(S) denote the
number of Zp-orbits. Here cp(S) �= 1 for at most finitely many p.

Theorem 2. For S as above we have

(1.4)
∑
S′∈G

c(S′) =
∏
p

cp(S),

where G is the genus containing S.

Theorem 2 is a quantitative version of the Hasse principle for ternary quadratic
forms. However, our proof assumes that the form is isotropic; we are using the
original Hasse principle and not giving an independent proof of that. Although it
has a similar form, Theorem 2 differs from Siegel’s main theorem [25] applied to
the representation of an integer by an indefinite ternary quadratic form. In (1.4)
orbits are counted without the measures of representations or p-adic densities that

1Proofs of Legendre’s theorem were given by Legendre [20, pp. 509–513], Gauss [11, Art. 294] and
Dedekind [5, §156]. See Weil’s book [28, Chap. 4.] for a discussion of the early history of Legendre’s
theorem and for a treatment of its relation to the Hasse principle in the general ternary case (App. I,
pp. 339–345).
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occur in Siegel’s identity. Siegel’s main theorem, in any of the forms given in [25]
or [26], does not apply to the representation of zero by a ternary isotropic form
(see also [17]).

Unlike in the definite case, an indefinite ternary quadratic form often has one
class in its genus, that is h = 1. In this case it follows from Theorem 1 that two
primitive zeros of S are in the same Z-orbit if and only if they are in the same
Zp-orbit for all p. Theorem 2 now implies that

c(S) =
∏
p

cp(S).

In general, we have that h = 2ν for some ν (see [16, Satz 4]). In the following
examples, where h = 1, it is not difficult to compute cp(S) directly.

Examples.
(i) When S is an isotropic Legendre equation (1.2) with abc odd and square-free,

we have that cp(S) = 1 for each p and hence h = 1 and c(S) = 1. In particular,
there is only one orbit of Pythagorean triples, which is known [1] (see also
[4]).

(ii) The Legendre equation

S(x) = q2x2
1 − qx2

2 − x2
3 = 0

has the nontrivial solution (1, 0, q). If q is a product of distinct primes each
≡ 3 (mod4), then for each such p we have cp(S) = p−1

2 , with cp(S) = 1
otherwise. Also, it is shown in [22] that h = 1 so

c(S) =
∏
p|q

p − 1
2

.

Outline of the Proofs. The result needed to deduce Theorem 2 from Theo-
rem 1 is Corollary 2 in the Appendix. This corollary translates to the language of
matrices and forms (an extension of) a theorem of Kneser, which is formulated in
terms of lattices and quadratic spaces.

Our proof of Theorem 1 uses an analytic method that compares two asymptotic
formulas. These formulas count primitive zeros of an individual form in terms of
the size of the zero. The first asymptotic, which follows from one that is well-
known, counts all zeros. It is stated in the form we need in §3, as Theorem 4. The
second, which is new and of independent interest, restricts the count to an orbit of
zeros. It is stated in §3 as Theorem 5. The constants in the leading terms in both
are determined in terms of certain local densities. Summing over orbits and the
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genus leads to an identity between constants, which is given in Theorem 6. In the
derivation of Theorem 6 from Theorems 4 and 5, essential use is also made of the
Siegel mass formula, which is recalled in the required form in §2 and applied to an
associated Fuchsian group.

That Theorem 6 implies Theorem 1 is shown in §4. Here we also need to invoke
Theorem 7 of the appendix.

The proofs of Theorems 4 and 5 occupy the remainder of the paper. In §5
the problem of counting within an orbit is attacked using the theory of Eisenstein
series for the associated Fuchsian group. The main result here is Proposition 1.
Using some of the machinery set up in §5, in §6 we prove Theorem 4. Then in
§7, which contains the most delicate arguments, we compute the local densities
needed to complete the proof of Theorem 5. It is noteworthy that, although we
must compute the 2-adic density of a certain isotropy subgroup of the orthogonal
group of S, we do not need to compute explicitly the 2-adic density of the full
orthogonal group of S itself, which is notoriously troublesome. This is due to our
use of the orbit-stabilizer theorem in the proof of Theorem 6.

Remarks. The proof we give of Theorem 1 is similar in spirit to the novel
approach to Siegel’s main theorem given by Eskin, Rudnick and Sarnak in [8],
which compares counts in an orbit, obtained more generally in [7], to the full count
(see also [2] and [3]). The constant for the full count is a product of local densities,
usually obtained by the Hardy-Littlewood circle method, except that in the ternary
quadratic case serious convergence problems occur. The circle method is made to
work in the homogeneous ternary case (with weights) in [12]. Related methods
were introduced in [13] and [6]. The refined circle method can be used to give an
alternative proof of Theorem 4.

Acknowledgements. I want to thank Peter Sarnak for sharing valuable in-
sights on the general subject of this paper and also for some helpful specific
comments. In addition, I am very grateful to the referee for carefully reading the
paper and for suggesting numerous improvements.

2 The associated Fuchsian group and Siegel’s mass for-
mula

Suppose that S is indefinite and nonsingular. Let O be the group of integral
automorphs of S given by

(2.1) O = O(S) = {A ∈ GL3(Z); S[A] = S}.
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Let O+(S) be the subgroup of O consisting of those A ∈ SL3(Z) ∩ O(S) that are
contained in the connected component of the identity SO+(S,R) of the special
orthogonal group of S. Then O+(S) is isomorphic to �(S) ⊂ PSL2(R), a Fuchsian
group of the first kind acting on the upper half-plane H. Also, � has cusps if and
only if S is isotropic. This well-known isomorphism arises by a construction of
Fricke–Klein [10]. Another useful reference for this construction is [21].

To summarize, let

S0 =

⎛⎜⎝0 0 1
2

0 −1 0
1
2 0 0

⎞⎟⎠
and for g = ±( α βγ δ ) let

(2.2) Ag =

⎛⎜⎝α
2 2αβ β2

αγ αδ + βγ βδ

γ2 2γδ δ2

⎞⎟⎠ .
We have that detAg = (detg)3 and trAg = (tr g)2 − det g. Also, for g, h ∈ PSL2(R)

Agh = AgAh and S0[Ag] = S0.

Choose B so that S0[B] = S and for

(2.3) Cg = B−1AgB

we have that detCg = (detg)3 and tr Cg = (tr g)2 − det g as well as

Cgh = CgCh and S[Cg] = S

for g, h ∈ PSL2(R). The map g �→ Cg gives a Lie group isomorphism from
PSL2(R) to SO+(S,R). Define

(2.4) � = �(S) = {g ∈ PSL2(R); Cg ∈ Mat3(Z)}.

Then � is isomorphic to O+(S).

The co-volume of �(S) with respect to the usual hyperbolic measure on H

v (S) = vol (�(S)\H)

is finite. For a prime p let

(2.5) Op = Op(S) = {A ∈ GL3(Zp); S[A] = S}
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and set

(2.6) δp = δp(S) = lim
m→∞

1
2
p−3m#{Op (modpm)} and δ∞ =

π

4D2
,

where D = detS. Siegel’s mass formula identifies the sum of co-volumes over the
genus with the product of these local densities.

Theorem 3 ([25, p. 412 in G.A.]).2 Let S be indefinite. Then

(2.7)
∑
S′∈G

v (S′) = 2δ−1
∞
∏
p

δ−1
p ,

where the product is over all primes p and the sum is over a complete set of
representatives of the genus G.

Using well-known calculations of the local densities from [24] we can express
the RHS of (2.7) as a finite product

(2.8) 2δ−1
∞
∏
p

δ−1
p =

4πD2

3

∏
p|2D

(1 − p−2)δ−1
p .

Remark. As noted in [25, p. 413 in G.A.], a version of the mass formula in
the indefinite ternary case was found by Humbert [14].

3 Asymptotic formulas

Turning now to the statements of the asymptotic results, let C(S) be the set of all
primitive x ∈ Z3 with S(x) = 0. Let S∗ = DS−1 where D = detS is the adjugate
of S. Choose y ∈ R3 such that S∗(y) = 4D. Since the plane determined by xyt = T

for T > 0 intersects the cone given by {x ∈ R3; S(x) = 0} in an ellipse, there are at
most finitely many x ∈ C(S) with

0 < xyt ≤ T.

For an illustration see Figure 1.
For a prime p let Cp(S) be the set of all x ∈ Z3

p with p � x and S(x) = 0. Define
the p-adic density of C(S) by

σp = lim
m→∞ p−2m#{Cp(S) (modpm)}.(3.1)

A similar definition for the density at infinity σ∞ yields the value, derived below
in §6,

(3.2) σ∞ =
π

2
√

D
.

The following asymptotic formula is a consequence of well-known results of [9]
and [23]. Details are given in §6.

2Our definition of the volume differs from Siegel’s by a factor of two.
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Figure 1.

Theorem 4. Suppose that S is isotropic. Fix y ∈ R3 with S∗(y) = 4D. Then,
as T → ∞,

(3.3) #{x ∈ C(S); 0 < xyt ≤ T} ∼
(

1
2
σ∞

∏
p

σp

)
T.

Using again [24] and (3.2), the constant in the RHS of (3.3) can be written as

(3.4)
3

2π
√

D

∏
p|2D

(1 − p−2)−1σp.

Theorem 4 counts rational points of bounded height on the conic S(x) = 0.
A natural refinement of Theorem 4, whose nature is intrinsically integral rather
than rational, counts asymptotically the elements in an orbit under automorphs.
For x ∈ C(S), its orbit is defined by

C(S, x) = {x′ ∈ C(S); x′ = xAt for some A ∈ O(S)}.

Given x ∈ Cp, the isotropy subgroup of Op(S) from (2.5) that fixes x is given by

Op(S, x) = {A ∈ Op(S); xAt = x}.

Define the p-adic density

(3.5) δp(S, x) = lim
m→∞

1
2
p−m#{Op(S, x) (mod pm)}.

We have the following asymptotic formula.
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Theorem 5. Suppose that S is isotropic with detS = D. Fix y ∈ R3 with

S∗(y) = 4D and x ∈ C(S). Then as T → ∞, we have

(3.6) #{x′ ∈ C(S, x); 0 < x′yt ≤ T} ∼
(

2D
3
2

v (S)

∏
p|2D

δ−1
p (S, x)

)
T.

By Theorems 4, 5 and (3.4) we get a local identity for the volume by summing
over orbits, but not over the genus, of S.

Corollary 1. For isotropic S

(3.7) v (S) =
4πD2

3

∑
x

∏
p|2D

(1 − p−2)δ−1
p (S, x)σ−1

p ,

where x runs over a complete set of representatives of the orbits of C(S).

The Zp-orbit of x ∈ Cp(S) is given by

Cp(S, x) = {x′ ∈ Cp(S); x′ = xAt for some A ∈ Op(S)}.
Define the p-adic density of the orbit of x by

(3.8) σp(S, x) = lim
m→∞ p−2m#{Cp(S, x) (modpm)}.

By the orbit-stabilizer theorem for all p|2D we have

(3.9) σp(S, x) =
δp

δp(S, x)
.

Let S = S1, . . . , Sh be a complete set of representatives of the genus G and
suppose that xi,j for i = 1, . . . , c(Sj) runs over a complete set of representatives of
orbits of C(Sj), for each j. By Corollary 1, (2.8) from Siegel’s mass formula in
Theorem 3 and (3.9), we will have the following result once Theorems 4 and 5 are
proven.

Theorem 6. For isotropic S

(3.10)
∏
p|2D

σp =
h∑

j=1

c(Sj)∑
i=1

∏
p|2D

σp(Sj, xi,j).

4 Classes and genera of primitive representations of
zero

This section reduces the proof of Theorem 1 to that of Theorem 6, hence to
Theorems 4 and 5. Application is made of Theorem 7, which is given in the
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Appendix. I will change slightly the notation there by using x in place of X, to
conform with ours. This should not cause confusion. Also, to use the terminology
there, say two primitive representations of zero (x, S) and (x′, S′) are in the same
class if they are equivalent over Z and in the same genus if they are equivalent
overZp for all primes p (including p = ∞). Thus to proveTheorem1 it is equivalent
to show that a genus of primitive representations of zero by ternary forms contains
exactly one class.

For the purpose of counting, it is convenient to express p-adic products in terms
of congruences. For q ∈ Z+ say that x ∈ (Z/qZ)3 is primitive if gcd(x, q) = 1.
Let Oq(S) be the set of primitive x ∈ (Z/qZ)3 with S(x) ≡ 0 (mod q). Then Oq(S)
splits into orbits under the group of automorphs modulo q:

{A ∈ GL3(Z/qZ); S[A] ≡ S (mod q)}.

For x ∈ Oq(S) let Oq(S, x) denote the orbit of x. For q divisible by a sufficiently
high power of each prime dividing 2D, we have that

(4.1) #Oq(S, x) = q2
∏
p|2D

σp(S, x) and #Oq(S) = q2
∏
p|2D

σp.

Here σp(S, x) and σp were defined in (3.8) and (3.1), respectively.
Let S = S1, . . . , Sh be a complete set of representatives of the genus G. The

classes of primitive representations of zero by forms in G are uniquely represented
by (xi,j, Sj) where, as before, xi,j ∈ Z3 for i = 1, . . . , c(Sj) runs over a complete set
of representatives of orbits of C(Sj).

Lemma 1. Let q be as above. For each j choose Aj ∈ GL3(Z/qZ) with
S[Aj] ≡ Sj and set x′

i,j ≡ xi,jAt
j with xi,j as above. The map

(xi,j, Sj) �→ Oq(S, x
′
i,j)

is well-defined and induces a bijection from the genera of primitive representations
of zero by forms in G to the orbits in Oq(S). The orbit Oq(S, x′

i,j) has the same

cardinality as Oq(Sj, xi,j).

Proof. Clearly x′
i,j ∈ Oq(S) and the orbit Oq(S, x′

i,j) ⊂ Oq(S) is independent
of the choice of Aj. Also, two primitive representations of zero map to the same
orbit if and only if they are in the same genus of representations. That the map is
surjective follows from the bijection given in (c) of Theorem 7 of the Appendix,
translated into equivalent matrix terminology using Lemma 6. The final statement
follows by conjugation. �
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By Theorem 6, (4.1) and the last statement of Lemma 1, we have

(4.2)
h∑

j=1

c(Sj)∑
i=1

#Oq(S, x
′
i,j) = #Oq(S).

Theorem 1 follows from (4.2) and the bijection of Lemma 1 since having two
classes in a genus of representations would imply that the LHS of (4.2) is greater
than the RHS.

Therefore we are left with proving Theorems 4 and 5.

5 Eisenstein series

Suppose that S is isotropic with D = detS > 0. Choose any primitive x ∈ Z3 with
S(x) = 0. Completing xt to a matrix M1 ∈ SL3(Z) we have

(5.1) S[M1] =

⎛⎜⎝0 s1 s2

s1 ∗ ∗
s2 ∗ ∗

⎞⎟⎠ .
Suppose a = gcd(s1, s2). Choose u, v ∈ Z with us1 + vs2 = a. Define

M2 =

⎛⎜⎝1 0 0
0 s2

a u
0 − s1

a v

⎞⎟⎠ ∈ SL3(Z)

so that M1M2 still has xt as its first column and

(5.2) S1 = S[M1M2] =

⎛⎜⎝0 0 a
0 −b c

a c d

⎞⎟⎠ .
This shows that we may find an equivalent S1 of the form (5.2) whose associated
orbit of primitive zeros contains (1, 0, 0). We have that a, b > 0 are uniquely
determined and c is determined modulo gcd(a, b) by the orbit of the solution.

Let �(S1) ⊂ PSL2(R) be the Fuchsian group from §2 that is isomorphic to the
subgroup O+(S1) of proper automorphs of S1. Clearly �(S1) is conjugate to �(S)
in PSL2(R). In effect, it is the conjugation that moves the cusp associated to x to
infinity. For S1 we take, as above (2.3), B = B0 where

B0 =

⎛⎜⎝1 c
a

d
2a

0
√

b 0
0 0 2a

⎞⎟⎠ .
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Then S0[B0] = S1 and we let

(5.3) Cg = B−1
0 AgB0,

which may now be explicitly computed. In particular,

(5.4) C±
(

1 κ
0 1

) =

⎛⎜⎝1 2κ
√

b 2aκ2 − 2cκ√
b

0 1 2aκ√
b

0 0 1

⎞⎟⎠
for κ > 0. Let f be the smallest positive integer so that

(5.5)
(2a

f
,
2b
f
,
2c
f

− 2ab
f 2

)
∈ Z3.

Thus κ =
√

b
f with f given in (5.5) is the minimal positive value so that the entries

of the matrix C in (5.4) are integers. Hence, according to (2.4), for this κ the
translation ±( 1 κ

0 1 ) generates the parabolic subgroup of �(S1) with cusp at i∞.
This f is well-defined for the orbit of solutions but can vary over different orbits.
It is easily checked that

f = 2δ gcd(a, b, c)

for some δ ∈ {0, 1, 2}.
Next we will use the Eisenstein series for �(S1) with cusp at i∞ to count

solutions within the orbit. For any x = (x1, x2, x3) ∈ R3 define for z ∈ H

(5.6) N(x; z) = (2a Im z)−1(2ax1 + (2c − 4a
√

bRe x)x2 + (d + 4a2|z|2)x3).

In particular,

N(x; i) = x1 +
c
a

x2 +
(
2a +

d
2a

)
x3.

A calculation shows that for

(5.7) y = (Im z)−1
(
1,

c − 2a
√

b x
a

,
d + 4a2|z|2

2a

)
we have S∗

1(y) = 4D and

(5.8) N(x; z) = xyt.

Observe that the condition xyt > 0 restricts x to a connected component of the cone
given by S1(x) = 0. This component is left stable by O+(S1). For S1 from (5.2)
and x0 = (1, 0, 0), any x ∈ C(S1, x0) that satisfies xyt > 0 will be contained in
the O+(S1) orbit of x0.
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Proposition 1. For y from (5.7) with z ∈ H and f given in (5.5)

#{x ∈ C(S1, x0); 0 < xyt ≤ T} ∼
√

b
fv (S1)

T

as T → ∞.

Proof. The Eisenstein series for the cusp i∞ is defined by

(5.9) E(z, s) =
∑

g∈�(κ)∞ \�
(Imσ−1gz)s,

convergent for Re s > 1. Here �(κ)∞ ⊂ � = �(S1) is generated by ±( 1 κ
0 1 ) and the

scaling matrix is

(5.10) σ =

(
κ

1
2 0

0 κ− 1
2

)
.

Lemma 2. Let N(x; z) be given in (5.6) and f above (5.5). For z ∈ H and
Re(s) > 1 we have

(5.11) E(z, s) = (
f√
b
)s

∑
x∈C(S1,x0)
N(x;z)>0

N(x; z)−s.

Proof. Corresponding to g = ±( α βγ δ ) ∈ �(κ)∞\�, we have

x = Cg−1 (1, 0, 0)t =
(
δ2 +

δγc

a
√

b
− γ2d

4a2
,− δγ√

b
,
γ2

2a

)
.

Note that, using y from (5.7), we have the identity

(5.12)
(
δ2 +

δγc

a
√

b
− γ2d

4a2 ,−
δγ√
b
,
γ2

2a

)
yt = (Im z)−1|γz + δ|2.

By (5.10) we get

Im (σ−1gz) = Im z κ−1|γz + δ|−2 =
f Im z√

b
|γz + δ|−2,

since κ =
√

b
f . The formula (5.11) is now derived using (5.9), (5.6) and (5.12). �

Now E(z, s) has a continuation in s to a meromorphic function which is holo-
morphic for Re(s) ≥ 1 except for a simple pole at s = 1 and

(5.13) ress=1E(z, s) =
1

v (S1)
.

For a proof see the book of Iwaniec [15]. In view of (5.8), Proposition 1 follows
from Lemma 2 by a standard application of the Ikehara theorem. �



ANALYTIC THEORY OF ISOTROPIC TERNARY QUADRATIC FORMS 127

6 Counting all zeros of bounded norm

This section contains the proof of Theorem 4. We may assume that S = S1

from (5.2). Note that the asymptotic constants for the counts of S and of S1 are
equal since when we transform the y chosen for S, which satisfies S∗(y) = 4D,
to y′ for S1 with S∗

1(y
′) = 4D, the counts are unchanged and the constants are

independent of y and y′.
For fixed c0 > 0 and x ∈ R3 let

‖x‖ = max(c0‖x‖∞, |xyt|),
where y was defined in (5.7) and ‖(x1, x2, x3)‖∞ = max(|x1|, |x2|, |x3|). Then ‖x‖
gives a norm on R3. By (5.8) we have the formula from (5.6):

(6.1) |xyt| = (2a Im z)−1|2ax1 + (2c − 4a
√

bRe x)x2 + (d + 4a2|z|2)x3|
for some z ∈ H. It is now easy to see that for a fixed z there exists c0 > 0 so that
for all T ≥ 1 and 0 ≤ ε < 1

{x ∈ R3; |xyt| ≤ T and |S1(x)| ≤ ε} = {x ∈ R3; ‖x‖ ≤ T and |S1(x)| ≤ ε}.
Lemma 3. The Hardy–Littlewood singular integral for S1 and ‖ ·‖ is given by

lim
ε→0

1
2ε

∫
|S1(x)|≤ε‖x‖≤1

dx =
π

a
√

b
.

Proof. By solving for x1 in xyt = r in (6.1) and substituting in S1(x) = ε the
area of the resulting ellipse is

Area(r) =
π(r2 − 4ε)

8
√

D
,

after taking into account the Jacobian of the transformation. By integrating Area(r)
over −1 ≤ r ≤ 1, the volume between the hyperboloid given by S1(x) = ε and the
planes xyt = ±1 is found to be

π

12
√

D
− πε√

D
.

The result follows since the volume between the planes and |S1(x)| = ε is 2πε√
D
. See

Figure 2 for an illustration when S1(x) = 2x1x3 − x2
2 and ε = .03.

Theorem 4 is therefore a consequence of the next well-known result (see
also [27]):

Proposition 2 ([9], [23]). For σp defined in (3.1), as T → ∞, we have

#{x ∈ Z3; x primitive, ‖x‖ ≤ T andS1(x) = 0} ∼
(

π

2
√

D

∏
p

σp

)
T.
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Figure 2.

7 The size of isotropy groups (mod pm)

Now we complete the proof of Theorem 5. We may assume that C(S, x) = C(S1, x0)
where S = S1 is from (5.2) and x0 = (1, 0, 0). We must evaluate f from Lemma 1
in terms of δp(S1, x0) as defined in (3.5).

Proposition 3. Let a, b, c be given in (5.2) and f be from (5.5). Then

2a3bf =
∏
p|2D

δp(S1, x0).

This proposition follows from the next two lemmas. We may assume that
the matrices in Op(S1, x0) (mod pm) we are counting are in SL3(Z/pmZ) and are
reduced to evaluating

α(pm) := #

⎧⎪⎨⎪⎩A ∈ SL3(Z/p
mZ); S1[A] ≡ S1 and A ≡

⎛⎜⎝1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞⎟⎠ (modpm)

⎫⎪⎬⎪⎭
for sufficiently large m.

Lemma 4. Let a, b, c be from (5.2) and f from (5.5), For any prime p > 2 and

δp(S1, x0) from (3.5)

δp(S1, x0) = p3ordp(a)+ordp(b)+ordp(f ).

Proof. There are two essentially different cases: c = 0 and c �= 0.
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Suppose that c = 0. For

(7.1) A =

⎛⎜⎝1 r1 r2

0 s1 s2

0 t1 t2

⎞⎟⎠ and S1 =

⎛⎜⎝ 0 0 d1pi

0 −d2pj 0
d1pi 0 d3

⎞⎟⎠
we will count integers x1, r2, s1, s2, t1, t2 (mod pm) with det A ≡ 1 and

S1[A] ≡ S1 (mod pm).

Suppose that p � d1d2. We can take m as large as we please. By a comparison
with (5.5), we need to prove that

(7.2) α(pm) = pm+3i+j+min(i,j),

since from (5.5) we see that f = min(i, j).
After expanding S1[A] − S1 we see that it is necessary and sufficient

that t1 = t3pm−i and t2 = 1 + t4pm−i for any t3, t4 taken modulo pi. Given that,
a calculation of the determinant of A, which we are assuming is ≡ 1 (modpm),
shows that

s1 = 1 + s3p
m−j

with s3 taken modulo pj. Here we ignore terms with a factor of p2m−constant, which
do not matter when m is large enough. These lead to the congruences

(7.3)
d1r1p

i − d2s2p
j + d3p

m−it3 ≡ 0 (mod pm),

2d1r2p
i − d2s

2
2p

j + 2d3p
m−it4 ≡ 0 (mod pm).

If i ≥ j we set s2 = s4pi−j for s4 modulo pm−i+j, giving pi choices of r1 and pi

choices of r2, for each choice of s4. If i < j let s2 be free. This leads to pi choices
of r1 and r2. In each case we have (7.2) since the solutions obtained are distinct.

Note that the terms d3pm−it3 and 2d3pm−it4 could have been ignored since they
involve only the variables t3, t4, which may be considered to be already chosen, and
for m sufficiently large each is divisible by any fixed power of p. In the arguments
that follow we will indicate such terms by using dots.

Suppose that c �= 0 and consider

(7.4) S1 =

⎛⎜⎝ 0 0 d1pi

0 −d2pj d4pk

d1pi d4pk d3

⎞⎟⎠
where p � d4. We now need to show that

(7.5) α(pm) = pm+3i+j+min(i,j,k).
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Again t1 = t3pm−i and t2 = 1 + t4pm−i for any t3, t4 taken modulo pi. We are led
to solve the quadratic congruence

d2p
js2

1 − 2d4p
m+k−it3s1 − d2p

j ≡ 0.

There will be a d5 with d4 ≡ d2d5 and p � d5 so that

(7.6) s1 = ±1 + d5p
m−i−j+kt3 + s3p

m−j.

To have det A ≡ 1 we must have the plus sign. Then we must solve

(7.7)
d1r1p

i − d2s2p
j + · · · ≡ 0 (mod pm),

2d1r2p
i − d2s

2
2p

j + 2d4s2p
k + · · · ≡ 0 (mod pm).

As was already mentioned, the dots signify terms that may be ignored as above,
only now they might involve s3 as well as t3, t4.

If k ≥ min(i, j) we can follow the arguments used when c = 0. Assume now
that k < min(i, j) so (7.5) becomes

(7.8) α(pm) = pm+3i+j+k.

If i ≥ j take s2 = s4pi−k for s4 modulo pm−i+k leading to pi choices of r1 and r2,
giving (7.8). If i < j let r2 be free giving pk choices of s2 and pi choices of r1, also
leading to (7.8). Here we apply an easily proven lemma that gives the number of
solutions of a degenerate quadratic congruence. �

The case when p = 2 is, as is to be expected, more intricate, but the arguments
are similar. Differences arise from the two’s that occur in the congruences and
the fact that a quadratic congruence modulo 2m can have four solutions. However,
we may still assume that the matrices A ∈ O2(S1, x0) are in SL3(Z/2mZ) since a
calculation shows that a general A must have det A ≡ ±1.

Lemma 5. Let a, b, c be from (5.2) and f be from (5.5). Then

δ2(S1, x0) = 21+3ord2(a)+ord2(b)+ord2(f ).

Proof. We will follow the proof when p > 2 as closely as possible. First
assume that c = 0 and refer to (7.1) with p = 2. Again by a comparison with (5.5),
if i = j we need to show that

(7.9) α(2m) = 21+m+5i

and otherwise

(7.10) α(2m) = 22+m+3i+j+min(i,j).
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Set t1 = t32m−i and t2 = 1+ t42m−i for any t3, t4 taken modulo 2i. Now the quadratic
congruence 2jd2(s2

1 − 1) ≡ 0 has 4 · 2j solutions:

s1 = ±1 + s32
m−j and s1 = ±1 + 2m−j−1 + s32

m−j.

Again we must have the plus signs to get det A ≡ 1. The first pair gives (7.3) with
p = 2 while the second gives

d1r12
i − d2s22

j − d2s22
m−1 + · · · ≡ 0 (mod 2m),

d1r22
i+1 − d2s

2
22

j + · · · ≡ 0,

where the dots convention is as before. For either pair if i > j we set s2 = s4pi−j

for s4 modulo 2m−i+j, giving 2i choices of r1 and 2i+1 choices of r2, for each choice
of s4, hence giving (7.10). If i < j let s2 be free. This leads to pi choices of r1

and r2, again giving (7.10). If i = j set s2 = 2s4 for s4 (mod 2m−1) leading to 2i

choices of r1 and 2i+1 choices of r2. Therefore in this case (7.9) holds.
Suppose now that c �= 0 and refer to (7.4) with p = 2. If k ≥ min(i, j) and i = j

we need to show (7.9), while if k ≥ min(i, j) and i �= j we need (7.10). If i = j ≥ 1
and k = i − 1 we need

(7.11) α(2m) = 22+m+5i.

Otherwise, we need to show that

(7.12) α(2m) = 22+m+3i+j+k.

Once again, t1 = t32m−i and t2 = 1 + t42m−i for any t3, t4 taken modulo 2i. We
are now led to solve the quadratic congruence

d22
js2

1 − 2d42
m+k−it3s1 − d22

j ≡ 0.

Choose d5 with d4 ≡ d2d5 and 2 � d5. We get 2 ·2j solutions in terms of s3 (mod 2j)
that give det A ≡ 1. They are

s1 = 1 + d52
m−i−j+kt3 + s32

m−j or s1 = 1 + d52
m−i−j+kt3 + 2m−j−1 + s32

m−j.

We now record the needed congruences for each of these. For the first we have

(7.13)
d1r12

i − d2s22
j + · · · ≡ 0 (mod 2m),

d1r22
i+1 − d2s

2
22

j + d4s22
k+1(1 + t42

m−i) + · · · ≡ 0.

For the second we have

(7.14)
d1r12

i − d2s22
j − d2s22

m−1 + · · · ≡ 0 (mod 2m),

d1r22
i+1 − d2s

2
22

j + d4s22
k+1(1 + t42

m−i) + · · · ≡ 0.
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If k ≥ min(i, j) proceed as when c = 0 to get (7.9) and (7.10). If i = j ≥ 1 and
k = i − 1 let s2 be free to get 2i values of r1. If s2 is even we get 2i+1 values of r2.
If s2 is odd,

−d2s2 + d4(1 + t42
m−i)

is even so againwe get 2i+1 values of r2, hence (7.11) holds, after treating both (7.13)
and (7.14).

Suppose that k < min(i, j) and either i �= j or i = j and k < i − 1. If i > j take
s2 = s42i−k for s4 modulo pm−i+k, leading to 2i choices for r1 and 2i+1 choices for r2,
giving (7.12). If i < j let r2 be free giving 2k+1 choices of s2 (since j > k+1) and 2i

choices of r1, also leading to (7.12). Finally, if i = j and k < i − 1, again let r2 be
free giving 2k+1 choices of s2 and 2i choices of r1, once more giving (7.12). Again
we must treat both (7.13) and (7.14). As before, in the last two cases where r2 is
free we are counting solutions of a degenerate quadratic congruence. This finishes
the proof of Lemma 5 and hence of Proposition 3. �

Theorem 5 now follows from Propositions 1 and 3. This also completes the
proof of Theorems 1 and 2. �

Appendix by Rainer Schulze-Pillot

In this appendix we want to relate the statements of Theorems 1 and 2 to the
notions of genus and class of representations of lattices with quadratic form used
in [18, 19]; for that we have to recall some terminology.

Let (V,Q) be a finite-dimensional rational quadratic space, i.e., a vector space
over Q equipped with a quadratic form Q : V → Q and associated symmetric
bilinear form

B(x, y) = Q(x + y) − Q(x) − Q(y)

and L = Zv1 + · · ·+Zvn a Z-lattice on V , where {v1, . . . , vn} is a basis of V . We will
assume that (V,Q) is non-degenerate, i.e., the Gram matrix (B(vi, vj)) ∈ Matn(Q)
of B with respect to the basis is nonsingular. The determinant of this matrix is
called the determinant det(L) of L = Zv1 + · · · + Zvn. If K is another such lattice
on a (not necessarily nondegenerate) rational quadratic space (U, Q̃) we call an
injective linear map φ : U → V with φ(K) ⊆ L a representation of K by L if φ is
an isometry, i.e., if Q(φ(u)) = Q̃(u) for all u ∈ U. The representation is primitive if

φ(U) ∩ L = φ(K)

holds, equivalently if φ(K) is a direct summand in L. A representation φ of K
by L and another representationψ of K by a lattice L′ in a quadratic space (V ′,Q′)
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are in the same class if there exists an isometric linear isomorphism (an isometry)
ρ : V → V ′ with ρ ◦ φ = ψ. The number of classes of primitive representations
of K by lattices L of fixed determinant and dimension is finite, see Satz 30.2 and
the last sentence of Bemerkung 30.3 of [19].

In the same way, Zp-classes of representations of the p-adic completions
Kp ⊆ Up,Lp ⊆ Vp are defined, and with essentially the same proof one sees
that the number of Zp-classes of primitive representations of Kp by lattices Lp of
fixed determinant and dimension is finite. Representations φ of K by L and ψ of K

by L′ are in the same genus if their p-adic completions φp, ψp are in the same p-adic
class for all primes p, including p = ∞ with K∞ = U∞ etc. Obviously, in that caseL

and L′ have to be in the same genus, i.e., all p-adic completions are isometric, and
by the Minkowski–Hasse local-global principle the spaces (V,Q), (V ′,Q′) (but in
general not the lattices L,L′) are isometric; we may hence assume (V,Q) = (V ′,Q′).

Lemma 6. Let φ : K → L, ψ : K → L′ be representations, let T = (B(ui, uj))
be the Gram matrix of K with respect to the Z-basis {u1, . . . , um} and S, S′ the

Gram matrices of L,L′ with respect to the bases {v1, . . . , vn}, {v ′
1 , . . . , v

′
n }; write

φ(uj) =
∑

i xijvi, ψ(uj) =
∑

i x
′
ijv

′
i ,X = (xij),X′ = (x′

ij) ∈ Matn,r(Z).

(a) One has T = XtSX = (X′)tS′X′.
(b) φ is primitive if and only if X can be completed to a matrix in GLn(Z).
(c) φ,ψ are in the same class if and only if there exists A ∈ GLn(Z) with

S′ = AtSA,X = AX′.
(d) φ,ψ are in the same genus if and only if there exist for all primes p (including

p = ∞) matrices Ap ∈ GLn(Zp) with S′ = At
pSAp,X = ApX′.

(e) There exists q ∈ Z such that the matrices Ap above exist for all p if and only
if there exists Aq ∈ GLn(Z/qZ) with S′ ≡ At

qSAq mod q,X ≡ AqX′ mod q.

Proof. This is well known and easily checked. �

Definition 1. For symmetric matrices S ∈ Matn(Z),T ∈ Matr(Z) with r ≤ n

and X ∈ Matn,r(Z) of rank r with T = XtSX we say that (X, S) is a representation
of T . The representation is called primitive if X can be completed to a matrix
in GLn(Z).

(i) Two representations (X, S), (X′, S′) (primitive or not) are in the same class
if there exists A ∈ GLn(Z) with S′ = AtSA,X = AX′.

(ii) Two representations (X, S), (X′, S′) (primitive or not) are in the same genus
if there exist for all primes p (including p = ∞) matrices Ap ∈ GLn(Zp) with
S′ = At

pSAp,X = ApX′.



134 W. DUKE

Remarks.
(a) Since primitivity is a local property, two representations (X, S), (X′, S′) in the

same genus are either both primitive or both imprimitive.
(b) For S = S′ the representations (X, S), (X′, S) are in the same class if and only

if X,X′ are in the same orbit under the action of the group of automorphisms
of S.

(c) The notion of a genus of representations has apparently not been treated in
matrix terminology so far. The definition given above is the natural translation
into matrix terminology of the same notion from the lattice terminology.

Theorem 7 (Kneser). Let K,L be Z-lattices on quadratic spaces U,V as

before, assume that V is non-degenerate and that U is represented by V.
(a) For almost all primes all primitive representations of Kp by Lp are in the

same Zp-class.
(b) Let φ : K → L′ be a representation of K by a lattice L′ in the genus of L.

Then for all primes p, there is a representation ψp : Kp → Lp in the same
Zp-class as φp : Kp → L′

p.

(c) The map associating to the genus of the primitive representation φ : K → L′

of K by a lattice L′ in the genus of L the family (ψp)p of the Zp-classes ψp of

the ψp from (b), defines a bijection from
(i) the set of genera of primitive representations of K by a lattice L′ in the

genus of L to

(ii) the product over all primes of the sets of Zp-classes of primitive repre-
sentations of Kp by Lp.

(d) Let cp(Kp,Lp) denote the number of Zp-classes of primitive representations
of Kp by Lp. Then the number of genera of primitive representations of K by

a lattice L′ in the genus of L equals
∏

p cp(Kp,Lp).

Proof. Without the primitivity condition and with the additional requirement
that QK = U is nondegenerate this is proven in [19, Hilfssatz 30.7, Satz 30.9]. We
check that the proof goes through with only small modifications in our situation.

For almost all primes Lp is regular in the sense of [19]. For such a prime p

letφp, ψp be primitive representationsofKp in Lp. By the argument in the paragraph
after Definition 2.17 of [19], the primitive submodules φp(Kp), ψp(Kp) of Lp are
“scharf primitiv” in the sense of that definition. Folgerung 4.4 of [19], a strong
version of Witt’s extension theorem, then shows that

ψp ◦ φ−1
p : φp(Kp) → ψp(Kp)

can be extended to an automorphism of Lp, hence φp and ψp are in the same
Zp-class of representations, which shows (a).
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Let now φ : K → L be a representation; replacing K by φ(K) we may assume
K ⊆ L. If ψ : K → L′′ is a representation of K by a lattice L′′ in the genus of L the
space QL′′ is isometric to V = QL by the Hasse–Minkowski theorem and we may
assume QL′′ = V . Since (V,Q) is nondegenerate, hence regular, and any subspace,
being a direct summand, is primitive, we obtain as above using [19, Folgerung 4.4]
an extension of

ψ : U → ψ(U) ⊆ V

to an isometry ψ̃ : V → V . Setting L′ := ψ̃−1(L′′) we see that the inclusion K → L′

is in the class of the representation ψ. For each class of representations of K by
a lattice in the genus of L we can therefore choose a lattice L′ on V such that the
inclusion iL′ : K → L′ is a representative of that class. For such an L′ we choose
isometries τp : Lp → L′

p for all primes p and have that

ρp := τ−1
p ◦ iL′ : Kp → Lp

is a representation of Kp by Lp in the Zp-class of i′L, which proves (b).
By Satz 21.5 of [19] one has L′

p = Lp for almost all primes p, we can thus
choose τp = idVp for almost all p. The family (ρp)p of the Zp-classes of the
representations ρp depends only on the genus of the representation iL′ , and the map
sending iL′ to that family is injective by the definition of a genus of representations.
Conversely, let any family (ρp)p of classes of representations ρp of Kp by Lp be
given. By (a) we may assume that almost all ρp are the inclusion Kp → Lp, let �
be the set of the remaining primes. For p ∈ � we use again Folgerung 4.4 of [19]
to extend ρp to an automorphism ρ̃p of Vp. By Satz 21.5 of [19] there is a lattice L′

on V with L′
p = ρ̃p

−1(Lp) for the p ∈ �, L′
p = Lp for the primes not in �. The

mapping constructed above then maps the genus of iL′ to the family (ρp)p, and we
see that the mapping is surjective, which proves (c).

Assertion (d) is an obvious consequence of (c). �

Corollary 2. Let S∈Matn(Z)be a nonsingular symmetricmatrix, T ∈Matm(Z)
symmetric.

(a) The number of genera of primitive representations of T by a matrix S′ in the
genus of S is equal to the product over all primes of the numbers of Zp-classes

of primitive representations of T by S.
(b) The following two statements are equivalent.

(i) The sum over all integral equivalence classes of S′ in the genus of S, of
the numbers of classes of primitive representations of T by S′, equals

the product over all primes of the numbers of Zp-classes of primitive
representations of T by S.
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(ii) Each genus of primitive representations of T by a matrix S′ in the genus

of S contains only one class of representations.

Proof. Part (a) is the translation into matrix terminology of part (d) of the
theorem, and (b) is an obvious consequence of (a). �
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mons Attribution 4.0 International License, which permits unrestricted use, distri-
bution and reproduction in any medium, provided the appropriate credit is given to
the original authors and the source, and a link is provided to the Creative Commons
license, indicating if changes were made (https://creativecommons.org/
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William Duke
MATHEMATICS DEPARTMENT

UNIVERSITY OF CALIFORNIA AT LOS ANGELES
BOX 951555

LOS ANGELES, CA 90095-1555
email: wdduke@ucla.edu

Rainer Schulze-Pillot
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