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I. Introduction 

Recently Iwaniec [15] has given an estimate for the Fourier coefficients of a 
holomorphic cusp form of weight half an odd integer which improves upon that 
corresponding to the trivial bound for Sali6 sums. More precisely, let 

F(z)-- ~ a(n)e(nz) 
n = l  

be a holomorphic cusp form of weight k=~-+Y for F=Fo(N) with 

Ir(z)12yk- 2 dxay  = 1, 
f\t-i 

where f ~ Z + and N = 0 (mod 4). For any n > 1 and ~ > 0 the trivial bound is 

a(n) ~ n k/2-1/4+~. (1.1) 
k,e 

The exponent k / 2 - 1 / 4  cannot be reduced if F(z) comes from the subspace 
spanned by theta functions when k = 3/2. But for k > 5/2 or square-free n we expect 
that it may be replaced by (k - 1)/2, corresponding to the Ramanujan conjecture for 
integral k. Iwaniec proves that for k >  5/2 and n square-free 

a(n) ~. 71 k/2-2/7+~. (1.2) 
k,e 

(Actually n ~ is replaced by d(n)log ~ 2n where d(n) is the divisor function.) 
A striking application of(1.2) is to give the uniform distribution of  certain lattice 

points in Z 3 on a sphere centered at the origin with increasing radius, without 
imposing Linnik's condition and in a quantitative sense. Motivated by the 
corresponding problem in negative curvature, which is the distribution of Heegner 
points and closed geodesics on PSL2(7Z)\H, one is led to establish the analogue of 
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(1.2) for certain non-holomorphic forms of weight k for Fo(N). Before describing 
this result and its applications in more detail we will first briefly indicate how (1.2) 
controls the distribution of lattice points on S 2. 

Consider the set Vn = {m/Jm[ ~ S2 ; m ~ Tla, lmlZ = n} where ImlZ =ma2 +m22 +m3.2 
For n square-free it follows from a celebrated result of Gauss (see e.g., [3]) that 

- w(d  1 -  0.3) 

where d,h(d), and w(d) are the discriminant, class number, and number of 

units of Q ( ] / ~ ) .  Now the Fourier coefficients of the theta function given by 
O(z;u)= ~ u(m)e(zlml2), with u(x) a spherical harmonic of degree f are 

r n e Z  3 

a(n) =ne/Zr3(n) W,(n), where 

1 
W.(n)=r3(n ) ~ ; .  u(~) 

are "Weyl sums". Since O(z;u) is a holomorphic cusp form for Fo(4) of 
weight 3/2 + (  for { >  1 (see [41]) we see that by Siegel's (ineffective) estimate 
r3(n) ~> n 1/2-~ and (1.2) we get 

Wu(n) ~ n-l~ zS+~ 

provided n is square-free and n ~ 7 (rood 8). By the analogue of Weyl's citerion we 
deduce the uniform distribution (with a non-trivial error term if (1.2) is made 
uniform in k) of II, on S 2 as n ~  ~ through such n. We remark that by combining 
(1.2) with the Shimura lift and Deligne's estimate the conditions on n may be 
relaxed to n -  1, 2, 3, 5, 6 (mod 8). This should be compared with Linnik's result 
([20] p. 38) giving the uniform distribution of these V, only if n is subjected to the 

further condition ( ~ ) =  ] for some fixed odd prime p. Previously this unnatural 

condition could only be removed subject to certain unproved hypotheses concern- 
ing the zeros of Dirichlet L-functions (see [20] and [25]). 

The main object of this paper is to extend this method to study the distributions 
of Heegner points and closed geodesics on PSL2 (Z)\H. For this we need a non- 
holomorphic generalization of(1.2). This is given as Theorem 5 in Sect. 5. That such 
an extension is possible is indicated in [15]. The "beef" of the proof is an estimate of 
Iwaniec for a certain sum of Kloosterman sums over varying levels. When this is 
applied to Proskurin's generalization of the Kuznetsov sum formula given in 
Sect. 3, Theorem 5 follows is much the same way as does (1.2). 

The other ingredient is the expression of the appropriate "Weyl sums" in terms 
of Fourier coefficients of certain non-holomorphic forms of weight 1/2. This is 
achieved through a theta-correspondence given essentially by Maass as an 
extension of Siegel's celebrated work on the analytic theory of indefinite quadratic 
forms. Although we only need it in a particular case here we will develop this 
correspondence in general, with future applications in mind. 

To describe our main application, let Q = Q(x, y) = ax 2 + bxy + cy 2 be a primi- 
tive irreducible integral binary quadratic form with discriminant d=b 2 -4ac.  
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Denote by h (d) the number of (proper) classes of such forms. I fd  > 0, Pell's equation 
is x z - dy 2 = 4. Let (xa, Ya) with xa, Ya > 0 be the fundamental solution and set ea = (xa 
+ ~/dya)/2. Set f = PSL2 (Z) and denote by F the standard fundamental region for 
/~ m the upper half-plane H. If d<  0 the h(d) Heegner points are given by 

Ad={ zQ= -b+l/~d , b2 -4ac=d ,  zQeF}.  

If d < 0  is a fundamental discriminant then these points correspond to the ideal 

classes in Q (]/#d-). If d>  0 the points ( - b  +_ [/~d)/2a determine the endpoints of a 
geodesic in H, with respect to the metric dsZ=y-Z(dx2 +@2), which induces a 
unique primitive, positively oriented closed geodesic in F \ H  of length log ed or 
2 log ~a, according as Q is or is not equivalent to - Q. For a given d> 0 denote by Ad 
the set of  all such distinct geodesics. The total length of geodesics in Aa is h (d) log ~a 
and every primitive, positively oriented closed geodesic in/~\H occurs in exactly one 
Aa. This classification follows from [36] (see also [43]). 

Let dlz(z)=J-dxcly/y z so p ( F ) = l .  Suppose 1 2 c F  is convex (in the non- 
~Z 

Euclidean sense) with a piece-wise smooth boundary. We shall prove the following 
uniform distribution statements in Sect. 6. 

Theorem 1. Suppose d is a fundamental discriminant. Then for some 3 > 0 depending 
only on 12 

i) #Adn~2-p(O)+O(ld[-a) as d ~ - o o  and 
#Ad 

Z ICnnl 
ii) C~A. -# (12 )+0 (d  -~) as d - ~ + o o  

Z ICl 
CEAa 

where ICI is the (non-Euclidean) length of  C and the O-constants depend only on 6 
and f2, though ineffectively. 

Remarks: (1) Part (i) with the error term 0 (log- AId[) for some A > 0 but subject to 
the additional condition (d/p) = i for some fixed odd prime p with suitable 12 was 
proved by Linnik [20] using his ergodic method. 

(2) If Gauss' conjecture that h(d)= 1 for infinitely many fundamental d > 0  
holds, then by (ii) we deduce that for any a > 0 there is a closed geodesic C in F \ H  
such that 

ICnOI ~(0) <~. 
ICl 

(3) Using results of [33] it is possible to give similar results for certain co- 
compact arithmetic subgroups of PSL2(~). 

A different type of application of (1.2) reported on in [15] is to give upper 
bounds for critical values of twisted L-functions attached to certain holomorphic 
cusp forms via the Waldspurger theorem. We observe that Theorem 5 includes the 
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interesting case of holomorphic cusp forms of weight 3/2 which is not covered 
directly in [15], although standard convergence producing modifications there will 
yield it as well. To describe such an application of  this case let Eq be the elliptic curve 
with complex multiplication given by y2 =x3 _q2 x and consider its (essential) 
Hasse-Weil L-function (see e.g., [16]) 

L(s, E~)= I-I (1 -a,(q)p-S+p 1-2s)-1 
p,~2q 

where =~ Eq (Z/pZ)=p + 1 -up(q) and q e Z + is square-free. Then by a theorem of 
Tunnell [48] and Theorem 5 we deduce the estimate 

L(I,Eq) <~ q3/7+~ (1.4) 
g 

for the critical values as q ~  ~ .  Here the trivial bound is ql/2 +~ from (1.1) or from the 
functional equation for L(s, Eq) and a convexity argument, while that correspond- 
ing to Ramanujan and Lindel6f is q~. 

Similarly, when Theorem 5 is applied to half-integral weight Eisenstein series in 
case N = 4  and D =  - 4  it follows from [7] that 

L(~ +it, zd ) ~ ]dl 3/14+~ (1.5) 

for Dirichlet L-functions L(s, Zd). Here dETl is a fundamental discriminant and 
/ IN 

Za=(-a. ) is  Kronecker's symbol. Burgess' famous result [41 replaces 3/14 by 3/16. 
\ /  

Nevertheless, (1.5) gives an indication of the depth of Theorem 5 since Ramanujan 
here would give the Lindel6f hypothesis in d-aspect. 

Finally, we mention that the estimate in Theorem 5 for weight 3/2 has a certain 
application in Galois theory (see [2]) and, when combined with results of R. 
Schulze-Pillot [38], contributes to the classical problem of determining the 
asymptotic behavior of the representation numbers of an arbitrary positive definite 
integral ternary quadratic form. 

Acknowledgements. I wish to thank Professor H. Iwaniec for introducing me to these problems and to 
acknowledge him and Professor P. Sarnak for several helpful discussions. I also want to thank Professor 
Sarnak and the Mathematics Department at Stanford University for providing support and a 
stimulating atmosphere in which to work. 

2. Maass forms of half-integral weight 

The following conventions will be observed throughout this paper. For  z ~ •, z 4= 0 
and v ~ IR we define z ~ by 

zV=lzl  v exp (iv argz) where always a r g z e ( - n , n ] .  

The extended Kronecker symbol ( t i t  is defined as in [I0] for c,d~Z with 
\ . , - /  

c=0,1(mod4)andd>O, butweset(d)=sgn(c)(~dl)ford<Oand(1)=l.(d)is 
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then extended as in [41] to c=2,3  (mod4)and  odd d b y  letting ~4) be the Jacobi 

symbol for d> O and (c, d)= l and setting = 0 i f ( c , d ) > l ,  =sgn(c)  1~ for 

d<  0, and (_~1) = 1. The convention concerning (d )  for d<  0 differs from that in 

[10] if e < 0 but insures that 

holds for all odd d. 
The theory of Maass forms with general weights and multiplier systems was 

developed by Selberg (see [39] and [40]). Detailed treatments are given in [12] and 
[34]. Another useful reference is [35] and we will employ its notation as much as 
possible. 

Let k e � 8 9  be given and suppose D e T / i s  a fundamental discriminant (or 1) 
which is even i f2k  is odd and otherwise satisfies ( --1)kD>0.  Let NeTZ § be such 
that DIN (so 4IN if 2k is odd) and define the generalized theta multiplier for 

7 = ( :  db)~ Fo(N) bY 
i/C"~2k f __l~ -k 

where, if 2k is even this is read as ( D ) .  In case k = 1/2 and O = - 4  this is the 
x / 

multiplier fory t/40(z) =yl/4 ~ e(n2z) on Fo(4) (see [16]). For 2k odd it follows that 

Zk,e (7)defines a consistent mnultiplier system for F0 (N) since by [10] (I-D~) is an even 

(~ character mod N. For 2k even - -  gives a character m o d N  which satisfies the 
x " / 

consistencycondition(--D~)=(--l)k. Clearlyzk,D,=Xk,D2ifflDl[=lD2[. 

Throughout this section we will denote Fo(N) by F. A Maassform of weight k 
and discriminant D for F is an eigenfunction f(z) on H= {z = x + iy; y > 0} of 

/ ~72 O 2 "~ O (2.2) 
Ak=YZ~xZ +~y2J - i ky  ~ 

which satisfies for all 7 ~ F acting on H by 7z = (az + b)/(cz + d) the transformation 
rule 

f (Tz) = •k, 0(7) eikarg(cz + a) f (z) (2.3) 

and has a polynomial growth condition in the cusps o f / ~ \ H  where if=F~{ ++_I}. 

Since 1 e F, f(z) has a Fourier expansion at the cusp at oo given by 

f(z) = c(O, y) + 2 e(n) Wk/2 s,n(n),s- 1/2 (4~lnly)e(nx) (2.4) 
n ~ Z  
n~O 
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where c(O,y)=o(O)y~+Q'(O)y 1-~, 2 = s ( 1 - s )  with Re(s )> l /2  is the eigenvalue 
defined by A k f +  2f=  0, and W~.a(z) is the standard Whittaker function (see [24]). It 
should be noted that in case k =0, if(n) is usually defined as the coefficient of the 
K-Bessel function, having the effect of multiplying Q(n) by 21nl 1/z. If f (z) =yk/2F(z) 

where F(z) is a holomorphic form of weight k so f has eigenvalue }- 1 - 
then (2.4) reads c e  

f ( z ) =  ~ a(n)e(nz) (2.5) 
n=O 

where a(n)=(4rm)k/20(n) for n>0 .  This follows since 0(n)=0 for n < 0  in (2.4) 
if F ( z ) = y - k / 2 f ( z )  is holomorphic and by [15] p. 305. 

(? k ~ ~ k 
Define the Maass  operator Ak by A k = ( Z - - ~  ~-~+~-=t'y ff~x--y ~yy+~. If 

f ( z )  is a Maass form of weight k for F then (Ak f )  (z) is one of weight k - 2 with the 
same eigenvalue and discriminant. This follows by applying Ak to (2.3) and (2.4). 
Using [24] p, 302, we see that if {e(n)} are the Fourier coefficients o f f  and {O(n)} are 

those of A k f  then ,) tCo~n), 
n < 0 

(n) = ( ( s  - k/2) (k/2 - 1 + s) 0 (n),  n > O, 

(0) = (k/2 - s) 0 (0), (2.6) 
and 

~'(0) = (k/2 - 1 + s)o'(O). 

Clearly A k f =  0 iffy-k/2f(z) is holomorphic of weight k. Also,f(z) is a Maass form 
of weight - k  and discriminant D with Fourier coefficients 0 ( - n )  for n 4= 0. Thus, in 
order to study Q(n) for any non-holomorphicf(z) and any n it is enough to assume 

axay 
that k~{0, 1/2, 1,3/2}. Finally, by (1.9)in [35] if Ilflf2= S If] z y2 - 1  then 

/~ \H 

In preparation for Kuznetsov's sum formula we next introduce the Eisenstein 
series. Let {00 = ~:1, x2 . . . . .  Xh} be a complete set of F-inequivalent cusps of F\H. 
For each such xe choose a e ~ S L 2 ( Z  ) s.t. ae(xl)=xe and ae lFeae=F1,  where Fe 
= {? c F : ?Xe = xe} is the stabilizer of ~ce. For each f = 1 . . . . .  h and Re (s) > 1 define 
the Eisenstein series by 

E e ( z , s ; N , k , O ) =  ~, ~k,1)(c7717)e-ikargj(ail)"Z)y(ailTz) s 
~r, \ r  

where j (7' z) = cz + d' ' = ( a  b ) " v ~ each such s Ee( z' s ; N' k'  D ) is a Maass f~  

weight k and discriminant D for F with eigenvalue s (1 - s )  and Fourier coefficients 

given by r~ e ( - k/4)ln I ~- 1 
Oe~(n)=F(s+k /2sgn(n)  ) 49e,(s) for n#:0,  

r ~ 4 1 - ~ e ( ' - k / 4 ) F ( 2 s -  1) 
oe(O)=6el,  and Q)~(0)= F ( s + k / 2 ) F ( s - k / 2 )  d~eo(S), (2.8) 
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where 
~be,(s)=~ c -2s ~ ~k,o(7)e(nd/e) 

c>O O<d<c 

is a "singular series". 
By Selberg's general theory Ee(z, s; N, k, D) has a meromorphic continuation in s 

with no poles for Res = 1/2 except for possibly finitely many simple ones in (1/2, 1 ]. 
In fact ~e,(s) may be evaluated in terms of Dirichlet L-functions with the 
consequence that no such poles may exist except possibly at s = 3/4 when 2k is odd 
or at s = 1 when k = 0. In cases k = + (3/2 + 2 ( )  for ( = 0,1,2 . . . . .  it follows from the 
presence of F(s T-k~2) in (2.8) that no pole exists. Now Et(z, 1/2 + it; N,k,D) for 
{= 1 . . . . .  h furnish the continuous spectrum [1/4, ~ )  with multiplicity h of Ak on 
Hk,o, the Hilbert space of functionsf(z) on H satisfying (2.3) and I[f [I < ~" A non- 
zero residue of Ee(z,s; N,k,D) at s=3/4 (s= 1) is an eigenfunction in Hk, o with 
eigenvalue 2=3/16 (2=0)  belonging to the discrete spectrum. The rest of the 
discrete spectrum is provided by the Maass cusp forms, which are Maass forms 
whose zeroth Fourier coefficients in all cusps vanish. In general, we have that the 
discrete spectrum of  Ak on Hk,D is contained in [k/2 (1 -k/2), oo) and any form with 
eigenvalue 2 = k/2 (1 -k/2) comes from a holomorphic one of weight k. This follows 
from (2.7). Selberg showed that i fk ~ 2Z the first positive eigenvalue is >_ 3/16 while 
Goldfetd and Sarnak [35] observed in case 2k is odd that the first eigenvalue > 3/16 
is > 15/64. 

Definition. A Maass form f ( z ) i s  spectral if either I[fll =1 or f(z)=Et(z,�89 
+it;N,k,D) for some t~lR and EE{I, . . . ,h}. 

3. Kuznetsov sum formula 

We assume in this section that k ~ {0, 1/2, 1,3/2}. As noted above this is sufficient for 
our purposes. We state Kuznetsov's sum formula in these cases as given (actually 
more generally) by Proskurin in [31]. Let {uj(z)}j%o be an orthonormal basis of  
Maass forms corresponding to the discrete spectrum 0 < 2o < 21 < �9 �9 �9 of Ak on Hk. o 
with Fourier coefficients given by {0j(n)} for n 4= 0, Q j (0)= 0, and Qj(0)= 0 except 
when uj(n) comes from a residue. Note that 2=3/16 corresponds to the 
holomorphic forms for both k =  1/2 and k =  3/2. Let {f~yLt be an orthonormal 
basis for the space of holomorphic cusp forms for Fo(N ) of weight k+2j with 
multiplier Xk, o where j = 1,2 .... with Fourier coefficients ao(n ). 

Next let ~b (x) be a smooth function on [0, ~ )  such that ~b (0)= ~b'(0)= 0 and for 
some ~ > 0  ~ ( x )  ~ x - l - e ,  ~(g')(x) <~ x - 2 - e  for ( = 1 , 2 , 3  as x ~ o o .  Define the 

E 
Kuznetsov transforms for t E IR or it ~ [ - 1/4, 1/4] by 

~ ( t ) = ~  J,_l(x)c~(x)dx (3.1) 
0 X 

and 

q~(t) = fl (t) (~b* (t) - ~b* ( - t)) (3.2) 
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where 

and 

N t )  - 
n2e(1/4+k/4) 

(shnt ) ( ch 2 nt + cos nk ) F ( l /2 - k  /2 + it)F(1/2 - k  /2 - it) 

~b*(t) = cos n(k/2 + it) ~ J2i,(x)dp(x) dx 
0 X 

Observe that q~(-t)=q~(t) so that ~(t~) is well-defined for tj=l//2j-1/4. Set 
for n,m> l 

Vl (m,n)=4(rnn) t/Z ~ oj(m)oj(n)~(tj)/chT~tj, (3.3) 
~l.j )" 0 

and 

V 2 ( m , n )  - ~ i~ (bjm(1/2+it)q~j.(1/2+it) ~(t)dt 
j=~ -o~ chntlF(1/2+k/2+it)l 2 ' 

(3.4) 

V3(m,n) =4 ~ F(k+2j)e(k/4+j/2)~J(k+2j) dj 
(47t)k+2J(mn)k/2+j-1/2 E dij(m)aij(n). (3.5) 

j>--1 i=1 

Finally, the generalized Kloosterman sum in question is given by 

Kkm(m'n;c)=K(m'n;c)= ~dmoa~ ~k,O(y)e(md~ rid) . (3.6) 

We may now state Kuznetsov's sum formula. 

Theorem 2 (Proskurin [31 ]). For k ~ {0, l/2, 1,3/2}, n, m > l, and 0 (x) as above (3.1) 
we have 

3 
c-X K(m,n;c)r  = ~ Ve(m,n). 

c>O g = l  
c=-O(N) 

4. A correspondence of Maass 

This section is devoted to the construction of Maass forms as integrals of  Siegel 
theta functions against certain automorphic eigenfunctions. This is done by 
extending some results of Siegel and Maass from the 1950's (see [22, 44] and also 
[13]). For holomorphic forms similar methods have been used extensively to 
simplify and systematize various lifts, for example those of Shimura and Doi- 
Naganuma (see [18, 27], and [42]). 

A recent application of the non-holomorphic version of  Shimura's cor- 
respondence is Goldfeld and Sarnak's 15/64 eigenvalue bound mentioned at the end 
of  Sect. 2. The inverse form of this correspondence is actually a special case of that 
considered below. Here certain Fourier coefficients of  the resulting Maass form of 
weight 1/2 are essentially Weyl-type sums for the distribution of  certain lattice 
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points and closed geodesics on the appropr ia te  hyperbolic surface. A non-tr ivial  
bound for such Fourier  coefficients then gives uniformity  results for  these 
distributions. These mat ters  are pursued in Sect. 5 and 6. 

We first need to introduce Siegel's theta  function for  an indefinite quadrat ic  
form. Let S be an m • m matr ix  with elements slj e �89 7 /and diagonal  elements sii ~ 7/. 
Then S has a uniquely determined signature ( n , m - n )  for m>n>O. N o w  for 
z = x + i y  w i t h y  > 0 and P~Hs ,  the ma jo ran t  space of  S (see [46]) let R = x S + i y P .  
Here P = tp, p > 0, and PS - 1 p = S. Siegel's thetafunction is defined for  ~t e Q" with 
2S~E7/m by 

O,(z,P)= ~ e(R[h+a]) (4.1) 
h ~ 7s m 

where A[B]=tBAB. This sum is absolutely convergent  for  fixed z since y > 0  
and P > 0 .  

Our  first task is to extend the considerat ions in [44] concerning the trans- 
format ion formula  for O(z,P)=Oo(z,P) in z under  Fo(N) for a suitable N. 
Specifically, let 6 = Idet 2SI and 

6 , = ~  6,  m even 

l 26,  m o d d "  

Write 6 ' =  e f  2 where e is square-free and set 

e- (mod4, 
otherwise 

and 

-(-1)'~ m odd (4.2) 
O = [a4o~(~e)e, m even 

m 
where a = ( - 1)k with k = ~- - n.Let N be the level of  2 S, i.e. N ~  Z § is minimal  such 

that N ( 2 S )  -1 is integral with even diagonal  entries. 

Theorem 3. D] N and D is a fundamental discriminant or 1 which is even if2 k is odd and 

satisfies(-1)kD>Ootherwise. For (~  bd )=~Fo(N)wehave  

0 (yz, P)  = Z-  k, o (Y) (CZ + d) n/2 (ci-k- d) (m-")/2 0 (z, P) (4.3) 

where ZR, O is 9iven in (2.1), provided d= l / f c = 0 .  I f  6= l then 4lk. 

Proof. By Siegel's [44] Hilfssatz 1 we have for 7 = (  a b,~eSLz(TI)with c > 0  
and r,q, h e Z  m kC a/ 

( cz + d) -"/2 (ci + d) ("- ~)/2 0h/N (~Z, P) 

= e6 - 1/2 c- ' /2  ~ 49~ (h, q) O~/N (z, P) (4.4) 
qmodN 

2 S q = - O ( N )  

where ~b~(h, q) = ~ e((aS[r] + 2trSq + dS[q])/cN 2) and e = e((m - 2n ) /8 ) .  Thus  
r =_=.h(N) 
rmodcN 
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we have 

( cz + d)- hi2 ( CZ"]- d) ~" - m)]2 0h/N (~)Z, P) 

qmodN 
2Sq=-O(N) 

e( -b(dS[q] + 2'hSq)/NZ)(or(h + dq, O) Oq/N(z, P) 

by using the identity 

(4.5) 

qbr (h, q) = e ( - b (dS [q] + ThSq)/N 2) qS~ (h + dq, 0). 

By a standard method (see [29, 37]) we get that for c = 0  (nod  N) and d>  0, 

(cz + d)-"n (c5 + d) ("-")/20 (Tz, P)  = 9 (c, d) 0 (z, P) (4.6) 

where g(c, d)=d -m/z ~, e(-cS[r]/d) is a Gauss sum. 
rmodd 

To complete the proof we need to evaluate g (c, d). To this end note that if in (4.6) 

take Y=(]0 ~)Y' for E~Z then since O(z+f,P)=O(z,P)*O we get for w e  
\ -  

c = 0 ( m o d N )  and d,d+c~>O that 9(c,d+fc)=g(c,d). Since 

N bc"~ a d )ero(N)  if (No' b) er~ 
we see that for d, d+(N> 0, g(c, d) =g(c,  d+(N). 

Now choose an odd prime p - d ( m o d  c) so g(c, d) =g(c,p), when d >  0. We may 
transform S[x] to diagonal form modp since pX6. Thus, for some m • m integral 

matrix T with I Tt -- t ~ 0 (modp) we have S Ix] = ~ aju~ where aj e 7/with pXaj and 
j=l 

x=Tu. Clearly we may take a~>0 for j<n and a j < 0  for j>n. Then 
m rtl 

IS[ -t2 I-I aj(modp),  and also 6=-2"t z I-I lajg (modp). 
j=l j=l 

Thus 

y(c,p)=p -'/2 ~ e(--c  ~ aj~/p ) 
umodp  j = l  
uEZ m 

m 

=p-m/2 ]--I ~ e(-caju~/p) 
j = l  u j m o d p  

using the familiar evaluation for p,~y 
( f )  f - 1 \ I / 2  

Z e(yu2/P) = ~__~) pl/2. 
urnodp 

(4.7) 
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Suppose that m is odd. Clearly D = - ( - l ) ' ~  is an even fundamental 
discriminant and by (4.7) 

As in Lemma 1 of [47] it follows that 4IN and that (1-~-I-) defines a character mod N. 
Also, 

- O) 
(: 0 for d eFo(4) and : e ;g .  Thus g(c,d)=x-k,D(7) for yeFo(N)  and d>0 .  

Now suppose m is even. Then D is a fundamental discriminant such that 
( - 1 ) k D > 0 .  Also, 

g (co d) = g (c ,  p )  = = = 

/ D \  
which as above is a character modN,  so g(c,d)=|zy].  
If d = 0  then 6=1 and from (4.4) \ u /  

z - ,/2 ~. -,.)/2 0 ( - 1/z, P) = sO (z, P) 

SO by applying the transformation z ~ z  + 1 we get 

(Z + I)-"/2(y, + I)~"-m)/20(~+II ,P)=sO(z,P).  

Thus from (4.6) e = g (1,1) = 1 so (4.3) holds in this case as well. Also, since e = e (k14) 
we have that 6 = 1 implies that 4]k. 

If d < 0 then replacing y by - y  in (4.3) gives the same result, provided c # 0. This 
completes the proof. 

We are now ready to define Maass' correspondence. As above denote by Hs the 
space of majorants of S. Thus Hs consists of positive symmetric m x m matrices P 
such that PS-1p = S. Hs is the symmetric space of dimension n (m - n )  attached to 
the group G=SO(S)={geSL,,(IR); S[g]=S} acting by P~P[g], since every 
rnajorant has the form P[g] for PeHs  fixed and some geG and since Go, SO(P) 
is a maximal compact subgroup of  G (see [46]). A similar result holds for Go, the 
connected component of G containing the identity L An invariant metric on Hs is 
given by ds z =~t r  (P-l  dPP-t  dP). 

The group of units of S is F~ = SL,,(7~)n G. We will denote by F '  any subgroup 
of finite index in Fk and let 

( F  , otherwise. 
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F '  acts discontinuously on Hs. S[x] is said to be a zero form if S[h] = 0 for some 
h ~ Z " ,  h ~ 0 .  I f  S[x] is not a binary zero form then Siegel [46] has shown that 
v(/~'\H) < or, where dv is the invariant measure induced by ds 2. We shall assume 
that this is the case. Let As be the Laplace-Beltrami operator on ILls induced 
by ds 2 and suppose u(P) is an eigenfunction of As on F'\Hs with eigenvalue 2' 
defined by Asu+2'u=O. For  ~bl, q5 z functions on ff'\Hs define the inner product 
(q91, ~b2) = ~ ~bl q~2dv. By (4.1) it follows that O(z, .) is defined on F'\Hs. Suppose 

r'\~s 
(u('), O(z, "))is absolutely convergent for each z ~ H, that (u, u) < oe, and let D and 
N be defined in and below (4.2). 

Theorem 4. Under the above assumptions f(z)=ym/4 (u(.),O(z,.)) is a Maass 
.form of weight k=(m/2 ) -n  and discriminant D for Fo(N) with eigenvalue 

k =  5 2' + m - - -  4- f(z) is a cusp form (possibly zero) unless u(P)=co for Co a 

nonzero constant. 

Proof By Theorem 3f(z)  is seen to satisfy (2.3). It follows from [221 (110) tha t f (z)  

hasaFourierexpansionatocgivenby(2.4)wheres(1-s)=~(2'+m-m---4).Thus 

eitherf(z) = 0 or it is an eigenfunction of Ak with eigenvalue k. By (4.1) it follows that 
f(z)=ym/4<u, 1 > +o(1)  as y ~ o e  and we have 2'<u, 1 > =0.  Thus c ( 0 , y ) = 0  in 
(2.4) unless 2' = 0. I f  2'  = 0 then u(P) = co ~e 0 and c (0, y) = coy m/4. Using (4.4) we see 
that the zeroth Fourier coefficient off(z) in every cusp vanishes unless u (P) = co, in 
which casef(z)  is easily seen to satisfy a polynomial growth condition in each cusp. 
This proves Theorem 4. 

For  small values o f m  there are "accidental" isomorphisms for G which allow us 
to apply the above correspondence to classical situations. For  example, if m = 2 and 
n = 1 then for a certain choice of  S and F'Hs may be identified with a semi-circle i n / /  

and u(P) with a Gr6ssencharakter for ~ (]//D) for D > 0. Thenf(z)  is essentially the 

weight zero Maass form for Fo(D) with character ( D )  constructed in Maass ' 

celebrated paper [21 ]. The special case alluded to in the beginning of  this section is 
for m = 3 and n = 1. Then Go - PSL2 (IR) and Hs may be identified with H. F '  ~ Go 
includes many important  arithmetic subgroups, in particular all congruence 
subgroups of  PSL2 (7I). The Hilbert modular groups for quadratic fields and their 
congruence subgroups are included in case m = 4 ,  with n = 1 giving the imaginary 
quadratic ones and n = 2 giving the real quadratic ones. Finally, the case m = 5 and n 
= 2 includes the Siegel modular group of genus 2 (see [18]). 

F rom the point of  view of distribution problems, the case m = 3 is the most 
interesting. In this case also the Fourier coefficients of  f(z) may be explicitly 
evaluated and are found to control the distributions of  interest. Thus for the 
remainder of  the paper we will be concerned with the Fourier coefficients in case k is 
half an odd integer. 
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5. An estimate for Fourier coefficients 

In this section we will extend Iwaniec's result (1.2) to include all spectral Maass 
forms of weight half an odd integer and discriminant D. For the applications given it 
is important to keep the estimate uniform in the eigenvalue 2. We remark that the 
generalized Ramanujan/Lindel6f conjecture would replace 2/7 by 1/2 and 5/4 by e in 
the following result. 

Theorem 5. Let {~(n)} be the Fourier coefficients of  a spectral Maass form f ( z )  
of weight k---1/2+~ and (even) discriminant D for Fo(N), where {~7l and 
N -  0 (rood D), with eigenvalue )~ = I/4 + t 2. We have the estimate 

Q(n) r 121ach(Tzt/2)ln1-2/7+E 
k,D,e 

as ln l~  ~ ,  provided n is square-free or a fundamental discriminant. Here we may take 
A = 5/4 - k / 4  sgn(n). 

Proof We shall assume in the proof  that D = - 4  which is the case required for 
Theorem 1. The needed estimates in [5 5] easily extend to cover the general case. 
Now, observe that we may assume that k =  1/2 or 3/2 and n >  5. This follows by 
(1.2), (2.5), (2.6), and the remarks following (2.6). Here we are using (2.6)-(2.8) 
to verify that Akf ( z ) / (k /2 -s )  is spectral if 2>  5/4. 

Next we must choose a test function 4)(x) for which q~(t)>0 for t~lR or 
it~ [ -  1/4, 1/4]. For Co = -4e(-k/4)/7~ZF(5/2) let 

4) (x)  = Co x -  3/2 Jg/~ (x)  

where J9/2 (x) is the usual Bessel function. This 4) satisfies the condition of Theo- 
rem 2 and a calculation using the Weber-Schafheitlin integral ([9] p. 692) shows that 

1 /4+ t  2 

~(t) = eh (27zt) r ( 4  + it) r(4 - it) F(1/2 - k/2 + it) F (5/2 - k/2 - it)" 

Clearly ~(t)  > 0 for t ~ IR or it ~ [ - 1/4, 1/4], the value for it = 1/4 defined by taking 
the limit. By Stirling's formula we see that as 2--, 

By Theorem 2 we have fo r f ( z )  spectral and n > l  that 

n [e(n)l 2 r  (5 -k)/2chr~t(lSN[ +1II3 (n, n)D (5.5) 
where 

SN = ~ (c/n)a/2c-l K(n,n;c)J9/2(47tn/c). 
c-~OlN) 

c>O 

We now employ Iwaniec's device of  averaging over the level. Setting for 
P > (4 log 2n) 2 

= {pN; P <p < 2 P, p,~Zn} 

we have that [Fo(Q) : Fo(N)]-l/2f(z) is a spectral Maass form for Fo(Q) when Q ~ Q. 
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Since [Fo(Q): Fo(N)] < p +  1 we get from (5.1) upon summing over Q: 

nlQ(n)] 2 <~ 2 (5-k)/2(chI~t) log P ~ (ISQ[ +IV3 (n, n)]). (5.2) 
QEO 

By the proof  of (1.2) in [15] we have 

IV3(n,n)l ~ In[ 3/v+~. (5.3) 
QeQ e,k 

Next, 

ISel<=Y, c-lK(n,n;c)Jq/2(41rn/c) 
Q Q c~13(Q) 

c<~n 

c>n 

These sums may be treated almost exactly as in [15] since 9/2 is half-integral and 
since for x > n 

rt - 3/2 (xJ9/2 (4 gn/x))' ~ nx-  s/2. 

Thus it follows by Theorem 3 in [l 5], (5.2), and (5.3) that for N--- 0 (mod 8) and n > 1 
square-free 

n [~ (rt)} 2 <~ Jl, (5 - k)/2 ch~zt [(n/P) a/2 + ( r t P )  3/s  § n 3/7] n ~ . 
e,k 

Choosing P=n 1/7 we get 

I~(n)l <~ 2 (5-k~/4eh(~t/2)n-z/v +~. 
e,k 

If N = 4 ( m o d 8 )  the same holds by passing to Fo(2N). If n is a fundamental 
discriminant then a slight alteration of Theorem 3 in [15] gives the same result. This 
completes the proof. 

6. Ternary forms and hyperbolic surfaces 

We end this final section with the proof  of Theorem 1. First we give Maass' [22] 
evaluation of the Fourier coefficients off (z)  from Theorem 4 in case m = 3 and n = 1. 

Let S[x] be an integral ternary quadratic form of  signature (1,2). Recall the 
discussion above Theorem 4 and suppose that F 'cF"=Goc~SL3(7Z) .  Now for 
some nonsingular matrix C, 

s [ c ] =  - J  . 

0 - 

After Klein and Fricke Hs may be identified with H a n d  F ' =  .P' with _P, where F is a 
co-finite subgroup of SLz (IR) containing - L More precisely, PSL2 (IR) - SOo (1,2) 
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through the map 

. /(a 2 + b 2 + c 2 -4- d2)/2 

(~ b ' ] ~ g o = ( ( - a 2 - b 2  +c2 +d2)/2 

a/  \ - ac  - b d  

( -a2 + b 2 -c2 + d~)/2 -ab  - c d  \ 

(a 2 - b E - c 2 -}- d2)/2 ab - ed ] 

ac - b d  ad + bc / 

(6.1) 

To h e IR 3, h 4: 0, we associate the points given by 

Z~ -- --q3 "b ( -  S [h ]) 1/2 
q~ +q2 

where q = C -  1 h, 'q = ( q l ,  q2 ,  q3)  provided ql + q2 4: 0. If ql + q2 = 0 let z ;  sg,~q3) = ioo 
and z~,g"~q~)=(q 2 - q 0 / 2 q 3 .  Let F~={geF' ;gh=h}  and Fh be the corresponding 
subgroup o f F  containing - I .  Then Fh is the stabilizer ofz~ in F since a calculation 
using (6.1) shows that hi = gh iff z~ = VZh ~ = (az~ + b)/(ez~ + d) and S [hi] = S [h], 
where geGo corresponds to yePSLz(]R). Clearly Fh=F,h for n e Z ,  n:~0. 

Define the S-discriminants 

Ds={deTl;d#:O and d = - S [ h ]  for some he7l. 3 where, if d > 0 ,  # F [ ' + l  

for all such h}. (6.2) 

For de  Ds with d < 0 consider the image of the set {z~ : - S [ h ]  = d, h e Z 3} under 
the map H ~ F \ H .  Denote this image by A~- and note that #Aa + < ~ .  If d > 0  then 
for d=  -S[h], Fh is an infinite cyclic group of hyperbolic transformations. Since Fh 
is the stabilizer ofz~ in F, Fh is generated by a primitive hyperbolic transformation 
6. Denote by Ch the unique primitive (clockwise), oriented closed geodesic in F/H 
contained in those formed by reducing the geodesic joining z~- and Zh mod Fh. Ch 
has length IChl =�89 or Ilog N(6)I, according as - h  =gh for some g ~ F '  or 
not. Let A~- = { Ch ; -- S [h ] = d, h ~ 7Z 3 }. Then # A~- < c~ since Chl = Ch~ iff 4- h l = gh2 
for some g e F' .  

Now let u be a Maass cusp form (of weight 0) on F\H with Aou+2'u=O 
and 2 '=~-+ t  2. Then (u(.),O(z,.)) converges absolutely so by Theorem 4 
f(z) =ya/4 (u( ' ) ,  O(z, -)) is a Maass cusp form of weight 1/2 and discriminant D for 

1 ( 3"~ 1 /t'~ 2 
Fo(N) with eigenvalue 2 =  5 \ ~ " + ~ ) = ~ + ~ )  (it is possibly zero). In this case 

Maass has determined the Fourier coefficients {Q(n)}. Actually, Maass only 
considers co-compact F, but since we assume that u is a cusp form his proof  extends 
easily. See also [13]. Using the notation above we have 

Theorem 6 (Maass [22]) Let S have signature (1,2). For f (z) = y3/, ( u(" ), O(z, ")) and 
de Ds, the dtn Fourier coefficient o f f (z )  in (2.4) is given by 

TC -- s g n  ( d ) / 4  

o(d) -  - -  Idl-3/4 M,,(d) 
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where 

f ~ '  u(z), d < 0  M.(d) = z~A+ 
! u(z)ds, d > 0  

vc~a,~ 

and the prime indicates that u(z) is divided by the order of the stabilizer of z in F. 

We now proceed to prove Theorem 1 in the Introduction. Let 

S = - 1 and 

0 

F = S L 2 ( Z ) .  

Then D =  - 4 ,  N = 4 ,  and Ds consists of the usual ring discriminants. By Siegel's 
(ineffective) estimate 

~ A d ~ [dl 1/2-~ (6.3) 

as d ~  - oo and 

ICl >~ Idl 1/z-~ (6.4) 
C e A a  e 

as d ~  + ~ .  
By the spectral decomposition of L2(F\H) (see [12]) the "Weyl sums" in this 

setting are of two types: 

( 1  

WEir(d, t) = I~1Aa 
I - -  

and 

E(z, �89 , d < 0  
Z~Ad 

~ E(z,�89 , d > 0  
C~Aa C 

t ~IA d y u(z) , d < 0  
Weusp(d, t) = Z~Ad 

l~:lCI coa. y cl U(z)ds ' d > 0 .  

Here E(z, s) = Eo~ (z, s; 1,0,1). By (6.3), (6.4), and classical formulas of Dirichlet 
and Hecke (see [45]) we have for d a fundamental discriminant 

WEis(d, t) < [tlaldl-1/4 +~L(�89 it, za) 

as Idl ~ oo where A > 0 is constant (which may vary in different expressions). By 
Theorem 5 and [7] we get as in (1.5) 

WEis(d, t) ~ [tlald] -1/28+~ (6.5) 
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C o m b i n i n g  T h e o r e m s  4, 5, a n d  6 w i t h  (6.3) a n d  (6.4) we  h a v e  fo r  f u n d a m e n t a l  d 

Wcusp(d, t) ~ ItlAldl -I/2s+~ (6.6) 

T h e o r e m  1 n o w  fo l l ows  in a s t a n d a r d  w ay  f r o m  (6.5),  (6.6) a n d  t he  spec t r a l  

d e c o m p o s i t i o n  t h e o r e m .  
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