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1. Introduction

As announced in [2] we shall investigate in this paper Dirichlet series

m
_ —§
A(5) =S, x(n) ..
having Euler product with degree 3 and compatible functional equations. We assume that
the series converge absolutely for Res > 1 and prove that the series formed by squaring

the coefficients also converge absolutely for Res > 1. This result yields immediately a

good bound for an individual coefficient, namely that a, X n’i‘ te

In order to get a better bound we -shall estimate a sum of [a_ | 2 in a short interval.
The shorter the interval is, the better the bound for |a | follows. However, it is not true
that the interval of length N = 1 would be the best to choose for the study. In fact the
optimal N is predicted by observing the uncertainty principle of harmonic analysis whick
strongly depends on the type of harmonics being employed. To detect terms of £ = (an)
in a short interval, traditionally one uses the oscillatory functions e(nx) or . In
addition to these functions we exploit the additive characters e q(an) and the multi-
plicative characters x(n) to select terms from an arithmetic progression. Then by special
averaging over the moduli we pick up the diagonal & = (§anE2) of the sequence
A4 = (a mE n) . We regard our approach as an alternative to the circie method as well as
to the Rankin—Selberg convolution method for zeta—{unctions of automorphic forms.

The power of our approach is drawn from the general principle that more characters
{(independent in the sense of orthogonality) produce a stronger detector. A quantitative

analysis of this principle can be made in terms of the size of conductors buf we do not
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dwell to elaborate it here. We just mention that there are ~ Q2 distinct primitive

characters of conductor ~ Q while only ~ T independent (asymptotically orthogonal)

i with t ~ T. There is no particular reason to restrict ourselves to the

‘characters' n
Dirichlet characters. Probably the Fourier coefficients of cusp forms may serve well as
detectors giving plenty of new possibilities.

Acknowledgement. The authors thank Peter Sarnak and the Mathematics _
Department at Stanford for providing us with excellent conditions to work on this paper in
the Summer of 1989. The second author acknowledges the financial support from the

organizers of the Amalfi Symposium.

2. Statement of resclts
Let 6 = (2,) be a sequence of complex numbers such that the series
m
- -5
A5} = I!: am
converges absolutely in Re s > 1, where it has the Euler product of type
—1
A(8) = 11 (A4 (5™))
p
with

(1) Ay (X) =142 () X +2(p) X* +a(p) X°.

o
Suppose for any primitive character y to modulus q the series
o
A(5x) =Ty x(n)n
has analytic continuation to an entire function and that it satisfies the functional equation

(2) As) A£{s,x) = €y 0(1—5) £ (1, X)
- with }fx| =1 and

®) os) = F° TG + 5 )0 + 6 )0 + x),

where x; are complex numbers with Re i > 0 depending on the parity of x but not on

x otherwise.
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THEOREM 1. For M > N > M3/% we have

2 14 €
{4) b) la 1 <« (MN)?
M<n<M+N

with any ¢ > 0, the implied constant depending on «.

COROLLARY. If (1) — (3) hold then for all n> 1 we have

(5) a, << nff t ¢

As an application we estimate the Fourier coefficients of a Maass cusp form u(z)
for the modular group. Suppose u(z) is an eigenfunction of all the Hecke operators T
with eigenvalue A . After a suitable normalization the eigenvalues are the Fourier
coefficients of u(z). The Dirichlet series .£{s) formed with

(6) . a. =3 Ay
D dk2—n d?

is the symmetric square zeta—function attached to u(z) for which the Shimura theory [10]
ensures all the required properties. In this case we have the Euler product with

.Ap(X) = l—a,pX + asz—Xs. By (5) we infer

™ 1Ay ] €0% rfn).

The exponent 7/32 in (7)is smaller than 1/4 which is obtainable in various ways
with or withodt Weil's bound for Kloosterman sums (.see 17], [4]) and it is larger than 1/5
which was obtained in [5], [6], [8] by an appeal to the analytic properties of the fourth
symmetric power zeta—function attached to the form u(z} (see [9]). We can certainly
reduce 7/32 to 3/l4 aioni; the lines. of {2] and this work (see [3]). Had we improved the
perturbed large sieve inequality (9) the exponent 1/5 would have been achieved.

It should be emphasized that we are using the divisibility of the Rankin—Selberg
zeta—function by the Riemann zeta~function, so we can work with the symmetric square
zeta—function. If we had worked with the Rankin-Selberg zeta—function the presence of
one more gamma factor in its functional equation would have spoiled the argument. Since

the holomorphy of the symmetric square zeta~function is inherited from the metaplectic
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Eisenstein series on T'3(4), our argument lies entirely within the GL,, theory. Moreover

we do not use Kloosterman sums in this work.

3. The large sieve inequality with perturbation
We need estimates for various character sums. The best possible result of general
type is the large sieve inequality (see [1])

E 2 | Taxm®< QY2 fa |2
q<Q x(mod q} n¢N . n¢N
In this section we extend the large sieve inequality for perturbed characters x(n)eq(v(n))

where v(x) is a real, siooth function on RY such that
(8) O0<xv/(x)<V and (v/(x)) < v (x)|V.
Without loss of generality we assyme that V.z Q.

THEOREM 2. For any complex numbers 2, we have
31
® I T |5 axne(vm)? < (N+QWVIgV) £ |a |
1 n<N n

I
4¢Q x(mod q) n<N
where the implied constant is absolute.

Proofl. By way of Gauss sums the left—hand side is bounded by

A=3% I | % ae (antv(n)]?
q¢Q a(mod q) ngN ™ 1

It suffices to estimate the dual expression

2
B= % | & ¥ b, e (antv(n))}*.
n¢N g<Q a(mod q) 219

We have
1 1
B=GN+ I b B sE-32.__2
a,q.ta,q, 19t 2% (qt q;’ 4, qz)
where
2
G=% b, |
q¢Q a{mod q) 24
and

S(a,f) = % e(an+pv(n)).
n¢N
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By Lemma 4.7 of {11] we have
S(a,f) = T [Ne((e+v)x + fv(x))dx + Olog V).
lvjevl

Let I be the subinterval of [, N] in which |2fv’(x)|>|a+v|. By (8) we have
v (x)| > |a+v[2(4[ ,BIV)—1 in 1. Hence by Lemma 4.4 of [11] the integral over I is

1
bounded in absolute value by 16(] 8] V)3 a+vi—1. In the remaining range we can apply
Lemma 4.2 of [11] showing that the relevant integral is bounded in absolute value by
16} a+u|‘1. Combining both estimates we obtain
_ I
| Yel(arvhx + pelx))dx| < 16]ackv] (1 +{BIV)E

Hence, summing over ¥ we get

— i
S(a) < (ol ™" + log V)(1+| 8] V)2
~ Finally summing over the points a,/q,, a,/q, in a familiar way we conclude that
31
B = (N+0(Q*V7ilog V))G
from which we infer (9) by the duality principle.
4. The large sieve ineguality reversed
Given a sequence £ = (an) of complex numbers and Q > 1 we denote
5*(£,Q) = E:q(qca)“jL B [Baxm)?
qs

x(mod q) n
and

S(£,Q) = T (@@ B |Taead’
(4Q)= 2 @7 © [Paela)

subject to the absolute convergence of the innermost series.
LEMMA 1. Forany M > 2N > 4 we have

2
(10} ) fa_|“<S(#£1,Q)
M<n<M4N * (

1
with some Q ¢ N7, where ¢f= (a_f(n}) for some function { which is smooth,

. £
supported in a subinterval of [M—N, M+2N] of length Y = QN? and whose derivatives
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satisfy {3 << Y Jlog Y with the implied constant depen&ing on j only.
Proof. For the proof we may assume that £ is supported in a subinterval of
[M—N, M+2N] of length 4N. Let us consider a sum of the type

A=Zur) 5 ¥ aa, -
T mzn{mod r) ™ *

where w is a smooth function supported in [{R, R] such that w(r) <« R % w(r) =1

and whose Fourier cosine transform is bounded by
Qv) = 2 [* w{u)cos(2xuv)du << e ONR
1]

Notice that

(11) A=s40) 5 |3aead)?« S(4R)
I a(modr) n T

The terms on the diagonal m = n contribute to A exactly D = Z| a.n]2 and the
remaining terms contribute

B= % 3% a7 (128l
1<s<S m=n(mod s)

where RS = N. Thus wehave D = A —B.

It remains to estimate B in terms of S(.#1, Q). To this end we split the outer
summation into subintervals of type (4Q, Q] with Q ¢ S. Next given Q we make a
smooth partition of unity £ pk(m) = 1, say, with p, supported in an interval of length
Y = QR, whose derivatives satisfy p]((j) << vy and such that every m is counted two
times. The number of terms py that are needed to cover the supporl of € is < N(QR)_l.
We obtain

B= I I B /Q),
1Q<S [kti<1 d

where

B AQ) = %Q<§SQ Is (mod q)aminpk(m)pgn)w(i—“‘;“ ).

To separate m,n in the test function w we use the Fourier integral

o 222L) = 1 ()oY m-n))dv
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and get

B = 0 D s o000 [Baey (m)e(rmemy]

= a
[Eanpl (n)e(-v nmna)}dv.
By Cauchy’s inequality this gives By t(Q) <« B (Q)+B/Q), where

% 3AY ay 2
Bk(Q) = { e ng a(mgd q)!l)fl ampk(m)e(vm+m-§)t dv.

Put fk(m) = pk(m)e(vm}e—‘ﬁY, go f, is smooth, supported in an interval of length
Y = QR and has derivatives f£j) <« Y‘“j, We get
B (Q) « Qv 5(.£1,Q)
for some fk of the above type. Hence summing over k,[,Q we get
B <« NR 2 (log 25)S(.1,,Q)
forsome Q<SS = NR—1 and some fk‘ We choose R = N% and get
[B| < 3 S(A4LQ)
for some Q < N’f12 and { of type c(logY) f,, where ¢ is a large absolute constant.
Moreover by (11) we have
[A] < 5S(A41Q)

with Q= N’i, and some f which is smooth, supported in an interval of length N whose
derivatives are f(j) <« N, Combining these estimates with the relation D=A —B we
complete the proof of Lemma 1.

Rematk. The arguments used in the proof of Lemma 1 can be refined to give an
exact relation (rather than the upper bound) between D and S{.££Q).

Since we intend to exploit the functional equations {2) we must replace the additive

characters in S{.#£1,Q) by the multiplicative ones. We proceed as follows.
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S(.#t, =% T X a_f(m)f
QALQ) = B DT )
=% 33 a4 m3qpf(dm)i(dn)

N dr<Q m=n{mod r)
{mn, r)=1

=% ol ¥ % a, f(dn)y¥(n)|?
drgQW ()w(modr)lnadn{ J¥(n)|

=% olgw) B | % - af )|
R TR O]

- aw * vn)x(n)| 2
_d§WSQW (a )x(mgd q)lvfwﬂ(v)X(v)Eadvnf(d Jx(m)l

< 3 ;Hr Lid ¥ |Za {(dvn)x(n)i2.
dquvsQ A9 ymod q) n 0

Hence

3 e RYPIRYY.
(12)  5(A1Q) < (log Q) dﬁgq(qm q)EEaanf(d ()},

x{mod
where the implied constant is absolute.

Now suppose a, are the coefficients of .£(s) having Euler product with local
factors 6 p(p'"ﬁ) given by (1). Thus

&
A () L a mew = 1.
P v=0 p

Hence for all v ¢ I we obtain the recurrence relation

apy + al(p)a.py,_1 + aﬂ(p)apap 4 +::1.3(p)ap g =8,

subject {o the convention that a , =0 for negative v. In particular we have

_ _ .3
aa(p)_ ap3+2a a a

Moreover for d = pm with m > 0 we obtain
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Ta,n° =(%a P 2 an )
n an »o P Ca,p)=1 "

S L EROER

—2
=(a +b mp“s+<: p %) A(s),

m
p p P

where
b _=a +a(p)a
1
pm pm+ 1 pm
“and

cpm = apm ot al(p)apm it az(p)apm.

Bence it is clear that a an factors as follows

(13) . ' Bgn = h]fl . a(dh)a_,

where a(d,h) is defined for h|d? by

a(dh)= I

a;b,c
dyd d;=d do 914

with dy,d,,d, mutually coprime such that

h=( I p) I p)>
P|d1 Pldz

Using the above formulas one can show that

14 ' a(dh) «< d° B al,
(4 k|dh &

with any € > 0, the implied constant depending on ¢ only.
By (12)—(14) using Cauchy’s inequality we conclude the following
LEMMA 2. We have

(15) S(ALQ) < QF & d”! T ja(d,h)|? s (AF,d1Q),
d<Q  h|d?

where F(y) = f(dhy), the implied constant depending on ¢ only.
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5. Evaluation of .¢(F,y)
Let F(y) be a smooth function supported on the interval [X, X +Y] with
X >Y >0 and whose derivatives satisfy F(j) < Y_j for any j > 0, the implied
constant depending on j only. We apply the functional equation (2) to evaluate the
character sum
A(Fx) = é-amx(m)F{_m).
By contour integration we obtain £({F,x) = ex.,{ (G,x), where
G0 = 5k | FO)gth €05
| ()
with 2§ and
F(s) = [F(x)x®dx = YX*R(s),

say. Integrating by parts we see that all derivatives of R(s) satisfy

(16) rRUs) <« (1+ L;.l)“"'r*j , where T = XY},
for any » > 0, the implied constant depeading on 1,0 and j only. Next we put
3 3
8 1-5 n3sg 0
- 3T 3= (& 7 .
(17 A(s) jggr(i +K3)/ (5= +53) (q) F(%"s

3 i
In the above notation we obtain G(f) = (%)’YJ (—3{0()3), where

1
(18) 3(z) = o ( ;)R(S)A(s)(_j_z_)"'sds.
g
For any function R(s) having the property (16) one can find two functions j +(z) and
j_(z) on Rt such that .

(19) 23(s) = (2)e(s) + i (a)e(-2),
(20) : z% EREIR A

and

(21) @) < 1+

where v is any positive number, the implied constant depending on R K and v only.

From the above evaluations we conclude the following
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" LEMMA 3. We have
29 w6 =XEbvxt 5 o, H5e Yoo, eoh
X = 35 Lt x(Ge(+ LK, (GHX)).

6. Estimation of S*(‘AF,Q)

Let F(y) be as in the previous section. We have

sHUFQ) = B (@) B el
asQ x{mod q)

By {20), (21), (22) and partial summation we get

S (AF,Q) < 1+ YQTiQ! = BT a, (e
, ; L e eb)
q$Q, x(mod q) &L,

with some Q, < Q and L < X"l(QDT)3+E. Applying Theorem 2 we conclude
LEMMA 4 Let X>Y>0,Q>1 and ¢ > 0. We have

(23) SYAF,Q) << 1+ QYQTE+ YT tEL!alI 21
<

where T=XY ! and L= X—I(QT)3+E, the implied constant depending on e
Remark. It may happen that L < 1 in which case the sum is void and the

resulting bound is very good, the effect of smoothing.

7. Proof of Theorem 1

Let I+#, where 0 < 5 <1, be the abscissa of absolute convergence of the series
@
Dis)=I 3121 o,
1
By (23) we get

|
SH(AF,Q) < 1+ (QTZHYTHLTHE,
Hence by (15) we get

S(A1,Q) << Qfdiqu"l d)ﬁlhnla(d,h)lz[l«k(%{%—)z + SEGHEPH™

-3 1 3 -3
<« C(M2N T MINTH(M2N [)THe,
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where

C=3% % d2MMaan?« 1
d d|h?
by (14). Combining with (10} we get

-3 Pl -3
¥ la |2 << (MENT 4 MIND(MIN)TFE,

(24) '
M<n{M+N

for any M » N> 1. Finally takingin (24) M = N we infer that # = 0 and then by (24)

with =10 we get (4).

i
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