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AN ESTIMATE FOR THE HECKE EIGENVALUES OF
MAASS FORMS

DANIEL BUMP, W. DUKE, JEFFREY HOFFSTEIN,
AND HENRYK IWANIEC

Let (z) be an even Maass cusp form for SL(2, 7/) which is an eigenfunction of the
Hecke operators Tp for all primes p, with eigenvalues a(p). Let (p) and fl(p) be the
roots of the Hecke polynomial:

1 a(p)X + X2 (1 (p)X)(1 fl(p)X).

We will prove the following theorem.

THEOREM. For all primes p we have I(P)I, I(P)I < pS/2a.

Previously the best known exponent was 1/5. The estimate 11, Jill pl/5 first
appeared in an unpublished letter of Serre to Deshouillers, as an application of
Landau’s lemma combined with work of Jacquet, Piatetski-Shapiro, and Shalika
([5-1, [6], and [7-], then unpublished); published versions of this proofmay be found
in Moreno and Shahidi [8-1 and M. R. Murty [9]. This proof does not generalize,
however, to give a corresponding estimate over a number field. A proof valid over
a number field was obtained as part of the far-reaching work of Shahidi [12-1, [13]
on automorphic L-functions. Moreover, Shahidi obtained the strict inequality
I1 < p/5. We refer to [11] for further historical remarks.

It is doubtless possible to adapt our method to give the 5/28 estimate for an
arbitrary automorphic representation of GL(2) over Q. Over a number field, how-
ever, Shahidi still has the best estimate. Both the original proof of the 1/5 estimate
and the present proof of the 5/28 bound depend on the gamma functions in the
functional equation and give weaker bounds over a number field. It is remarkable
that Shahidi’s proof, which is based on entirely different principles, does not have
this defect.

There are two principal new ingredients in obtaining the exponent 5/28. The first
is that the role classically played by Landau’s lemma is taken over by a new method
of estimating the coefficients of a Dirichlet series, introduced in Duke and Iwaniec
[3], which replaces the customary assumption of positivity for the coefficients with
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76 BUMP, DUKE, HOFFSTEIN, AND IWANIEC

information about the twists of the series by Dirichlet characters. The second new
ingredient is a theorem of Bump and Ginzburg [1] showing that the symmetric
square L-function of a cusp form on GL(r) cannot have a pole unless the central
character is quadratic. The possibility of such a result, at least when r 3, became
evident when Patterson and Piatetski-Shapiro [10] found a Rankin-Selberg convo-
lution for the symmetric square L-function on GL(3). We will apply the symmetric
square construction to twists of the Gelbart-Jacquet lift of b to GL(3) and apply the
new estimation technique. A significant point is that the crucial inequality (1.3) is a
consequence of Deligne’s estimate for hyper-Kloosterman sums [2], which emerge
on summing the Gauss sums which occur in the functional equations of the twisted
Dirichlet series.
Theorem 1 in [3] requires functional equations for a Dirichlet series twisted by

nearly all characters modulo a fixed conductor q; what is available from [1] are
twists by those characters which are squares. We thus must either modify [1-1 to
obtain further twists, or else we must modify the Theorem of I-3] to work with fewer
twists. We choose the latter course.
We would like to thank D. Ginzburg and F. Shahidi for numerous discussions

concerning this work.

1. Estimation of coefficients in a Dirichlet series. In this section we prove a
slightly modified version ofTheorem 1 ofDuke and Iwaniec [3]. We will write down
an exact statement, but as the proof is only slightly altered, we will assume familiar-
ity with the argument in [3-1, simply indicating how changes must be made in the
original proof to obtain the new theorem.

Let (an) be a sequence of complex numbers. Suppose that the series

n=l

converges absolutely in Re s > 1. Set

n=l

where Z is a Dirichlet character modulo a prime q. Let be an exceptional set of
Dirichlet characters mod q containing the trivial character, with e < H; i.e., the
number of exceptions is bounded and independent of q. Assume that there is a fixed
integer r such that for Zr the series (s, :tr) may be analytically continued to
an entire function satisfying a functional equation

(1.1)

where I1 1 and (s) is holomorphic in Re s > 1. Now (s) depends on q and
may depend on the parity of Z’, but not on Z otherwise. Moreover, we assume there
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ESTIMATE FOR THE HECKE EIGENVALES OF MAASS FORMS 77

exists a constant c > 1 such that

(1.2) (s) << (qlsl)t2-

on Re s a > 1, the implied constant depending on a. Finally, we assume that for
any a the ez,Z-r(a) are randomly distributed on the unit circle, i.e., that

(1.3) Kq(a)= ez,Z-’(a)<<q 1/2.
x",

Then we have the following proposition.

PROPOSITION 1. If the above conditions hold for a set of primes q of positive
density, then for any n > 1 we have

a << n(2c-1)/(2c+1)+e

with any e > 0, the implied constant dependin9 on e.

Proof. The original proof of [3] goes through identically, with the following
modifications. A new definition is given for ,(q; l), namely,

/f(q; l)= a.f(n),
=/r(modq)

and thus if

z’y(X) a,,z(n)f(n),

we have

1
zC’f(q; l)= X-*(l)de/f(X’).q- 1 (modq)

Also, we set

1
#l/If(q; l)- Z-’(l)zlf(Z’).q--lz

The only other place where a modification is necessary is in the proof of Theorem
1 of [3-1, where in place of the first line we have

anco(n1-1) << q-t la.I + qC-t/2+,
=/r(modq) 1/2 < < 21

(in the original version r 1). Summing over q as in [3], the term aco(1) will occur
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78 BUMP, DUKE, HOFFSTEIN, AND IWANIEC

with high multiplicity since every q divides r, and if n # l, then since n and
are positive integers, we have n 4: l; so there are, as in [3], at most O(log l) prime
divisors of n (the constant now depending on r). The remainder of the proof
then goes through unchanged, m

2. The analytic continuation and functional equation of the fourth symmetric
power. Let n be the automorphic representation of GL(2, A) corresponding to the
Maass cusp form , A being the adele ring of Q.

Let C be a primitive Dirichlet character modulo q, where q is a prime. We associate
with C a character of the idele class group A/Q, which by abuse of notation we
will also denote as ;t, in the usual way: If a is any idele, there exists a e Q such that
(a)oo > 0 and (aa)q is a unit congruent to 1 modulo q in ; then the idele aa
determines an ideal a in 7/which is relatively prime to q, and we define z(a) C(a).

Let S be the set {oo, q} of places of Q. The partial symmetric fourth power
L-function twisted by C2 is by definition

Ls(S, r, k/4 (R) Z2)

1-I (1 Z2(p)oe(p)’*p-S)-(1 Z2(p)oe(p)3fl(p)p-S)-(1 Z2(p)ot(p)2fl(p)2p-S)-
2 3(1 ;((p)a(p)fl(p) p- )-x(1 Z2(p)fl(p)4p-S)-.

We will also denote by

Ls(s, g2) H (1 g2(p)p-S)-’ z2(n)n
pSS n=l

the usual Dirichlet L-function associated with ;2. Let v be (either) purely imaginary
number such that 1/4 v2 is the eigenvalue of the noneuclidean Laplacian on b. Also,
let

L(s, r, V4 (R) Z2)

z-ss/2F(s+24v)F(s+2v)2F()I" (s-2v)F(s-4V)Ls(s,g,2 2
/4 () g2)

Z(Z2) z2(a)e2ialq.
amodq

We will say that z is monomial if zr r (R) r/for some quadratic Gr6ssencharacter
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ESTIMATE FOR THE HECKE EIGENVALES OF MAASS FORMS 79

r/. In this case it is explained in Section 3.7 of [4] that results of Labesse and
Langlands imply the Ramanujan conjecture for z. Hence, we may exclude this
case.

PROPOSITION 2. Suppose that r is not monomial and that 7.6 v 1. Then the partial
L-function Ls(s, )(.2)Ls(s, z, /4 () 2) is an entire function of s. We have the functional
equation

L(s, )2)L(s, x, /4 () Z2) z(Z2)6q-6SL(1 s, )-2)L(1 s, n, /* (R) )-2).

The precise functional equation may be established either by the Rankin-Selberg
method (as in the following proof) or by Shahidi’s method (see particularly Corol-
lary 6.7 of [12] on the symmetric square L-function, and the discussion on p. 418
of [11] of the standard L-functions for GL(n) x GL(m).)

Proof. If v is any place of, then rv is a nonramified principal series representa-
tion roy n(p, p-l) of GL(2, ), where po is an unramified character of ff. Let
be the nonramified principal series representation n(p, 1, p-2) of GL(3, Qv); it is
the local lifting of ro in the sense of Gelbart and Jacquet [4], Definition 3.1.3. Let
re’= (R)v r’o. By Theorem 9.3 of Gelbart and Jacquet [4], n’ is automorphic, and
since we are assuming that zt is not monomial, ’ is cuspidal.
We will denote by rc’Z the tensor product of n’ with the one-dimensional represen-

tation Z o det of GL(3, A). Then

Ls(s, )(.2)Ls(s, r, /* (R) Z2) Ls(s, r’Z, V2).

Since the central character 3 of n’Z is not quadratic, it follows from Theorem 7.5
of Bump and Ginzburg [1] that this function is entire.

Since

Ls(s, re’Z, /2) Ls(s, (n’X) x

Ls(s rc’ x Z2)

we may use the global results of Jacquet and Shalika [6] on the Rankin-Selberg
method, together with the local results of Jacquet, Piatetski-Shapiro, and Shalika
I-5] Theorem 3.1, and of Jacquet and Shalika 1-7] Theorem 5.1 to compute the local
functional equations. By means of these results, the local functional equation is
reduced to a product of six GL(1) computations, where the local factors are com-
puted in Tate’s thesis [14], [15]. To define these, for each place v of Q, we use the
"obvious" additive character fro and additive measure on ; these are specified in
Tate [-14-1, Section 2.2. We have

Ls(s, z’Z, /2) {vsYv(S, Z’vZv, /2, v)} Ls(1- s, Ir,’z-l, /2)
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where

and where, for a character a of 2 (or, equivalently, of the corresponding Weil
group, which has Q( as its abelianization)

e,(s, ao, bo)L(1 s, (7-1

L(s, ,)

in terms of the local e and L-functions defined in Tate [15], 3.5.1 and 3.5.2. These
factors are made explicit in Tate [15], 3.1 and 3.2. We have

q(S, k 2

Hence, we obtain the required functional equation.

3. Hecke eigenvalues of Maass forms. In Proposition 1, set r 2 and take
for (s) the L-series ((s)Ls(s,r, /4), and for (s, Z2) the twisted series
Ls(s, z2)Ls(s, r, /4 (R) ;t2). Take for the characters such that Z6 1. By Propo-
sition 2 above, (1.1) holds with (s) (R)(s)/(R)(1 s), where

O(s) x-3SqasF(s + 4v)F(S + 2V)F()2F(s 2V)F(s

2 2 2

and ex2 (’(j(2)//)6, where z(Z2) is the Gauss sum defined in Section 2. It is then
clear that (1.2) holds with c 3. To verify (1.3), note that

ex2Z-2(a)=(q-1)q-3 e2’a(x,+’’’+x6)/q,
z(modq) (x 1.. "X6) "-a2

and (1.3) follows as this is simply a sum of two hyper-Kloosterman sums, which are
bounded by the Deligne estimate [2]. It then follows from Propositions 1 and 2
that, if A, denotes the nth coefficient of ((s)Ls(s, r, /), then

(3.1) A. << n5/7+
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ESTIMATE FOR THE HECKE EIGENVALES OF MAASS FORMS 81

for any e > 0, the implied constant depending on e. If ]a(p)] > 1 for some prime p,
then Ap (p)# as k o. The "5/28" estimate follows immediately from this and
(3.1).
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